
Unbounded Model Checking:
IC3 and PDR

Automated Program Verification (APV)
Fall 2019

Prof. Arie Gurfinkel

2 2

Project proposals due November 18, 2019

Talk to me before submitting the proposal!

Submit PDF with proposal by email
• Must include at least 3 references to be read during the project

3 3

SAT-based Model Checking

Bounded Model Checking
• Is there a counterexample of k-steps

Unbounded Model Checking
• Induction and K-Induction (k-IND)
• Interpolation Based Model Checking (IMC)
•Property Directed Reachability (IC3/PDR)

4 4

Symbolic Safety and Reachability

A transition system P = (V, Init, Tr, Bad)
P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN) 6) ?

Init) Inv

Inv(X) ^ Tr(X,X 0)) Inv(X 0)

Inv) ¬Bad

5 5

Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation: Initial ⊆ Inv
• Safety: Inv ∩ Bad = ∅
• Consecution: TR(Inv) ⊆ Inv

Initial

i.e., if s ∈ Inv and s↝t
then t ∈ Inv

6 6

Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation: Initial ⊆ Inv
• Safety: Inv ∩ Bad = ∅
• Consecution: TR(Inv) ⊆ Inv

Initial

System S is safe if Reach ∩ Bad = ∅

Reach

i.e., if s ∈ Inv and s↝t
then t ∈ Inv

7 7

Craig Interpolants [Craig 57]

Given a pair (A,B) of propositional formulas s.t.
• A(X,Y) ∧ B(Y,Z) is unsatisfiable
• i.e., A⇒¬B

There exists a formula I such that:
• A ⇒I
• I ∧ B is unsatisfiable
• I is over Y, the common variables of A and B

A ⇒¬B

A ⇒ I

I ⇒ ¬B

A BI

8 8

Program Verification by Houdini

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?
YesNo

guess new
lemmas

9 9

Verification by Successive Under-Approximation

bounded proof

Lemma2

Lemma1
Lemma3

Inductive?

bounded proof

Lemma2

Lemma1
Lemma3

Inductive?

bounded proof

Lemma2

Lemma1
Lemma3

Inductive?
No No No

BMC BMC BMC

bound 1 bound 2 bound 3

10 10

Interpolating Model Checking

Introduced by McMillan in 2003
• Kenneth L. McMillan: Interpolation and SAT-Based Model Checking.

CAV2003: 1-13

• based on pairwise Craig interpolation

Extended to sequences and DAGs
• Yakir Vizel, Orna Grumberg: Interpolation-sequence based model checking.

FMCAD 2009: 1-8

– uses interpolation sequence

• Kenneth L. McMillan: Lazy Abstraction with Interpolants. CAV 2006: 123-136

– IMPACT: interpolation sequence on each program path
• Aws Albarghouthi, Arie Gurfinkel, Marsha Chechik: From Under-

Approximations to Over-Approximations and Back. TACAS 2012: 157-172
– UFO: interpolation sequence on the DAG of program paths

Key Idea
• turn SAT/SMT proofs of bounded safety to inductive traces
• repeat forever until a counterexample or inductive invariant are found

11 11

IMC: Interpolating Model Checking

N=1

BMCN

SeqItp

trace F = [F0, …, FN]

Is F closed

N:=N+1

CEX

SAFE

SAT

UNSAT

YesNo

12 12

Inductive Trace

An inductive trace of a transition system P = (V, Init, Tr, Bad) is a
sequence of formulas [F0, …, FN] such that

• Init ⇒F0

• ∀0 · i < N , Fi(v) ∧ Tr (v, u) ⇒ Fi+1 (u)

A trace is safe iff ∀ 0 ≤ i ≤ N , Fi ⇒¬Bad

A trace is monotone iff ∀ 0 · i < N , Fi ⇒ Fi+1

A trace is closed iff ∃ 1 ≤ i ≤ N, Fi ⇒(F0 ∨ … ∨ Fi-1)

A transition system P is SAFE iff it admits a safe closed trace

13 13

) ⇒) ⇒⇒⇒

Interpolation Sequence

Given a sequence of formulas A = {Ai}i=0
n, an interpolation

sequence ItpSeq(A) = {I1, …, In-1} is a sequence of
formulas such that
• Ik is an ITP (A0 ∧ … ∧ Ak-1, Ak ∧ … ∧ An), and
• ∀ k<n . Ik ∧ Ak+1⇒ Ik+1

A0 A1 A2 A3 A4 A5 A6

I0 I1 I2 I3 I4 I5

Can compute by pairwise interpolation applied to different cuts of a
fixed resolution proof (very robust property of interpolation)

14 14

From Interpolants to Traces

A Sequence Interpolant of a BMC instance is an inductive trace

(Init(v0))0 ∧ (Tr (v0,v1))1 ∧ … ∧ (Tr (vN-1, vN))N ∧ Bad(vN)

F0(v0) F1(v1) FN(vN)

A trace computed by a sequence interpolant is
• safe
• NOT necessarily monotone
• NOT necessarily closed

BMCN

trace

15 15

ImcMkSafe

IMC: Interpolating Model Checking

N=1

BMCN

SeqItp

trace F = [F0, …, FN]

Is F closed

N:=N+1

CEX

SAFE

SAT

UNSAT

YesNo

16 16

IMC: Strength and Weaknesses

Strength
• elegant
• global bounded safety proof
• many different interpolation algorithms available
• easy to extend to SMT theories

Weaknesses
• the naïve version does not converge easily
– interpolants are weaker towards the end of the sequence

• not incremental
– no information is reused between BMC queries

• size of interpolants
• hard to guide

17 17

IC3: Property Directed Reachability

IC3: A SAT-based Hardware Model Checker
• Incremental Construction of Inductive Clauses for Indubitable Correctness
• A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
• Property Directed Reachability
• N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property

directed reachability. FMCAD 2011

Very active area of research

Key Idea:
• carefully manage SAT solving while building an inductive proof one inductive

lemma at a time

18 18

IC3/PDR
F = [Init]

MkSafe

Push

9 i, Fi = Fi+1

G = [G0, …, GN]

F = [F0, …, FN]
F = [F0, …, FN]

PDR trace

CEX

SAFEYesNo

19 19

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
• Incremental Construction of Inductive Clauses for Indubitable Correctness
• A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
• Property Directed Reachability
• N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property

directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to
SMT)
• A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit

Predicate Abstraction. TACAS 2014
• J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-

Guided Abstraction-Refinement (CTIGAR). CAV 2014

20 20

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
• Generalized Property Directed Reachability
• K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
• fixes an incompleteness issue in GPDR and extends it with under-approximate

summaries
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive

Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
• simulating Numeric Abstract Interpretation with PDR
• N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI

2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays
• Required to model heap manipulating programs
• A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification

of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD
2015

21 21

IC3, PDR, and Friends (3)

Quip: Forward Reachable States + Conjectures

• Use both forward and backward reachability information

• A. Gurfinkel and A. Ivrii: Pushing to the Top. FMCAD 2015

Avy: Interpolation with IC3

• Use SAT-solver for blocking, IC3 for pushing

• Y. Vizel, A. Gurfinkel: Interpolating Property Directed Reachability. CAV 2014

uPDR: Constraints in EPR fragment of FOL

• Universally quantified inductive invariants (or their absence)

• A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, S. Shoham: Property-

Directed Inference of Universal Invariants or Proving Their Absence. CAV

2015

Quic3: Universally quantified invariants for LIA + Arrays

• Extending Spacer with quantified reasoning

• A. Gurfinkel, S. Shoham, Y. Vizel: Quantifiers on Demand. ATVA 2018

22 22

IC3

IC3 = Incremental Construction of Inductive Clauses
for Indubitable Correctness

The Goal: Find an Inductive Invariant stronger than P
• Recall: F is an inductive invariant stronger than P if
– INIT ⇒ F
– F Ù T ⇒ F’
– F ⇒ P

by learning relatively inductive facts (incrementally)

In a property directed manner
• also called “Property Directed Reachability” (PDR)

