
ECE 327 Solution to Midterm
2014t2 (Spring)

All requests for re-marks must be submitted in writing to
Mark Aagaard before 8:30am on Friday March 7.
A random collection of midterms were photocopied. Ex-
ams that are submitted for re-marking will be verified against
this set.

Total Approx.
Marks Time Page

Q1 VHDL Semantics 10 7 1
Q2 The Yellow, the Red, and the Goaaalllll!!!! 20 10 2
Q3 Area Analysis 15 10 3
Q4 Function Table and Encoding 15 15 5
Q5 State Machine 20 15 8
Q6 Design with Memory 20 15 9

Totals 100 72

Q1 (10 Marks) VHDL Semantics
(estimated time: 7 minutes)

Is it possible for a simulation round not to contain any delta cycles? Justify your answer in terms
of VHDL simulation semantics.

Answer:
Yes, if the simulation round contains exactly one simulation cycle. In the first

simulation cycle of a simulation round, timed processes are executed. If none
of the timed processes that run change the value of any signals, then there
will not be any more simulation cycles in the simulation round.



ECE 327 2014t2 (Spring) Solution to Midterm Q2

Q2 (20 Marks) The Yellow, the Red, and the Goaaalllll!!!!
(estimated time: 10 minutes)

For each of the code fragments Q2a–Q2d:
1. Answer whether the code is legal
2. If the code is illegal: explain why, and proceed to the next code fragment.
3. Answer whether the code is synthesizable.
4. If the code is unsynthesizable: explain why, and proceed to the next code fragment.
5. Answer whether the code adheres to good coding practices, according to the guidelines for

ECE 327.
6. If the code does not follow good coding practices: explain why.
7. If the code does follow good practices: draw the circuit that would most likely result from

synthesizing the code.

NOTES:
1. If the VHDL code includes an implicit state machine: draw the gates, wires, and flops for the

datapath. All of the arithmetic and logical operators in the VHDL code (e.g., “+”, “-”, “<”, and
“xor”) are considered part of the datapath.

2. You may draw the control portion of the circuit as a cloud or black-box that drives the appropriate
signals in the datapath.

3. The signal declarations are:
clk : std_logic;
a, b : unsigned( 7 downto 0 );
m, n, p : std_logic_vector( 0 to 3 );

(page 2 of 12)



ECE 327 2014t2 (Spring) Solution to Midterm Q3

Q2a
for_i : for i in 0 to 3 generate

if_yes : if i = 0 generate
m(i) <= p(3);

end generate;
if_no : if i /= 0 generate

m(i) <= p(i-1);
end generate;
p(i) <= m(i) xor n(i);

end generate;

Answer:
Legal, synth, bad (comb loop).

Q2b
process begin

a <= (others => ’0’);
wait until rising_edge(clk);
loop

a <= a + 1;
wait until rising_edge(clk);

end loop;
end process;

Answer:
Legal, unsynth (asn before

wait).

Q2c
b <= a + 1;
process (clk) begin

if rising_edge(clk) then
a <= b;

end if;
end process;

Answer:
Legal, synth, good.

Q2d
process (clk) begin

if rising_edge(clk) then
a <= b;

end if;
if rising_edge(clk) then

b <= a + 1;
end if;

end process;

Answer:
Legal, unsynth (2

if-rising-edge.

Q3 (15 Marks) Area Analysis
(estimated time: 10 minutes)

Calculate the mininum number of FPGA cells needed to implement the VHDL code below.

NOTES:
1. The signals ab sel and cd sel are std logic.
2. The signals a, b, c, d, e, k, m, n, p, and z are 12-bit unsigned.
3. Optimizations are allowed, so long as the externally visible input-to-output behaviour of the

system does not change.
4. For full marks, you must justify your answer with a drawing and/or text.

