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Abstract— This paper describes an improved methodology
for human motion recognition and imitation based on Factorial
Hidden Markov Models (FHMM). Unlike conventional Hidden
Markov Models (HMMs), FHMMs use a distributed state
representation, which allows for more efficient representation
of each time sequence. Once the FHMMs are trained with
exemplar motion data, they can be used to generate sample
trajectories for motion production, and produce significantly
more accurate trajectories compared to single Hidden Markov
chain models. Due to the additional information encoded in
FHMMs models, FHMM models have a higher Kullback-
Leibler distance compared to single Markov chain models,
making it easier to distinguish between similar models. The
efficacy of using FHMMs is tested on a database of human
motions obtained through motion capture. The results show
that FHMMs provide better generalization to new data when
compared to conventional HMMs during motion recognition,
as well as providing a better fit for generated data.

I. INTRODUCTION

In order for robots to operate successfully in human

environments, they will need to be able to perform a wide

variety of both precise and gross full body motions. In

particular, in the case of humanoid robots, the ability to

learn primitive and complex motion patterns by observing

and imitating humans is highly desirable. Robot imitation

from observation has received considerable attention in the

research literature [1], [2].

Our motion model is inspired by the mirror neuron system,

found in humans and other primates [3], [4]. The mirror neu-

ron system is believed to be a direct-matching mechanism,

whereby observed actions are understood when the visual

representation of the observed action is mapped onto the

observer’s motor representation of the same action. The same

neuronal representation is used for both motion recognition

and motion generation. This hypothesis is supported by

both experiments with monkeys and humans, where obser-

vation of a motor action generates a neural response in

the motor areas of the brain corresponding to the observed

action. The neurons which respond in this manner have

been named mirror neurons. In monkeys, mirror neurons

activate only when goal directed actions are observed (for

example, grasping an object, or biting into food), but not

when the demonstrator mimics the action without the object

being present. However, mirror neurons also activate when

the monkey cannot observe the action visually, but other

means of inferring the action are available (eg. sound or

previous knowledge), indicating that, in monkeys, the mirror
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neurons are used for action understanding, and not primarily

for imitation learning. For humans, on the other hand, mirror

neurons fire for both goal directed actions and for non-

goal directed movements [4]. In addition, brain imaging

studies indicate that human mirror-neurons code for both the

action and for the movements forming an action. These two

important differences seem to indicate that in humans, mirror

neurons are used both for action understanding and imitation

learning.

In previous research [5], [6], the mirror neuron model has

been applied to humanoid robots, where observed human

motion primitives have been encoded using Hidden Markov

Models, and used for humanoid robot motion generation. The

developed framework can be used to code for both non-goal

directed movements, as well as goal-oriented movements, by

incorporating additional sensor data about the goal, and/or

changing to a goal-based co-ordinate frame [7].

Hidden Markov Models (HMMs) have been frequently

used for modeling human motions. HMMs efficiently ab-

stract time series data, and can be used for both subsequent

motion recognition and generation. For example, Billard et

al. [8] use HMM models for motion recognition and genera-

tion of humanoid motion patterns. The Bayesian Information

Criterion (BIC) is used to select the optimal number of

states for the HMM, by selecting the fewest number of

states which adequately perform recognition of the training

data. Following HMM training, spline fitting of the state

output observation vector means is performed to generate

the trajectory. In the experiments, three different tasks are

demonstrated using the HOAP-2 humanoid robot. The robot

is trained using kinesthetic training.

Takano et al. [9], [10] describe a hierarchical system

of HMMs for learning and abstracting both human motion

patterns and human to human interaction patterns during

combat. The lower layer of HMMs abstract the primitive

motion patterns, such as kick, punch, etc., based on observa-

tions of joint angles and velocities obtained from a motion

capture system. A sampling based algorithm for generating

motion based on the trained HMM is also presented.

