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SAT-based Model Checking

Bounded Model Checking
• Is there a counterexample of k-steps

Unbounded Model Checking
• Induction and K-Induction (k-IND)
• Interpolation Based Model Checking (IMC)
•Property Directed Reachability (IC3/PDR)
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Symbolic Safety and Reachability

A transition system P = (V, Init, Tr, Bad)
P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^
 

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN ) 6) ?

Init ) Inv

Inv(X) ^ Tr(X,X 0) ) Inv(X 0)

Inv ) ¬Bad
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Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation:            Initial ⊆ Inv
• Safety:          Inv ∩ Bad = ∅
• Consecution:   TR(Inv) ⊆ Inv

Initial

i.e., if s ∈ Inv and s↝t 
then t ∈ Inv
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Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation:            Initial ⊆ Inv
• Safety:          Inv ∩ Bad = ∅
• Consecution:   TR(Inv) ⊆ Inv

Initial

System S is safe if Reach ∩ Bad = ∅

Reach

i.e., if s ∈ Inv and s↝t 
then t ∈ Inv
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Craig Interpolants [Craig 57] 

Given a pair (A,B) of propositional formulas s.t.
• A(X,Y) ∧ B(Y,Z) is unsatisfiable
• i.e., A⇒¬B                       

There exists a formula I such that:
• A ⇒I
• I ∧ B is unsatisfiable
• I is over Y, the common variables of A and B

A ⇒¬B

A ⇒ I

I ⇒ ¬B

A BI
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Program Verification by Houdini

Inductive Invariant

Lemma2

Lemma1
Lemma3

Safe?
YesNo

guess new 
lemmas
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Verification by Successive Under-Approximation

bounded proof

Lemma2

Lemma1
Lemma3

Inductive?

bounded proof

Lemma2

Lemma1
Lemma3

Inductive?

bounded proof

Lemma2

Lemma1
Lemma3

Inductive?
No No No

BMC BMC BMC

bound 1 bound 2 bound 3
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Interpolating Model Checking

Introduced by McMillan in 2003
• Kenneth L. McMillan: Interpolation and SAT-Based Model Checking. 

CAV2003: 1-13

• based on pairwise Craig interpolation 

Extended to sequences and DAGs
• Yakir Vizel, Orna Grumberg: Interpolation-sequence based model checking. 

FMCAD 2009: 1-8

– uses interpolation sequence

• Kenneth L. McMillan: Lazy Abstraction with Interpolants. CAV 2006: 123-136

– IMPACT: interpolation sequence on each program path
• Aws Albarghouthi, Arie Gurfinkel, Marsha Chechik: From Under-

Approximations to Over-Approximations and Back. TACAS 2012: 157-172
– UFO: interpolation sequence on the DAG of program paths

Key Idea
• turn SAT/SMT proofs of bounded safety to inductive traces
• repeat forever until a counterexample or inductive invariant are found



11 11

IMC: Interpolating Model Checking

N=1

BMCN

SeqItp

trace F = [F0, …, FN]

Is F closed

N:=N+1

CEX

SAFE

SAT

UNSAT

YesNo
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Inductive Trace

An inductive trace of a transition system P = (V, Init, Tr, Bad)  is a 
sequence of formulas [F0, …, FN] such that

• Init ⇒F0

• ∀0 · i < N , Fi(v) ∧ Tr (v, u) ⇒ Fi+1 (u)

A trace is safe iff ∀ 0 ≤ i ≤ N , Fi ⇒¬Bad

A trace is monotone iff ∀ 0 · i < N , Fi ⇒ Fi+1

A trace is closed iff ∃ 1 ≤ i ≤ N, Fi ⇒(F0 ∨ … ∨ Fi-1)

A transition system P is SAFE iff it admits a safe closed trace
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) ⇒ ) ⇒⇒⇒

Interpolation Sequence

Given a sequence of formulas A = {Ai}i=0
n, an interpolation 

sequence ItpSeq(A) = {I1, …, In-1} is a sequence of 
formulas such that
• Ik is an ITP (A0 ∧ … ∧ Ak-1,     Ak ∧ … ∧ An), and
• ∀ k<n . Ik ∧ Ak+1⇒ Ik+1

A0 A1 A2 A3 A4 A5 A6

I0 I1 I2 I3 I4 I5

Can compute by pairwise interpolation applied to different cuts of a 
fixed resolution proof (very robust property of interpolation)
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From Interpolants to Traces

A Sequence Interpolant of a BMC instance is an inductive trace

( Init(v0) )0 ∧ ( Tr (v0,v1) )1 ∧ … ∧ ( Tr (vN-1, vN) )N ∧ Bad(vN)

F0(v0)                 F1(v1)                                 FN(vN)

A trace computed by a sequence interpolant is 
• safe
• NOT necessarily monotone
• NOT necessarily closed

BMCN

trace
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ImcMkSafe

IMC: Interpolating Model Checking

N=1

BMCN

SeqItp

trace F = [F0, …, FN]

Is F closed

N:=N+1

CEX

SAFE

SAT

UNSAT

YesNo
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IMC: Strength and Weaknesses

Strength
• elegant
• global bounded safety proof
• many different interpolation algorithms available
• easy to extend to SMT theories

Weaknesses
• the naïve version does not converge easily
– interpolants are weaker towards the end of the sequence

• not incremental
– no information is reused between BMC queries

• size of interpolants
• hard to guide
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IC3: Property Directed Reachability