(page 3 of 12)



ECE 327 2014t2 (Spring) Solution to Midterm Q3

k <= a when ab sel = ’1’ else b;
m <= c when cd sel = ’1’ else d;
process (clk) begin

if rising_edge(clk) then
n <= k + m;
p <= e;
z <= n + p;

end if;
end process;

Answer:

Original circuit:

a 

b 

c 

d 

ab_sel

cd_sel

k

m

n

e 
p

z

Optimized circuit:

a 

b 

c 

d 

ab_sel

cd_sel

k

m

n

e 

z
s

LUTs flops num LUTs flops
signal circuitry per bit per bit bits total total
n mux and adder 1 0 12 12 0
s mux and adder, reg 1 1 12 12 12
z reg 0 1 12 0 12

Total 24 24

Total number of cells = Max(24 LUTs, 24 flops) = 24 cells.

We can put a 2:1 mux and an adder in the same LUT.

Each cell has a LUT and a flip-flop, so we can fit both the adder and the reg
for z into one cell per bit.

(page 4 of 12)



ECE 327 2014t2 (Spring) Solution to Midterm Q4

Marking:

10 marks 24 cells with correct justification
If scaled by number of bits Sum of the following:

2 marks Baseline
1 marks Need a 2:1 mux, two adders, and a flop
1 mark At most 4 inputs + carry in per LUT
1 mark At most 1 output + carry out per LUT
2 marks Do not include cells for a, b, c, d, e
2 marks Use both LUT and flop in same cell
1 mark Put 2:1 mux in same cell as an adder

If did not scale by number of bits One of the following:
4 marks 2 cells with explanation of 2 adds + mux + reg
3 marks 2 cells with justification that have 5 inputs and can do 4 inputs

/ cell
1 mark 1 cell

Penalties
-2 marks missing register for z
-2 marks missing optimization for mux pushing

Q4 (15 Marks) Function Table and Encoding
(estimated time: 15 minutes)

This question will examine a function table and encoding for the pseudocode specifications of y
and z given below.

NOTES:
1. Inputs:
• The signal a is a std logic vector that is a one-hot encoding of a size; where the size is

either small, medium, or large.
• The signal b is a 3-bit unsigned

2. Outputs:
• The signal y is a color, which is one of red, blu, or grn
• The signal z is a 8-bit unsigned.

3. Any condition not defined by the specifications below is a don’t care.

if b then
y = blue;

elsif a == lg then
y = grn;

else
y = red;

if a == sm or a == md then {
if b then
z = 3;

else
z = 5;

} # there intentionally is not an else clause

(page 5 of 12)



ECE 327 2014t2 (Spring) Solution to Midterm Q4

Q4a (3 Marks) One-Hot Encoding

Define the encoding for a.

NOTES:
1. The table shows 5 bits for a, if you do not need all 5 bits, draw an × through the label of any

bits that you do not need (e.g., a(2) ).

Answer:

a(0)a(1)a(2)a(3)a(4)

100

010

001

small

medium

large

(page 6 of 12)



ECE 327 2014t2 (Spring) Solution to Midterm Q4

Q4b (6 Marks) Function Table

Draw one function table that defines the behaviour of both y and z.

NOTES:
1. Requirement: Each output value shall appear in exactly one cell.

Answer:

small

medium

large

a

0 1

by

red

red

grn

blu

blu

blu

100

010

001

a

0 1

bz

3

3

5

5

100

010

001

small

medium

large

z

3

5--- 0

y

--- 1

red

grn

blu

1-- 0

0-- 0

Q4c (6 Marks) Code

Using your encoding for a, write if-then-else statements, in either VHDL or pseudocode, for y and
z.

NOTES:
1. Optimization goal: Minimize the total cost of the conditions:
• Each if-then-else statement has a cost of 1
• Each AND, OR, and NOT has a cost of 1
• Each n-bit equality test (=) has a cost of n

2. If you use VHDL, you may pretend that if-then-else conditions may be std logic. That is,
you may write if a(0) then ... and do not need to write if a(0)=’1’ then ...