(Bradley, VMCAI 2011)

23 23

PDR Trace

Recall that an inductive trace of a transition system P = (V, Init, Tr, Bad)
is a sequence of formulas [F0, …, FN] such that
• Init ⇒ F0

• ∀ 0 ≤ i < N , Fi(v) ∧ Tr (v, u) ⇒ Fi+1 (u)

A trace is clausal if every frame Fi is in CNF

A delta-compressed trace (or δ-trace) is a sequence of clauses s.t.
• each clause c belongs to a unique frame Fi

• ∀ 0 ≤ i ≤ n , ∀ j < i , (c ∈ Fi) ⇒ (c ∉ Fj)

A PDR trace is a monotone, clausal, safe (up to N-1)
• PDR trace is often represented compactly by a δ-trace

24 24

PDR Trace Pictionary

F0 F1 F2 F3 F4

Trace

25 25

PDR Trace Pictionary: Frame

F0 F1 F2 F3 F4

Frame

Frame Fi over-
approximates states
reachable in at depth i

26 26

PDR Trace Pictionary: Lemma

F0 F1 F2 F3 F4
Lemma

A lemma is a clause over state variables

A lemma blocks (or excludes) bad states

A trace is monotone if lemmas are shared in frames

27 27

PDR Trace Pictionary: Delta Compression

F0 F1 F2 F3 F4

In a delta-compressed trace every lemma is stored in a
frame with the largest index that it appears

A delta trace is closed (inductive) if it has an empty
frame

28 28

IC3/PDR In Pictures: MkSafe MkSafe

! = 1, % = 0! = 3, % = 0

! < %

find M s.t. M |= Fi ^ Tr ^m0

find m s.t. (M |= m) ^ (m =) 9V 0 · Tr ^m0)
<latexit sha1_base64="sLrE009/tf3hiKW2gohLxw90A9E=">AAAC+3icbVFNj9MwEHXC1xK+unDgwMWigl0uVbJCggvSapEWOCAtUttdqa4q15m01tpOZE9gqyi/hhviwoEfw7/BaSKVdhkp0pv35nni53mhpMM4/hOEN27eun1n72507/6Dh496+4/HLi+tgJHIVW4v5tyBkgZGKFHBRWGB67mC8/nl+0Y//wrWydwMcVXAVPOFkZkUHD016/1iCFdYZdKktKYvP9O2p26AA0/4XucpKEdPZ5Iyxf3Y0HZAHzAWbfv1jp8pyPBwc4pmVi6W+Ko7oZW9SWp/WXCUwZW/s6PjA8pEmuPWstY66/XjQbwueh0kHeiTrs5m+8ERS3NRajAoFHduksQFTituUQoFdcRKBwUXl3wBEw8N1+Cm1Trbmr7wTEqz3PrPIF2z/zoqrp1b6bmf1ByXbldryP9pkxKzt9NKmqJEMKJdlJWKYk6bh6KptCBQrTzgwkr/r1QsueUC/XNGETPwTeRa+2wqNrR1xZoVEiuP6231k5G40dfdzsQJTzcDTVP7lJPdTK+D8dEgiQfJl9f945Mu7z3yjDwnhyQhb8gx+UjOyIiI4GnwLjgNPoR1+D38Ef5sR8Og8zwhWxX+/gsO6O+x</latexit><latexit sha1_base64="sLrE009/tf3hiKW2gohLxw90A9E=">AAAC+3icbVFNj9MwEHXC1xK+unDgwMWigl0uVbJCggvSapEWOCAtUttdqa4q15m01tpOZE9gqyi/hhviwoEfw7/BaSKVdhkp0pv35nni53mhpMM4/hOEN27eun1n72507/6Dh496+4/HLi+tgJHIVW4v5tyBkgZGKFHBRWGB67mC8/nl+0Y//wrWydwMcVXAVPOFkZkUHD016/1iCFdYZdKktKYvP9O2p26AA0/4XucpKEdPZ5Iyxf3Y0HZAHzAWbfv1jp8pyPBwc4pmVi6W+Ko7oZW9SWp/WXCUwZW/s6PjA8pEmuPWstY66/XjQbwueh0kHeiTrs5m+8ERS3NRajAoFHduksQFTituUQoFdcRKBwUXl3wBEw8N1+Cm1Trbmr7wTEqz3PrPIF2z/zoqrp1b6bmf1ByXbldryP9pkxKzt9NKmqJEMKJdlJWKYk6bh6KptCBQrTzgwkr/r1QsueUC/XNGETPwTeRa+2wqNrR1xZoVEiuP6231k5G40dfdzsQJTzcDTVP7lJPdTK+D8dEgiQfJl9f945Mu7z3yjDwnhyQhb8gx+UjOyIiI4GnwLjgNPoR1+D38Ef5sR8Og8zwhWxX+/gsO6O+x</latexit><latexit sha1_base64="sLrE009/tf3hiKW2gohLxw90A9E=">AAAC+3icbVFNj9MwEHXC1xK+unDgwMWigl0uVbJCggvSapEWOCAtUttdqa4q15m01tpOZE9gqyi/hhviwoEfw7/BaSKVdhkp0pv35nni53mhpMM4/hOEN27eun1n72507/6Dh496+4/HLi+tgJHIVW4v5tyBkgZGKFHBRWGB67mC8/nl+0Y//wrWydwMcVXAVPOFkZkUHD016/1iCFdYZdKktKYvP9O2p26AA0/4XucpKEdPZ5Iyxf3Y0HZAHzAWbfv1jp8pyPBwc4pmVi6W+Ko7oZW9SWp/WXCUwZW/s6PjA8pEmuPWstY66/XjQbwueh0kHeiTrs5m+8ERS3NRajAoFHduksQFTituUQoFdcRKBwUXl3wBEw8N1+Cm1Trbmr7wTEqz3PrPIF2z/zoqrp1b6bmf1ByXbldryP9pkxKzt9NKmqJEMKJdlJWKYk6bh6KptCBQrTzgwkr/r1QsueUC/XNGETPwTeRa+2wqNrR1xZoVEiuP6231k5G40dfdzsQJTzcDTVP7lJPdTK+D8dEgiQfJl9f945Mu7z3yjDwnhyQhb8gx+UjOyIiI4GnwLjgNPoR1+D38Ef5sR8Og8zwhWxX+/gsO6O+x</latexit><latexit sha1_base64="sLrE009/tf3hiKW2gohLxw90A9E=">AAAC+3icbVFNj9MwEHXC1xK+unDgwMWigl0uVbJCggvSapEWOCAtUttdqa4q15m01tpOZE9gqyi/hhviwoEfw7/BaSKVdhkp0pv35nni53mhpMM4/hOEN27eun1n72507/6Dh496+4/HLi+tgJHIVW4v5tyBkgZGKFHBRWGB67mC8/nl+0Y//wrWydwMcVXAVPOFkZkUHD016/1iCFdYZdKktKYvP9O2p26AA0/4XucpKEdPZ5Iyxf3Y0HZAHzAWbfv1jp8pyPBwc4pmVi6W+Ko7oZW9SWp/WXCUwZW/s6PjA8pEmuPWstY66/XjQbwueh0kHeiTrs5m+8ERS3NRajAoFHduksQFTituUQoFdcRKBwUXl3wBEw8N1+Cm1Trbmr7wTEqz3PrPIF2z/zoqrp1b6bmf1ByXbldryP9pkxKzt9NKmqJEMKJdlJWKYk6bh6KptCBQrTzgwkr/r1QsueUC/XNGETPwTeRa+2wqNrR1xZoVEiuP6231k5G40dfdzsQJTzcDTVP7lJPdTK+D8dEgiQfJl9f945Mu7z3yjDwnhyQhb8gx+UjOyIiI4GnwLjgNPoR1+D38Ef5sR8Og8zwhWxX+/gsO6O+x</latexit>