IC3: A SAT-based Hardware Model Checker
• Incremental Construction of Inductive Clauses for Indubitable Correctness
• A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
• Property Directed Reachability
• N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property 

directed reachability. FMCAD 2011

Very active area of research 

Key Idea:
• carefully manage SAT solving while building an inductive proof one inductive 

lemma at a time
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IC3/PDR
F = [Init]

MkSafe

Push

9 i, Fi = Fi+1

G = [G0, …, GN]

F = [F0, …, FN]
F = [F0, …, FN]

PDR trace

CEX

SAFEYesNo
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IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker
• Incremental Construction of Inductive Clauses for Indubitable Correctness
• A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation
• Property Directed Reachability
• N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property 

directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to 
SMT)
• A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit 

Predicate Abstraction. TACAS 2014
• J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to Induction-

Guided Abstraction-Refinement (CTIGAR). CAV 2014
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IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints
• Generalized Property Directed Reachability
• K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic
• fixes an incompleteness issue in GPDR and extends it with under-approximate 

summaries
• A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive 

Programs. CAV 2014
PolyPDR: Convex models for Linear CHC
• simulating Numeric Abstract Interpretation with PDR
• N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 

2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays
• Required to model heap manipulating programs
• A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification 

of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 
2015
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IC3, PDR, and Friends (3)

Quip: Forward Reachable States + Conjectures

• Use both forward and backward reachability information

• A. Gurfinkel and A. Ivrii: Pushing to the Top. FMCAD 2015

Avy: Interpolation with IC3

• Use SAT-solver for blocking, IC3 for pushing

• Y. Vizel, A. Gurfinkel: Interpolating Property Directed Reachability. CAV 2014

uPDR: Constraints in EPR fragment of FOL

• Universally quantified inductive invariants (or their absence)

• A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, S. Shoham: Property-

Directed Inference of Universal Invariants or Proving Their Absence. CAV 

2015

Quic3: Universally quantified invariants for LIA + Arrays

• Extending Spacer with quantified reasoning

• A. Gurfinkel, S. Shoham, Y. Vizel: Quantifiers on Demand. ATVA 2018 
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IC3

IC3 = Incremental Construction of Inductive Clauses 
for Indubitable Correctness

The Goal: Find an Inductive Invariant stronger than P
• Recall: F is an inductive invariant stronger than P if
– INIT ⇒ F
– F Ù T ⇒ F’
– F ⇒ P

by learning relatively inductive facts (incrementally)

In a property directed manner
• also called “Property Directed Reachability” (PDR)

(Bradley, VMCAI 2011)



23 23

PDR Trace

Recall that an inductive trace of a transition system P = (V, Init, Tr, Bad)  
is a sequence of formulas [F0, …, FN] such that
• Init ⇒ F0

• ∀ 0 ≤ i < N , Fi(v) ∧ Tr (v, u) ⇒ Fi+1 (u)

A trace is clausal if every frame Fi is in CNF

A delta-compressed trace (or δ-trace) is a sequence of clauses s.t.
• each clause c belongs to a unique frame Fi

• ∀ 0 ≤ i ≤ n , ∀ j < i , (c ∈ Fi) ⇒ (c ∉ Fj)

A PDR trace is a monotone, clausal, safe (up to N-1)
• PDR trace is often represented compactly by a δ-trace
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PDR Trace Pictionary

F0 F1 F2 F3 F4

Trace
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PDR Trace Pictionary: Frame

F0 F1 F2 F3 F4

Frame

Frame Fi over-
approximates states 
reachable in at depth i
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PDR Trace Pictionary: Lemma

F0 F1 F2 F3 F4
Lemma

A lemma is a clause over state variables

A lemma blocks (or excludes) bad states

A trace is monotone if lemmas are shared in frames
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PDR Trace Pictionary: Delta Compression

F0 F1 F2 F3 F4

In a delta-compressed trace every lemma is stored in a 
frame with the largest index that it appears

A delta trace is closed (inductive) if it has an empty
frame
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IC3/PDR In Pictures: MkSafe MkSafe

! = 1, % = 0! = 3, % = 0

! < %

find M s.t. M |= Fi ^ Tr ^m0

find m s.t. (M |= m) ^ (m =) 9V 0 · Tr ^m0)
<latexit sha1_base64="sLrE009/tf3hiKW2gohLxw90A9E="></latexit><latexit sha1_base64="sLrE009/tf3hiKW2gohLxw90A9E="></latexit><latexit sha1_base64="sLrE009/tf3hiKW2gohLxw90A9E="></latexit><latexit sha1_base64="sLrE009/tf3hiKW2gohLxw90A9E="></latexit>

find ` s.t. (Fi ^ Tr =) `0) ^ (` =) ¬m)
<latexit sha1_base64="6qJCVOgrIBnK0N7Mq4A3TL/D18w="></latexit><latexit sha1_base64="6qJCVOgrIBnK0N7Mq4A3TL/D18w=">AAACunicbZFLa9tAFIVHapOm7iNOu+xmiClNN0IKgXSRRUghtLsE7CRgGTMaXdmDZ0Zi5iqtEfqbhf6XLjJ60CROLgjOnPPNg6OkkMJiGP71/Bcvt7Zf7bwevHn77v3ucO/Dlc1Lw2HCc5mbm4RZkELDBAVKuCkMMJVIuE5W35v8+haMFbke47qAmWILLTLBGTprPixihN9YZUKntKYxSEk7h9oAg8aSkOHB+Vw4xRw0NjQWyj0NbIt/iY1YLPFrH3d4d85/TMOCqp6bD0dhELZDn4qoFyPSz8V8zzuM05yXCjRyyaydRmGBs4oZFFxCPYhLCwXjK7aAqZOaKbCzqq2mpp+dk9IsN+7TSFv34Y6KKWvXKnGkYri0m1ljPpdNS8y+zSqhixJB8+6irJQUc9r0TFNhgKNcO8G4Ee6tlC+ZYRzd3xgMXCe/eK6U66yKx6au4uYKgZXT9eP0pxZ4n7erDeKMpfdAs6hdy9Fmp0/F1WEQhUF0eTQ6Pev73iGfyD45IBE5JqfkB7kgE8LJH/LP2/K2/RM/8YW/6lDf6/d8JI/GxzvBpNo0</latexit><latexit sha1_base64="6qJCVOgrIBnK0N7Mq4A3TL/D18w="></latexit><latexit sha1_base64="6qJCVOgrIBnK0N7Mq4A3TL/D18w="></latexit>

