ECE-327 Midterm 2020 t1 (Winter)

Instructions and General Information

- 100 marks total
- There are extra pages for scratch work at the end of the exam.
- If you need additional scratch paper, request some from a proctor. The work done on the additional scratch paper will not be marked. All answers to be marked must be on the exam paper.
- The proctors and instructors will not answer questions, except in cases where an error on the exam is suspected. If you are confused about a question, write down your assumptions or interpretation.
- Justifications of answers will be marked according to correctness, clarity, and concision.
- To earn part marks, you must show the formulas you use and all of your work.

		Total Marks	Approx. Time	Page
Q0	!!Almost Free!!	2	2	3
Q1	VHDL Semantics	21	15	4
Q2	Area Analysis	25	15	8
Q3	FSM	27	18	10
Q4	DFD	27	18	14
Totals	100	68		

This page is for scratch work for any question.

Q0 (2 Marks) !!Almost Free!!

(estimated time: 2 minutes)
Q0a (1 Mark) Best part
What is the best part of the course?

Q0b (1 Mark) Most improve

What one thing could be done to most improve the course for the remainder of the term?

Q1 (21 Marks) VHDL Semantics

(estimated time: 15 minutes)
For each pair of VHDL programs in Q1a and Q1b, answer whether the signal z has the same behaviour in both programs.

NOTES:

1. The code shown is the body of the architecture.
2. All signals are of type std_logic.
3. The inputs are a, b, and $c l k$.
4. "Same simulation cycle behaviour" means that the two programs have the same number of simulation cycles and that at the end of each simulation cycle, z has the same value in both programs.
5. Similarly, "same simulation round behaviour" means that the two programs have the same number of simulation rounds and that at the end of each simulation round, z has the same value in both programs.
6. If the programs do not have the same behaviour:

- Describe (with text or waveforms) the behaviour of the inputs that will cause the different behaviour.
- Describe (with text or waveforms) how the behaviour of z is different in the two programs.

7. If the programs do have the same behaviour: justify your answer with text or waveforms.

This page is intentionally blank

Q1a (10 Marks)

Program 1

c <= not a;
$\mathrm{z}<=\mathrm{b}$ and c ;

Program 2

process (a, b) begin
$z<=\mathrm{b}$ and not a ;
end process;

	Yes	No
z has the same simulation cycle behaviour	\square	\square

	Yes	No
z has the same simulation round behaviour	\square	\square

Q1b (10 Marks)

The lines of code that are different in the two programs are denoted with underline.

Program 1

```
process begin
    clk <= '0';
    wait for 5 ns;
    clk <= '1';
    wait for 5 ns;
end process;
process begin
    wait until rising_edge(clk);
end process;
```


Program 2

process begin
clk <= '0';
wait for 5 ns;
clk <= '1';
wait for 5 ns ;
end process;
process begin
$\frac{\text { wait for } 5 \mathrm{~ns} \text {; }}{\mathrm{z}<=\mathrm{a} \text {; }}$
end process;
z has the same simulation cycle behaviour $\quad \square \quad \square$

	Yes	No
z has the same simulation round behaviour	\square	\square

Q2 (25 Marks) Area Analysis

(estimated time: 15 minutes)
Design an FPGA implementation of the gate-level circuit shown below that uses the minimum number of FPGA cells. Use the FPGA cells on the following page to answer the question.

NOTES:

1. The primary inputs of the circuit are: a, b, c, d, e, and f.
2. The primary output of the circuit is: z.
3. Do not perform any logic optimizations.
4. For each FPGA cell that you use:

- Label the input and output ports of the cell using the signal names from the gate-level circuit for ports that you use and NC (for no-connect) for ports that you do not use.
- Show the configuration for the internal multiplexer.

Total number of cells used:

\square

Q3 (27 Marks) FSM

(estimated time: 18 minutes)
Design the hardware for the state-machine shown below.

NOTES:

1. The design shall use the normal building blocks: arithmetic datapath components, multiplexers, Boolean gates, and registers.
2. The output and registers shall have the same behaviour, clock-cycle by clock-cycle, as the state machine.
3. Clearly label all inputs, registers, and outputs.
4. For each control signal (mux-select or chip-enable):

- Label the signal in the schematic
- In the space below the schematic, write an expression for the circuitry to drive the signal
- Do not draw the circuitry to drive the signal

5. Marks will be earned for functional correctness, elegance of the design, and neatness of the drawing.

Q3a (4 Marks) State Encoding

Based on the ECE-327 guidelines, show your encoding for each state,

This page is for scratch work. The next two pages are for your answer.

Q3b (9 Marks) Next-State Circuitry

Draw a schematic for the next-state circuitry.

Write an expression for each control signal (mux-select or chip-enable) in the next-state circuitry.

Q3c (14 Marks) Datapath Circuitry

Draw a schematic for the datapath circuitry.

Write an expression for each control signal (mux-select or chip-enable) in the datapath circuitry.

Q4 (27 Marks) DFD

(estimated time: 18 minutes)
In this question, you will design and analyze a dataflow diagram for the equation:
$z=a * e+b+b * e+7 * d+c * d$

NOTES:

1. Inputs shall be combinational and outputs shall be registered.
2. The delay of a multiplier is approximately twice that of an adder.
3. Optimization goals in order of decreasing importance:
(a) minimize number of multipliers
(b) minimize clock period
(c) minimize latency
(d) minimize number of adders
(e) minimize number of registers
(f) minimize number of input ports
(g) minimize number of output ports
4. Input values may be read in any clock cycle, but each input value shall be read exactly once.
5. Algebraic optimizations are allowed, as long as the final value of z is correct.
6. You do not need to perform allocation.

Scratch work

The next page is for your answer

Analysis:

(page 15 of 16)

This page is for scratch work for any question.