find ` s.t. (Fi ^ Tr =) `0) ^ (` =) ¬m)
<latexit sha1_base64="6qJCVOgrIBnK0N7Mq4A3TL/D18w=">AAACunicbZFLa9tAFIVHapOm7iNOu+xmiClNN0IKgXSRRUghtLsE7CRgGTMaXdmDZ0Zi5iqtEfqbhf6XLjJ60CROLgjOnPPNg6OkkMJiGP71/Bcvt7Zf7bwevHn77v3ucO/Dlc1Lw2HCc5mbm4RZkELDBAVKuCkMMJVIuE5W35v8+haMFbke47qAmWILLTLBGTprPixihN9YZUKntKYxSEk7h9oAg8aSkOHB+Vw4xRw0NjQWyj0NbIt/iY1YLPFrH3d4d85/TMOCqp6bD0dhELZDn4qoFyPSz8V8zzuM05yXCjRyyaydRmGBs4oZFFxCPYhLCwXjK7aAqZOaKbCzqq2mpp+dk9IsN+7TSFv34Y6KKWvXKnGkYri0m1ljPpdNS8y+zSqhixJB8+6irJQUc9r0TFNhgKNcO8G4Ee6tlC+ZYRzd3xgMXCe/eK6U66yKx6au4uYKgZXT9eP0pxZ4n7erDeKMpfdAs6hdy9Fmp0/F1WEQhUF0eTQ6Pev73iGfyD45IBE5JqfkB7kgE8LJH/LP2/K2/RM/8YW/6lDf6/d8JI/GxzvBpNo0</latexit><latexit sha1_base64="6qJCVOgrIBnK0N7Mq4A3TL/D18w=">AAACunicbZFLa9tAFIVHapOm7iNOu+xmiClNN0IKgXSRRUghtLsE7CRgGTMaXdmDZ0Zi5iqtEfqbhf6XLjJ60CROLgjOnPPNg6OkkMJiGP71/Bcvt7Zf7bwevHn77v3ucO/Dlc1Lw2HCc5mbm4RZkELDBAVKuCkMMJVIuE5W35v8+haMFbke47qAmWILLTLBGTprPixihN9YZUKntKYxSEk7h9oAg8aSkOHB+Vw4xRw0NjQWyj0NbIt/iY1YLPFrH3d4d85/TMOCqp6bD0dhELZDn4qoFyPSz8V8zzuM05yXCjRyyaydRmGBs4oZFFxCPYhLCwXjK7aAqZOaKbCzqq2mpp+dk9IsN+7TSFv34Y6KKWvXKnGkYri0m1ljPpdNS8y+zSqhixJB8+6irJQUc9r0TFNhgKNcO8G4Ee6tlC+ZYRzd3xgMXCe/eK6U66yKx6au4uYKgZXT9eP0pxZ4n7erDeKMpfdAs6hdy9Fmp0/F1WEQhUF0eTQ6Pev73iGfyD45IBE5JqfkB7kgE8LJH/LP2/K2/RM/8YW/6lDf6/d8JI/GxzvBpNo0</latexit><latexit sha1_base64="6qJCVOgrIBnK0N7Mq4A3TL/D18w=">AAACunicbZFLa9tAFIVHapOm7iNOu+xmiClNN0IKgXSRRUghtLsE7CRgGTMaXdmDZ0Zi5iqtEfqbhf6XLjJ60CROLgjOnPPNg6OkkMJiGP71/Bcvt7Zf7bwevHn77v3ucO/Dlc1Lw2HCc5mbm4RZkELDBAVKuCkMMJVIuE5W35v8+haMFbke47qAmWILLTLBGTprPixihN9YZUKntKYxSEk7h9oAg8aSkOHB+Vw4xRw0NjQWyj0NbIt/iY1YLPFrH3d4d85/TMOCqp6bD0dhELZDn4qoFyPSz8V8zzuM05yXCjRyyaydRmGBs4oZFFxCPYhLCwXjK7aAqZOaKbCzqq2mpp+dk9IsN+7TSFv34Y6KKWvXKnGkYri0m1ljPpdNS8y+zSqhixJB8+6irJQUc9r0TFNhgKNcO8G4Ee6tlC+ZYRzd3xgMXCe/eK6U66yKx6au4uYKgZXT9eP0pxZ4n7erDeKMpfdAs6hdy9Fmp0/F1WEQhUF0eTQ6Pev73iGfyD45IBE5JqfkB7kgE8LJH/LP2/K2/RM/8YW/6lDf6/d8JI/GxzvBpNo0</latexit><latexit sha1_base64="6qJCVOgrIBnK0N7Mq4A3TL/D18w=">AAACunicbZFLa9tAFIVHapOm7iNOu+xmiClNN0IKgXSRRUghtLsE7CRgGTMaXdmDZ0Zi5iqtEfqbhf6XLjJ60CROLgjOnPPNg6OkkMJiGP71/Bcvt7Zf7bwevHn77v3ucO/Dlc1Lw2HCc5mbm4RZkELDBAVKuCkMMJVIuE5W35v8+haMFbke47qAmWILLTLBGTprPixihN9YZUKntKYxSEk7h9oAg8aSkOHB+Vw4xRw0NjQWyj0NbIt/iY1YLPFrH3d4d85/TMOCqp6bD0dhELZDn4qoFyPSz8V8zzuM05yXCjRyyaydRmGBs4oZFFxCPYhLCwXjK7aAqZOaKbCzqq2mpp+dk9IsN+7TSFv34Y6KKWvXKnGkYri0m1ljPpdNS8y+zSqhixJB8+6irJQUc9r0TFNhgKNcO8G4Ee6tlC+ZYRzd3xgMXCe/eK6U66yKx6au4uYKgZXT9eP0pxZ4n7erDeKMpfdAs6hdy9Fmp0/F1WEQhUF0eTQ6Pev73iGfyD45IBE5JqfkB7kgE8LJH/LP2/K2/RM/8YW/6lDf6/d8JI/GxzvBpNo0</latexit>

