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Abstract

The IEEE 802.11s working group is tasked to provide
ways of establishing and securing a wireless mesh net-
work. One proposal establishes a Mesh Security Architec-
ture (MSA), with a developed key hierarchy and full pro-
tocol definitions. This paper examines the correctness and
security of the MSA proposal and its corresponding pro-
tocols. We utilize Protocol Composition Logic (PCL) to
prove individual protocols secure, as well as their compo-
sition. We add to the structure of PCL, generalizing it for
peer-to-peer applications. We also discuss two security is-
sues we discovered with original versions of the proposals
and our proposed remedies.

1. Introduction

We discuss our proof of security properties of a
standards-track protocol suite for authentication and key
establishment using a formal verification technique. Our
technique is Protocol Composition Logic (PCL) [15] (see
Section 2.1). Our setting is the IEEE 802.11 Mesh Net-
working task group, known as 802.11s, which was formed
to define extensions to IEEE 802.11 [1] to support wire-
less mesh networking [22]. A goal of the task group is to
secure a mesh by utilizing existing IEEE 802.11 security
mechanisms and extensions.

The Mesh Security Architecture (MSA) proposal [4, 5,
6, 7] to 802.11s consists of a definition of a key hierar-
chy and a suite of protocols to enable security in a wire-
less mesh network. The proposal includes detailed infor-
mation to implement MSA within the framework defined
by 802.11s, including key derivation, protocol execution,
and message formatting. The suite of protocols encom-
passes all the necessary components to create and main-
tain a mesh of nodes.

We have the following three contributions in this paper.
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e We have conducted a comprehensive assessment of
all 10 protocols (averaging 4 messages and 8 compo-
nents) of the MSA proposal from a security stand-
point and proved its correctness. We present an
overview of the protocol suite and the main insights
from the proof. Page restrictions preclude the pre-
sentation of all details; a companion technical re-
port [25] complements this paper.

As this is one of few instances of the proof of correct-
ness of a substantial, standards-track protocol suite of
which we are aware, we feel that this is an important
contribution.

e PCL has been used to prove the correctness of the
IEEE 802.11i protocol suite [23]. However, 802.11s
presents new challenges that have necessitated exten-
sions to PCL for us to be able to carry out our correct-
ness proof. We present these extensions and details
from the MSA proposal that illustrate their necessity
(see Section 3). We believe that the extensions are
general enough to be useful in other work in protocol
verification.

e In the course of carrying out our proof, we discov-
ered two security issues with protocols in the pro-
posal. We discuss these issues and our suggestions
for changes to address these issues. Our suggestions
have since been incorporated into the proposal. As
we point out in Section 5, our proof would not have
been possible without these changes.

The remainder of this paper is organized as follows.
Section 2 provides a background on PCL, 802.11s and the
MSA proposal. In Section 3 we present our additions to
PCL; for each addition we illustrate its need via compo-
nents from the protocol suite we have analyzed. We pro-
vide an overview of the proof in Section 4. In Section 5
we discuss our recommendations for changes to the origi-
nal design of the protocol suite in the MSA proposal based
on our proof efforts. We conclude with Section 6.
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2. Preliminaries

In this section, we provide some background and moti-
vate our work.

2.1. Overview of Proof Method

We use Protocol Composition Logic (PCL) to prove the
correctness and security of the Mesh Security Architec-
ture. We briefly overview PCL in this section. PCL has
been used for a security analysis of 802.11i [23], Kerberos
[29], and the Group Domain of Interpretation (GDOI) pro-
tocol [26].

2.1.1 Terminology

Protocols in PCL are modeled using a particular syntax.
A role specifies a sequence of actions performed by an
honest party. A matching set of roles (two, in this paper)
define a protocol. A particular instance of a role run by
a specific principal is a thread. Possible actions inside a
thread include nonce generation, signature creation, en-
cryption, hash calculation, network communication, and
pattern matching (which includes decryption and signa-
ture verification). Each thread consists of a number of
basic sequences. A basic sequence is a series of actions,
which may not include a blocking action (like receive) ex-
cept as the first action. Pre- and post-conditions are asser-
tions expressed as logic predicates that must be true before
and after a protocol run respectively.

2.1.2 Notation

We use the following notation in this paper. Our notation
is consistent with previous work on PCL except for the
extensions that we propose in this paper. (See Section 3
for a discussion of the extensions.)

X,Y, Z, ... are used to denote threads.