When using HMMs for both motion recognition and

motion generation, there is a tradeoff between recognition

and generation performance, in particular when selecting the

number of states of the model. A small number of states will

give good generalization and recognition performance, while

a large number of states will give better generation perfor-

mance, at the risk of over-fitting and poor generalization. In

addition, due to the binary state representation in the hidden

Markov chain, the representational capacity of an HMM is
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limited [11].

In this paper, we develop a methodology for modeling

human motion data using Factorial Hidden Markov Models.

This representation allows for more accurate modeling of the

motion dynamics by increasing the number of states used

to represent the motion, while at the same time reducing

the likelihood of overfitting encountered with conventional

HMMs. Section II describes the differences between FHMMs

and conventional HMMs. In Section III, the use of FHMMs

for modeling human motion is described. Section IV outlines

the experimental results, while the conclusions and directions

for future work are outlined in Section V.

II. FACTORIAL HIDDEN MARKOV MODELS

A Hidden Markov Model (HMM) abstracts the modeled

data as a stochastic dynamic process. The dynamics of the

process are modeled by a hidden discrete state variable,

which varies according to a stochastic state transition model

A[N, N ], where N is the number of states in the model. Each

state value is associated with a continuous output distribution

model B[N, K], where K is the number of outputs. Typically,

for continuous data, a Gaussian or a mixture of Gaussians

output observation model is used. HMMs are commonly used

for encoding and abstracting noisy time series data, such as

speech [12] and human motion patterns [8], [6]. Efficient

algorithms have been developed for model training (the

Baum-Welch algorithm), pattern recognition (the forward

algorithm) and hidden state sequence estimation (the Viterbi

algorithm) [12]. The Baum-Welch algorithm is a type of

iterative Expectation-Maximization (EM) algorithm. In the

Expectation step, given a set of model parameters and a data

sequence, the posterior probabilities over the hidden states

are calculated. Then, in the Maximization step, a new set

of model parameters are calculated which maximize the log

likelihood of the observations. The EM algorithm has time

complexity O(TN2), where T is the length of the observa-

tion sequence, and N is the number of states. Once trained,

the HMM can also be used to generate a representative output

sequence by sampling the state transition model to generate

a state sequence, and then sampling the output distribution

model of the current state at each time step to generate the

output time series sequence. A schematic of an HMM is

shown in Fig. 1.

Fig. 1. Hidden Markov Model

A Factorial Hidden Markov Model (FHMM) [11] is a

generalization of the HMM model, where there may be

multiple dynamic processes interacting to generate a single

output. In an FHMM, multiple independent dynamic chains

contribute to the observed output. Each dynamic chain m is

represented by its own state transition model Am[Nm, Nm]

and output model Bm[Nm, K], where M is the number of

dynamic chains, Nm is the number of states in dynamic

chain m, and K is the number of outputs. At each time

step, the outputs from all the dynamic chains are summed,

and output through an expectation function to produce the

observed output. The expectation function is a multivariate

Gaussian function with the chain output as the means,

and a covariance matrix representing the signal noise. For

example, FHMMs have been used to model speech signals

from multiple speakers [13], and the dynamics of a robot

and changing environment for simultaneous localization and

mapping [14]. Fig. 2 shows a schematic of an FHMM.

Fig. 2. Factorial Hidden Markov Model

An FHMM can be trained by an adaptation of Baum-

Welch algorithm [11]. However, this (exact) algorithm has

a time complexity of O(TMNM+1) where T is the length

of the data sequence. This means that the time complexity

increases exponentially with the number of chains. This is

due to the fact that, even though the dynamic chains are

independent of each other, they become dependent given

an observation sequence. Therefore, the E-step of the EM

algorithm becomes intractable for a large number of chains.

