
Bounded Model Checking (BMC)

Automated Program Verification (APV)
Fall 2019

Prof. Arie Gurfinkel

2 2

SAT-based Model Checking

Main idea
Translate the model and the specification to
propositional formulas

Reduce the model checking problem to satisfiability
of propositional formulas

Use efficient tools (SAT solvers) for solving the
satisfiability problem

(p, ¬p, p∨q, p∧q, p→q…)

SAT
∈ NPC…

3 3

Modeling with Propositional Formulas

a
b c

Finite-State System is modeled as (V, INIT, T):
• V – finite set of Boolean variables

• Boolean variables: a b c è 8 states: 000,001,…
• INIT(V) – describes the set of initial states

• INIT = ¬a ∧ ¬b

• T(V,V’) – describes the set of transitions
• T(a,b,c,a’,b’,c’) = (c’ ↔ (a ∧ b) ∨ c)

Property:
• p(V) - describes the set of states satisfying p

• p = a∨ ¬c (Bad = ¬p = ¬a∧ c)

00
0

01
0

11
1

10
1

10
0

00
1

01
1

11
0

00
1

01
1

state =
valuation to

variables

note: c = ct and c' = ct+1

4 4

Modeling in CNF (Tseitin encoding)

g

p

Each circuit element is a constraint

g = a ∧ b
c' = p

p = g ∨ c
T(a,b,c,g,p,a’,b’,c’) =

g ⟷ a ∧ b,

p ⟷ g ∨ c,

c' ⟷ p

a
b c

5 5

Given
• A finite transition system M= (V, INIT(V), T(V,V’))
• A safety property AG p, where p = p(V)
• A bound k

Determine
• Does M contain a counterexample to p of

k transitions (or fewer) ?

Bounded model checking (BMC)
for checking AGp

A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, DAC'99
* BMC can handle all of LTL formulas

6 6

Bounded model checking
for checking AGp

Unwind the model for k levels, i.e., construct all computations of length k
If a state satisfying ¬p is encountered, then produce a counterexample

The method is suitable for falsification, not verification

Can be translated to a SAT problem

7 7

Bounded model checking with SAT

Construct a formula fM,k describing all possible
computations of M of length k

a
b cp

g
g = a ∧ b

p = g ∨ c

c' = p T(a,b,c,a’,b’,c’) =

g ⟷ a ∧ b,

p ⟷ g ∨ c,

c' ⟷ p

8 8

Bounded model checking with SAT

Construct a formula fM,k describing all possible
computations of M of length k

fM,k = INIT0 Ù T0 Ù T1 Ù ... Ù Tk-1
a
b

cp

g a
b

cp

g a
b

cp

g
...INIT0

a0,b0,c0,

g0,p0

a1,b1,c1,

g1,p1

ak-1,bk-1,ck-1,

gk-1,pk-1

INIT0 = INIT(V0)

Ti = T(Vi,Vi+1)

ak,bk,ck,

gk,pk

9 9

Bounded model checking with SAT

Construct a formula fM,k describing all possible
computations of M of length k
Construct a formula fj,k expressing that j=EF¬p holds
within k computation steps

fj,k = Vi=0,..k (¬pi) [Sometimes fj,k = ¬pk]

pi = p(Vi)

10 10

Bounded model checking with SAT

Construct a formula fM,k describing all possible
computations of M of length k
Construct a formula fj,k expressing that j=EF¬p holds
within k computation steps
Check whether f = fM,k Ù fj,k is satisfiable

If f is satisfiable then M |¹ AGp
The satisfying assignment is a counterexample

11 11

BMC for checking AG p with SAT

Unfold the model k times:
• U = T<0> ∧ T<1> ∧ ... ∧ T<k-1>

a
b

c

a
b

c

a
b

c...I<0> ¬p<k>

• Use SAT solver to check satisfiability of
I<0> ∧ U ∧ ¬p<k>

• If satisfiable: the satisfying assignment describes a
counterexample of length k

• If unsatisfiable: property has no counterexample of length k

Biere, et al. TACAS99

I<0> = I(V0)
T<i> = T(Vi,Vi+1)

p<k> = p(Vk)

12 12

Example – shift register

Shift register of 3 bits: <x, y, z>
Transition relation:
T(x,y,z,x’,y’,z’) = x’↔y Ù y’↔ z Ù z’=1

|____|
error

Initial condition:
INIT(x,y,z) = x=0 Ú y=0 Ú z=0

Specification: AG (x=0 Ú y=0 Ú z=0)

13 13

Propositional formula for k=2

fM,2 = (x0=0 Ú y0=0 Ú z0=0) Ù
(x1↔ y0 Ù y1↔ z0 Ù z1=1) Ù
(x2↔ y1 Ù y2↔ z1 Ù z2=1)

fj,2 = Vi=0,..2 (xi=1 Ù yi=1 Ù zi=1)

Satisfying assignment: 101 011 111
This is a counterexample!

