Unbounded Model Checking: IC3 and PDR

Automated Program Verification (APV)
Fall 2019

Prof. Arie Gurfinkel

Project proposals due November 18, 2019

Talk to me before submitting the proposal!

Submit PDF with proposal by email

- Must include at least 3 references to be read during the project

SAT-based Model Checking

Bounded Model Checking

- Is there a counterexample of k-steps

Unbounded Model Checking
-Induction and K-Induction (k-IND)

- Interpolation Based Model Checking (IMC)
-Property Directed Reachability (IC3/PDR)

Symbolic Safety and Reachability

A transition system $P=(V$, Init, $\mathrm{Tr}, \mathrm{Bad})$
P is UNSAFE if and only if there exists a number N s.t.
P is SAFE if and only if there exists a safe inductive invariant lnv s.t.

$$
\operatorname{Init}\left(X_{0}\right) \wedge\left(\bigwedge_{i=0}^{N-1} \operatorname{Tr}\left(X_{i}, X_{i+1}\right)\right) \wedge B a d\left(X_{N}\right) \nRightarrow \perp
$$

$$
\left.\begin{array}{rl}
\text { Init } & \Rightarrow \operatorname{Inv} \\
\operatorname{Inv}(X) \wedge \operatorname{Tr}\left(X, X^{\prime}\right) & \Rightarrow \operatorname{Inv}\left(X^{\prime}\right)
\end{array}\right\} \begin{gathered}
\\
\text { Inductive } \\
\operatorname{Inv}
\end{gathered} \Rightarrow \neg B a d \quad \text { Safe }
$$

Inductive Invariants

System S is safe iff there exists an inductive invariant Inv:

- Initiation: Initial \subseteq Inv
- Safety: $\quad \operatorname{lnv} \cap$ Bad = \varnothing
- Consecution: $\operatorname{TR}(\operatorname{Inv}) \subseteq \operatorname{Inv}$ i.e., if $s \in \operatorname{lnv}$ and $s \sim t$ then $t \in \operatorname{lnv}$

Inductive Invariants

System S is safe iff there exists an inductive invariant Inv:

- Initiation: Initial \subseteq Inv
- Safety: $\quad \operatorname{lnv} \cap$ Bad = \varnothing
- Consecution: $\operatorname{TR}(\operatorname{Inv}) \subseteq \operatorname{Inv}$ i.e., if $s \in \operatorname{lnv}$ and $s \sim t$ then $t \in \operatorname{lnv}$
Sysstem S is safe if Reach \cap Bad $=\varnothing$

Craig Interpolants [Craig 57]

Given a pair (A,B) of propositional formulas s.t.

- $A(X, Y) \wedge B(Y, Z)$ is unsatisfiable
- i.e., $A \Rightarrow \neg B$

There exists a formula I such that:

- $A \Rightarrow$

$$
A \Rightarrow \rightarrow B
$$

- I $\wedge B$ is unsatisfiable
- I is over Y, the common variables of A and B

$$
\begin{aligned}
& A \Rightarrow I \\
& I \Rightarrow \neg B
\end{aligned}
$$

Program Verification by Houdini

Inductive Invariant

Verification by Successive Under-Approximation

bounded proof

No

No
bound 3

Interpolating Model Checking

Introduced by McMillan in 2003

- Kenneth L. McMillan: Interpolation and SAT-Based Model Checking. CAV2003: 1-13
- based on pairwise Craig interpolation

Extended to sequences and DAGs

- Yakir Vizel, Orna Grumberg: Interpolation-sequence based model checking. FMCAD 2009: 1-8
- uses interpolation sequence
- Kenneth L. McMillan: Lazy Abstraction with Interpolants. CAV 2006: 123-136
- IMPACT: interpolation sequence on each program path
- Aws Albarghouthi, Arie Gurfinkel, Marsha Chechik: From UnderApproximations to Over-Approximations and Back. TACAS 2012: 157-172
- UFO: interpolation sequence on the DAG of program paths

Key Idea

- turn SAT/SMT proofs of bounded safety to inductive traces
- repeat forever until a counterexample or inductive invariant are found

IMC: Interpolating Model Checking

Inductive Trace

An inductive trace of a transition system $\mathrm{P}=(\mathrm{V}, \mathrm{Init}, \mathrm{Tr}, \mathrm{Bad})$ is a sequence of formulas $\left[F_{0}, \ldots, F_{N}\right]$ such that

- Init $=F_{0}$
- $\forall 0 \cdot i<N, F_{i}(v) \wedge \operatorname{Tr}(v, u) \Rightarrow F_{i+1}(u)$

A trace is safe iff $\forall 0 \leq i \leq N, F_{i} \Rightarrow-$ Bad

A trace is monotone iff $\forall 0 \cdot \mathrm{i}<\mathrm{N}, \mathrm{F}_{\mathrm{i}} \Rightarrow \mathrm{F}_{\mathrm{i}+1}$

A trace is closed iff $\exists 1 \leq i \leq N, F_{i} \Rightarrow\left(F_{0} \vee \ldots \vee F_{i-1}\right)$

A transition system P is SAFE iff it admits a safe closed trace

Interpolation Sequence

Given a sequence of formulas $A=\left\{A_{i}\right\}_{i=0}{ }^{\text {n }}$, an interpolation sequence $\operatorname{ItpSeq}(A)=\left\{I_{1}, \ldots, I_{n-1}\right\}$ is a sequence of formulas such that
$\bullet I_{k}$ is an ITP $\left(A_{0} \wedge \ldots \wedge A_{k-1}, \quad A_{k} \wedge \ldots \wedge A_{n}\right)$, and

- $\forall k<n . I_{k} \wedge A_{k_{+1}} \Rightarrow I_{k+1}$

Can compute by pairwise interpolation applied to different cuts of a fixed resolution proof (very robust property of interpolation)

From Interpolants to Traces

A Sequence Interpolant of a BMC instance is an inductive trace
$\left(\operatorname{lnit}\left(\mathrm{v}_{0}\right)\right)_{0} \wedge\left(\operatorname{Tr}\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right)\right)_{1} \wedge \ldots \wedge\left(\operatorname{Tr}\left(\mathrm{v}_{\mathrm{N}-1}, \mathrm{v}_{\mathrm{N}}\right)\right)_{\mathrm{N}} \wedge \operatorname{Bad}\left(\mathrm{v}_{\mathrm{N}}\right)$

$$
\mathrm{F}_{0}\left(\mathrm{v}_{0}\right) \quad \mathrm{F}_{1}\left(\mathrm{v}_{1}\right)
$$