Faster algorithms, for which the time complexity is quadratic

as a function of the number of chains, have been developed

for FHMM training, which implement an approximate rather

than the exact E step. These are based on variational methods

[11], or generalized backfitting [15]. During the E-step,

the expectation of the vector state occupation probabilities

γt(i), the expectation of the matrix of state occupation

probabilities at two consecutive time steps ξt(i, j), and the

expectation of the joint probability between the state vectors

of two chains ηt(m, n) are computed. During the M-step,

the covariance matrix C, the output model Bm[Nm, K], the

state transition model Am[Nm, Nm], and the initial state

distribution probabilities πm(i) are updated. The pseudo-

code for a generic FHMM training algorithm as developed

by Ghahramani and Jordan [11] is summarized in Fig. 3.

Once the FHMM is trained, pattern recognition can be

implemented by an adaptation of the forward-backward

algorithm [11].

To generate a representative sequence from an FHMM,

at each time step, the value of the hidden state for each

chain is determined using the state transition model Am, and

the output contribution for each chain determined based on

the output model for the current hidden state. The output is

then formed by sampling from an output distribution whose

expectation is the sum of all the respective chain outputs.
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1: procedure FHMMTRAIN

2: Initialize Am[Nm, Nm], Bm[Nm, K], πm(i) and C
3: for cycle← 1, maxIterations do
4: E-Step
5: for n← 1, numSequences do
6: Forward Algorithm
7: Backward Algorithm
8: Estimate γt(i)
9: Estimate ξt(i, j)

10: Estimate ηt(m, n)
11: end for
12: M-Step
13: Calculate Bm[Nm, K]
14: Calculate C
15: Calculate Am[Nm, Nm]
16: Calculate πm(i)
17: end for
18: end procedure

Fig. 3. Generic FHMM Training Algorithm Pseudocode

III. HUMAN MOTION PATTERN

REPRESENTATION USING FHMMS

HMMs have been widely used to model human motion

data for recognition and generation [8], [6]. However, when

using the same HMM structure for both recognition and gen-

eration, there is an inherent tradeoff when selecting the HMM

model, (i.e. the number of model states). An HMM model

with a low number of states will be better at generalizing

across variable data, and better at correctly recognizing new

data. In general, an HMM with a low number of states (5

- 20) provides excellent recognition performance [8], [6].

When automatically selecting the number of states based

on Bayesian [8] or Akaike [16] information criteria, under

10 states are usually selected for typical human motion

patterns such as walking, kicking, punching, etc. However,

in this case, recognition criteria only are used to select the

appropriate number of states. At the same time, a model with

a low number of states will not be able to faithfully reproduce

the observed motion through generation. On the other hand,

a large state model will be better at reproducing the observed

motion, but will be prone to over-fitting. Factorial HMMs,

which use a distributed rather than a single multinomial

state representation, provide a more efficient approach for

combining good generalization for recognition purposes with

sufficient detail for better generation.

Once a group of motion patterns has been generated, they

can be compared by using a probabilistic distance measure

[12]:

D(λ1, λ2) =
1

T
[logP (O(2)|λ1) − logP (O(2)|λ2)] (1)

where λ1, λ2 are two HMM models, O(2) is an observation

sequence generated by λ2 and T is the length of the

observation sequence. Since this measure is not symmetric,

the average of the two intra HMM distances is used to form

a symmetric measure.

The distance measure is based on the relative log likeli-

hood that a generated sequence is generated by one model, as

compared to a second model. It represents a Kullback-Leibler

(KL) distance between the two models. The formulation of

the distance based on the model probability means that this

measure can similarly be applied to Factorial HMM models,

by using the modified forward procedure [11] to calculate

the log likelihood, as well as used to compare FHMM and

HMM models.