INIT = x=0 Ú y=0 Ú z=0

T = x’↔ y Ù y’↔ z Ù z’=1

P = x=0 Ú y=0 Ú z=0

14 14

A remark

In order to describe a computation of length k by a propositional formula we
need k+1 copies of the state variables.

With BDDs we use only two copies: for current and next states.

15 15

BMC for checking j=AGp

1. k=1
2. Build a propositional formula fM

k describing all prefixes
of length k of paths of M from an initial state

3. Build a propositional formula fjk describing all prefixes
of length k of paths satisfying F¬p

4. If (fM
k Ù fjk) is satisfiable,

return the satisfying assignment as a counterexample

5. Otherwise, increase k and return to 2.

16 16

Bounded Model Checking

INIT

R1

¬p

INIT(V0) �T(V0,V1)�¬p(V1)

17 17

Bounded Model Checking

INIT

R1 R2

¬p

INIT(V0) �T(V0,V1) �T(V1,V2)�¬p(V2)

18 18

Bounded Model Checking

INIT

R1 R2

¬p

……

INIT(V0)

Rk

�T(V0,V1) �…�T(Vk-1,Vk)�¬p(Vk)

19 19

BMC for checking AFp (j=EG¬p)

Is there an infinite path in M
• From an initial state
• all of its states satisfying ¬p
• Over k+1 states ?

If exists, there must also exist a lasso

20 20

BMC for checking AFp (j=EG¬p)

An infinite path in M, from an initial state, over k+1 states, all
satisfying ¬p:

fM
k (V0,…,Vk) =

INIT(V0) Ù ⋀i=0,…k-1 T(Vi,Vi+1) Ù ⋁i=0,…k-1 (Vk=Vi)

• Vk=Vi means bitwise equality: ⋀j=0,…n (vkj « vij)

fjk (V0,…,Vk) = ⋀i=0,…k ¬p(Vi)

Remark: BMC can handle all of LTL formulas

21 21

Bounded model checking

Can handle all of LTL formulas

Can be used for verification by choosing k which is large enough
• Need bound on length of the shortest counterexample.
–diameter bound. The diameter is the maximum length of the

shortest path between any two states.

Using such k is often not practical due to the size of the model
– Worst case diameter is exponential. Obtaining better bounds is

sometimes possible, but generally intractable.

22 22

Bounded Model Checking

Terminates
• with a counterexample or
• with time- or memory-out

=> The method is suitable for falsification, not verification

Can be used for verification by choosing k which is large enough
• Need bound on length of the shortest counterexample.
– diameter bound. The diameter is the maximum length of the shortest path

between any two states.

Using such k is often not practical
– Worst case diameter is exponential. Obtaining better bounds is sometimes

possible, but generally intractable.

23 23

CBMC
Bounded Model Checker for C

24 24

Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find
whether there exists an execution that violates the claim.

Program

Claim

Analysis

Engine

SAT

Solver

UNSAT

(no counterexample found)

SAT

(counterexample exists)

CNF

25 25

Programs and Claims

• Arbitrary ANSI-C programs
• With bitvector arithmetic, dynamic memory, pointers, …

• Simple Safety Claims
• Array bound checks (i.e., buffer overflow)

• Division by zero

• Pointer checks (i.e., NULL pointer dereference)

• Arithmetic overflow
• User supplied assertions (i.e., assert (i > j))

• etc

26 26

Why use a SAT Solver?

• SAT Solvers are very efficient

• Analysis is completely automated

• Analysis as good as the underlying SAT solver

• Allows support for many features of a programming language
• bitwise operations, pointer arithmetic, dynamic memory, type casts

27 27

A (very) simple example (1)

int x;

int y=8,z=0,w=0;

if (x)

z = y – 1;

else

w = y + 1;

assert (z == 7 ||

w == 9)

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 7,

w != 9

Program Constraints

UNSAT

no counterexample

assertion always holds!