Predecessor

NewLemma
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Inductive

IC3/PDR in Pictures: Push Push

Algorithm Invariants
Fi → ¬ Bad Init→ Fi

Fi → Fi+1 Fi ∧ Tr→ Fi+1

SMT-query: ` ` ^ Fi ^ Tr =) `0
<latexit sha1_base64="pPGHbC/yxEdFDozsjCr3F+WJBk4="></latexit><latexit sha1_base64="pPGHbC/yxEdFDozsjCr3F+WJBk4="></latexit><latexit sha1_base64="pPGHbC/yxEdFDozsjCr3F+WJBk4="></latexit><latexit sha1_base64="pPGHbC/yxEdFDozsjCr3F+WJBk4="></latexit>
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IC3 Data-Structures

A trace F =  F0, …, FN is a sequence of frames.
• A frame Fi is a set of clauses. Elements of Fi are called lemmas.
• Invariants:
– Bounded Safety: 8 i < N . Fi ® ¬Bad 
– Monotonicity: 8 i < N . Fi+1 µ Fi

– Inductiveness: 8 i < N . Fi ∧ Tr ® F’i+1

A priority queue Q of counterexamples to induction (CTI) or 
proof obligations (POB)
• (m, i) 2 Q is a pair, where m is a cube and i a level
• if (m, i) 2 Q then there exists a path of length (N-i) from a state in 

m to a state in Bad
• Q is ordered by level
– (m, i) < (k, j)   iff i < j



31 31

Recursive Blocking Stage in IC3

// Find a counterexample, or strengthen the inductive trace 
// s.t. FN Þ ¬s holds
IC3_recBlockCube(s, N)

Add(Q, (s, N))
while ¬Empty(Q) do

(s, k) ¬ Pop(Q)
if (k = 0) return “Counterexample”
if (Fk Þ ¬s) continue
if (Fk-1 Ù Tr Ù s’) is SAT

t ¬ generalized predecessor of s
Add(Q, (t, k-1))
Add(Q, (s, k))

else
¬t ¬ generalize ¬s by inductive generalization (to                   

level m³k)
add ¬t to Fm
if (m<N) Add(Q, (s, m+1))
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Pushing stage in IC3
// Push each clause to the highest possible frame up to N
IC3_Push()

for k = 1 .. N-1 do 
for c Î Fk \ Fk+1 do

if (Fk Ù Tr Þ c’)
add c to Fk+1

if (Fk = Fk+1)
return “Proof” // Fk is a safe inductive invariant
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PDR Strength and Weaknesses

Strengths
• elegant
• incremental
• many opportunities for guidance
– fine-grained proof management
– fine-grained generalization of lemmas

Weaknesses
• local backward search for a counterexample
• CNF explosion
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IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable
• terminate the algorithm when a solution is found

Unfold
• increase search bound by 1

Candidate
• choose a bad state in the last frame

Decide
• extend a cex (backward) consistent with the current frame
• choose an assignment s s.t. (s ⋀ Fi ⋀ Tr ⋀ cex’) is SAT

Conflict
• construct a lemma to explain why cex cannot be extended
• Find a clause L s.t. L⇒¬cex ,  Init ⇒ L , and L ⋀ Fi ⋀ Tr ⇒ L’

Induction
• propagate a lemma as far into the future as possible
• (optionally) strengthen by dropping literals 
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Termination and Progress

Unreachable If there is an i < N s.t. Fi ✓ Fi+1

return Unreachable.

Reachable If there is an m s.t. hm, 0i 2 Q
return Reachable.

Unfold If FN ! ¬Bad , then set N  N + 1.

Candidate If for some m, m! FN ^ Bad ,
then add hm,Ni to Q .
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Inductive Generalization

A clause j is inductive relative to F iff
• Init ® j (Initialization)       and        j ∧ F ∧ Tr ® j’       (Inductiveness)

Implemented by first letting j = ¬m and generalizing j by iteratively 
dropping literals while checking the inductiveness condition

Theorem: Let F0, F1, …, FN be a valid IC3 trace. If j is inductive relative 
to Fi, 0 · i < N, then, for all j · i, j is inductive relative to Fj.
• Follows from the monotonicity of the trace
– if j < i then Fj ® Fi

– if Fj ® Fi then (j ∧ Fi ∧ Tr ® j’) ® (j ∧ Fj ∧ Tr ® j’)

Conflict For 0  i < N : given a candidate model hm, i+ 1i 2 Q and clause
', such that ' ! ¬m, if Init ! ', and ' ^ Fi ^ Tr ! '0, then
add ' to Fj , for j  i+ 1.
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Prime Implicants