X , Y, A ,... denote the principals associated
with the corresponding threads.

send, receive, new, ... are actions. Actions are
things that principals do in a thread.

MKHSH, TLS:CLNT, 4WAY, . .. denote pro-
tocols. We use a mnemonic that follows a “:’
to denote that the protocol is associated with a
particular role that a principal plays in an in-
stance of the protocol; for example, CLNT de-
notes that it is the client’s portion of the TLS

protocol.

pmkx 7, gtk x, ... denote cryptographic keys.
We use subscripts to indicate the principal(s)
with whom a key is associated.
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0, ®, T, ... are used to denote logic formulae
that express pre- or post-conditions, or invari-
ants.

Has(), KOHonest(), SafeMsg(), ... are logic
predicates that are used in assertions (pre- and
post-conditions, and invariants).

Many of the predicates follow a Pred(actor, action)
format. Thus, Has(X,m) means that thread X has in-
formation m. Similar predicate formats follow for Send,
Receive, New , and Computes. Other predicates can be
more complicated. Honest(X ) means that the principal
(X) running the thread is honest. KOHonest(s, ) es-
sentially means that all principals with access to any key
k € K or to the value s are honest. Contains(m,t) is
equivalent to ¢ C m and means that information ¢ is a
subterm of m.

2.1.3 Proof Methodology

The proof methodology of PCL is described by Durgin et
al. [19, 20] and Datta et al. [11, 16, 12, 13, 14, 15, 23, 29].
We use the standard syntax of §[P]x®. This means that
with preconditions # before the run of actions P by thread
X, the result (postcondition) ® is proven to hold. 6 is
always used to denote a precondition, ¢ a postcondition,
and I' an invariant.

The proof system is built on three fundamental build-
ing blocks. The first is a series of first-order logical ax-
ioms [15]. A first-order logical axiom is a natural logi-
cal assumption (e.g., creation of a value implies posses-
sion of that value). The second is a series of crypto-
graphic/security axioms [15, 20, 23]. Cryptographic ax-
ioms provide formal logic equivalents of standard cryp-
tography (e.g., possession of a key and a value provides
possession of the encryption of the value with that key).
These assume idealized cryptographic functionality which
most cryptographic primitives do not achieve in practice.
For example, the hash of two different values is assumed
to never be the same.

The third building block is the fundamental principle
of honesty. Honesty imposes certain restrictions on roles
— that they follow protocol descriptions correctly and do
not send out particular information assigned to that role.
Honesty is a special type of rule that allows an instance
of a thread to reason about the actions of another, cor-
responding thread that participates in the same protocol.
The actions of an attacker are not assumed to be honest.
We do, however, assume that the attacker does not violate
an assumption, or condition or invariant (e.g., the posses-
sion of a private key) that is necessary for a protocol to
run to completion. This notion of an attacker model is
the same as that considered in previous work that uses ap-
proaches based on mathematical logic to verify protocols



(c.f. [23]).

All but one of the axioms on which we depend have
been proposed previously [11, 15, 16, 23]; space con-
straints preclude the presentation of a comprehensive list
of all PCL axioms in this paper. We provide a few fre-
quently used axioms in Figure 1. We do, however, point
out that we need an additional axiom — a node which gen-
erates a signature over some information has that informa-
tion and the key with which the signature is generated.

SIG1: Computes(X, SIG(m))
Has(X, m) A Has(X, k).

D)

(Computes() and Has() are predicates, D can be read as
“implies,” and A is logical conjunction.)

AA1l ¢[a]xa
AA4 Plaryaz;...;ak]xar <az A...Aap—1 < ag
AN2 ¢[New z]xHas(Y,z) DY =X
AN3 ¢[New z]xFresh(X,z)
ARP Receive(X, p(z))[match q(z)/q(t)]x
Receive(X, p(¢))
FS1 Fresh(X,t)[send '] x
FirstSend(X, t,t' )Vt C t'
FS2 FirstSend(X,t,t") Aa(Y,t") D
Send(X,t") < a(Y,t"), where X Y At C t”
HASH1 Computes(X, HASHk(z)) D

Has(X, z) A Has(X, K)

Figure 1. Some PCL Axioms Used in MSA
Proofs

The methodology of PCL has proven very successful
in dealing with large-scale architectures. A recent paper
by Cremers looked at the soundness of the various axioms
of PCL [10]. For the problem of preceding actions, we
have consistently used implicit pre- and post-conditions
at the basic sequence level, leading to a tighter joining of
actions. Another issue arises with the HASH3 axiom. We
propose a straight-forward generalization of the HASH3
axiom, following earlier work on signatures. We define a
new axiom, which is sound.