28 28

A (very) simple example (2)

int x;

int y=8,z=0,w=0;

if (x)

z = y – 1;

else

w = y + 1;

assert (z == 5 ||

w == 9)

y = 8,

z = x ? y – 1 : 0,

w = x ? 0 :y + 1,

z != 5,

w != 9

Program Constraints

SAT

counterexample found!

y = 8, x = 1, w = 0, z = 7

29 29

What about loops?!

• SAT Solver can only explore finite length executions!
• Loops must be bounded (i.e., the analysis is incomplete)

Program

Claim

Analysis

Engine

SAT

Solver

UNSAT

(no counterexample of

bound n is found)

SAT

(counterexample exists)

CNF

Bound (n)

30 30

CBMC: C Bounded Model Checker

• Developed at CMU by Daniel Kroening and Ed Clarke

• Available at: http://www.cprover.org/cbmc

• On Ubuntu: apt-get install cbmc
• with source code

• Supported platforms: Windows, Linux, OSX

• Has a command line, Eclipse CDT, and Visual Studio interfaces

• Scales to programs with over 30K LOC

• Found previously unknown bugs in MS Windows device drivers

http://www.cprover.org/cbmc

31 31

CBMC: Supported Language Features

ANSI-C is a low level language, not meant for verification
but for efficiency

Complex language features, such as
• Bit vector operators (shifting, and, or,…)

• Pointers, pointer arithmetic

• Dynamic memory allocation: malloc/free

• Dynamic data types: char s[n]

• Side effects

• float / double

• Non-determinism

32 32

DEMO

33 33

Using CBMC from Command Line

• To see the list of claims
cbmc --show-claims -I include file.c

• To check a single claim
cbmc --unwind n --claim x –I include file.c

• For help
• cbmc --help

34 34

How does it work

Transform a programs into a set of equations
1. Simplify control flow
2. Unwind all of the loops
3. Convert into Single Static Assignment (SSA)
4. Convert into equations
5. Bit-blast
6. Solve with a SAT Solver
7. Convert SAT assignment into a counterexample

35 35

CBMC: Bounded Model Checker for C
A tool by D. Kroening/Oxford and Ed Clarke/CMU

Parser Static Analysis

CNF-genSAT solver

CEX-gen CBMC

C Program

SAFE

UNSAFE + CEX

SAT

UNSAT CNF

goto-
program

equations

36 36

Control Flow Simplifications

l All side effect are removed
• e.g., j=i++ becomes j=i;i=i+1

• Control Flow is made explicit
• continue, break replaced by goto

• All loops are simplified into one form
• for, do while replaced by while

37 37

Loop Unwinding

• All loops are unwound
• can use different unwinding bounds for different loops

• to check whether unwinding is sufficient special “unwinding
assertion” claims are added

• If a program satisfies all of its claims and all unwinding
assertions then it is correct!

• Same for backward goto jumps and recursive functions

38 38

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void f(...) {
...
while(cond) {
Body;

}
Remainder;

}

39 39

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void f(...) {
...
if(cond) {
Body;
while(cond) {
Body;

}
}
Remainder;

}

40 40

Loop Unwinding

while() loops are unwound
iteratively

Break / continue replaced by
goto

void f(...) {
...
if(cond) {
Body;
if(cond) {
Body;
while(cond) {
Body;

}
}

}
Remainder;

}

41 41

Unwinding assertion

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

void f(...) {
...
if(cond) {
Body;
if(cond) {
Body;
if(cond) {
Body;
while(cond) {
Body;

}
}

}
}
Remainder;

}

42 42

Unwinding assertion

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

Positive correctness result!

void f(...) {
...
if(cond) {
Body;
if(cond) {
Body;
if(cond) {
Body;
assert(!cond);

}
}

}
}
Remainder;

}

Unwinding
assertion

43 43

Example: Sufficient Loop Unwinding

void f(...) {
j = 1
if(j <= 2) {
j = j + 1;
if(j <= 2) {
j = j + 1;
if(j <= 2) {
j = j + 1;
assert(!(j <= 2));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while (j <= 2)
j = j + 1;

Remainder;
}

unwind = 3

44 44

Example: Insufficient Loop Unwinding

void f(...) {
j = 1
if(j <= 10) {
j = j + 1;
if(j <= 10) {
j = j + 1;
if(j <= 10) {
j = j + 1;
assert(!(j <= 10));
}

}
}

}
Remainder;

}

void f(...) {
j = 1
while (j <= 10)
j = j + 1;

Remainder;
}

unwind = 3

45 45

Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

x = a;

y = x + 1;

z = y – 1;

Program Constraints

x = a &&

y = x + 1 &&

z = y – 1 &&

46 46

Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times,
use a new variable for the RHS of each assignment

Program SSA Program

47 47

What about conditionals?

Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v0)

x0 = y0;

else

x1 = z0;

w1 = x??;

What should ‘x’
be?

48 48

What about conditionals?

For each join point, add new variables with selectors

Program SSA Program

if (v)

x = y;

else

x = z;

w = x;

if (v0)

x0 = y0;

else

x1 = z0;

x2 = v0 ? x0 : x1;

w1 = x2

49 49

Adding Unbounded Arrays

Arrays are updated “whole array” at a time

A[1] = 5;

A[2] = 10;

A[k] = 20;

A1=λ i : i == 1 ? 5 : A0[i]

A2=λ i : i == 2 ? 10 : A1[i]

A3=λ i : i == k ? 20 : A2[i]

Examples: A2[2] == 10 A2[1]==5 A2[3] == A0[3]

A3[2] == (k==2 ? 20 : 10)

Uses only as much space as there are uses of the array!

50 50

Example

51 51

Pointers

While unwinding, record right hand side of assignments to pointers

This results in very precise points-to information
• Separate for each pointer
• Separate for each instance of each program location

Dereferencing operations are expanded into case-split on pointer object
(not: offset)
• Generate assertions on offset and on type

Pointer data type assumed to be part of bit-vector logic
• Consists of pair <object, offset>

52 52

Dynamic Objects

Dynamic Objects:
• malloc / free
• Local variables of functions

Auxiliary variables for each dynamically allocated object:
• Size (number of elements)
• Active bit
• Type
malloc sets size (from parameter) and sets active bit
free asserts that active bit is set and clears bit
Same for local variables: active bit is cleared upon leaving the function

Modeling with CBMC

54 54

From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
• assert(e) – aborts an execution when e is false, no-op otherwise

Non-determinism
• nondet_int() – returns a non-deterministic integer value

Assumptions
• assume(e) – “ignores” execution when e is false, no-op otherwise

void assert (_Bool b) { if (!b) exit(); }

int nondet_int () { int x; return x; }

void assume (_Bool e) { while (!e) ; }

55 55

Example

int x, y;
void main (void)
{
x = nondet_int ();

assume (x > 10);
y = x + 1;

assert (y > x);
}

possible overflow

assertion fails

56 56

Using nondet for modeling

Library spec:
“foo is given non-deterministically, but is taken until returned”

CMBC stub:

int nondet_int ();

int is_foo_taken = 0;

int grab_foo () {

if (!is_foo_taken)

is_foo_taken = nondet_int ();

return is_foo_taken; }

void return_foo ()

{ is_foo_taken = 0; }

57 57

Assume-Guarantee Reasoning (1)

Is foo correct? int foo (int* p) { … }

void main(void) {

…

foo(x);

…

foo(y);

…

}

Check by splitting
on the argument of
foo

58 58

Assume-Guarantee Reasoning (2)

(A) Is foo correct assuming p is not NULL?

int foo (int* p) { __CPROVER_assume(p!=NULL); … }

(G)Is foo guaranteed to be called with a non-NULL argument?
void main(void) {

…

assert (x!=NULL);// foo(x);

…

assert (y!=NULL); //foo(y);

…}

59 59

Dangers of unrestricted assumptions

Assumptions can lead to vacuous satisfaction

if (x > 0) {

__CPROVER_assume (x < 0);

assert (0); }This program is passed by CMBMC!

Assume must either be checked with assert or used as an idiom:

x = nondet_int ();

y = nondet_int ();

__CPROVER_assume (x < y);

60 60

Example: Prophecy variables

int x, y, v;
void main (void)
{
v = nondet_int ();
x = v;

x = x + 1;
y = nondet_int ();
assume (v == y);

assert (x == y + 1);

}

v is a prophecy variable

it guesses the future value of y

assume blocks executions with a

wrong guess

syntactically: x is changed before y

semantically: x is changed after y

Context-Bounded Analysis with CBMC

Akash Lal and Tom Reps. “Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis”

62 62

Context-Bounded Analysis (CBA)

Explore all executions of TWO threads that have at most R context-
switches (per thread)

T1

T2

Context-Swtich
(T1 preempted by T2)

Context-Swtich
(T2 preempted by T1) Context-Swtich

(T1 preempted by T2)