A formula j is an implicant of a formula Ã iff j) Ã

A propositional implicant of Ã is a conjunction of literals j such that j is 
an implicant of Ã
• j is a conjunction of literals
• j) Ã

• j is a partial assignment that makes Ã true

A propositonal implicant j of Ã is called prime if no subset of j is an 
implicant of Ã
• j is a conjunction of literals
• j) Ã

• 8 p . (p ¹ j ∧ j) p) ) (p ⇏ Ã)
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Generalizing Predecessors

Decide rule chooses a (generalized) predecessor m0 of m that is 
consistent with the current frame

Simplest implementation is to extract a predecessor mo from a 
satisfying assignment of M ⊧ Fi ∧ Tr ∧ m’
• m0 cab be further generalized using ternary simulation by dropping literals 

and checking that m’ remains forced

An alternative is to let m0 be an implicant (not necessarily prime) 
of  Fi∧9 X’.(Tr ∧ m’)
• finding a prime implicant is difficult because of the existential quantification
• we settle for an arbitrary implicant. The side conditions ensure it is not trivial

Decide If hm, i+ 1i 2 Q and there are m0 and m1 s.t. m1 ! m, m0 ^m0
1 is

satisfiable, and m0 ^m0
1 ! Fi ^ Tr ^m0, then add hm0, ii to Q .
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Strengthening a trace

Also known as Push or Propagate
Bounded safety proofs are usually very weak towards the end
• not much is needed to show that error will not happen in one or two steps

This tends to make them non-inductive
• a weakness of interpolation-based model checking, like IMPACT
• in IMPACT, this is addressed by forced covering heuristic

Induction “applies” forced cover one lemma at a time
• whenever all lemmas are pushed Fi+1 is inductive (and safe)
• (optionally) combine strengthening with generalization

Implementation
• Apply Induction from 0 to N whenever Conflict and Decide are not applicable

Induction For 0  i < N and a clause (' _  ) 2 Fi, if ' 62 Fi+1, Init ! '
and ' ^ Fi ^ Tr ! '0, then add ' to Fj , for each j  i+ 1.
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Long Counterexamples

Also known as ReQueue
Whenever a counterexample m is blocked at level i, it is known that
• there is no path of length i from Init to m (because got blocked)
• there is a path of length (N-i) from m to Bad

Can check whether there exists a path of length (i+1) from Init to m
• (Leaf) check eagerly by placing the CTI back into the queue at a higher level
• (No Leaf) check lazily by waiting until the same (or similar) CTI is discovered 

after N is increased by Unfold
Leaf allows IC3 to discover counterexamples much longer than the 
current unfolding depth N
• each CTI re-enqueued by Leaf adds one to the depth of the longest possible 

counterexample found
• a real counterexample might chain through multiple such CTI’s

Leaf If hm, ii 2 Q , 0 < i < N and Fi�1 ^ Tr ^m0 is unsatisfiable, then add
hm, i+ 1i to Q .
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Queue Management for Long Counterexamples

A queue element is a triple (m, i, d)
• m is a CTI, i a level, d a depth

Decide sets m and i as before, and sets d to 0

Leaf increases i and d by one
• i determines how far the CTI can be pushed back
• d counts number of times the CTI was pushed forward

Queue is ordered first by level, then by depth
• (m, i, d) < (k, j, e)  , i < j Ç (i=j ∧ d < e)

Overall exploration mimics iterative deepening with non-uniform 
exploration depth
• go deeper each time before backtracking
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Recursive Blocking Stage in IC3

// Find a counterexample, or strengthen the inductive trace 
// s.t. FN Þ ¬s holds
IC3_recBlockCube(s, N)

Add(Q, (s, N))
while ¬Empty(Q) do

(s, k) ¬ Pop(Q)
if (k = 0) return “Counterexample”
if (Fk Þ ¬s) continue
if (Fk-1 Ù Tr Ù s’) is SAT

t ¬ generalized predecessor of s
Add(Q, (t, k-1))
Add(Q, (s, k))

else
¬t ¬ generalize ¬s by inductive generalization (to                   

level m³k)
add ¬t to Fm
if (m<N) Add(Q, (s, m+1))
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Pushing stage in IC3
// Push each clause to the highest possible frame up to N
IC3_Push()

for k = 1 .. N-1 do 
for c Î Fk \ Fk+1 do

if (Fk Ù Tr Þ c’)
add c to Fk+1

if (Fk = Fk+1)
return “Proof” // Fk is a safe inductive invariant
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Public IC3 Implementations

Spacer engine in Z3 (Arie)
• https://github.com/Z3Prover/z3/tree/master/src/muz/spacer
• theories and constrained horn clauses

IC3Ref (A. Bradley)
• https://github.com/arbrad/IC3ref
• IC3 reference implementation

PDR in Abc (A. Mishchenko)
• https://github.com/berkeley-abc/abc/tree/master/src/proof/pdr
• PDR implementation

IC3IA (A. Griggio)
• https://es-static.fbk.eu/people/griggio/ic3ia/index.html
• IC3 with Implicit Predicate Abstraction

Tip (N. Sörensson)
• https://github.com/niklasso/tip

https://github.com/Z3Prover/z3/tree/master/src/muz/spacer
https://github.com/arbrad/IC3ref
https://github.com/berkeley-abc/abc/tree/master/src/proof/pdr
https://es-static.fbk.eu/people/griggio/ic3ia/index.html
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IC3: AGAIN
State-based presentation of IC3
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IC3 Basics

Iteratively compute Over-Approximated Reachability Sequence 
(OARS) <F0,F1,…,Fk+1> s.t.
• F0 = INIT
• Fi ⇒ Fi+1 monotone: Fi Í Fi+1

