ECE 327 Midterm
 2016t1 (Winter)

Instructions and General Information

- 100 marks total
- Time limit: 1 hour and 20 minutes (80 minutes)
- No books, no notes, no computers. Calculators are allowed
- If you need extra paper, request some from a proctor.
- Write neatly.
- To earn part marks, you must show the formulas you use and all of your work.
- The proctors and instructors will not answer questions, except in cases where an error on the exam is suspected. If you are confused about a question, write down your assumptions or interpretation.
- Justifications of answers will be marked according to correctness, clarity, and concision.

Q0 (2 Marks) !!Almost Free!!

(estimated time: 2 minutes)

Q0a (1 Mark) Best part

What is the best part of the course?

Q0b (1 Mark) Most improve

What one thing could be done to most improve the course for the remainder of the term?
\qquad

Q1 (25 Marks) VHDL Semantics

(estimated time: 15 minutes)
For the VHDL program below, calculate the values for the signals c, d, e, and f at $15 n s$.

NOTES:

1. All of the processes are in the same architecture.
2. The signals a, b, c, d, e, and f are declared to be unsigned (15 downto 0).
3. For full marks you must justify your answer, using text and/or the waveform diagram. You may, but are not required to, show a delta-cycle simulation.
```
process begin
        clkl <= '0';
        wait for 10 ns;
        clk1 <= '1';
        wait for 10 ns;
end process;
process begin
    a <= (others => '0');
    wait for 10 ns;
    a <= a + 10;
    a <= a + 20;
    wait until rising_edge( clk1 );
    a <= a + 100;
    a <= a + 200;
    wait until rising_edge( clk2 );
    a <= a + 1000;
    a<= a + 2000;
    wait until rising_edge( clk1 );
    a <= a + 10000;
    a <= a + 20000;
    wait;
end process;
```

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Q2 (25 Marks) DFD

(estimated time: 20 minutes)
Beginning with the data-dependency graph below, design a dataflow diagram, and then perform allocation.

NOTES:

1. Reset initializes Idx, Hi, and Lo. Your dataflow diagram shall not show this initialization.
2. Outputs shall be registered
3. Optimization goals in order of decreasing importance:
(a) minimize area
i. number of F components
ii. number of G components
iii. number of H components
iv. number of I components
v. number of registers
vi. number of multiplexers
vii. number of chip-enables
(b) minimize latency
(c) minimize clock period
4. You shall not use any algebraic optimizations,

Use this space for your final, neat copy of the DFD

Analysis:
Latency:
Clock period:
Number of F:
Number of G:
Number of H:
Number of I:
Number of regs:
Number of 2:1 muxes:
Number of chip-enables:

The next page is for scratch work

Scratch work

\qquad

Q3 (25 Marks) Control Circuitry

(estimated time: 15 minutes)
Just as another freezing rain storm descends upon Ontario, your manager is called away to an urgent business meeting in Tahiti. You have been given the task of finishing the allocation and the schematic for the dataflow diagram shown below.

NOTES:

1. You shall not make any changes to the dataflow diagram, except to complete the allocation.
2. The system shall use an ASAP parcel schedule.
3. The variable P shall be initialized to 3 .
4. The schematic shall include the control circuitry and the datapath.
5. The control circuitry shall be drawn using Boolean gates and flip-flops (i.e., you may not draw a cloud).
6. In the schematics, the label of a datapath component is used as the name of the component's output signal.
7. In the schematic, label all signals to match the dataflow diagram.
8. You shall not draw the clock signal.

Finish the allocation

Draw the schematic

The next page is available for scratch work

\qquad

Scratch work

Q4 (25 Marks) FSM

(estimated time: 20 minutes)
Each of the three state machines on the next page is intended to meet the system description below:

1. The inputs to the system are: start, stop, and a. The output is z.
2. In the first clock cycle, start and stop are both guaranteed to be ' 0 '.
3. The counting shall begin in the clock cycle after start=' 1^{\prime}.
4. The counting shall continue up to, but not including, the next clock cycle in which stop=' 1^{\prime}.
5. The current values of start, stop, and a shall affect z in the next clock cycle.
6. In the clock cycle after stop $=^{\prime} 1^{\prime}$, the output z shall be set to 0 and shall remain 0 until the next sequence of counting begins.
7. The system may put a constraint on the inputs such that there is a minimum gap of clock cycles between stop= $=^{\prime}$ and the next start='1'. Each state machine may have its own value for the minimum gap. The minimum gap may be as small as 0 clock cycles.

NOTES:

1. If the state machine is correct, answer what the minimum gap value is.
2. If the state machine is incorrect, explain either how the machines behaviour differs from the system description or how the state machine could be modified to fix the incorrect behaviour.

Q4a

If correct:

$$
\text { minimum gap }=\square
$$

If incorrect, explanation:

Q4b

	Yes	No
Correct	\square	\square

If correct:
minimum gap $=\square$

If incorrect, explanation:

Q4c

If correct:

$$
\text { minimum gap }=\square
$$

If incorrect, explanation:
\qquad
\qquad