Predecessor

NewLemma

29 29

Inductive

IC3/PDR in Pictures: Push Push

Algorithm Invariants
Fi → ¬ Bad Init→ Fi

Fi → Fi+1 Fi ∧ Tr→ Fi+1

SMT-query: ` ` ^ Fi ^ Tr =) `0
<latexit sha1_base64="pPGHbC/yxEdFDozsjCr3F+WJBk4=">AAAH73icbVVbb9MwFM4GrKPcNnjkJaKa4IWpqZBASEhbJyoQKtpYd5GaqnIct7XqXGo7pV2UvwFviDfEj+EVxL/hOAlL6jRSm/P5+3x8fM5x7ISMCtls/t3YvHHz1lZt+3b9zt179x/s7D48F0HEMTnDAQv4pYMEYdQnZ5JKRi5DTpDnMHLhTI8UfzEnXNDA78llSAYeGvt0RDGSMDTcObQlWcj4tNt7PosIX742E9Oeu0hMTJswZtoM+a7ZGdLcsnvctKkHoRGRKp4OdxrN/Wb6mFXDyo2GkT/Hw92tL7Yb4MgjvsQMCdG3mqEcxIhLihlJ6nYkSIjwFI1JH0wfeUQM4nSvibkHI645Cjj8fGmmo+UZMfKEWHoOKD0kJ0Ln1OA6rh/J0atBTP0wksTH2UKjiJkyMFXiTJdygiVbgoEwpxCriSeIIywhvfXVZdg4AMXEa8Fu6rZPPuPA8yB9sT2fJ/BHcDxPEo1Z5MyiwixzZllhrnLmChhtpR4HTm2TyhhsbeYngvAEBKr6AscZ1IP10LLwoYDmxIuELAkU0l1cCxzqxzZ2A6k7wb1cgRGLezoLnZ3TYhQrYC8EpJnoMhlwUoSSQT2W9778v+MRFLoSySHn6YZzBUohONlbzTkqJVYBvSYw1LcG8XwYNyyddAOvmKyAxnPkj0v7yKCmgX7zRKm2KdQ0I4iipOmcK7hOQ32py4ZZpvQyBX652EcpXKdZ8ZjJ1nucI1YK8RyxiFRiRE5JooDGn34oaLD1rpiWWmKqszNasGDr3dLuHhW8AkmFn6aFVta6WkseqVLKINQTDxtXjAOHYZXpBu51v6vj0NV9poK3s6TfGmQHH5Y135iZ2dLVCwwvFQJlLql+V04iEpHSaieVA1FWQBYOK4o2cktJApDoR46WuiFFep5xpxRCR3fgo+sPiBN/1FkGN1GaYm087LaPi49b2HXCSmAyLAQKQFhwk1n6vVU1zlv7VnPfOnnROGjnd9q28dh4YjwzLOOlcWC8M46NMwMbP4xfxm/jT21W+1r7VvueSTc38jmPjJWn9vMf2gL4dg==</latexit><latexit sha1_base64="pPGHbC/yxEdFDozsjCr3F+WJBk4=">AAAH73icbVVbb9MwFM4GrKPcNnjkJaKa4IWpqZBASEhbJyoQKtpYd5GaqnIct7XqXGo7pV2UvwFviDfEj+EVxL/hOAlL6jRSm/P5+3x8fM5x7ISMCtls/t3YvHHz1lZt+3b9zt179x/s7D48F0HEMTnDAQv4pYMEYdQnZ5JKRi5DTpDnMHLhTI8UfzEnXNDA78llSAYeGvt0RDGSMDTcObQlWcj4tNt7PosIX742E9Oeu0hMTJswZtoM+a7ZGdLcsnvctKkHoRGRKp4OdxrN/Wb6mFXDyo2GkT/Hw92tL7Yb4MgjvsQMCdG3mqEcxIhLihlJ6nYkSIjwFI1JH0wfeUQM4nSvibkHI645Cjj8fGmmo+UZMfKEWHoOKD0kJ0Ln1OA6rh/J0atBTP0wksTH2UKjiJkyMFXiTJdygiVbgoEwpxCriSeIIywhvfXVZdg4AMXEa8Fu6rZPPuPA8yB9sT2fJ/BHcDxPEo1Z5MyiwixzZllhrnLmChhtpR4HTm2TyhhsbeYngvAEBKr6AscZ1IP10LLwoYDmxIuELAkU0l1cCxzqxzZ2A6k7wb1cgRGLezoLnZ3TYhQrYC8EpJnoMhlwUoSSQT2W9778v+MRFLoSySHn6YZzBUohONlbzTkqJVYBvSYw1LcG8XwYNyyddAOvmKyAxnPkj0v7yKCmgX7zRKm2KdQ0I4iipOmcK7hOQ32py4ZZpvQyBX652EcpXKdZ8ZjJ1nucI1YK8RyxiFRiRE5JooDGn34oaLD1rpiWWmKqszNasGDr3dLuHhW8AkmFn6aFVta6WkseqVLKINQTDxtXjAOHYZXpBu51v6vj0NV9poK3s6TfGmQHH5Y135iZ2dLVCwwvFQJlLql+V04iEpHSaieVA1FWQBYOK4o2cktJApDoR46WuiFFep5xpxRCR3fgo+sPiBN/1FkGN1GaYm087LaPi49b2HXCSmAyLAQKQFhwk1n6vVU1zlv7VnPfOnnROGjnd9q28dh4YjwzLOOlcWC8M46NMwMbP4xfxm/jT21W+1r7VvueSTc38jmPjJWn9vMf2gL4dg==</latexit><latexit sha1_base64="pPGHbC/yxEdFDozsjCr3F+WJBk4=">AAAH73icbVVbb9MwFM4GrKPcNnjkJaKa4IWpqZBASEhbJyoQKtpYd5GaqnIct7XqXGo7pV2UvwFviDfEj+EVxL/hOAlL6jRSm/P5+3x8fM5x7ISMCtls/t3YvHHz1lZt+3b9zt179x/s7D48F0HEMTnDAQv4pYMEYdQnZ5JKRi5DTpDnMHLhTI8UfzEnXNDA78llSAYeGvt0RDGSMDTcObQlWcj4tNt7PosIX742E9Oeu0hMTJswZtoM+a7ZGdLcsnvctKkHoRGRKp4OdxrN/Wb6mFXDyo2GkT/Hw92tL7Yb4MgjvsQMCdG3mqEcxIhLihlJ6nYkSIjwFI1JH0wfeUQM4nSvibkHI645Cjj8fGmmo+UZMfKEWHoOKD0kJ0Ln1OA6rh/J0atBTP0wksTH2UKjiJkyMFXiTJdygiVbgoEwpxCriSeIIywhvfXVZdg4AMXEa8Fu6rZPPuPA8yB9sT2fJ/BHcDxPEo1Z5MyiwixzZllhrnLmChhtpR4HTm2TyhhsbeYngvAEBKr6AscZ1IP10LLwoYDmxIuELAkU0l1cCxzqxzZ2A6k7wb1cgRGLezoLnZ3TYhQrYC8EpJnoMhlwUoSSQT2W9778v+MRFLoSySHn6YZzBUohONlbzTkqJVYBvSYw1LcG8XwYNyyddAOvmKyAxnPkj0v7yKCmgX7zRKm2KdQ0I4iipOmcK7hOQ32py4ZZpvQyBX652EcpXKdZ8ZjJ1nucI1YK8RyxiFRiRE5JooDGn34oaLD1rpiWWmKqszNasGDr3dLuHhW8AkmFn6aFVta6WkseqVLKINQTDxtXjAOHYZXpBu51v6vj0NV9poK3s6TfGmQHH5Y135iZ2dLVCwwvFQJlLql+V04iEpHSaieVA1FWQBYOK4o2cktJApDoR46WuiFFep5xpxRCR3fgo+sPiBN/1FkGN1GaYm087LaPi49b2HXCSmAyLAQKQFhwk1n6vVU1zlv7VnPfOnnROGjnd9q28dh4YjwzLOOlcWC8M46NMwMbP4xfxm/jT21W+1r7VvueSTc38jmPjJWn9vMf2gL4dg==</latexit><latexit sha1_base64="pPGHbC/yxEdFDozsjCr3F+WJBk4=">AAAH73icbVVbb9MwFM4GrKPcNnjkJaKa4IWpqZBASEhbJyoQKtpYd5GaqnIct7XqXGo7pV2UvwFviDfEj+EVxL/hOAlL6jRSm/P5+3x8fM5x7ISMCtls/t3YvHHz1lZt+3b9zt179x/s7D48F0HEMTnDAQv4pYMEYdQnZ5JKRi5DTpDnMHLhTI8UfzEnXNDA78llSAYeGvt0RDGSMDTcObQlWcj4tNt7PosIX742E9Oeu0hMTJswZtoM+a7ZGdLcsnvctKkHoRGRKp4OdxrN/Wb6mFXDyo2GkT/Hw92tL7Yb4MgjvsQMCdG3mqEcxIhLihlJ6nYkSIjwFI1JH0wfeUQM4nSvibkHI645Cjj8fGmmo+UZMfKEWHoOKD0kJ0Ln1OA6rh/J0atBTP0wksTH2UKjiJkyMFXiTJdygiVbgoEwpxCriSeIIywhvfXVZdg4AMXEa8Fu6rZPPuPA8yB9sT2fJ/BHcDxPEo1Z5MyiwixzZllhrnLmChhtpR4HTm2TyhhsbeYngvAEBKr6AscZ1IP10LLwoYDmxIuELAkU0l1cCxzqxzZ2A6k7wb1cgRGLezoLnZ3TYhQrYC8EpJnoMhlwUoSSQT2W9778v+MRFLoSySHn6YZzBUohONlbzTkqJVYBvSYw1LcG8XwYNyyddAOvmKyAxnPkj0v7yKCmgX7zRKm2KdQ0I4iipOmcK7hOQ32py4ZZpvQyBX652EcpXKdZ8ZjJ1nucI1YK8RyxiFRiRE5JooDGn34oaLD1rpiWWmKqszNasGDr3dLuHhW8AkmFn6aFVta6WkseqVLKINQTDxtXjAOHYZXpBu51v6vj0NV9poK3s6TfGmQHH5Y135iZ2dLVCwwvFQJlLql+V04iEpHSaieVA1FWQBYOK4o2cktJApDoR46WuiFFep5xpxRCR3fgo+sPiBN/1FkGN1GaYm087LaPi49b2HXCSmAyLAQKQFhwk1n6vVU1zlv7VnPfOnnROGjnd9q28dh4YjwzLOOlcWC8M46NMwMbP4xfxm/jT21W+1r7VvueSTc38jmPjJWn9vMf2gL4dg==</latexit>