3. You may choose either to combine the code for y and z, or to use separate if-then-else statements
for y and z.

(page 7 of 12)



ECE 327 2014t2 (Spring) Solution to Midterm Q5

Answer:

if b then
y = blue;
z = 3;

else
z = 5;
if a(2) then

y = grn;
else

y = red;

Total cost = 2

Q5 (20 Marks) State Machine
(estimated time: 15 minutes)

This question examines a state machine that implements the equation z = a + b.

NOTES:
1. The variables a and b are both part of the same parcel.
2. There is an unpredictable number of clock cycles between when a arrives and when b arrives,

but b arrives at least one clock cycle later than a.
3. The signal v a = ’1’ when a has valid data. The signal v b = ’1’ when b has valid data.
4. The state machine shall assign v z = ’1’ for one clock cycle when z is valid.
5. There is an unpredictable number of bubbles between when b arrives and when the next value

of a arrives.
6. Inputs and outputs may be either registered or combinational.

Q5a (15 Marks) State Machine Design

Draw a state machine that implements the specification.

Answer:

(page 8 of 12)



ECE 327 2014t2 (Spring) Solution to Midterm Q6

idle

!v_av_a

p’ = a

S2

!v_bv_b

z = p + b;

v_z = ’1’

default: v_z = ’0’

S1

Q5b (5 Marks) Throughput

What is the maximum throughput of your state machine?

Answer:
1 parcel per clock cycle

Q6 (20 Marks) Design with Memory
(estimated time: 15 minutes)

This question examines the implementation of the pseudocode specification:

M[a+1] = b;
M[a] = M[a+1];
M[c] = M[c] - M[a];
z = M[c]

NOTES:
1. Inputs shall be registered
2. Outputs may be either combinational or registered
3. The system shall support an indeterminate number of bubbles
4. Memory has registered inputs and combinational outputs (same as in class)
5. The memory may be either dual-ported or single-ported.
6. Optimization goals in order of decreasing importance:

(a) minimize latency to z
(b) minimize clock period
(c) minimize area

i. input ports

(page 9 of 12)



ECE 327 2014t2 (Spring) Solution to Midterm Q6

ii. adders and subtracters
iii. registers (excluding memory)
iv. output ports
v. use single-ported memory instead of dual-ported memory

7. Input values may be read in any clock cycle, but each input value shall be read exactly once.
8. Optimizations to the pseudocode are allowed, as long as the final values of z and M are correct.

Q6a (15 Marks) Dataflow Diagram

Draw a dataflow diagram for the system.

(page 10 of 12)



ECE 327 2014t2 (Spring) Solution to Midterm Q6

Answer:

1. Pseudocode optimizations
M[a] = b;
M[a+1] = b;
p = M[c] - b;
z = p;
M[c] = p;

2. Dataflow diagram

Wr

b aM

-1

Wr

Rd

c

Wr

z

M

Marking:

+3 marks functional correctness
+2 marks optimal latency
+2 marks DFD syntax is correct
+2 marks mem operations on clock cycle boundaries
+1 mark DFD uses M
+1 mark M is an inter-parcel variable
+1 mark use dual-port memory
+1 mark M has one write port and one read port
+1 mark Wr produces M
+1 mark anti-dependency arrow
+1 mark registered inputs
+1 mark combinational outputs
+1 mark 2 registers
+1 mark 3 inputs
+1 mark 1 adder unit (a – 1 == a + -1)

(page 11 of 12)



ECE 327 2014t2 (Spring) Solution to Midterm Q6

Q6b (5 Marks) Memory Ports

How many ports does your memory have:

Briefly justify that your choice of number of memory ports produced the most optimal design.

Answer:
Memory has 1 port (single-ported).

Dual ported memory would not reduce the latency.

Because we cannot do two write operations in the same clock cycle, the
writes to M[a] and M[a+1] must be done in separate clock cycles.

Because either a or a-1 might equal c, the read of M[c] must be done after
the writes to M[a] and M[a-1] (RAW dependencies).

Because of the WAR dependency from M[c] to M[c], the write to M[c] must
be done after the read.

Because of the chain of dependencies, we cannot every schedule two
memory operations in the same clock cycle to reduce the latency.

(page 12 of 12)