HASHY3': Receive(X, HASHk (z))
3Y.Computes(Y, HASHk (z)) ASend(Y, m)
Contains(m, HASHk (z)).

D
A\

Most of the remaining issues deal with public-key axioms
not addressed in this paper or with specific utilizations of
axioms in other papers.
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2.14 Composing Proofs

An important feature of PCL is that with it, we can rea-
son about how protocols interact. As this paper covers
an entire architecture, it is imperative that the large num-
ber of individual protocols be proven secure not only in-
dependently, but also working together in conjunction as
a complete system. To this end, we extensively use the
methodology of protocol composition developed by Datta
et al. [15]. We discuss this in Section 4.3.

2.2. Overview of the MSA Proposal for
802.11s

The 802.11s task group is working to develop a mesh
networking protocol that sets up auto-configuring, multi-
hop paths between wireless stations to support the ex-
change of data packets. A goal of the task group is to uti-
lize existing IEEE 802.11 security mechanisms [1], with
extensions, to secure a mesh in which all the stations are
controlled by a single logical administrative entity from
the standpoint of security [22]. The 802.11s task group
continues to refine its draft specification through the reso-
lution of comments received during a review of the speci-
fication that began in late 2006 [4, 5, 6, 7].

A mesh network is a collection of network nodes, each
of which can communicate with the others. Several kinds
of nodes are specified in the MSA proposal. One is a Mesh
Point (MP); a member of the mesh that can communicate
with other nodes. Each mesh has at least one Mesh Key
Distributor (MKD) which is an MP that is responsible for
much of the key management within its domain (a MKD’s
domain is the set of nodes with which it has a secure con-
nection). The MKD also provides a secure link to an exter-
nal authentication server (e.g., a RADIUS [27] server). A
Mesh Authenticator (MA) is an MP which has been autho-
rized by the MKD to participate in key distribution within
the mesh. A Candidate MP is an entity that wishes to join
the mesh but is not yet an MP.

Differences from 802.11i Part of the MSA proposal is
very similar to the 802.11i protocol suite [1]. In 802.11i,
connections are established between authenticators and
supplicants in a server-client topology. An authentica-
tor is connected to a backbone infrastructure, and each
supplicant may use an Extensible Authentication Proto-
col (EAP) [3] method such as EAP-TLS [31] to authenti-
cate with the infrastructure. Each supplicant then uses a
four-message handshake to secure a session with an au-
thenticator, allowing subsequent use of its resources. The
authenticator also maintains a broadcast key that is given
to each of its successful supplicants. These protocols were
examined in [23] and proven to be secure.
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Figure 2. The key hierarchy of the MSA proposal

In addition to the 802.11i functionality, the MSA pro-
posal allows the mesh to be a peer-to-peer network. Nodes
in an MSA mesh may play different roles at different
times. Thus, the proof of security of the 802.11i 4-way
handshake [23], which assumes limitations on the mes-
sages a node can send, does not hold. =~ The peer-to-
peer nature also poses some difficulties with timing. The
802.11i proofs adopt matching conversations [2] as the au-
thenticity property. As we discuss in Section 3.1.1, the
notion of matching conversations imposes a rather strict
ordering of messages in a protocol run, and is too rigid for
our purposes. In MSA, we must provide for the case that
both parties simultaneously start instances of a protocol
and messages are not necessarily well-ordered. Thus, the
proofs from [23] do not carry over directly.

The key hierarchy Each node in Figure 2 represents a
key in principal X’s key hierarchy. An edge from key
k1 to ko shows that ks is either derived from or delivered
using kp (that is, kj protects ko, as knowledge of k; is
required to obtain k3). The edge’s label is the protocol
that is used to derive or deliver the key. The subscript in a
key (for example, the subscript X in pmkmkd x {X,T})
is used to denote the principal(s) associated with the key.
Principals listed in curly brackets are the honest entities
that may possess the key. The subscripts are ordered (i. e.,
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pmk x y is different from pmky- x).

Key derivation (one-way) functions are utilized rather
than key generation for efficiency. The MSA suite’s use of
key derivation also provides the potential for certain pro-
tocols to complete successfully when neither principal has
connectivity to the rest of the mesh. This results in a key
hierarchy, with each node being associated with several
keys. The key hierarchy is an excellent avenue for un-
derstanding and summarizing the various protocols in the
MSA proposal, and for demonstrating which keys protect
other keys [6]. The complete descriptions of the proto-
cols in PCL and prose are in the companion technical re-
port [25].