30 30

IC3 Data-Structures

A trace F = F0, …, FN is a sequence of frames.
• A frame Fi is a set of clauses. Elements of Fi are called lemmas.
• Invariants:
– Bounded Safety: 8 i < N . Fi ® ¬Bad
– Monotonicity: 8 i < N . Fi+1 µ Fi

– Inductiveness: 8 i < N . Fi ∧ Tr ® F’i+1

A priority queue Q of counterexamples to induction (CTI) or
proof obligations (POB)
• (m, i) 2 Q is a pair, where m is a cube and i a level
• if (m, i) 2 Q then there exists a path of length (N-i) from a state in

m to a state in Bad
• Q is ordered by level
– (m, i) < (k, j) iff i < j

31 31

Recursive Blocking Stage in IC3

// Find a counterexample, or strengthen the inductive trace
// s.t. FN Þ ¬s holds
IC3_recBlockCube(s, N)

Add(Q, (s, N))
while ¬Empty(Q) do

(s, k) ¬ Pop(Q)
if (k = 0) return “Counterexample”
if (Fk Þ ¬s) continue
if (Fk-1 Ù Tr Ù s’) is SAT

t ¬ generalized predecessor of s
Add(Q, (t, k-1))
Add(Q, (s, k))

else
¬t ¬ generalize ¬s by inductive generalization (to

level m³k)
add ¬t to Fm
if (m<N) Add(Q, (s, m+1))

32 32

Pushing stage in IC3
// Push each clause to the highest possible frame up to N
IC3_Push()

for k = 1 .. N-1 do
for c Î Fk \ Fk+1 do

if (Fk Ù Tr Þ c’)
add c to Fk+1

if (Fk = Fk+1)
return “Proof” // Fk is a safe inductive invariant

33 33

PDR Strength and Weaknesses

Strengths
• elegant
• incremental
• many opportunities for guidance
– fine-grained proof management
– fine-grained generalization of lemmas

Weaknesses
• local backward search for a counterexample
• CNF explosion

34 34

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
• terminate the algorithm when a solution is found

Unfold
• increase search bound by 1

Candidate
• choose a bad state in the last frame

Decide
• extend a cex (backward) consistent with the current frame
• choose an assignment s s.t. (s ⋀ Fi ⋀ Tr ⋀ cex’) is SAT

Conflict
• construct a lemma to explain why cex cannot be extended
• Find a clause L s.t. L⇒¬cex , Init ⇒ L , and L ⋀ Fi ⋀ Tr ⇒ L’

Induction
• propagate a lemma as far into the future as possible
• (optionally) strengthen by dropping literals

35 35

Termination and Progress

Unreachable If there is an i < N s.t. Fi ✓ Fi+1

return Unreachable.

Reachable If there is an m s.t. hm, 0i 2 Q
return Reachable.

Unfold If FN ! ¬Bad , then set N N + 1.

Candidate If for some m, m! FN ^ Bad ,
then add hm,Ni to Q .

36 36

Inductive Generalization

A clause j is inductive relative to F iff
• Init ® j (Initialization) and j ∧ F ∧ Tr ® j’ (Inductiveness)

Implemented by first letting j = ¬m and generalizing j by iteratively
dropping literals while checking the inductiveness condition

Theorem: Let F0, F1, …, FN be a valid IC3 trace. If j is inductive relative
to Fi, 0 · i < N, then, for all j · i, j is inductive relative to Fj.
• Follows from the monotonicity of the trace
– if j < i then Fj ® Fi

– if Fj ® Fi then (j ∧ Fi ∧ Tr ® j’) ® (j ∧ Fj ∧ Tr ® j’)

Conflict For 0 i < N : given a candidate model hm, i+ 1i 2 Q and clause
', such that ' ! ¬m, if Init ! ', and ' ^ Fi ^ Tr ! '0, then
add ' to Fj , for j i+ 1.

37 37

Prime Implicants

A formula j is an implicant of a formula Ã iff j) Ã

A propositional implicant of Ã is a conjunction of literals j such that j is
an implicant of Ã
• j is a conjunction of literals
• j) Ã

• j is a partial assignment that makes Ã true

A propositonal implicant j of Ã is called prime if no subset of j is an
implicant of Ã
• j is a conjunction of literals
• j) Ã

• 8 p . (p ¹ j ∧ j) p)) (p ⇏ Ã)

38 38

Generalizing Predecessors

Decide rule chooses a (generalized) predecessor m0 of m that is
consistent with the current frame

Simplest implementation is to extract a predecessor mo from a
satisfying assignment of M ⊧ Fi ∧ Tr ∧ m’
• m0 cab be further generalized using ternary simulation by dropping literals

and checking that m’ remains forced

An alternative is to let m0 be an implicant (not necessarily prime)
of Fi∧9 X’.(Tr ∧ m’)
• finding a prime implicant is difficult because of the existential quantification
• we settle for an arbitrary implicant. The side conditions ensure it is not trivial

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! Fi ^ Tr ^m0, then add hm0, ii to Q .

39 39

Strengthening a trace

Also known as Push or Propagate
Bounded safety proofs are usually very weak towards the end
• not much is needed to show that error will not happen in one or two steps

This tends to make them non-inductive
• a weakness of interpolation-based model checking, like IMPACT
• in IMPACT, this is addressed by forced covering heuristic

Induction “applies” forced cover one lemma at a time
• whenever all lemmas are pushed Fi+1 is inductive (and safe)
• (optionally) combine strengthening with generalization

Implementation
• Apply Induction from 0 to N whenever Conflict and Decide are not applicable

Induction For 0 i < N and a clause (' _) 2 Fi, if ' 62 Fi+1, Init ! '
and ' ^ Fi ^ Tr ! '0, then add ' to Fj , for each j i+ 1.

40 40

Long Counterexamples

Also known as ReQueue
Whenever a counterexample m is blocked at level i, it is known that
• there is no path of length i from Init to m (because got blocked)
• there is a path of length (N-i) from m to Bad

Can check whether there exists a path of length (i+1) from Init to m
• (Leaf) check eagerly by placing the CTI back into the queue at a higher level
• (No Leaf) check lazily by waiting until the same (or similar) CTI is discovered

after N is increased by Unfold
Leaf allows IC3 to discover counterexamples much longer than the
current unfolding depth N
• each CTI re-enqueued by Leaf adds one to the depth of the longest possible

counterexample found
• a real counterexample might chain through multiple such CTI’s

Leaf If hm, ii 2 Q , 0 < i < N and Fi�1 ^ Tr ^m0 is unsatisfiable, then add
hm, i+ 1i to Q .