• Fi Ù T ⇒ F’i+1 inductive: simulates one forward step
• Fi ⇒ P safe: p is an invariant up to k+1

Fi - CNF formula given as a set of clauses

Fi over-approximates Ri
• If Fi+1 ⇒ Fi then fixpoint: Fi is an inductive invariant
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INIT
R1

R2

R 
Ri+1Ri

……

……F1
F2

Fi+1

If Fk+1ºFk then Fk is an inductive invariant

Fi+1(V’) Ü Fi (V) ÙT(V,V’)

Fk
Fi

OARS   (aka Inductive Trace)

¬p
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IC3 Basics (cont.)

c is inductive relative to F if 
• INIT ⇒ c
•F Ù c Ù T ⇒ c’

Notation:
•cube s: conjunction of literals
–v1 Ù v2 Ù ¬v3 - Represents a state

•s is a cube => ¬s is a clause (DeMorgan)
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IC3 - Initialization

Check satisfiability of the two formulas:
• INIT Ù ¬P
• INIT Ù T Ù ¬P’

If at least one is satisfiable: cex found
If both are unsatisfiable then:
• INIT ⇒ P
• INIT Ù T ⇒ P’

Therefore
• F0 = INIT, F1 = P

–<F0,F1> is an OARS

OARS:
– F0 = INIT
– Fi ⇒ Fi+1

– Fi Ù T ⇒ F’i+1

– Fi ⇒ P

I
F0

P
F1
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IC3 - Iteration

Our OARS contains F0 and F1

Initialize F2 to P

– If P is an inductive invariant – done! J
– Otherwise:  F1 Ù T ¹> F’2

=>   F1 should be strengthened

I
F0

P
F1 F2

OARS:
– F0 = INIT
– Fi ⇒ Fi+1

– Fi Ù T ⇒ F’i+1

– Fi ⇒ P
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IC3 - Iteration

If P is not an inductive invariant
• F1 Ù T Ù ¬P’ is satisfiable
–(F Ù T Ù ¬P’) sat    IFF     (F Ù T => P’) not valid

• From the satisfying assignment get a state s that can reach 
a bad state

I
F0

P
F1

s

F2

OARS:
– F0 = INIT
– Fi ⇒ Fi+1

– Fi Ù T ⇒ F’i+1

– Fi ⇒ P



52 52

IC3 - Iteration

Is s reachable in one transition from the previous 
set? 
• backward search: Check F0 Ù T Ù s’
• If satisfiable, s is reachable from F0 :  CEX
•Otherwise, block s, i.e. remove it from F1

–F1 = F1 Ù ¬s

52

I
F0

s

F2F1
F1

P
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IC3 - Iteration

Iterate this process until F1 Ù T Ù ¬P’ becomes 
unsatisfiable
• F1 Ù T => P’ holds
• < F0 , F1, F2> is an OARS

F1

I
F0

P
F2

F2 = P
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IC3 - Iteration

New iteration, initialize F3 to P, check F2 Ù T Ù ¬P’
• If satisfiable, get s that can reach ¬P
•Now check if s can be reached from F1 by F1 Ù T Ù s’
• If it can be reached, get t and try to block it

st

F1

I
F0

P
F2 F3



55 55

IC3 - Iteration

To block t, check F0 Ù T Ù t’
• If satisfiable, a CEX
• If not, t is blocked, get a “new” t* by F1 Ù T Ù s’ 

and try to block t* 

t*

st

F1

I
F0

P
F2 F3
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IC3 - Iteration

When F1 Ù T Ù s’ becomes unsatisfiable
• s  is blocked, get a “new” s* by F2 Ù T Ù ¬P’ 

and try to block s* 

……You get the picture J

t*

st

F1

I
F0

P
F2 F3
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INIT
F1

F2

Fk-1
Fk

If sk is reachable (in k steps): counterexample
If sk is unreachable: strengthen Fk to exclude sk

……

Fk+1 = P

SAT(Fk ÙT Ù ¬P’) ?

General Iteration

sk

sk-1

SAT(Fk-1 ÙT Ù sk’) ?…

Fk := Fk Ù ¬sk

Fk-1 := Fk-1 Ù ¬sk-1

…
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INIT
F1

F2
Fk-1

Until Fk ÙT Ù ¬P’ is unsatisfiable, i.e. Fk ÙT => P’
è We have an OARS again. Check fixpoint and increase k 

……

General Iteration

Fk

…

Fk := Fk Ù ¬sk

Fk-1 := Fk-1 Ù ¬sk-1

Fk+1 = P
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IC3 - Iteration

Given an OARS <F0,F1,…,Fk>, set Fk+1 = P

Apply a backward search
1. Find predecessor sk in Fk that can reach a bad state
– Fk Ù T ¹> P’ (Fk Ù T Ù ¬P’ is sat)

2. If none exists, move to next iteration (check fixpoint first)
3. If exists, try to find a predecessor sk-1 to sk in Fk-1

– Fk-1 Ù T ¹ > ¬sk’ (Fk-1 Ù T Ù sk’ is sat)
4. If none exists, remove sk from Fk and go back to 3
– Fk := Fk Ù ¬sk

5. Otherwise: Recur on (sk-1,Fk-1)
– We call (sk-1,k-1) a “proof obligation” / “counterexample to induction” 

If we reach INIT, a CEX exists



60 60

That Simple?

Looks simple

•But this “simple” does NOT work

Simple = State Enumeration

• Too many states…

Does IC3 enumerate states?