A trace computed by a sequence interpolant is

- safe
- NOT necessarily monotone
- NOT necessarily closed

IMC: Interpolating Model Checking

IMC: Strength and Weaknesses

Strength

- elegant
- global bounded safety proof
- many different interpolation algorithms available
- easy to extend to SMT theories

Weaknesses

- the naïve version does not converge easily
- interpolants are weaker towards the end of the sequence
- not incremental
- no information is reused between BMC queries
- size of interpolants
- hard to guide

IC3: Property Directed Reachability

IC3: A SAT-based Hardware Model Checker

- Incremental Construction of Inductive Clauses for Indubitable Correctness
- A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation

- Property Directed Reachability
- N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property directed reachability. FMCAD 2011

Very active area of research

Key Idea:

- carefully manage SAT solving while building an inductive proof one inductive lemma at a time

IC3/PDR

IC3, PDR, and Friends (1)

IC3: A SAT-based Hardware Model Checker

- Incremental Construction of Inductive Clauses for Indubitable Correctness
- A. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011

PDR: Explained and extended the implementation

- Property Directed Reachability
- N. Eén, A. Mishchenko, R. K. Brayton: Efficient implementation of property directed reachability. FMCAD 2011

PDR with Predicate Abstraction (easy extension of IC3/PDR to

 SMT)- A. Cimatti, A. Griggio, S. Mover, St. Tonetta: IC3 Modulo Theories via Implicit Predicate Abstraction. TACAS 2014
- J. Birgmeier, A. Bradley, G. Weissenbacher: Counterexample to InductionGuided Abstraction-Refinement (CTIGAR). CAV 2014

IC3, PDR, and Friends (2)

GPDR: Non-Linear CHC with Arithmetic constraints

- Generalized Property Directed Reachability
- K. Hoder and N. Bjørner: Generalized Property Directed Reachability. SAT 2012

SPACER: Non-Linear CHC with Arithmetic

- fixes an incompleteness issue in GPDR and extends it with under-approximate summaries
- A. Komuravelli, A. Gurfinkel, S. Chaki: SMT-Based Model Checking for Recursive Programs. CAV 2014

PolyPDR: Convex models for Linear CHC

- simulating Numeric Abstract Interpretation with PDR
- N. Bjørner and A. Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015
ArrayPDR: CHC with constraints over Airthmetic + Arrays
- Required to model heap manipulating programs
- A. Komuravelli, N. Bjørner, A. Gurfinkel, K. L. McMillan:Compositional Verification of Procedural Programs using Horn Clauses over Integers and Arrays. FMCAD 2015

IC3, PDR, and Friends (3)

Quip: Forward Reachable States + Conjectures

- Use both forward and backward reachability information
- A. Gurfinkel and A. Ivrii: Pushing to the Top. FMCAD 2015

Avy: Interpolation with IC3

- Use SAT-solver for blocking, IC3 for pushing
- Y. Vizel, A. Gurfinkel: Interpolating Property Directed Reachability. CAV 2014
uPDR: Constraints in EPR fragment of FOL
- Universally quantified inductive invariants (or their absence)
- A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, S. Shoham: PropertyDirected Inference of Universal Invariants or Proving Their Absence. CAV 2015
Quic3: Universally quantified invariants for LIA + Arrays
- Extending Spacer with quantified reasoning
- A. Gurfinkel, S. Shoham, Y. Vizel: Quantifiers on Demand. ATVA 2018

IC3 = Incremental Construction of Inductive Clauses for Indubitable Correctness

The Goal: Find an Inductive Invariant stronger than P

- Recall: F is an inductive invariant stronger than P if
- INIT $\Rightarrow F$
$-F \wedge T \Rightarrow F^{\prime}$
$-F \Rightarrow P$
by learning relatively inductive facts (incrementally)

In a property directed manner

- also called "Property Directed Reachability" (PDR)

PDR Trace

Recall that an inductive trace of a transition system $\mathrm{P}=(\mathrm{V}$, Init, Tr, Bad $)$ is a sequence of formulas $\left[F_{0}, \ldots, F_{N}\right]$ such that

- Init $\Rightarrow F_{0}$
- $\forall 0 \leq \mathrm{i}<\mathrm{N}, \mathrm{F}_{\mathrm{i}}(\mathrm{v}) \wedge \operatorname{Tr}(\mathrm{v}, \mathrm{u}) \Rightarrow \mathrm{F}_{\mathrm{i}+1}(\mathrm{u})$

A trace is clausal if every frame F_{i} is in CNF

A delta-compressed trace (or δ-trace) is a sequence of clauses s.t.

- each clause c belongs to a unique frame F_{i}
- $\forall 0 \leq i \leq n, \forall j<i,\left(c \in F_{i}\right) \Rightarrow\left(c \notin F_{j}\right)$

A PDR trace is a monotone, clausal, safe (up to $\mathrm{N}-1$)

- PDR trace is often represented compactly by a δ-trace

PDR Trace Pictionary
F_{0}
F_{1}
F_{2}
F_{3}
F_{4}

PDR Trace Pictionary: Frame

Frame
F_{3}
F_{4}

Frame F_{i} overapproximates states reachable in at depth i

PDR Trace Pictionary: Lemma

A lemma is a clause over state variables
A lemma blocks (or excludes) bad states
A trace is monotone if lemmas are shared in frames

PDR Trace Pictionary: Delta Compression

F_{0}

F_{2}
F_{3}
F_{4}

In a delta-compressed trace every lemma is stored in a frame with the largest index that it appears

A delta trace is closed (inductive) if it has an empty frame

IC3/PDR In Pictures: MkSafe

MkSafe

Predecessor \quad find M s.t. $M \models F_{i} \wedge \operatorname{Tr} \wedge m^{\prime}$
find m s.t. $\quad(M \models m) \wedge\left(m \Longrightarrow \exists V^{\prime} \cdot \operatorname{Tr} \wedge m^{\prime}\right)$
NewLemma \quad find ℓ s.t. $\left(F_{i} \wedge T r \Longrightarrow \ell^{\prime}\right) \wedge(\ell \Longrightarrow \neg m)$

IC3/PDR in Pictures: Push

IC3 Data-Structures

A trace $F=F_{0}, \ldots, F_{N}$ is a sequence of frames.