We start our progression through the key hierarchy and
the protocols at the top of Figure 2. Let X be a Candidate
MP and let T" be the MKD. The MSA Authentication Pro-
tocol allows X to join the mesh and become an MP, and
consists of three stages: Peer Link Establishment (PLE),
TLS [17], and a Four-Way Handshake (4WAY). X either
has a shared xxKey with T or it shares public key cre-
dentials with 7. If it shares public credentials with 7', then
T and X run TLS to derive the zzKey y; otherwise, TLS
is omitted. To derive the pmkmkd 5, X needs a nonce;
it is delivered to X from 7" when X runs 4WAY with an
MA (which we denote Y, noting that Y may be T"). Sub-
sequently, X can derive the pmkmkdx, pmkx,z for any
Z and the mkdkx 7. When X completes 4WAY with Y,



X will have derived ptkx y, received the gtky from Y
and delivered gtkx to Y.

At this point, X is a Mesh Point (MP) but is not ye
an MA. To become an MA, X needs to run the Mesh Ke
Holder Security Handshake (MKHSH) with T', and de
rive the mptk x 1, which is a session key between X an
T'. This enables X to run the PUSH and PULL proto
cols with 7. PUSH is started by 7" to tell X to retriev
pmk z x for some Z. PULL is started by X to reques
pmk z x from T

The 802.11s task group has expressed interest in devel
oping an Abbreviated Handshake (ABBH) [9, 32]. ABBI
is used by an MP or an MA X to derive ptkx », and ex
change gtk y and gtk , with another MA or MP Z. With
out an ABBH, the method of exchanging these creden
tials is to have the MP or MA run the full MSA Authen
tication Protocol with the other MA or MP. In this pa
per we discuss a candidate ABBH, which has been pre
sented to 802.11s [8], and its proof of security and com
posability with the rest of the MSA architecture. The ful
ABBH is presented in the full paper [25] and comprise
two variants. One denoted is ABBH.INIT and the othe
ABBH.SIMO, depending on the timing of the first mes
sages. We explore ABBH.SIMO, denoted simply SIMO
in more depth in Section 3.

Additional MSA protocols include the Group Ke
Handshake (GKH) and the DELete protocol (for ke
management). GKH is used by X to update its grou
key (gtky) at Z. The protocol only works with node
with which X maintains a security association (i.e., share
ptkx 7). DEL is started by 7' to tell X to delete a partic
ular pmk 4 .

3. Additions to PCL and Proof Methodology

In modeling the MSA protocol suite in PCL, we foun
a number of situations for which the current languag
model has no support. We provide a motivating exam
ple from MSA and discuss our proposed additions to th
language. None of the additions modify the existing lan
guage, so all previous proofs and work should not nee:
re-examination. We also broadened the proof methodol
ogy slightly.

Many of the additions can be explained by looking a
the abbreviated handshake protocol with a simultaneous
open (SIMO). The purpose of this protocol is to estab-
lish a linkage between two nodes which are already part
of a mesh. Therefore, the two nodes already have authen-
ticated to the MKD and need only authenticate to each
other and establish a fresh, unknown session key. One
possible instantiation of this protocol is presented in Fig-
ure 3. Values x and y are nonces generated by X and
Y respectively. INFOx contains additional information
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Y, X,"ABBHI",INFO, ,x

X,Y,"ABBHI",INFO,,y

);,)2, "ABBH5",INFO,,x, y,enc,,mic,

A 4

)A(, );, "ABBHS5", INFO,, y, x,enc,,mic,

Figure 3. A SIMO Abbreviated Handshake

about node X’s configuration. The enc values are broad-
cast keys encrypted with session keys derived from z, y
and a shared key. The mic values provide integrity and
authentication verification. We note that the messages la-
beled “ABBHS5” do not have to occur in the listed order.
Node X can receive message 5 before or after it sends its
message 5. Note, too, that X might receive its message 5
after it sends its own message 5, even if node Y sends its
message 5 before X does.

The thread for this protocol is symmetric (though it
does not have to be) and is presented in Figure 4.
Some additions to PCL were used in the thread descrip-
tion, which are fully described below. The precondition
0 aBBH,1, invariant I'apgr,1 and a sample security goal
®simo, aurH are also presented. This protocol is useful
in demonstrating the necessity of the additions, as well as
providing a sample of how the addition is used in the proof
of the MSA proposal.