The distance measure quantifies the level of difficulty

in discriminating between two models λ1, λ2. The distance

measure can also be used to construct a motion pattern

vector space by using multidimensional scaling [9]. In this

method, a vector space is constructed such that the error

between the actual distances and the distances in the vector

space is minimized. By encoding more information about

each pattern, FHMMs can improve the ability to discriminate

between motion patterns, which can be especially useful

when there are many similar motion patterns. Using the

more detailed FHMM models increases the intra-model

distances, as depicted conceptually in Fig. 4. In addition,

if the FHMM and HMM models of the same motion remain

sufficiently similar, FHMM models may be combined with

HMM models, by using FHMM models only in dense areas

of the motion model space where better discriminative ability

is required (shown in Fig. 5).
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HMM FHMM

Fig. 4. Schematic comparing an HMM model vector space and an FHMM
model vector space (the axes represent the principal directions of the vector
space)
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Fig. 5. Schematic comparing an HMM model vector space and a
hybrid HMM-FHMM model vector space (the axes represent the principal
directions of the vector space)

A. Deterministic Motion Generation

Once the FHMM model is trained, it can be used for

new motion recognition or robot motion generation. If a

linked FHMM model is used, recognition and generation

are performed by executing the forward algorithm or the

generation algorithm on the root chain and the target chain.

When the generated motion sequence is to be used for

robot motion commands, we do not want to introduce the
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noise characteristics abstracted by the HMM model. In this

case, we use a greedy policy to estimate the optimum state

sequence. First, for each chain m, the starting state qm
0 is

selected by choosing the highest value from the initial state

probability distribution. At each state, the state duration is

calculated based on the state transition matrix,

d̄m

i
=

1

1 − am

ii

(2)

Following d̄m

i
samples in state i, the next state is selected

by greedy policy from the state transition matrix, excluding

the 1 − am

ii
probability. If the model type is front-to-back, the

algorithm iterates until the final state is reached, otherwise

the state sequence is generated for the specified number of

time steps. Once the state sequence has been generated for

each chain, the output sequence is calculated by summing

the contribution from each chain at each time step, based

on that chain’s current state value. The generation algorithm

pseudo-code is shown in Fig. 6. Alternatively, if a motion

most similar to a recently observed motion is required, the

optimal state sequence could be generated by using the

Viterbi algorithm [17].

After the trajectory is generated, some low-pass filtering or

smoothing is required as a post-processing step to eliminate

the artifacts caused by discrete state switching and generate

a smooth trajectory for use as a command input.

1: procedure GENERATE

2: for m← 1, M do
3: Initialize
4: qm

0 ← argmaxi(πm(i))
5: while t < T, i 6= iterminal do
6: d̄m

i ←
1

1−am

ii

7: qt:t+d̄m

i

← qt

8: qt+1 ← argmaxia
m
ij , i 6= j

9: end while
10: end for
11: for t← 0, T do

12: yt ←
∑M

m=1
Bm(qm

t )
13: end for
14: end procedure

Fig. 6. Greedy Generation Algorithm Pseudocode

IV. SIMULATION RESULTS

In the first set of simulations, the performance of the

FHMMs is compared to conventional HMMs for recognition

and generation. Both models are tested on a data containing a

series of 9 different human movement observation sequences

obtained through a motion capture system [18]. The data

set contains joint angle data for a 20 degree of freedom

humanoid model from multiple observations of walking (WA

- 28 observations), cheering (CH - 15 observations), dancing

(DA - 7 observations), kicking (KI - 19 observations),

punching (PU - 14 observations), sumo leg raise motion (SL -

13 observations), squatting (SQ - 13 observations), throwing

(TH - 13 observations) and bowing (BO - 15 observations).

Fig. 7 shows selected frames of an animation for an example

of a walking motion from the data set.