- A frame F_{i} is a set of clauses. Elements of F_{i} are called lemmas.
- Invariants:
- Bounded Safety: $\forall \mathrm{i}<\mathrm{N} . \mathrm{F}_{\mathrm{i}} \rightarrow \neg \mathrm{Bad}$
- Monotonicity: $\forall \mathrm{i}<\mathrm{N} . \mathrm{F}_{\mathrm{i}+1} \subseteq \mathrm{~F}_{\mathrm{i}}$
- Inductiveness: $\forall \mathrm{i}<\mathrm{N} . \mathrm{F}_{\mathrm{i}} \wedge \mathrm{Tr} \rightarrow \mathrm{F}_{\mathrm{i}+1}^{\prime}$

A priority queue Q of counterexamples to induction (CTI) or proof obligations (POB)

- $(\mathrm{m}, \mathrm{i}) \in \mathrm{Q}$ is a pair, where m is a cube and i a level
- if $(m, i) \in Q$ then there exists a path of length ($\mathrm{N}-\mathrm{i}$) from a state in m to a state in Bad
- Q is ordered by level

$$
-(m, i)<(k, j) \quad \text { iff } \quad i<j
$$

Recursive Blocking Stage in IC3

```
// Find a counterexample, or strengthen the inductive trace
// s.t. F FN }=>->s hold
IC3_recBlockCube(s, N)
    Add(Q, (s, N))
    while \negEmpty(Q) do
        (s, k) \leftarrowPOp(Q)
        if (k = 0) return "Counterexample"
        if ( }\mp@subsup{F}{k}{}=>\negs) continu
        if ( }\mp@subsup{\textrm{F}}{\textrm{k}-1}{}\wedge \r \r s') is SA
            t \leftarrow generalized predecessor of s
            Add(Q, (t, k-1))
            Add(Q, (s, k))
        else
            \negt \leftarrow generalize \negs by inductive generalization (to
                                    level m\geqk)
            add \negt to Fm
            if (m<N) Add(Q, (s, m+1))
```


Pushing stage in IC3

```
// Push each clause to the highest possible frame up to N
IC3_Push()
    for \(k=1\).. N-1 do
        for \(c \in F_{k} \backslash F_{k+1}\) do
        if ( \(\mathrm{F}_{\mathrm{k}} \wedge \mathrm{Tr} \Rightarrow \mathrm{c}^{\prime}\) )
                add \(c\) to \(F_{k+1}\)
    if ( \(\mathrm{F}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}+1}\) )
        return "Proof" // \(F_{k}\) is a safe inductive invariant
```


PDR Strength and Weaknesses

Strengths

- elegant
- incremental
- many opportunities for guidance
- fine-grained proof management
- fine-grained generalization of lemmas

Weaknesses

- local backward search for a counterexample
- CNF explosion

IC3/PDR: Solving Linear (Propositional) CHC

Unreachable and Reachable

- terminate the algorithm when a solution is found

Unfold

- increase search bound by 1

Candidate

- choose a bad state in the last frame

Decide

- extend a cex (backward) consistent with the current frame
- choose an assignment s s.t. (s $\wedge \mathrm{F}_{\mathrm{i}} \wedge \operatorname{Tr} \wedge$ cex') is SAT

Conflict

- construct a lemma to explain why cex cannot be extended
- Find a clause L s.t. $L \Rightarrow \neg$ cex, Init $\Rightarrow L$, and $L \wedge F_{i} \wedge \operatorname{Tr} \Rightarrow L^{\prime}$

Induction

- propagate a lemma as far into the future as possible
- (optionally) strengthen by dropping literals

Termination and Progress

Unreachable If there is an $i<N$ s.t. $F_{i} \subseteq F_{i+1}$ return Unreachable.

Reachable If there is an m s.t. $\langle m, 0\rangle \in Q$ return Reachable.

Unfold If $F_{N} \rightarrow \neg B a d$, then set $N \leftarrow N+1$.
Candidate If for some $m, m \rightarrow F_{N} \wedge B a d$, then add $\langle m, N\rangle$ to Q.

Inductive Generalization

Conflict For $0 \leq i<N$: given a candidate model $\langle m, i+1\rangle \in Q$ and clause φ, such that $\varphi \rightarrow \neg m$, if Init $\rightarrow \varphi$, and $\varphi \wedge F_{i} \wedge \operatorname{Tr} \rightarrow \varphi^{\prime}$, then add φ to F_{j}, for $j \leq i+1$.

A clause φ is inductive relative to F iff

- Init $\rightarrow \varphi \quad$ (Initialization) and $\quad \varphi \wedge \mathrm{F} \wedge \operatorname{Tr} \rightarrow \varphi^{\prime} \quad$ (Inductiveness)

Implemented by first letting $\varphi=\neg \mathrm{m}$ and generalizing φ by iteratively dropping literals while checking the inductiveness condition

Theorem: Let $F_{0}, F_{1}, \ldots, F_{N}$ be a valid IC3 trace. If φ is inductive relative to $F_{i}, 0 \cdot i<N$, then, for all $j \cdot i, \varphi$ is inductive relative to F_{j}.

- Follows from the monotonicity of the trace
- if j < i then $\mathrm{F}_{\mathrm{j}} \rightarrow \mathrm{F}_{\mathrm{i}}$
- if $\mathrm{F}_{\mathrm{j}} \rightarrow \mathrm{F}_{\mathrm{i}}$ then $\left(\varphi \wedge \mathrm{F}_{\mathrm{i}} \wedge \operatorname{Tr} \rightarrow \varphi^{\prime}\right) \rightarrow\left(\varphi \wedge \mathrm{F}_{\mathrm{j}} \wedge \operatorname{Tr} \rightarrow \varphi^{\prime}\right)$

Prime Implicants

A formula φ is an implicant of a formula ψ iff $\varphi \Rightarrow \psi$

A propositional implicant of ψ is a conjunction of literals φ such that φ is an implicant of ψ

- φ is a conjunction of literals
- $\varphi \Rightarrow \psi$
- φ is a partial assignment that makes ψ true

A propositonal implicant φ of ψ is called prime if no subset of φ is an implicant of ψ

- φ is a conjunction of literals
- $\varphi \Rightarrow \psi$
- $\forall \mathrm{p} \cdot(\mathrm{p} \neq \varphi \wedge \varphi \Rightarrow \mathrm{p}) \Rightarrow(\mathrm{p} \nRightarrow \psi)$

Generalizing Predecessors

Decide If $\langle m, i+1\rangle \in Q$ and there are m_{0} and m_{1} s.t. $m_{1} \rightarrow m, m_{0} \wedge m_{1}^{\prime}$ is satisfiable, and $m_{0} \wedge m_{1}^{\prime} \rightarrow F_{i} \wedge \operatorname{Tr} \wedge m^{\prime}$, then add $\left\langle m_{0}, i\right\rangle$ to Q.