3.1. Flexible Temporal Ordering

The temporal ordering of actions in the original PCL
definition is too strict for our applications. In the SIMO
protocol presented in Figure 4, the order of sending and
receiving the message labeled “ABBHS5” is nondetermin-
istic. Once the initial messages have been exchanged, the
final messages could be sent/received in either order. The
change to PCL is realized as an addition to the language.
The proposed modification does not change any other as-
pect of PCL; therefore all previous proofs are still valid.

We add an action group and redefine the notion of a
strand. We define an action group as: (action group) g ::=
(a;...;a), where a is an action as defined in [15]. We also
redefine a strand as: (strand) s ::= [g(;or :)...(;or :)g].
Thus a strand is now composed of an arbitrary number
of action groups separated by colons or semicolons. The
idea behind the action group is that the actions in an action
group must be done in the order they appear. However,



ABBH.SIMO = (X,Y,INFOx, gtkx)

[New z; send Y, X,“ABBH1”, INFOx, z;
receive X,V ,“ABBH1”, INFOy, y;

match select(INFOx,INFOy)/CS, pmkN;
match retrieve(pmkN) /pmk;

match HASHpmi (2, y) /ptkx,v;

(match ENCpy o (gtkx)/enco;

match HASHp¢. . (

Y,X,“ABBH5”, INFOx, x,y, enco, INFOy) /mico;
send Y, X, “ABBH5”, INFOx , %y, enco, mico) :
(receive X.,Y,“ABBH5”, INFOy, Y, T, enci, mici;
match enci /ENCpyk o, (gtky); match mici /HASHpux o o (

X,Y,“ABBH5", INFOy,y, x,enci, INFOx))]x

OasBH,1 := Has(X, pmkx,v) A Has(Y, pmky, x)
A (Has(X, mptkx ) V Has(Y, mptkx r))

T'aBen,1 := Honest(X) A Send(X, m)A
(Contains(m, Hash,, (“ABBH2”, Y, Z)))V
Contains(m, Hash,:, ((“ABBH3”, Y, Z)))V
Contains(m, Hash,, ((“ABBH4”, Y, Z)))V
Contains(m, Hash,, ((“ABBH5™, Y, Z)))) D
Z =X

Psivo,AUTH =

KOHonest(ptkx v, {pmkx,v,pmky,x}) D
(Send(X, SIMO1X) < Receive(Y, SIMO1X))A
(Send(Y, SIMO1Y) < Receive(X, SIMOIY))A
(Send(Y, SIMOSY) < Receive(X, SIMOSY))A
(Send(X, SIMO1X) < Receive(X, SIMO1Y) <
(Send(X, SIMO5X) A Receive(X, SIMO5Y))A
(Send(Y, SIMO1Y) < Receive(Y, SIMO1X) <
Send(Y, SIMO3Y))

Figure 4. Protocol Description of the Abbre-
viated Handshake Simultaneous Case

the action groups within a strand separated by a colon (:)
can be done in any order and action groups separated by
a semicolon (;) must be done in the order they appear.
Note that any strand defined previous to this addition to
the language can still be defined exactly the same way by
defining each action group to be one action and by setting
all the separators inside a strand to ;.

We update Axiom AA4 [15] to reflect this addi-
tion to the language. The original version is AA4:
Tla;...;blxa < b. We redefine it to be AA4: T[a :
b;...;c tdlxaAb < ¢ Ad, where a,b,c and d are ac-
tion groups. Thus nothing about the temporal order of a
compared to b or ¢ compared to d is indicated. We also
include a new axiom AAS5: T[(a;...;b)]xa < b, where
a and b are actions, to deal with the temporal ordering of
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action groups. If each action group is exactly one action
and only semicolons are used in the new strands our AA4
becomes exactly the AA4 previously defined and AAS is
redundant.

A consequence of the above addition is that protocols
whose definition includes :’ add an additional complica-
tion in the determination of basic sequences. Recall that a
basic sequence is defined as any actions before a receive.
With the : notation, two different sets of actions may occur
before a receive, corresponding to the potential temporal
ordering of the action groups. Thus we must ensure that
invariants and preconditions hold over all possible basic
sequence orderings and compositions.