A set of nine HMM and FHMM models each are trained

on the data, one for each motion type. Each FHMM consists

of a two chains of front-to-back (Bakis type) hidden Markov

chains of 15 states each. The corresponding HMMs are

also front-to-back type, and contain an equivalent (15x15)

number of states. For both model types, the covariance

matrix was constrained to be diagonal during training, and

the minimum covariance was constrained to 0.001, to avoid

numerical underflow/overlow during training. Each model

was trained on 5 randomly selected exemplars of a motion

type. The learning algorithm for each model was run for 100

iterations. Each model was then tested by computing the log-

likelihood of observing the following observation sequences:

an example from the training set, a randomly drawn example

of the same motion outside the training set, and an example

of a different motion. This testing procedure was repeated

for 100 trials. At the start of each trial, the state transition

parameters were initialized to random values. The mean and

variance parameters in the output distribution model were

initialized by calculating the mean values and covariance

of the output vector over all the training data. The means

were initialized by sampling from a Gaussian distribution

with the data based means and covariance. The average log

likelihood and standard deviation for each test case are shown

in Tables I and II, for the FHMM models and HMM models,

respectively. The training column indicates the average log

likelihood and standard deviation over the 100 test cases

for a randomly selected exemplar out of the training set,

the novel column indicates the log likelihood distribution

for an example of the same motion, which was outside of

the training set, and the different column indicates the log

likelihood distribution for an example of a different motion.

TABLE I

FHMM RECOGNITION RESULTS

Motion Type Training Novel Different

Walk 2134± 165 1616± 205 -66589± 15158

Cheer 2468± 284 1220± 724 -60908± 19899

Dance 3016± 288 1675± 913 -60922± 15016

Kick 1344± 170 733± 651 -48060± 17208

Punch 2613± 295 1281± 868 -52786± 23188

Sumo Leg 2818± 350 791± 1418 -49262± 20734

Squat 2617± 229 2025± 302 -58060± 17283

Throw 3223± 254 1893± 641 -48517± 21690

Bow 2599± 295 1821± 681 -54118± 18877

As can be seen from the results in Tables I and II, HMMs

perform well at recognizing data from the training set, but

show a significant drop in performance when recognizing

new data, indicating over-fitting. On the other hand, FHMMs

demonstrate significantly better generalization, and show a

much smaller drop in performance when recognizing new

motions of the same type as compared to the HMM. The

additional structure imposed by the FHMM assumption that

the dynamic chains are independent (but become dependant

given an observation sequence) reduces the likelihood of

overfitting for the FHMM model. Both models are equally

2391



good at rejecting data from a different motion sequence.

TABLE II

HMM RECOGNITION RESULTS

Motion Type Training Novel Different

Walk 2818± 297 1150 ± 536 -48973± 25913

Cheer 3448± 497 -2461 ± 5236 -50147± 25914

Dance 4756± 687 -3234 ± 7996 -59168± 15563

Kick 2028± 353 -405 ± 2003 -19262± 17553

Punch 3828± 611 -8497± 18242 -53006± 19779

Sumo Leg 4929± 1068 -5727 ± 6611 -45079± 21941

Squat 3535± 457 1606 ± 738 -31098± 26645

Throw 4776± 1454 -15468± 26723 -53540± 20551

Bow 3884± 519 -1980 ± 5968 -52923± 24598

Fig. 9 shows an example of generation results for the left

and right knee joints during a walking motion, before any

post-processing of the trajectory has been applied. One of the

walking motions used during training of the models is shown

for comparison. Fig. 8 shows frames from an animation of

a walking motion generated by the walk FHMM. As can

be seen in Fig. 9, in motion of the left knee, the HMM

fitted state outputs at two different peaks, likely due to the

same peak executed at different speeds in the training set,

indicating overfitting.
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Fig. 9. Comparison of Generation Results of the HMM (15x15 states)
and FHMM (two chains of 15 states) for the Knee Joints during a Walking
Motion, prior to applying any post processing (i.e., low-pass filtering)

In the second set of experiments, the increase in accuracy

and discrimination power of using an FHMM was compared

against using a single chain HMM with a small number of

states. The same set of FHMMs was used as in the first

set of experiments above, while the HMMs consisted of

front-to-back models with 15 states each. Fig. 10 shows a

comparison between the FHMM and the low state number

HMM before any trajectory post processing has been applied.