Decide rule chooses a (generalized) predecessor m_{0} of m that is consistent with the current frame

Simplest implementation is to extract a predecessor m_{0} from a satisfying assignment of $M \neq F_{i} \wedge \operatorname{Tr} \wedge m^{\prime}$

- m_{0} cab be further generalized using ternary simulation by dropping literals and checking that m' remains forced

An alternative is to let m_{0} be an implicant (not necessarily prime) of $F_{i} \wedge \exists X^{\prime}$. $\left(\operatorname{Tr} \wedge m^{\prime}\right)$

- finding a prime implicant is difficult because of the existential quantification
- we settle for an arbitrary implicant. The side conditions ensure it is not trivial

Strengthening a trace

Induction For $0 \leq i<N$ and a clause $(\varphi \vee \psi) \in F_{i}$, if $\varphi \notin F_{i+1}$, Init $\rightarrow \varphi$ and $\varphi \wedge F_{i} \wedge \operatorname{Tr} \rightarrow \varphi^{\prime}$, then add φ to F_{j}, for each $j \leq i+1$.

Also known as Push or Propagate
Bounded safety proofs are usually very weak towards the end

- not much is needed to show that error will not happen in one or two steps

This tends to make them non-inductive

- a weakness of interpolation-based model checking, like IMPACT
- in IMPACT, this is addressed by forced covering heuristic

Induction "applies" forced cover one lemma at a time

- whenever all lemmas are pushed F_{i+1} is inductive (and safe)
- (optionally) combine strengthening with generalization Implementation
- Apply Induction from 0 to N whenever Conflict and Decide are not applicable

Long Counterexamples

Leaf If $\langle m, i\rangle \in Q, 0<i<N$ and $F_{i-1} \wedge \operatorname{Tr} \wedge m^{\prime}$ is unsatisfiable, then add $\langle m, i+1\rangle$ to Q.

Also known as ReQueue
Whenever a counterexample m is blocked at level i, it is known that

- there is no path of length i from Init to m (because got blocked)
- there is a path of length ($N-i$) from m to Bad

Can check whether there exists a path of length (i+1) from Init to m

- (Leaf) check eagerly by placing the CTI back into the queue at a higher level
- (No Leaf) check lazily by waiting until the same (or similar) CTI is discovered after N is increased by Unfold
Leaf allows IC3 to discover counterexamples much longer than the current unfolding depth N
- each CTI re-enqueued by Leaf adds one to the depth of the longest possible counterexample found
- a real counterexample might chain through multiple such CTI's

Queue Management for Long Counterexamples

A queue element is a triple (m, i, d)

- m is a CTI, i a level, d a depth

Decide sets m and i as before, and sets d to 0
Leaf increases i and d by one

- i determines how far the CTI can be pushed back
- d counts number of times the CTI was pushed forward

Queue is ordered first by level, then by depth

- $(\mathrm{m}, \mathrm{i}, \mathrm{d})<(\mathrm{k}, \mathrm{j}, \mathrm{e}) \Leftrightarrow \mathrm{i}<\mathrm{j} C ̧(\mathrm{i}=\mathrm{j} \wedge \mathrm{d}<\mathrm{e})$

Overall exploration mimics iterative deepening with non-uniform exploration depth

- go deeper each time before backtracking

Recursive Blocking Stage in IC3

```
// Find a counterexample, or strengthen the inductive trace
// s.t. F FN }=>->s hold
IC3_recBlockCube(s, N)
    Add(Q, (s, N))
    while \negEmpty(Q) do
        (s, k) \leftarrow Pop(Q)
        if (k = 0) return "Counterexample"
        if ( }\mp@subsup{F}{k}{}=>\negs) continu
        if ( }\mp@subsup{\textrm{F}}{\textrm{k}-1}{}\wedge \r \r s') is SA
            t \leftarrow generalized predecessor of s
            Add(Q, (t, k-1))
            Add(Q, (s, k))
        else
            \negt \leftarrow generalize \negs by inductive generalization (to
                                    level m\geqk)
            add \negt to Fm
            if (m<N) Add(Q, (s, m+1))
```


Pushing stage in IC3

```
// Push each clause to the highest possible frame up to N
IC3_Push()
    for \(k=1\).. N-1 do
        for \(c \in F_{k} \backslash F_{k+1}\) do
        if ( \(\mathrm{F}_{\mathrm{k}} \wedge \mathrm{Tr} \Rightarrow \mathrm{c}^{\prime}\) )
                add \(c\) to \(F_{k+1}\)
    if ( \(\mathrm{F}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}+1}\) )
        return "Proof" // \(F_{k}\) is a safe inductive invariant
```


Public IC3 Implementations

Spacer engine in Z3 (Arie)

- https://github.com/Z3Prover/z3/tree/master/src/muz/spacer
- theories and constrained horn clauses

IC3Ref (A. Bradley)

- https://github.com/arbrad/IC3ref
- IC3 reference implementation

PDR in Abc (A. Mishchenko)

- https://github.com/berkeley-abc/abc/tree/master/src/proof/pdr
- PDR implementation

IC3IA (A. Griggio)

- https://es-static.fbk.eu/people/griggio/ic3ia/index.html
- IC3 with Implicit Predicate Abstraction

Tip (N. Sörensson)

- https://github.com/niklasso/tip

State-based presentation of IC3 IC3: AGAIN

IC3 Basics

Iteratively compute Over-Approximated Reachability Sequence (OARS) $<\mathrm{F}_{0}, \mathrm{~F}_{1}, \ldots, \mathrm{~F}_{\mathrm{k}+1}>$ s.t.

- $\mathrm{F}_{0}=\mathrm{IN}$ IT
- $\mathrm{F}_{\mathrm{i}} \Rightarrow \mathrm{F}_{\mathrm{i}+1}$
- $\mathrm{F}_{\mathrm{i}} \wedge \mathrm{T} \Rightarrow \mathrm{F}_{\mathrm{i}+1}^{\prime}$
- $\mathrm{F}_{\mathrm{i}} \Rightarrow \mathrm{P}$
monotone: $F_{i} \subseteq F_{i+1}$
inductive: simulates one forward step
safe: p is an invariant up to $k+1$
F_{i} - CNF formula given as a set of clauses
F_{i} over-approximates R_{i}
- If $F_{i+1} \Rightarrow F_{i}$ then fixpoint: F_{i} is an inductive invariant

OARS (aka Inductive Trace)

If $\mathrm{F}_{\mathrm{k}+1} \equiv \mathrm{~F}_{\mathrm{k}}$ then F_{k} is an inductive invariant

IC3 Basics (cont.)

c is inductive relative to F if

- INIT $\Rightarrow \mathrm{c}$
- $\mathrm{F} \wedge \mathrm{c} \wedge \mathrm{T} \Rightarrow \mathrm{c}^{\prime}$

Notation:

-cube s: conjunction of literals
$-\mathrm{v}_{1} \wedge \mathrm{v}_{2} \wedge \neg \mathrm{v}_{3}-$ Represents a state