•No – removing more than one state at a time

• But, yes (when IC3 doesn’t perform well)
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Generalization of a blocked state

s in Fk can reach a bad state in one transition (or 
more)

But Fk-1 Ù T => ¬s’ holds
• Therefore, s is not reachable in k transitions
• Fk := Fk Ù¬s

We want to generalize this fact
• s is a single state
• Goal: learn a stronger fact
–Find a set of states, unreachable from Fk-1 in 

one step

Fk-1

¬s

sFk
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Generalization

We know Fk-1 Ù T => ¬s’
And, ¬s is a clause
Generalization: 
Find a sub-clause c Í ¬s  s.t.
Fk-1 Ù T => c’ and INIT => c
• Sub clause means less literals
• Less literals implies less satisfying assignments
– (a ∨ b)  vs.  (a ∨ b ∨ c) 

• c => ¬s    i.e. c is a stronger fact
Fk := Fk Ù c
• More states are removed from Fk, making it stronger/more precise 

(closer to Rk)

Fk-1

c
¬s

sFk
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Generalization

How do we find a sub-clause c Í ¬s s.t. Fk-1 Ù T => c’?
Trial and Error
• Try to remove literals from ¬s while Fk-1 Ù T Ù ¬c’

and INIT Ù ¬c’ remain unsatisfiable

Use the UnSAT Core
• (INIT’ ∨ (Fk-1 Ù T)) Ù s’ is unsatisfiable
• Conflict clauses can also be used Fk-1 ∧ T ∧ s’ is UNSAT

Desired: 
c⟹¬s

Fk-1 ∧ T ∧ ¬c’ is UNSAT
Looks familiar?
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¬s

Observation 1

Assume a state s in Fk can reach a bad state in a 
number of transitions

Fk-1

¬s

sFk

• Important Fact: s is not in Fk-1 (!!)
– If s was in Fk-1 we would have 

found it in an earlier iteration

• Therefore: Fk-1 => ¬s
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Observation 1

Assume a state s in Fk can reach a bad state in a 
number of transitions
Therefore: Fk-1 => ¬s
Assume Fk-1 Ù T => ¬s’ holds
• It’s blocking time…

So, this is equivalent to 
Fk-1 Ù ¬s Ù T => ¬s’

Further INIT => ¬s
– Otherwise, CEX! 

(INIT ≠> ¬s IFF s is in INIT)

• This looks familiar!
– ¬s is inductive relative to Fk-1

¬s

Fk-1

¬s

sFk
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Inductive Generalization

We now know that ¬s is inductive relative to Fk-1

And, ¬s is a clause

Inductive Generalization:
Find sub-clause c Í ¬s s.t.

Fk-1 Ù c Ù T => c’ (and INIT => c)
• Stronger inductive fact

Fk := Fk Ù c
• It may be the case that Fk-1 Ù T => Fk no longer holds
– Why?
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Inductive Generalization

Fk-1 Ù c Ù T => c’ and INIT => c hold
Fk := Fk Ù c

c is also inductive relative to Fk-1, Fk-2,…,F0
• Add c to all of these sets
• For every i ≤ k:  Fi* = Fi Ù c

Fi* Ù T => Fi+1* holds for every i < k
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Observation 2

Assume state s in Fi can reach a bad state in a number of 
transitions
s is also in Fj for j > i (Fi => Fj)
• a longer CEX may exist
• s may not be reachable in i steps, but it may be reachable in j steps

If s is blocked in Fi, it must be blocked in Fj for j > i
• Otherwise, a CEX exists
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INIT
F1

F2

……

Push Forward

Fi Fi+1

……

P
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Push Forward

Suppose s is removed from Fi

• by conjoining a sub-clause c

• Fi := Fi Ù c

c is a clause learnt at level i

try to push c forward for j > i

• If Fj Ù c Ù T => c’ holds

– c is inductive in level j

– Fj+1 := Fj+1 Ù c

• Else: s was not blocked at level j > i

– Add a proof obligation (s,j)

– If s is reachable from INIT in j steps, CEX!
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Generalizing Predecessor

Suppose sk-1 is a predecessor obtained by Fk-1 Ù T Ù sk’
• New proof obligation

Try to generalize sk-1 to a set of states (cube m) such that 
m⟹∃V’ . Fk-1 Ù T Ù sk’

• Drop a literal from sk-1 and use ternary simulation to check whether 
Fk-1 Ù T Ù sk’ evaluates to true under current assignment
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Recursive Blocking Stage in IC3

// Find a counterexample, or strengthen the inductive trace 
// s.t. FN Þ ¬s holds
IC3_recBlockCube(s, N)

Add(Q, (s, N))
while ¬Empty(Q) do

(s, k) ¬ Pop(Q)
if (k = 0) return “Counterexample”
if (Fk Þ ¬s) continue
if (Fk-1 Ù Tr Ù s’) is SAT

t ¬ generalized predecessor of s
Add(Q, (t, k-1))
Add(Q, (s, k))

else
¬t ¬ generalize ¬s by inductive generalization (to                   

level m³k)
add ¬t to Fm
if (m<N) Add(Q, (s, m+1))
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Pushing stage in IC3
// Push each clause to the highest possible frame up to N
IC3_Push()

for k = 1 .. N-1 do 
for c Î Fk \ Fk+1 do

if (Fk Ù Tr Þ c’)
add c to Fk+1

if (Fk = Fk+1)
return “Proof” // Fk is a safe inductive invariant
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IC3 – Key Ingredients

Backward Search
• Find a state s that can reach a bad state in a number of steps
• [lifting: generalize s to a set of states]
• s may not be reachable (over-approximations)