As can be seen in Fig. 10, due to the higher number of states

available to represent the motion, FHMMs achieve better

spacial accuracy compared to a single chain HMM model.

Table III shows the intra model distances between each of

the HMM models, and Table IV shows the equivalent intra-

model distances between the FHMM models. The distances

are calculated according to Eq. ??. The distances are a

measure of the dissimilarity of the models. The average

intra model distance between HMM models is 377, while

the average intra model distance between FHMM models is

467. The use of FHMMs increases the models discriminative

ability by enlarging the distances between each model in the

motion pattern vector space.

TABLE III

HMM INTRA DISTANCES

WA CH DA KI PU SL SQ TH BO

WA 0

CH 488 0

DA 728 723 0

KI 485 444 526 0

PU 713 696 423 382 0

SL 435 513 469 400 463 0

SQ 554 619 534 594 576 295 0

TH 702 648 454 421 78 447 662 0

BO 562 477 448 469 552 336 538 561 0

TABLE IV

FHMM INTRA DISTANCES

WA CH DA KI PU SL SQ TH BO

WA 0

CH 659 0

DA 740 734 0

KI 638 658 604 0

PU 741 740 718 636 0

SL 528 699 689 720 674 0

SQ 740 739 729 688 642 737 0

TH 732 729 567 580 115 698 696 0

BO 740 739 504 678 643 737 695 638 0

Table V compares the distances between the FHMM and

HMM models, using the probabilistic distance measure. The

diagonal terms indicate the model distance between the

FHMM and HMM model for the same motion, while the

off-diagoal terms indicate the model distance between the

HMM and FHMM model of different motions. As expected,

the inter-model distance for the same motion type is very

small (average 10.2), which suggests it would be possible

to use a mixture of HMM and FHMM models, depending

on the complexity of the motion modeled, and the degree

of similarity between the motions modeled. For example,

in the data set tested here, it may be advantageous to use

FHMMs for describing only the punch and throw motions,

as they are quite similar to each other and the most difficult

to distinguish [16].

TABLE V

INTER MODEL DISTANCES

HMM FHMM Models
Mdls WA CH DA KI PU SL SQ TH BO

WA 8.3

CH 647 11.2

DA 734 731 8.3

KI 612 636 553 8.8

PU 736 734 652 442 11.8

SL 509 680 675 657 645 16.5

SQ 735 725 705 617 596 497 6.8

TH 726 722 512 419 81 493 682 9.7

BO 735 645 475 576 587 517 576 607 10.6
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Fig. 7. Sample Walking Motion - Animated from joint angle data provided by the motion capture system

Fig. 8. FHMM Generated Walking Motion - Animated from data generated by the trained Walk motion model
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Fig. 10. Comparison of Generation Results of the HMM (15 states) and
FHMM (two chains of 15 states) for the Knee Joints during a Walking
Motion, prior to applying any post processing (i.e., low-pass filtering)

V. CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach for abstracting

human motion patterns using Factorial Hidden Markov Mod-

els. Experimental results show that FHMMs provide better

generalization capability than single-chain HMMs, especially

as the number of states increases. Using a larger number of

states allows a model to generate a more faithful reproduction

of the abstracted data. Similar to HMMs, FHMMs can be

used to discriminate between motion types, based on the

KL distance between motions. Compared to HMM models,

using FHMMs increases the intra-model distance between

groups, which could help make model discrimination easier,

especially if the models are very similar. Distance measure-

ments remain consistent between HMM and FHMM models,

suggesting that it may be possible to use a combination

of the two model types, depending on the accuracy and

discrimination requirements for each motion. For example,

HMM models could be used for areas of the motion space

where there are few, well separated examples, while applying

FHMMs in dense areas of the motion space, where a better

model is required to distinguish between similar motions.

Directions for future work include the adaptive selection of

the appropriate model based on the similarity of observed

motions.
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