3.1.1 Generalized Matching Conversations and Gen-
eralized Mutual Authentication

The proofs of mutual authentication used in many pre-
vious work that use PCL for protocol verification have
adopted the notion of matching conversations [2] for the
authenticity property. This is natural as these protocols
are “turn-by-turn protocols” in which one a participant re-
ceives a message and then responds to the message, which
is received by the other party who responds to it, and so
on. However, some of the peer-to-peer protocols in this
paper can never correspond to matching conversations as
the order in which messages are sent and received is flex-
ible, as a functional requirement. We generalize the prop-
erties of matching conversations and define two new no-
tions which we call maximal conversations and general-
ized matching conversations. We feel these definitions are
of general interest beyond this work. Recall the defini-
tions of conversation and matching conversation from [2].

We define the maximal conversation for a participant
A. We first determine the maximal possible temporal or-
dering. To do this we consider all legal orderings in an
ideal world (one with no adversarial interference) from the
view of a participant A in a protocol. Given this maximal
temporal ordering, we note the existence of messages for
which A can never confirm reception. We take the maxi-
mal temporal ordering and remove any send or receive for
which A cannot confirm reception in the ideal world — the
remaining actions represent the maximal conversation for
participant A.

We now define generalized matching conversations for
a participant A. We say A has generalized matching con-
versations, if in every run of the system, every action in the
maximal conversation for participant A has a correspond-
ing action at participant A (e.g., A does all its actions)
and at the appropriate other participant in the system. For
two-participant protocols (like all those in this paper), this
means that the maximal conversation for participant A has
messages exactly matching the other participant’s maxi-
mal conversation, with the strictest time ordering possible.



We now define generalized mutual authentication. In
a world in which an adversary has access to every mes-
sage and can act on them within the restraints of the proof
system (symbolic or computational), generalized mutual
authentication means that generalized matching conversa-
tions for every participant implies acceptance and accep-
tance implies generalized matching conversations for ev-
ery participant. For the purpose of this paper we wish to
keep the definition of generalized mutual authentication
general. We explore all these definitions in detail in sepa-
rate work.

When our definition is applied to a “turn-by-turn” two-
party protocol it becomes exactly the definition from [2].
In every other instance our definition requires that the or-
dering of actions be maximal with respect to what is possi-
ble in the ideal world. As this definition imposes maximal
temporal ordering on a protocol, this definition is at least
sufficient for mutual authentication. Most protocols in the
MSA are turn-by-turn and thus the [2] definition suffices
for those cases. The three exceptions are SIMO (which
is a peer-to-peer protocol and has some timing flexibil-
ity), PLE (which is not a cryptographic protocol in itself
and requires no temporal ordering), and PUSH which is a
composition of two protocols.

We note that the generalized matching conversations
property encompasses the matching record of runs prop-
erty [18]. Also, this property guarantees all desired prop-
erties from [24] and implies all the possible authentication
definitions in [21].

3.1.2 Generalized Matching Conversations For
ABBH.SIMO

We apply the generalized matching conversations defini-
tion to SIMO, which is a protocol for establishing a secure
connection between two nodes already in a mesh.

Let X be the principal from whose view we seek to es-
tablish the proof of generalized matching conversation and
Y be the other principal. SIMO1X and SIMOS5X represent
X’s messages, and similarly for Y’s messages. We need to
determine the maximal timing relations in the ideal world
(no adversaries) when only SIMO is run. X cannot con-
firm whether Y has received SIMOS5X even in the ideal
world, because it may be the last message sent. There-
fore, SIMOS5X is not part of X’s maximal conversation.
Note that every message must be sent by the correct party
before it is received by the other party in an ideal world.
Now we simply list what actions must happen after other
actions and omit receives after sends that are irrelevant
(e.g., Send(X, SIMO1X) < Receive(Y, SIMO1X)).

Send(X, SIMO1X) < Receive(X, SIMO1Y) <
(Send(X, SIMO5X) A Receive(X, SIMO5Y))

Send(Y, SIMO1Y) < Receive(Y, SIMO1X) <
Send(Y, SIMOSY)
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This temporal ordering is inherently maximal for X’s
view of an arbitrary run of SIMO, so it satisfies the def-
inition of generalized matching conversations for X (Y’s
view is similar). The enforcement of the order of the
send messages within a node can be accomplished by
waiting for acknowledgements from the MAC layer be-
fore proceeding. If X has not sent its message 1, it ini-
tiates the corresponding thread for ABBH.INIT, not for
ABBH.SIMO, so this ordering is maximal.