41 41

Queue Management for Long Counterexamples

A queue element is a triple (m, i, d)
• m is a CTI, i a level, d a depth

Decide sets m and i as before, and sets d to 0

Leaf increases i and d by one
• i determines how far the CTI can be pushed back
• d counts number of times the CTI was pushed forward

Queue is ordered first by level, then by depth
• (m, i, d) < (k, j, e) , i < j Ç (i=j ∧ d < e)

Overall exploration mimics iterative deepening with non-uniform
exploration depth
• go deeper each time before backtracking

42 42

Recursive Blocking Stage in IC3

// Find a counterexample, or strengthen the inductive trace
// s.t. FN Þ ¬s holds
IC3_recBlockCube(s, N)

Add(Q, (s, N))
while ¬Empty(Q) do

(s, k) ¬ Pop(Q)
if (k = 0) return “Counterexample”
if (Fk Þ ¬s) continue
if (Fk-1 Ù Tr Ù s’) is SAT

t ¬ generalized predecessor of s
Add(Q, (t, k-1))
Add(Q, (s, k))

else
¬t ¬ generalize ¬s by inductive generalization (to

level m³k)
add ¬t to Fm
if (m<N) Add(Q, (s, m+1))

43 43

Pushing stage in IC3
// Push each clause to the highest possible frame up to N
IC3_Push()

for k = 1 .. N-1 do
for c Î Fk \ Fk+1 do

if (Fk Ù Tr Þ c’)
add c to Fk+1

if (Fk = Fk+1)
return “Proof” // Fk is a safe inductive invariant

44 44

Public IC3 Implementations

Spacer engine in Z3 (Arie)
• https://github.com/Z3Prover/z3/tree/master/src/muz/spacer
• theories and constrained horn clauses

IC3Ref (A. Bradley)
• https://github.com/arbrad/IC3ref
• IC3 reference implementation

PDR in Abc (A. Mishchenko)
• https://github.com/berkeley-abc/abc/tree/master/src/proof/pdr
• PDR implementation

IC3IA (A. Griggio)
• https://es-static.fbk.eu/people/griggio/ic3ia/index.html
• IC3 with Implicit Predicate Abstraction

Tip (N. Sörensson)
• https://github.com/niklasso/tip

https://github.com/Z3Prover/z3/tree/master/src/muz/spacer
https://github.com/arbrad/IC3ref
https://github.com/berkeley-abc/abc/tree/master/src/proof/pdr
https://es-static.fbk.eu/people/griggio/ic3ia/index.html

45 45

IC3: AGAIN
State-based presentation of IC3

46 46

IC3 Basics

Iteratively compute Over-Approximated Reachability Sequence
(OARS) <F0,F1,…,Fk+1> s.t.
• F0 = INIT
• Fi ⇒ Fi+1 monotone: Fi Í Fi+1

• Fi Ù T ⇒ F’i+1 inductive: simulates one forward step
• Fi ⇒ P safe: p is an invariant up to k+1

Fi - CNF formula given as a set of clauses

Fi over-approximates Ri
• If Fi+1 ⇒ Fi then fixpoint: Fi is an inductive invariant

47 47

INIT
R1

R2

R
Ri+1Ri

……

……F1
F2

Fi+1

If Fk+1ºFk then Fk is an inductive invariant

Fi+1(V’) Ü Fi (V) ÙT(V,V’)

Fk
Fi

OARS (aka Inductive Trace)

¬p

48 48

IC3 Basics (cont.)

c is inductive relative to F if
• INIT ⇒ c
•F Ù c Ù T ⇒ c’

Notation:
•cube s: conjunction of literals
–v1 Ù v2 Ù ¬v3 - Represents a state

•s is a cube => ¬s is a clause (DeMorgan)

49 49

IC3 - Initialization

Check satisfiability of the two formulas:
• INIT Ù ¬P
• INIT Ù T Ù ¬P’

If at least one is satisfiable: cex found
If both are unsatisfiable then:
• INIT ⇒ P
• INIT Ù T ⇒ P’

Therefore
• F0 = INIT, F1 = P

–<F0,F1> is an OARS

OARS:
– F0 = INIT
– Fi ⇒ Fi+1

– Fi Ù T ⇒ F’i+1

– Fi ⇒ P

I
F0

P
F1

50 50

IC3 - Iteration

Our OARS contains F0 and F1

Initialize F2 to P

– If P is an inductive invariant – done! J
– Otherwise: F1 Ù T ¹> F’2

=> F1 should be strengthened

I
F0

P
F1 F2

OARS:
– F0 = INIT
– Fi ⇒ Fi+1

– Fi Ù T ⇒ F’i+1

– Fi ⇒ P

51 51

IC3 - Iteration

If P is not an inductive invariant
• F1 Ù T Ù ¬P’ is satisfiable
–(F Ù T Ù ¬P’) sat IFF (F Ù T => P’) not valid

• From the satisfying assignment get a state s that can reach
a bad state

I
F0

P
F1

s

F2

OARS:
– F0 = INIT
– Fi ⇒ Fi+1

– Fi Ù T ⇒ F’i+1

– Fi ⇒ P

52 52

IC3 - Iteration

Is s reachable in one transition from the previous
set?
• backward search: Check F0 Ù T Ù s’
• If satisfiable, s is reachable from F0 : CEX
•Otherwise, block s, i.e. remove it from F1

–F1 = F1 Ù ¬s

52

I
F0

s

F2F1
F1

P

53 53

IC3 - Iteration

Iterate this process until F1 Ù T Ù ¬P’ becomes
unsatisfiable
• F1 Ù T => P’ holds
• < F0 , F1, F2> is an OARS

F1

I
F0

P
F2

F2 = P

54 54

IC3 - Iteration

New iteration, initialize F3 to P, check F2 Ù T Ù ¬P’
• If satisfiable, get s that can reach ¬P
•Now check if s can be reached from F1 by F1 Ù T Ù s’
• If it can be reached, get t and try to block it

st

F1

I
F0

P
F2 F3

55 55

IC3 - Iteration

To block t, check F0 Ù T Ù t’
• If satisfiable, a CEX
• If not, t is blocked, get a “new” t* by F1 Ù T Ù s’

and try to block t*

t*

st

F1

I
F0

P
F2 F3

56 56

IC3 - Iteration

When F1 Ù T Ù s’ becomes unsatisfiable
• s is blocked, get a “new” s* by F2 Ù T Ù ¬P’

and try to block s*

……You get the picture J

t*

st

F1

I
F0

P
F2 F3

57 57

INIT
F1

F2

Fk-1
Fk

If sk is reachable (in k steps): counterexample
If sk is unreachable: strengthen Fk to exclude sk

……

Fk+1 = P

SAT(Fk ÙT Ù ¬P’) ?

General Iteration

sk

sk-1

SAT(Fk-1 ÙT Ù sk’) ?…

Fk := Fk Ù ¬sk

Fk-1 := Fk-1 Ù ¬sk-1

…

58 58

INIT
F1

F2
Fk-1

Until Fk ÙT Ù ¬P’ is unsatisfiable, i.e. Fk ÙT => P’
è We have an OARS again. Check fixpoint and increase k

……

General Iteration

Fk

…

Fk := Fk Ù ¬sk

Fk-1 := Fk-1 Ù ¬sk-1

Fk+1 = P

59 59

IC3 - Iteration

Given an OARS <F0,F1,…,Fk>, set Fk+1 = P

Apply a backward search
1. Find predecessor sk in Fk that can reach a bad state
– Fk Ù T ¹> P’ (Fk Ù T Ù ¬P’ is sat)

2. If none exists, move to next iteration (check fixpoint first)
3. If exists, try to find a predecessor sk-1 to sk in Fk-1

– Fk-1 Ù T ¹ > ¬sk’ (Fk-1 Ù T Ù sk’ is sat)
4. If none exists, remove sk from Fk and go back to 3
– Fk := Fk Ù ¬sk

5. Otherwise: Recur on (sk-1,Fk-1)
– We call (sk-1,k-1) a “proof obligation” / “counterexample to induction”

If we reach INIT, a CEX exists

60 60

That Simple?

Looks simple

•But this “simple” does NOT work

Simple = State Enumeration

• Too many states…

Does IC3 enumerate states?