Block a State
• Do it efficiently, block more than s
– Generalization / Inductive generalization

Push Forward
• An inductive fact at frame i, may also be inductive at higher frames
• If not, a longer CEX may be found



Pushing to the Top with K-induction

Arie Gurfinkel
Electrical and Computer Engineering

University of Waterloo

joint work with Alexander Ivrii (IBM)
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Agenda

IC3 is one of the most powerful algorithms for model checking safety properties

Very active area of research:

• A. Bradley: SAT-Based Model Checking Without Unrolling. VMCAI 2011
(IC3 stands for “Incremental Construction of Inductive Clauses for Indubitable 
Correctness”)

• N. Eén, A. Mishchenko, R. Brayton: Efficient implementation of property directed 
reachability. FMCAD 2011
(PDR stands for “Property Directed Reachability”)

…

• In this talk, I present a new IC3-based algorithm, called QUIP
(QUIP stands for “a QUest for an Inductive Proof”)
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A brief preview of Quip 

Quip extends IC3 by allowing for

• A wider range of conjectures (proof obligations)
• Designed to push already existing lemmas more aggressively
• Allows to push a given lemma by learning additional supporting

lemmas 
(and hopefully to compute an inductive invariant faster)

• Forward reachable states
• Explain why a lemma cannot be pushed
• Allows to keep the number of proof obligations under control

These are integrated into a single algorithmic procedure

The experimental results look good



79 79

A quick review of IC3/PDR

Input: 
• A safety verification problem (Init, Tr, Bad)

Output: 
• A counterexample (if the problem is UNSAFE), 
• A safe inductive invariant (if the problem is SAFE)
• Resource Limit

Main Data-structures:
• A current working level N
• An inductive trace
• A set of proof obligations
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Inductive Trace

Let F0, F1, F2, …, F¥ be conjunctions of lemmas (in practice, clauses). 
We say that F0, F1, F2, …, F¥ is an inductive trace if:

(1) F0 = INIT
(2) F0 Þ F1 Þ F2 Þ … Þ F¥ (monotone)
(3) F1 Ê F2 Ê … Ê F¥ as sets of lemmas (s. monotone)
(4) Fi Ù TR Þ Fi+1’ for i ³ 0 (including F¥ Ù Tr Þ F¥’).   (inductive)

Remarks:
This definition is slightly different from the original definition:

• the sequence F0, F1, F2, … is conceptually infinite (with Fi = T for all 
sufficiently large i )

• we add F¥ as the last element of the trace (as suggested in PDR)

Each Fi over-approximates states that are reachable in i steps or less
(in particular, F¥ contains all reachable states)
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Proof Obligations in IC3

A proof obligation in IC3 is a pair (s, i), where

• s is a (generalized) cube over state variables 

• i is a natural number (called level)

We say that (s, i) is blocked (or that s is blocked at level i) if Fi Þ ¬s.

Given a proof obligation (s, i), IC3 attempts to strengthen the inductive 

trace in order to block it.

Remarks:

In IC3, s is identified with a counterexample-to-induction (CTI)

If (s, i) is a proof obligation and i³1, then (s, i-1) is already blocked

All proof obligations are managed via a priority  queue:

• Proof obligations with smallest level are considered first

• (additional criteria for tie-breaking)
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Towards improving IC3 (1)

IC3 is an excellent algorithm! So, what do we want?

We want more control on which lemmas to learn:
• Each lemma in the inductive trace is neither an over-approximation nor 

an under-approximations of reachable states (a lemma in Fk only over-
approximates states reachable within k steps):

• IC3 may learn lemmas that are too weak (ex. C1) – prune less 
states

• IC3 may learn lemmas that are too strong (ex. C2) – cannot be in the 
inductive invariant

Init Reach

C1

C2

Bad
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Towards improving IC3 (2)

We want to know if an already existing lemma is good (in F¥) or 
bad (e.g., C2 from before):
• Avoid periodically pushing bad lemmas
• Ideally, we also want to prune less useful lemmas

We want to prioritize reusing already discovered lemmas over 
learning of new ones:
• When the same cube s is blocked at different levels, usually 

different lemmas are discovered
• Although, IC3 partially addresses this using pushing (and 

other optimizations)
• Use the same lemma to block s (at the expense of deriving 

additional supporting lemmas)
• Although, in general different lemmas are of different “quality” 

and having some choice may be beneficial
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Immediate improvement: unlimited pushing
// Push each clause to the highest possible frame up to N
IC3_Push_Unlimited() 

for k = 1 .. do 
for c Î Fk \ Fk+1 do

if (Fk Ù Tr Þ c’)
add c to Fk+1

if (Fk = Fk+1)
F¥ ¬ Fk

if (F¥ Þ ¬Bad)
return “Proof” // F¥ is a safe inductive invariant

Claim: after pushing F¥ represents a maximal inductive subset of all lemmas 
discovered so far

Remark: the idea to compute maximal inductive invariants is suggested in 
PDR but claimed to be ineffective. In our implementation, “unlimited pushing” 
leads to ~10% overall speed up.
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Pushing is Useful

Why pushing is useful:
• During the execution of IC3, the sets Fi are incrementally 

strengthened, and so it may happen 
that Fk Ù TR Þ c’, even though this was not true at the time that c was 
discovered

Why pushing is good:
• By pushing c from Fk to Fk+1, we make Fk more inductive

(and if Fk becomes equal to Fk+1, then Fk becomes an inductive 
invariant)

• Suppose that cÎFk blocks a proof obligation (s, k). 
By pushing c from Fk to Fk+1, we also block the proof obligation (s, k+1)

• Pushing Clauses = Improving Convergence = Reusing old lemmas for 
blocking bad states



86 86

What Happens when Pushing Fails
Why pushing may fail: suppose that c Î Fk \ Fk+1 but Fk Ù TR does not 
imply c’. Why?