3.2. Modeling Information Exchange

In the full paper [25], we provide detailed PCL equiva-
lents of the protocols presented in the MSA submissions.
Such detailed examinations are necessary to prove proto-
col correctness. For example, the presence of IN F'Oy
in micy in SIMO (Figure 4) is not intuitively obvious but
is essential to the security of the protocol. Modeling the
protocol at a higher level of abstraction would have missed
this subtle requirement.

Real protocol implementations such as MSA require
more than simple key agreement. Additional information
must be exchanged and agreed on before secure communi-
cation can happen. Examples of information of this type
are basic network functions (e.g., bandwidth selections)
and security information (e.g., cipher suite selection). The
two principals in the protocol must agree in each case,
and an attacker must not be able to influence the selec-
tion. That is, the agreed-upon value in all protocol runs
must match the agreed-upon value in an ideal world with
no adversary. The peer-to-peer nature of certain protocols
such as SIMO do not allow pre-defined protocol roles of
principals to always allow one principal to make this se-
lection and dictate the choice to the other. The two prin-
cipals must independently choose matching values from
two lists.

A new construct, INF'O is used to capture this. The
information principal X contributes to a protocol is
INFOx. It contains ordered lists of acceptable selections
for one or more fields. The contents of I N FOx may vary
for different protocols. In MSA, the PLE, ABBH, and
MKHSH protocols require the use of /N F'O.

The select action We have added a new action, se-
lect, to PCL. Two principals X and Y must make
identical but independent selections of link and pro-
tocol options from exchanged information INFOx
and INFOy. The select action deterministically re-
trieves information from two lists, independent of the
order of the lists (i.e., select(/NFOx,INFOy)
select(INF Oy, INFOx)).

Without modeling at this detailed level, a nearly-
equivalent SIMO protocol, which only creates a keyed



hash across the information it sends, would appear vi-
able and secure. The cryptographic components would be
identical. However, without node X including IN FOy
in its mic (and equivalent for Y), attack vectors become
possible. In particular, the strong requirement that the
messages sent exactly match the messages received no
longer holds. This leads to potential manipulation of the
INFOx and IN FOy fields by an attacker. This leads to
easy denial-of-service attacks but would also compromise
the selection of shared cipher suite, leading to a potential
downgrade attack.

3.3. Calling One Protocol in Another

For many of the protocols in MSA, the protocol may
instantiate another protocol partway through its run. This
second protocol must complete before the first protocol
can continue. For example, in a key exchange proto-
col such as SIMO, if both parties that try to establish a
session key do not have the other party’s pairwise mas-
ter key cached locally (e.g., X does not have the current
pmk , ), then one of the parties must pause its protocol
run and run a key pull protocol. Furthermore, the second
protocol could potentially be triggered in the middle of a
basic sequence.

This is new ground for PCL and we have devised a sys-
tem and proof (see section 4.3) that enables us to frame
this complex action in PCL and develop sound proofs. Es-
sentially, we define the inception of functions that may
need to run a separate protocol to be basic sequences, as
they may involve blocking actions (like receive). Then,
before and after these actions we define basic sequence
pre- and post-conditions that must be satisfied for a suc-
cessful completion of the protocols. The idea of basic se-
quence pre and post conditions were give in [23] to enable
staged composition and remain standard in the language
[15], although they have not been previously used in this
way to enable mid-protocol composition.

The retrieve action We have added a new action, re-
trieve, to PCL. The retrieve action provides the key to the
strand, after key selection is complete. The retrieve ac-
tion takes a key name (pmkN, corresponding to a specific
pmk) as its input. If the principal that executes the func-
tion does not have the key locally cached on disk, but is an
MA (and has a connection with the MKD), retrieve initi-
ates the PULL protocol. If the key is not on disk and the
principal is not an MA, retrieve fails and the protocol that
called it aborts. As the retrieve action may or may not per-
form a key pull, we create a break in the basic sequence
directly before and directly after the retrieve.

The retrieve action has inherent pre- and post-
conditions as it is a series of one or more basic se-
quences (e.g., a protocol). As a precondition, retrieve
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must have the pmk cached locally or it must have the
mptkx 7. Thus the precondition is Has(X, mptkx 1) V
Has(X, pmk) where pmk matches the input pmkN. The
postcondition is simply Has(X, pmk). The retrieve func-
tion itself has security requirements only if the principal
must perform a key pull, when it inherits the requirements
of the PULL protocol.

In Figure 4, retrieve is used to get the selected pmk.
This provides two potential paths of execution through the
protocol, one which runs a key pull mid-protocol and one
which simply fetches some stored memory (equivalent to
a match action).