- s is a cube => $\boldsymbol{\imath}$ is a clause (DeMorgan)

IC3-Initialization

OARS:

- $\mathrm{F}_{0}=$ INIT
$-F_{i} \Rightarrow F_{i+1}$
$-F_{i} \wedge T \Rightarrow F_{i+1}^{\prime}$
$-F_{i} \Rightarrow P$

If at least one is satisfiable: cex found If both are unsatisfiable then:

- INIT \Rightarrow P
- INIT $\wedge T \Rightarrow P^{\prime}$

Therefore

- $\mathrm{F}_{0}=$ INIT, $\mathrm{F}_{1}=\mathrm{P}$
$\left.-<\mathrm{F}_{0}, \mathrm{~F}_{1}\right\rangle$ is an OARS

IC3 - Iteration

OARS:

$$
\begin{aligned}
& -F_{0}=\text { INIT } \\
& -F_{i} \Rightarrow F_{i+1} \\
& -F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \\
& -F_{i} \Rightarrow P
\end{aligned}
$$

- If P is an inductive invariant - done! :
- Otherwise: $F_{1} \wedge T \neq>F_{2}^{\prime}$
=> F_{1} should be strengthened

IC3 - Iteration

 OARS:$$
-\mathrm{F}_{0}=\mathrm{INIT}
$$

$$
-F_{i} \Rightarrow F_{i+1}
$$

- $F_{1} \wedge T \wedge \neg P^{\prime}$ is satisfiable

$$
-F_{i} \wedge T \Rightarrow F_{i+1}^{\prime}
$$

$$
\left(F \wedge T=>P^{\prime}\right) \text { not } \overline{\text { vialid }}{ }^{P}
$$

- From the satisfying assignment get a state s that can reach a bad state

IC3 - Iteration

Is s reachable in one transition from the previous set?

- backward search: Check $\mathrm{F}_{0} \wedge$ T ^ s’
- If satisfiable, s is reachable from F_{0} : CEX
- Otherwise, block s, i.e. remove it from F_{1}

IC3 - Iteration

Iterate this process until $F_{1} \wedge T \wedge \neg P^{\prime}$ becomes unsatisfiable

- $F_{1} \wedge T=>P^{\prime}$ holds
$\bullet F_{0}, F_{1}, F_{2}>$ is an OARS

IC3 - Iteration

New iteration, initialize F_{3} to P, check $F_{2} \wedge T \wedge \neg P^{\prime}$

- If satisfiable, get s that can reach $\neg P$
- Now check if s can be reached from F_{1} by $F_{1} \wedge T \wedge s$ '
- If it can be reached, get t and try to block it

IC3 - Iteration

To block t, check $F_{0} \wedge T \wedge t^{\prime}$

- If satisfiable, a CEX
- If not, t is blocked, get a "new" t^{*} by $\mathrm{F} 1 \wedge \mathrm{~T} \wedge \mathrm{~s}^{\prime}$ and try to block t*

IC3 - Iteration

When $F_{1} \wedge T \wedge s^{\prime}$ becomes unsatisfiable
$\cdot s$ is blocked, get a "new" s^{*} by $F_{2} \wedge T \wedge \neg P$ ' and try to block s*

......You get the picture ()

General Iteration

If s_{k} is reachable (in k steps): counterexample
If s_{k} is unreachable: strengthen F_{k} to exclude s_{k}

General Iteration

Until $F_{k} \wedge T \wedge \neg P^{\prime}$ is unsatisfiable, i.e. $F_{k} \wedge T=>P^{\prime}$
\rightarrow We have an OARS again. Check fixpoint and increase k

IC3 - Iteration

Given an OARS $<\mathrm{F}_{0}, \mathrm{~F}_{1}, \ldots, \mathrm{~F}_{\mathrm{k}}>$, set $\mathrm{F}_{\mathrm{k}+1}=\mathrm{P}$

Apply a backward search

1. Find predecessor s_{k} in F_{k} that can reach a bad state

$$
-\quad F_{k} \wedge T \neq>P^{\prime} \quad\left(F_{k} \wedge T \wedge \neg P^{\prime} \text { is sat }\right)
$$

2. If none exists, move to next iteration (check fixpoint first)
3. If exists, try to find a predecessor s_{k-1} to s_{k} in F_{k-1}

$$
-\quad F_{k-1} \wedge T \neq>\neg s_{k}^{\prime} \quad\left(F_{k-1} \wedge T \wedge s_{k}^{\prime} \text { is sat }\right)
$$

4. If none exists, remove s_{k} from F_{k} and go back to 3

- $\quad F_{k}:=F_{k} \wedge \neg s_{k}$

5. Otherwise: Recur on (s_{k-1}, F_{k-1})

- We call ($\mathrm{s}_{\mathrm{k}-1}, \mathrm{k}-1$) a "proof obligation" / "counterexample to induction"

If we reach INIT, a CEX exists

That Simple?

Looks simple

- But this "simple" does NOT work

Simple $=$ State Enumeration

- Too many states...

Does IC3 enumerate states?

- No - removing more than one state at a time
- But, yes (when IC3 doesn't perform well)

Generalization of a blocked state

s in F_{k} can reach a bad state in one transition (or more)

But $\mathrm{F}_{\mathrm{k}-1} \wedge \mathrm{~T}=>\neg \mathrm{s}^{\prime}$ holds

- Therefore, s is not reachable in k transitions
- $\left.\mathrm{F}_{\mathrm{k}}:=\mathrm{F}_{\mathrm{k}} \wedge\right\urcorner \mathrm{s}$

We want to generalize this fact

- s is a single state
- Goal: learn a stronger fact
-Find a set of states, unreachable from $\mathrm{F}_{\mathrm{k}-1}$ in one step

Generalization

We know $\mathrm{F}_{\mathrm{k}-1} \wedge \mathrm{~T}=>\neg \mathrm{s}^{\prime}$
And, $\neg s$ is a clause
Generalization:
Find a sub-clause $\mathrm{c} \subseteq\urcorner$ s s.t.
$\mathrm{F}_{\mathrm{k}-1} \wedge \mathrm{~T}=>\mathrm{c}$ ' and INIT => c

- Sub clause means less literals
- Less literals implies less satisfying assignments

$$
-(a \vee b) \vee s . \quad(a \vee b \vee c)
$$

-c => \rightarrow s i.e. c is a stronger fact
$\mathrm{F}_{\mathrm{k}}:=\mathrm{F}_{\mathrm{k}} \wedge \mathrm{c}$

- More states are removed from $\mathrm{F}_{\mathrm{k},}$ making it stronger/more precise (closer to R_{k})