•No – removing more than one state at a time

• But, yes (when IC3 doesn’t perform well)

61 61

Generalization of a blocked state

s in Fk can reach a bad state in one transition (or
more)

But Fk-1 Ù T => ¬s’ holds
• Therefore, s is not reachable in k transitions
• Fk := Fk Ù¬s

We want to generalize this fact
• s is a single state
• Goal: learn a stronger fact
–Find a set of states, unreachable from Fk-1 in

one step

Fk-1

¬s

sFk

62 62

Generalization

We know Fk-1 Ù T => ¬s’
And, ¬s is a clause
Generalization:
Find a sub-clause c Í ¬s s.t.
Fk-1 Ù T => c’ and INIT => c
• Sub clause means less literals
• Less literals implies less satisfying assignments
– (a ∨ b) vs. (a ∨ b ∨ c)

• c => ¬s i.e. c is a stronger fact
Fk := Fk Ù c
• More states are removed from Fk, making it stronger/more precise

(closer to Rk)

Fk-1

c
¬s

sFk

63 63

Generalization

How do we find a sub-clause c Í ¬s s.t. Fk-1 Ù T => c’?
Trial and Error
• Try to remove literals from ¬s while Fk-1 Ù T Ù ¬c’

and INIT Ù ¬c’ remain unsatisfiable

Use the UnSAT Core
• (INIT’ ∨ (Fk-1 Ù T)) Ù s’ is unsatisfiable
• Conflict clauses can also be used Fk-1 ∧ T ∧ s’ is UNSAT

Desired:
c⟹¬s

Fk-1 ∧ T ∧ ¬c’ is UNSAT
Looks familiar?

64 64

¬s

Observation 1

Assume a state s in Fk can reach a bad state in a
number of transitions

Fk-1

¬s

sFk

• Important Fact: s is not in Fk-1 (!!)
– If s was in Fk-1 we would have

found it in an earlier iteration

• Therefore: Fk-1 => ¬s

65 65

Observation 1

Assume a state s in Fk can reach a bad state in a
number of transitions
Therefore: Fk-1 => ¬s
Assume Fk-1 Ù T => ¬s’ holds
• It’s blocking time…

So, this is equivalent to
Fk-1 Ù ¬s Ù T => ¬s’

Further INIT => ¬s
– Otherwise, CEX!

(INIT ≠> ¬s IFF s is in INIT)

• This looks familiar!
– ¬s is inductive relative to Fk-1

¬s

Fk-1

¬s

sFk

67 67

Inductive Generalization

We now know that ¬s is inductive relative to Fk-1

And, ¬s is a clause

Inductive Generalization:
Find sub-clause c Í ¬s s.t.

Fk-1 Ù c Ù T => c’ (and INIT => c)
• Stronger inductive fact

Fk := Fk Ù c
• It may be the case that Fk-1 Ù T => Fk no longer holds
– Why?

68 68

Inductive Generalization

Fk-1 Ù c Ù T => c’ and INIT => c hold
Fk := Fk Ù c

c is also inductive relative to Fk-1, Fk-2,…,F0
• Add c to all of these sets
• For every i ≤ k: Fi* = Fi Ù c

Fi* Ù T => Fi+1* holds for every i < k

69 69

Observation 2

Assume state s in Fi can reach a bad state in a number of
transitions
s is also in Fj for j > i (Fi => Fj)
• a longer CEX may exist
• s may not be reachable in i steps, but it may be reachable in j steps

If s is blocked in Fi, it must be blocked in Fj for j > i
• Otherwise, a CEX exists

70 70

INIT
F1

F2

……

Push Forward

Fi Fi+1

……

P

71 71

Push Forward

Suppose s is removed from Fi

• by conjoining a sub-clause c

• Fi := Fi Ù c

c is a clause learnt at level i

try to push c forward for j > i

• If Fj Ù c Ù T => c’ holds

– c is inductive in level j

– Fj+1 := Fj+1 Ù c

• Else: s was not blocked at level j > i

– Add a proof obligation (s,j)

– If s is reachable from INIT in j steps, CEX!

72 72

Generalizing Predecessor

Suppose sk-1 is a predecessor obtained by Fk-1 Ù T Ù sk’
• New proof obligation

Try to generalize sk-1 to a set of states (cube m) such that
m⟹∃V’ . Fk-1 Ù T Ù sk’

• Drop a literal from sk-1 and use ternary simulation to check whether
Fk-1 Ù T Ù sk’ evaluates to true under current assignment

73 73

Recursive Blocking Stage in IC3

// Find a counterexample, or strengthen the inductive trace
// s.t. FN Þ ¬s holds
IC3_recBlockCube(s, N)

Add(Q, (s, N))
while ¬Empty(Q) do

(s, k) ¬ Pop(Q)
if (k = 0) return “Counterexample”
if (Fk Þ ¬s) continue
if (Fk-1 Ù Tr Ù s’) is SAT

t ¬ generalized predecessor of s
Add(Q, (t, k-1))
Add(Q, (s, k))

else
¬t ¬ generalize ¬s by inductive generalization (to

level m³k)
add ¬t to Fm
if (m<N) Add(Q, (s, m+1))

74 74

Pushing stage in IC3
// Push each clause to the highest possible frame up to N
IC3_Push()

for k = 1 .. N-1 do
for c Î Fk \ Fk+1 do

if (Fk Ù Tr Þ c’)
add c to Fk+1

if (Fk = Fk+1)
return “Proof” // Fk is a safe inductive invariant

75 75

IC3 – Key Ingredients

Backward Search
• Find a state s that can reach a bad state in a number of steps
• [lifting: generalize s to a set of states]
• s may not be reachable (over-approximations)

Block a State
• Do it efficiently, block more than s
– Generalization / Inductive generalization

Push Forward
• An inductive fact at frame i, may also be inductive at higher frames
• If not, a longer CEX may be found

Pushing to the Top with K-induction

Arie Gurfinkel
Electrical and Computer Engineering

University of Waterloo

joint work with Alexander Ivrii (IBM)

77 77

Agenda

IC3 is one of the most powerful algorithms for model checking safety properties

Very active area of research:

• A. Bradley: SAT-Based Model Checking Without Unrolling. VMCAI 2011
(IC3 stands for “Incremental Construction of Inductive Clauses for Indubitable
Correctness”)

• N. Eén, A. Mishchenko, R. Brayton: Efficient implementation of property directed
reachability. FMCAD 2011
(PDR stands for “Property Directed Reachability”)

…

• In this talk, I present a new IC3-based algorithm, called QUIP
(QUIP stands for “a QUest for an Inductive Proof”)

78 78

A brief preview of Quip

Quip extends IC3 by allowing for

• A wider range of conjectures (proof obligations)
• Designed to push already existing lemmas more aggressively
• Allows to push a given lemma by learning additional supporting

lemmas
(and hopefully to compute an inductive invariant faster)

• Forward reachable states
• Explain why a lemma cannot be pushed
• Allows to keep the number of proof obligations under control

These are integrated into a single algorithmic procedure

The experimental results look good

79 79

A quick review of IC3/PDR

Input:
• A safety verification problem (Init, Tr, Bad)

Output:
• A counterexample (if the problem is UNSAFE),
• A safe inductive invariant (if the problem is SAFE)
• Resource Limit

Main Data-structures:
• A current working level N
• An inductive trace
• A set of proof obligations

80 80

Inductive Trace

Let F0, F1, F2, …, F¥ be conjunctions of lemmas (in practice, clauses).
We say that F0, F1, F2, …, F¥ is an inductive trace if:

(1) F0 = INIT
(2) F0 Þ F1 Þ F2 Þ … Þ F¥ (monotone)
(3) F1 Ê F2 Ê … Ê F¥ as sets of lemmas (s. monotone)
(4) Fi Ù TR Þ Fi+1’ for i ³ 0 (including F¥ Ù Tr Þ F¥’). (inductive)

Remarks:
This definition is slightly different from the original definition:

• the sequence F0, F1, F2, … is conceptually infinite (with Fi = T for all
sufficiently large i)

• we add F¥ as the last element of the trace (as suggested in PDR)

Each Fi over-approximates states that are reachable in i steps or less
(in particular, F¥ contains all reachable states)

81 81

Proof Obligations in IC3

A proof obligation in IC3 is a pair (s, i), where

• s is a (generalized) cube over state variables

• i is a natural number (called level)

We say that (s, i) is blocked (or that s is blocked at level i) if Fi Þ ¬s.

Given a proof obligation (s, i), IC3 attempts to strengthen the inductive

trace in order to block it.