63 63

CBA via Sequentialization

1. Reduce concurrent program P to a sequential (non-deterministic)
program P’ such that “P has error” iff “P’ has error”

2. Check P’ with CBMC

Sequentialization CBMC

Two-Thread Concurrent
Program in C Sequential Program

OKUNSAFE +
CEX

64 64

R

Key Idea

1. Divide execution into rounds based on context switches
2. Execute executions of each context separately, starting from a

symbolic state
3. Run all parts of Thread 1 first, then all parts of Thread 2
4. Connect executions from Step 2 using assume-statements

T1

T2

Round 0 Round 1 Round 2

65 65

Sequentialization in Pictures

Guess initial value of each global in each round
Execute task bodies
• T1

• T2

Check that initial value of round i+1 is the final value of round i

g[0] g[1] g[2]

T1T1T1

T2 T2

66 66

CBA Sequentialization in a Nutshel

Sequential Program for execution of R rounds (i.e., context switches):
1. for each global variable g, let g[r] be the value of g in round r
2. execute thread bodies sequentially
– first thread 1, then thread 2
– for global variables, use g[r] instead of g when running in round r
– non-deterministically decide where to context switch
– at a context switch jump to a new round (i.e., inc r)

3. check that initial value of round r+1 is the final value of round r
4. check user assertions

67 67

CBA Sequentialization 1/2

void main()
initShared();
initGlobals();

for t in [0,N) : // for each thread
round = 0;
T’t();

checkAssumptions();
checkAssertions();

initShared()
for each global var g, g[0] = init_value(g);

initGlobals()
for r in [1,R): //for each round

for each global g: g[r] = i_g[r] = nondet();

checkAssumtpions()
for r in [0,R-1):

for each global g:
assume (g[r] == i_g[r+1]);

var
int round; // current round
int g[R], i_g[R]; // global and initial global
Bool saved_assert = 1; // local assertions

checkAssertions()
assert (saved_assert);

68 68

CBA Sequentialization: Task Body 2/2
void T’t ()
Same as Tt, but each statement ‘st’ is replaced with:

contextSwitch(); st[g ¬ g[round]];
and ‘assert(e)’ is replaced with:

saved_assert = e;

void contextSwitch()
int oldRound;

if (nondet()) return; // non-det do not context switch

oldRound = round;
round = nondet_int();
assume (oldRound < round <= R-1);

For more details, see

Akash Lal and Tom Reps. “Reducing Concurrent Analysis Under a Context Bound to Sequential Analysis”,

in Proceedings of Computer Aided Verification, 2008.

69 69

Checking user-specified claims

Assert, assume, and non-determinism + Programming can be used to
specify many interesting claims

Use CBMC to check that this
loop has a non-terminating
execution

int dir=1;

while (x>0) {

x = x + dir;

if (x>10) {dir = -1*dir;}

if (x<5) {dir = -1*dir;}

}

70 70

Symbolic Execution

Analysis of programs by tracking symbolic rather than actual values
• a form of Static Analysis

Symbolic reasoning is used to reason about all the inputs that take the
same path through a program

Builds constraints that characterize
• conditions for executing paths
• effects of the execution on program state

71 71

Symbolic Execution

Uses symbolic values for input variables.

Builds constraints that characterize the conditions under which
execution paths can be taken.

Collects symbolic path conditions
• a path condition for a path P is a formula PC such that PC is satisfiable if and

only if P is executable

Uses theorem prover (constraint solver) to check if a path condition is
satisfiable and the path can be taken.

72 72

1 int proc(int x) {
2

3 int r = 0
5

6 if (x > 8) {
7 r = x - 7
8 }
9

10 if (x < 5) {
11 r = x – 2
12 }
13

14 return r
15 } Satisfying assignments:

X = 9 X = 4 X = 7
Test cases:

proc(9) proc(4) proc(7)

Symbolic
program state

Path condition
Input symbol

✓ ✓

73 73

1 formula / path 1 formula / CFG

Compositional SE /
Summaries

[Godefroid, POPL’07]

BMC slicing
[Ganai&Gupta, DAC’08]

State joining
[Hansen et al., RV’09]

DART (SAGE)
[Godefroid, PLDI’05]

EXE (KLEE)
[Cadar et al., CCS’06]

Symbolic Execution Verification Condition
Generation

F-Soft
[Ivancic et al., CAV’05]

CBMC
[Clarke et al., TACAS’04]

Boogie
[Barnett et al., FMCO’05]

Query Count Estimation
Dynamic State Merging

[Kuznetsov, Kinder,
Bucur, Candea,
PLDI’12]