Generalization

How do we find a sub-clause $\mathrm{c} \subseteq$ ᄀs s.t. $\mathrm{F}_{\mathrm{k}-1} \wedge \mathrm{~T}=>\mathrm{c}$ '? Trial and Error

- Try to remove literals from $\neg s$ while $F_{k-1} \wedge T \wedge \neg c^{\prime}$ and INIT $\wedge \neg c^{\prime}$ remain unsatisfiable

Use the UnSAT Core

- (INIT' $\left.\vee\left(F_{k-1} \wedge T\right)\right) \wedge s^{\prime}$ is unsatisfiable
- Conflict clauses can also be used

Observation 1

Assume a state s in F_{k} can reach a bad state in a number of transitions

- Important Fact: \mathbf{s} is not in $\mathbf{F}_{\mathrm{k}-1}$ (!!)
- If s was in F_{k-1} we would have found it in an earlier iteration
- Therefore: $\mathrm{F}_{\mathrm{k}-1}=>-\mathrm{S}$

Observation 1

Assume a state s in F_{k} can reach a bad state in a number of transitions
Therefore: $\mathrm{F}_{\mathrm{k}-1}=>$ ᄀs
Assume $F_{k-1} \wedge T=>\neg s$ ' holds

- It's blocking time...

So, this is equivalent to

$$
F_{k-1} \wedge \neg s \wedge T=>\neg s^{\prime}
$$

Further INIT => ᄀs

- Otherwise, CEX! (INIT $\neq>\neg$ s IFF s is in INIT)
- This looks familiar!
$-\neg s$ is inductive relative to F_{k-1}

Inductive Generalization

We now know that $\neg s$ is inductive relative to F_{k-1}
And, \neg s is a clause

Inductive Generalization:
Find sub-clause $\mathrm{c} \subseteq\urcorner$ s s.t.

$$
F_{k-1} \wedge c \wedge T=>c^{\prime}(\text { and INIT }=>c)
$$

- Stronger inductive fact
$\mathrm{F}_{\mathrm{k}}:=\mathrm{F}_{\mathrm{k}} \wedge \mathrm{c}$
- It may be the case that $\mathrm{F}_{\mathrm{k}-1} \wedge \mathrm{~T}=>\mathrm{F}_{\mathrm{k}}$ no longer holds
- Why?

Inductive Generalization

$F_{k-1} \wedge c \wedge T=>c^{\prime}$ and INIT $=>c$ hold
$F_{k}:=F_{k} \wedge c$
c is also inductive relative to $\mathrm{F}_{\mathrm{k}-1}, \mathrm{~F}_{\mathrm{k}-2}, \ldots, \mathrm{~F}_{0}$

- Add c to all of these sets
- For every $\mathrm{i} \leq \mathrm{k}: \mathrm{F}_{\mathrm{i}}{ }^{*}=\mathrm{F}_{\mathrm{i}} \wedge \mathrm{c}$
$F_{i}{ }^{*} \wedge T=>F_{i+1}{ }^{*}$ holds for every $i<k$

Observation 2

Assume state s in F_{i} can reach a bad state in a number of transitions
s is also in F_{j} for $j>i \quad\left(F_{i}=>F_{j}\right)$

- a longer CEX may exist
- s may not be reachable in i steps, but it may be reachable in j steps

If s is blocked in F_{i}, it must be blocked in F_{j} for $\mathrm{j}>\mathrm{i}$

- Otherwise, a CEX exists

Push Forward

Push Forward

Suppose s is removed from F_{i}

- by conjoining a sub-clause c
- $\mathrm{F}_{\mathrm{i}}:=\mathrm{F}_{\mathrm{i}} \wedge \mathrm{c}$
c is a clause learnt at level i
try to push c forward for $\mathrm{j}>\mathrm{i}$
- If $F_{j} \wedge c \wedge T=>c^{\prime}$ holds
-c is inductive in level j
$-F_{j+1}:=F_{j+1} \wedge c$
- Else: s was not blocked at level j > i
- Add a proof obligation (s,j)
- If s is reachable from INIT in j steps, CEX!

Generalizing Predecessor

Suppose s_{k-1} is a predecessor obtained by $F_{k-1} \wedge T \wedge s_{k}$,

- New proof obligation

Try to generalize $\mathrm{s}_{\mathrm{k}-1}$ to a set of states (cube m) such that $m \Rightarrow \exists V^{\prime} . F_{k-1} \wedge T \wedge s_{k}{ }^{\prime}$

- Drop a literal from $\mathrm{s}_{\mathrm{k}-1}$ and use ternary simulation to check whether $F_{k-1} \wedge T \wedge s_{k}^{\prime}$ evaluates to true under current assignment

Recursive Blocking Stage in IC3

```
// Find a counterexample, or strengthen the inductive trace
// s.t. F FN }=>->s hold
IC3_recBlockCube(s, N)
    Add(Q, (s, N))
    while \negEmpty(Q) do
        (s, k) \leftarrowPOp(Q)
        if (k = 0) return "Counterexample"
        if ( }\mp@subsup{F}{k}{}=>\negs) continu
        if ( }\mp@subsup{\textrm{F}}{\textrm{k}-1}{}\wedge \r \r s') is SA
            t \leftarrow generalized predecessor of s
            Add(Q, (t, k-1))
            Add(Q, (s, k))
        else
            \negt \leftarrow generalize \negs by inductive generalization (to
                                    level m\geqk)
            add \negt to Fm
            if (m<N) Add(Q, (s, m+1))
```


Pushing stage in IC3

```
// Push each clause to the highest possible frame up to N
IC3_Push()
    for \(k=1\).. N-1 do
        for \(c \in F_{k} \backslash F_{k+1}\) do
        if ( \(\mathrm{F}_{\mathrm{k}} \wedge \mathrm{Tr} \Rightarrow \mathrm{c}^{\prime}\) )
                add \(c\) to \(F_{k+1}\)
    if ( \(\mathrm{F}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}+1}\) )
        return "Proof" // \(F_{k}\) is a safe inductive invariant
```


IC3 - Key Ingredients

Backward Search

- Find a state s that can reach a bad state in a number of steps
- [lifting: generalize s to a set of states]
- s may not be reachable (over-approximations)

Block a State

- Do it efficiently, block more than s
- Generalization / Inductive generalization

Push Forward

- An inductive fact at frame i, may also be inductive at higher frames
- If not, a longer CEX may be found

Pushing to the Top with K-induction

Arie Gurfinkel
Electrical and Computer Engineering
University of Waterloo
joint work with Alexander Ivrii (IBM)

Agenda

IC3 is one of the most powerful algorithms for model checking safety properties
Very active area of research:

- A. Bradley: SAT-Based Model Checking Without Unrolling. VMCAI 2011 (IC3 stands for "Incremental Construction of Inductive Clauses for Indubitable Correctness")
- N. Eén, A. Mishchenko, R. Brayton: Efficient implementation of property directed reachability. FMCAD 2011
(PDR stands for "Property Directed Reachability")
- In this talk, I present a new IC3-based algorithm, called QUIP (QUIP stands for "a QUest for an Inductive Proof")

A brief preview of Quip

Quip extends IC3 by allowing for

- A wider range of conjectures (proof obligations)
- Designed to push already existing lemmas more aggressively
- Allows to push a given lemma by learning additional supporting lemmas (and hopefully to compute an inductive invariant faster)
- Forward reachable states
- Explain why a lemma cannot be pushed
- Allows to keep the number of proof obligations under control

These are integrated into a single algorithmic procedure

The experimental results look good

A quick review of IC3/PDR

Input:

- A safety verification problem (Init, Tr, Bad)

Output:

- A counterexample (if the problem is UNSAFE),
- A safe inductive invariant (if the problem is SAFE)
- Resource Limit

Main Data-structures:

- A current working level N
- An inductive trace
- A set of proof obligations

Inductive Trace

Let $F_{0}, F_{1}, F_{2}, \ldots, F_{\infty}$ be conjunctions of lemmas (in practice, clauses). We say that $F_{0}, F_{1}, F_{2}, \ldots, F_{\infty}$ is an inductive trace if:
(1) $\mathrm{F}_{0}=$ INIT
(2) $F_{0} \Rightarrow F_{1} \Rightarrow F_{2} \Rightarrow \ldots \Rightarrow F_{\infty}$
(monotone)
(3) $F_{1} \supseteq F_{2} \supseteq \ldots \supseteq F_{\infty}$ as sets of lemmas
(s. monotone)
(4) $F_{i} \wedge T R \Rightarrow F_{i+1}{ }^{\prime}$ for $i \geq 0$ (including $F_{\infty} \wedge T r \Rightarrow F_{\infty}{ }^{\prime}$). (inductive)

Remarks:

This definition is slightly different from the original definition:

- the sequence $F_{0}, F_{1}, F_{2}, \ldots$ is conceptually infinite (with $F_{i}=T$ for all sufficiently large i)
- we add F_{∞} as the last element of the trace (as suggested in PDR)

Each F_{i} over-approximates states that are reachable in i steps or less (in particular, F_{∞} contains all reachable states)

Proof Obligations in IC3

A proof obligation in IC3 is a pair (s, i), where

- s is a (generalized) cube over state variables
- i is a natural number (called level)

We say that (s, i) is blocked (or that s is blocked at level i) if $F_{i} \Rightarrow \neg s$. Given a proof obligation (s, i), IC3 attempts to strengthen the inductive trace in order to block it.

Remarks:

In IC3, s is identified with a counterexample-to-induction (CTI)
If (s, i) is a proof obligation and $i \geq 1$, then $(s, i-1)$ is already blocked
All proof obligations are managed via a priority queue:

- Proof obligations with smallest level are considered first
- (additional criteria for tie-breaking)

Towards improving IC3 (1)

IC3 is an excellent algorithm! So, what do we want?
We want more control on which lemmas to learn:

- Each lemma in the inductive trace is neither an over-approximation nor an under-approximations of reachable states (a lemma in F_{k} only overapproximates states reachable within k steps):
- IC3 may learn lemmas that are too weak (ex. C_{1}) - prune less states
- IC3 may learn lemmas that are too strong (ex. C_{2}) - cannot be in the inductive invariant

Towards improving IC3 (2)

We want to know if an already existing lemma is good (in F_{∞}) or bad (e.g., C_{2} from before):

- Avoid periodically pushing bad lemmas
- Ideally, we also want to prune less useful lemmas

We want to prioritize reusing already discovered lemmas over learning of new ones:

- When the same cube s is blocked at different levels, usually different lemmas are discovered
- Although, IC3 partially addresses this using pushing (and other optimizations)
- Use the same lemma to block s (at the expense of deriving additional supporting lemmas)
- Although, in general different lemmas are of different "quality" and having some choice may be beneficial

Immediate improvement: unlimited pushing

```
// Push each clause to the highest possible frame up to
IC3_Push_Unlimited()
    for \(k=1\).. do
        for \(c \in F_{k} \backslash F_{k+1}\) do
        if ( \(F_{k} \wedge \operatorname{Tr} \Rightarrow C^{\prime}\) )
        add c to \(\mathrm{F}_{\mathrm{k}+1}\)
    if ( \(\mathrm{F}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}+1}\) )
        \(\mathrm{F}_{\infty} \leftarrow \mathrm{F}_{\mathrm{k}}\)
    if ( \(\mathrm{F}_{\infty} \Rightarrow \neg \mathrm{Bad}\) )
        return "Proof" // \(F_{\infty}\) is a safe inductive invariant
```

Claim: after pushing F_{∞} represents a maximal inductive subset of all lemmas discovered so far

Remark: the idea to compute maximal inductive invariants is suggested in PDR but claimed to be ineffective. In our implementation, "unlimited pushing" leads to $\sim 10 \%$ overall speed up.

Pushing is Useful

Why pushing is useful:

- During the execution of IC3, the sets F_{i} are incrementally strengthened, and so it may happen that $F_{k} \wedge T R \Rightarrow c^{\prime}$, even though this was not true at the time that c was discovered

Why pushing is good:

- By pushing c from F_{k} to $\mathrm{F}_{\mathrm{k}+1}$, we make F_{k} more inductive (and if F_{k} becomes equal to F_{k+1}, then F_{k} becomes an inductive invariant)
- Suppose that $c \in F_{k}$ blocks a proof obligation (s, k). By pushing c from F_{k} to F_{k+1}, we also block the proof obligation ($s, k+1$)
- Pushing Clauses = Improving Convergence = Reusing old lemmas for blocking bad states

What Happens when Pushing Fails

Why pushing may fail: suppose that $c \in F_{k} \backslash F_{k+1}$ but $F_{k} \wedge$ TR does not imply c'. Why?