Remarks:

In IC3, s is identified with a counterexample-to-induction (CTI)

If (s, i) is a proof obligation and i³1, then (s, i-1) is already blocked

All proof obligations are managed via a priority queue:

• Proof obligations with smallest level are considered first

• (additional criteria for tie-breaking)

82 82

Towards improving IC3 (1)

IC3 is an excellent algorithm! So, what do we want?

We want more control on which lemmas to learn:
• Each lemma in the inductive trace is neither an over-approximation nor

an under-approximations of reachable states (a lemma in Fk only over-
approximates states reachable within k steps):

• IC3 may learn lemmas that are too weak (ex. C1) – prune less
states

• IC3 may learn lemmas that are too strong (ex. C2) – cannot be in the
inductive invariant

Init Reach

C1

C2

Bad

83 83

Towards improving IC3 (2)

We want to know if an already existing lemma is good (in F¥) or
bad (e.g., C2 from before):
• Avoid periodically pushing bad lemmas
• Ideally, we also want to prune less useful lemmas

We want to prioritize reusing already discovered lemmas over
learning of new ones:
• When the same cube s is blocked at different levels, usually

different lemmas are discovered
• Although, IC3 partially addresses this using pushing (and

other optimizations)
• Use the same lemma to block s (at the expense of deriving

additional supporting lemmas)
• Although, in general different lemmas are of different “quality”

and having some choice may be beneficial

84 84

Immediate improvement: unlimited pushing
// Push each clause to the highest possible frame up to N
IC3_Push_Unlimited()

for k = 1 .. do
for c Î Fk \ Fk+1 do

if (Fk Ù Tr Þ c’)
add c to Fk+1

if (Fk = Fk+1)
F¥ ¬ Fk

if (F¥ Þ ¬Bad)
return “Proof” // F¥ is a safe inductive invariant

Claim: after pushing F¥ represents a maximal inductive subset of all lemmas
discovered so far

Remark: the idea to compute maximal inductive invariants is suggested in
PDR but claimed to be ineffective. In our implementation, “unlimited pushing”
leads to ~10% overall speed up.

85 85

Pushing is Useful

Why pushing is useful:
• During the execution of IC3, the sets Fi are incrementally

strengthened, and so it may happen
that Fk Ù TR Þ c’, even though this was not true at the time that c was
discovered

Why pushing is good:
• By pushing c from Fk to Fk+1, we make Fk more inductive

(and if Fk becomes equal to Fk+1, then Fk becomes an inductive
invariant)

• Suppose that cÎFk blocks a proof obligation (s, k).
By pushing c from Fk to Fk+1, we also block the proof obligation (s, k+1)

• Pushing Clauses = Improving Convergence = Reusing old lemmas for
blocking bad states

86 86

What Happens when Pushing Fails
Why pushing may fail: suppose that c Î Fk \ Fk+1 but Fk Ù TR does not
imply c’. Why?

There are two alternatives:
1. c is a valid over-approximation of states reachable within k+1 steps,

but Fk is not strong enough to imply this
• We can strengthen the inductive trace so that Fk Ù TR Þ c’ becomes

true

2. c is NOT a valid over-approximation of states reachable within k+1
steps
• There is a real forward reachable state r that is excluded by c
• c has no chance to be in the safe inductive invariant
• c is a bad lemma

A similar reasoning is used in:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD
2013

87 87

Two interdependent ideas
1. Prioritize pushing existing lemmas

• Given a lemma c Î Fk \ Fk+1, we can add (¬c, k+1) as a may-proof-
obligation
• May-proof-obligations are “nice to block”, but do not need to be

blocked
• If (¬c, k+1) can be blocked, then c is pushed to Fk+1
• If (¬c, k+1) cannot be blocked, then we discover a concrete reachable

state r that is excluded by c and that explains why c cannot be inductive

2. Discover and use new forward reachable states
• These are an under-approximation of forward reachable states
• Given a reachable state, all the existing lemmas that exclude it are bad

• Bad lemmas are never pushed
• Reachable states may show that certain may-proof-obligations cannot be

blocked
• Reachable states may be used when generalizing lemmas
• Conceptually, computing new reachable states can be thought of as new

Init states

88 88

Quip

Input:
• A safety verification problem (Init, Tr, Bad)

Output:
• A counterexample (if the problem is UNSAFE),
• A safe inductive invariant (if the problem is SAFE)
• Resource Limit

Main Data-structures:
• A current working level N
• An inductive trace (same as IC3)
• A set of proof obligations (similar to IC3)
• A set R of forward reachable states

89 89

Proof Obligations in Quip
A proof obligation in Quip is a triple (s, i, p), where
• s is a (generalized) cube over state variables
• i is a natural number
• p Î {may, must}

Remarks:
• As in IC3, if (s, i, p) is a proof obligation and i³1, then (s, i-1) is

assumed to be already blocked
• As in IC3, all proof obligations are managed via a priority queue:

• Proof obligations with smallest level are considered first
• In case of a tie, proof obligations with smallest number of literals are

considered first
• (additional criteria for tie-breaking)

• Have a “parent map” from a proof obligation to its parent proof
obligation
• parent(t) = s if (t, k-1, q) is a predecessor of (s, k, p)
• In fact, this is usually done in IC3 as well (for trace reconstruction)

90 90

Recursive Blocking Stage in Quip (1)
1. Each time that we examine a proof obligation (s, k, p), check whether

s intersects a reachable state rÎR

2. Discover new reachable states when possible
• Claim: if s intersects rÎR and if parent(s) exists, then there exists a

reachable state r’ that intersects parent(s)
• Indeed, ALL states in s lead to a state in parent(s)
• Therefore r leads to a state in parent(s) as well

• A similar idea is present in: C. Wu, C. Wu, C. Lai, C. Huang: A
counterexample-guided interpolant generation algorithm for SAT-
based model checking. TCAD 2014

3. When (s, k, p) is blocked by an inductive lemma ¬t, add (t, k+1, may)
as a new proof obligation
• Push ¬t to Fk+1 instead of blocking (s, k+1)

4. Clear all proof obligations if their number becomes too large
(important, not in pseudocode)

91 91

Recursive Blocking Stage in Quip (2)

// Find a reachable state rÎs, or strengthen the inductive trace
s.t. FN Þ ¬s
Quip_recBlockCube(s, N, q)

Add(Q, (s, N, q))
while ¬Empty(Q) do

(s, k, p) ¬ Pop(Q)
if (k = 0) && (p = must) return “Counterexample”
if (k = 0) && (p = may)

find a state r one-step-reachable from Init,
such that r intersects parent(s)

add r to R; continue
if (Fk Þ ¬s) continue
if (s intersects some state rÎR) && (p = must) return

“Counterexample”
if (s intersects some state rÎR) && (p = may)

if parent(s) exists, find a state r’ one-step-reachable
from r,

such that r’ intersects parent(s)
add r’ to R; continue

// -- continued on the next slide --

92 92

Recursive Blocking Stage in Quip (3)

Quip_recBlockCube(s, N, p)
// -- continued from the previous slide –-

if (Fk-1 Ù Tr Ù s’) is SAT
t ¬ generalized predecessor of s
Add(Q, (t, k-1, p))
Add(Q, (s, k, p))

else
¬t ¬ generalize ¬s by inductive

generalization (to level m³k)
add ¬t to Fm
if (m<N)

if (t = s) Add(Q, (t, m+1, p))
else Add(Q, (t, m+1, may))

// attempt to block t (not s)

93 93

Experiments: IC3 vs. Quip on HWMCC’13 and ’14

• Implemented in IBM formal verification tool Rulebase-Sixthsense

• Data for 140 instances that were not trivially solved by
preprocessing but could be solved either by IC3 or Quip within
1-hour

• Detailed results at http://arieg.bitbucket.org/quip

94 94

Experiments: IC3 vs. Quip on HWMCC’13 and ‘14

IC3 (sec)

Q
ui

p
(s

ec
)

• Data for 140 instances from prev slide