There are two alternatives:
1. c is a valid over-approximation of states reachable within k+1 steps, 

but Fk is not strong enough to imply this
• We can strengthen the inductive trace so that Fk Ù TR Þ c’ becomes 

true

2. c is NOT a valid over-approximation of states reachable within k+1
steps
• There is a real forward reachable state r that is excluded by c
• c has no chance to be in the safe inductive invariant
• c is a bad lemma

A similar reasoning is used in:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD 
2013
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Two interdependent ideas
1. Prioritize pushing existing lemmas

• Given a lemma c Î Fk \ Fk+1, we can add (¬c, k+1) as a may-proof-
obligation
• May-proof-obligations are “nice to block”, but do not need to be 

blocked
• If (¬c, k+1) can be blocked, then c is pushed to Fk+1
• If (¬c, k+1) cannot be blocked, then we discover a concrete reachable 

state r that is excluded by c and that explains why c cannot be inductive

2. Discover and use new forward reachable states
• These are an under-approximation of forward reachable states
• Given a reachable state, all the existing lemmas that exclude it are bad

• Bad lemmas are never pushed 
• Reachable states may show that certain may-proof-obligations cannot be 

blocked
• Reachable states may be used when generalizing lemmas 
• Conceptually, computing new reachable states can be thought of as new

Init states
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Quip

Input: 
• A safety verification problem (Init, Tr, Bad)

Output: 
• A counterexample (if the problem is UNSAFE), 
• A safe inductive invariant (if the problem is SAFE)
• Resource Limit

Main Data-structures:
• A current working level N
• An inductive trace (same as IC3)
• A set of proof obligations (similar to IC3)
• A set R of forward reachable states 
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Proof Obligations in Quip
A proof obligation in Quip is a triple (s, i, p), where
• s is a (generalized) cube over state variables 
• i is a natural number
• p Î {may, must}

Remarks:
• As in IC3, if (s, i, p) is a proof obligation and i³1, then (s, i-1) is 

assumed to be already blocked
• As in IC3, all proof obligations are managed via a priority  queue:

• Proof obligations with smallest level are considered first
• In case of a tie, proof obligations with smallest number of literals are 

considered first
• (additional criteria for tie-breaking)

• Have a “parent map” from a proof obligation to its parent proof 
obligation
• parent(t) = s if (t, k-1, q) is a predecessor of (s, k, p)
• In fact, this is usually done in IC3 as well (for trace reconstruction)
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Recursive Blocking Stage in Quip (1)
1. Each time that we examine a proof obligation (s, k, p), check whether 

s intersects a reachable state rÎR

2. Discover new reachable states when possible
• Claim: if s intersects rÎR and if parent(s) exists, then there exists a 

reachable state r’ that intersects parent(s)
• Indeed, ALL states in s lead to a state in parent(s)
• Therefore r leads to a state in parent(s) as well

• A similar idea is present in: C. Wu, C. Wu, C. Lai, C. Huang: A 
counterexample-guided interpolant generation algorithm for SAT-
based model checking. TCAD 2014

3. When (s, k, p) is blocked by an inductive lemma ¬t, add (t, k+1, may) 
as a new proof obligation
• Push ¬t to Fk+1 instead of blocking (s, k+1)

4. Clear all proof obligations if their number becomes too large 
(important, not in pseudocode)
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Recursive Blocking Stage in Quip (2)

// Find a reachable state rÎs, or strengthen the inductive trace 
s.t. FN Þ ¬s
Quip_recBlockCube(s, N, q)

Add(Q, (s, N, q))
while ¬Empty(Q) do

(s, k, p) ¬ Pop(Q)
if (k = 0) && (p = must) return “Counterexample”
if (k = 0) && (p = may) 

find a state r one-step-reachable from Init,
such that r intersects parent(s)

add r to R; continue
if (Fk Þ ¬s) continue
if (s intersects some state rÎR) && (p = must) return

“Counterexample”
if (s intersects some state rÎR) && (p = may)

if parent(s) exists, find a state r’ one-step-reachable 
from r,

such that r’ intersects parent(s)
add r’ to R; continue

// -- continued on the next slide --
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Recursive Blocking Stage in Quip (3)

Quip_recBlockCube(s, N, p)
//  -- continued from the previous slide –-

if (Fk-1 Ù Tr Ù s’) is SAT
t ¬ generalized predecessor of s
Add(Q, (t, k-1, p))
Add(Q, (s, k, p))

else
¬t ¬ generalize ¬s by inductive    

generalization (to level m³k)
add ¬t to Fm
if (m<N)

if (t = s) Add(Q, (t, m+1, p))
else Add(Q, (t, m+1, may)) 

// attempt to block t (not s)
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Experiments: IC3 vs. Quip on HWMCC’13 and ’14

• Implemented in IBM formal verification tool Rulebase-Sixthsense

• Data for 140 instances that were not trivially solved by 
preprocessing but could be solved either by IC3 or Quip within 
1-hour

• Detailed results at http://arieg.bitbucket.org/quip
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Experiments: IC3 vs. Quip on HWMCC’13 and ‘14

IC3 (sec)

Q
ui

p 
(s

ec
)

• Data for 140 instances from prev slide