There are two alternatives:

1. c is a valid over-approximation of states reachable within $k+1$ steps, but F_{k} is not strong enough to imply this

- We can strengthen the inductive trace so that $F_{k} \wedge T R \Rightarrow c$ ' becomes true

2. c is NOT a valid over-approximation of states reachable within $\mathrm{k}+1$ steps

- There is a real forward reachable state r that is excluded by c
- c has no chance to be in the safe inductive invariant
- c is a bad lemma

A similar reasoning is used in:
Z. Hassan, A. Bradley, F. Somenzi: Better Generalization in IC3. FMCAD 2013

Two interdependent ideas

1. Prioritize pushing existing lemmas

- Given a lemma $c \in F_{k} \backslash F_{k+1}$, we can add $(\neg c, k+1)$ as a may-proofobligation
- May-proof-obligations are "nice to block", but do not need to be blocked
- If $(\neg c, k+1)$ can be blocked, then c is pushed to F_{k+1}
- If $(\neg \mathrm{c}, \mathrm{k}+1)$ cannot be blocked, then we discover a concrete reachable state r that is excluded by c and that explains why c cannot be inductive

2. Discover and use new forward reachable states

- These are an under-approximation of forward reachable states
- Given a reachable state, all the existing lemmas that exclude it are bad
- Bad lemmas are never pushed
- Reachable states may show that certain may-proof-obligations cannot be blocked
- Reachable states may be used when generalizing lemmas
- Conceptually, computing new reachable states can be thought of as new Init states

Quip

Input:

- A safety verification problem (Init, Tr, Bad)

Output:

- A counterexample (if the problem is UNSAFE),
- A safe inductive invariant (if the problem is SAFE)
- Resource Limit

Main Data-structures:

- A current working level N
- An inductive trace (same as IC3)
- A set of proof obligations (similar to IC3)
- A set R of forward reachable states

Proof Obligations in Quip

A proof obligation in Quip is a triple (s, i, p), where

- s is a (generalized) cube over state variables
- i is a natural number
- $\mathrm{p} \in\{$ may, must $\}$

Remarks:

- As in IC3, if (s, i, p) is a proof obligation and $i \geq 1$, then ($s, i-1$) is assumed to be already blocked
- As in IC3, all proof obligations are managed via a priority queue:
- Proof obligations with smallest level are considered first
- In case of a tie, proof obligations with smallest number of literals are considered first
- (additional criteria for tie-breaking)
- Have a "parent map" from a proof obligation to its parent proof obligation
- $\operatorname{parent}(t)=s$ if $(t, k-1, q)$ is a predecessor of (s, k, p)
- In fact, this is usually done in IC3 as well (for trace reconstruction)

Recursive Blocking Stage in Quip (1)

1. Each time that we examine a proof obligation (s, k, p), check whether s intersects a reachable state $r \in R$
2. Discover new reachable states when possible

- Claim: if s intersects $r \in R$ and if parent(s) exists, then there exists a reachable state r' that intersects parent(s)
- Indeed, ALL states in s lead to a state in parent(s)
- Therefore r leads to a state in parent(s) as well
- A similar idea is present in: C. Wu, C. Wu, C. Lai, C. Huang: A counterexample-guided interpolant generation algorithm for SATbased model checking. TCAD 2014

3. When ($\mathrm{s}, \mathrm{k}, \mathrm{p}$) is blocked by an inductive lemma $\neg \mathrm{t}$, add ($\mathrm{t}, \mathrm{k}+1$, may) as a new proof obligation

- Push \neg t to $\mathrm{F}_{\mathrm{k}+1}$ instead of blocking ($\mathrm{s}, \mathrm{k}+1$)

4. Clear all proof obligations if their number becomes too large (important, not in pseudocode)

Recursive Blocking Stage in Quip (2)

```
// Find a reachable state \(r \in s\), or strengthen the inductive trace
s.t. \(F_{N} \Rightarrow \neg s\)
Quip_recBlockCube(s, N, q)
    Add( \(\mathrm{Q},(\mathrm{s}, \mathrm{N}, \mathrm{q})\) )
    while \(\neg\) Empty (Q) do
        ( \(\mathrm{s}, \mathrm{k}, \mathrm{p}) \leftarrow \operatorname{Pop}(\mathrm{Q})\)
        if \((k=0)\) \&\& ( \(p=m u s t\) ) return "Counterexample"
        if ( \(k=0\) ) \&\& ( \(p=\) may)
            find a state \(r\) one-step-reachable from Init,
                such that \(r\) intersects parent(s)
            add \(r\) to \(R\); continue
        if ( \(\mathrm{F}_{\mathrm{k}} \Rightarrow \neg \mathrm{s}\) ) continue
        if (s intersects some state \(r \in R\) ) \&\& ( \(p=\) must) return
                            "Counterexample"
        if (s intersects some state \(r \in R\) ) \&\& ( \(p=\) may)
        if parent(s) exists, find a state \(r\) ' one-step-reachable
                                    from \(r\),
            such that \(r\) ' intersects parent(s)
        add \(r\) ' to \(R\); continue
// -- continued on the next slide --
```


Recursive Blocking Stage in Quip (3)

Quip_recBlockCube(s, N, p)
// -- continued from the previous slide --

$$
\text { if } \begin{aligned}
\left(F_{k-1}\right. & \wedge \\
& \text { Tr } \left.\wedge s^{\prime}\right) \text { is SAT } \\
& \leftarrow \text { generalized } p r \epsilon \\
& A d d(Q,(t, k-1, p)) \\
& \operatorname{Add}(Q,(s, k, p))
\end{aligned}
$$

$$
\mathrm{t} \leftarrow \text { generalized predecessor of } \mathrm{s}
$$

else

$$
\begin{aligned}
& \neg t \leftarrow \text { generalize } \neg \mathrm{s} \text { by inductive } \\
& \text { generalization (to level } \mathrm{m} \geq \mathrm{k}) \\
& \text { add } \neg \mathrm{t} \text { to } \mathrm{F}_{\mathrm{m}} \\
& \text { if }(\mathrm{m}<\mathrm{N}) \\
& \text { if }(\mathrm{t}=\mathrm{s}) \operatorname{Add}(\mathrm{Q},(\mathrm{t}, \mathrm{~m}+1, \mathrm{p})) \\
& \mathrm{else} \quad \operatorname{Add}(\mathrm{Q},(\mathrm{t}, \mathrm{~m}+1, \text { may })) \\
& \quad / / \text { attempt to block } t(\text { not } s)
\end{aligned}
$$

Experiments: IC3 vs. Quip on HWMCC'13 and '14

	UNSAFE solved	UNSAFE time	SAFE solved	SAFE time
IC3	$22(2)$	52,302	$76(7)$	137,244
Quip	$32(12)$	20,302	$99(30)$	69,590

Experimental results on the instances solved by either IC3 or Quip separated into unsafe and safe instances. The numbers in parentheses represent the unique solves. The times are in seconds.

- Implemented in IBM formal verification tool Rulebase-Sixthsense
- Data for 140 instances that were not trivially solved by preprocessing but could be solved either by IC3 or Quip within 1-hour
- Detailed results at http://arieg.bitbucket.org/quip

Experiments: IC3 vs. Quip on HWMCC'13 and '14