4. Overview of the Proof

In this section, we provide an overview of our proof ef-
forts by highlighting three aspects of it. In Section 4.1 we
discuss our approach to proving key secrecy in the MSA
proposal. In Section 4.2 we present additional security
goals and a theorem that culminates our proof efforts. Fi-
nally, in Section 4.3, we discuss our approach to protocol
composition.

4.1. Key Secrecy in MSA

Inputs and Parties:

Two parties: INIT and RESP.
(ck). INIT private input: INIT public key (PKn1T).
private input: secret key (sk).

Goal: Has(Z, sk) D Z = INIT V Z = RESP

Shared input: confirmation key
RESP

Insecure Key Transfer Protocol:
1. INIT sends PK ;N7 to RESP.

2. RESP receives PKrnrr; encrypts sk under PKinrT,
computes the keyed hash of the encryption with key
ck; and sends ({sk}pi;n;r, HASHek({sk}rr;xnir))
to INIT.

3. INIT receives ({sk}prr;y;r, HASHer({sk}Pr;nir))s
verifies the keyed hash; decrypts sk; computes the
keyed hash of sk and PK;n;r with the ck and sends
HASHCk(Sk, PK[NIT) to RESP.

4. RESP verifies the signature.

Figure 5. Insecure Key Transfer

Key secrecy is a critical security requirement. Some
previous work [23] has proven key secrecy as a proto-
col postcondition. We show that proving key secrecy as
a postcondition is insufficient by providing an example of
a protocol which has key secrecy as a postcondition (i.e.,
upon protocol completion, key secrecy can be proven) but



is insecure, because key secrecy can be lost. The Insecure
Key Transfer Protocol in Figure 5 illustrates this point. If
we assume protocol completion from the point of view of
RESP we can prove that the secret key is distributed cor-
rectly, as the validity of INIT’s public key is established
once RESP receives the third message. However RESP
uses the public key in the second message before the va-
lidity of the public key can be established. Thus if the
protocol aborts after the RESP sends the second message,
it may be the case that the public key sent in message 1 is
an adversary’s public key. It is therefore possible for the
adversary to intercept the secret key. While this protocol is
contrived, in larger protocols with complex security goals,
it may be the case that a subtle insecurity such as this goes
unnoticed.

We prove the security of MSA’s key hierarchy using
the work of Roy et al. [29, 28, 30]. We present the key
secrecy postconditions relevant to the MSA key hierarchy
in Figure 6. We prove that these conditions hold at every
point during any protocol execution of MSA, as long as
the indicated principals are honest. We also claim a new
axiom SAF5: SafeMsg(HASH (M), s, K)). Informally,
this states that a keyed hash of a message does not reveal
the key.

frLs,s1,1 =
KOHonest(zzKeyx, {privx, privr, zxKeyx}) D

Has(Z,zxKeyx) D Z =XV Z =T

Oaway s1,1 :=

KOHonest(pmkmkdx , {zzKeyx}) D
Has(Z,pmkmkdx) > Z =XV Z =T
Oaway ,s1,2 i=

KOHonest(mkdkx v, {zzKeyx}) D
Has(Z,mkdkxr) D Z=XVZ="T
0ppPD,s1,1, IMKHSH,S1,1 1=
KOHonest(mptkx,r, {mkdkx r}) D
Has(Z,mptkx 1) D Z =XV Z=T
O0pPD,sI,2 :=

KOHonest(pmkx,y, {pmkmkdx, mptky,r}) D
Has(Z,pmkx,y) D Z2=XVZ=YVvZ=T
0AaBBH,s1,1, 0awaY,s1,3, 0gKH,S1,1 =
KOHOHeSt(pthﬂy, {pmkx7y,pmky7)( }) D)
Has(Z, ptkx,y) D Z2=XVZ=YVZ=T
0aBBH,SI,2, laway,s1,4, 0cKkH,s1,2 1=

KOHonest(gtkx, {ptkx,vi,...pthkx v, }) D
Has(Z, gtkx) D Has(Z, ptkx,v,)

Figure 6. MSA Key Secrecy Conditions

Ideally, we would like to eliminate this potential prob-
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lem by proving key secrecy in an inductive manner, locally
for each thread and role. But that’s not possible, because
key information is not generally held purely locally and
other nodes with the information may be abusing it. Key
secrecy must be maintained locally, of course, but it re-
quires a global proof.

The techniques of [29] would note the deficiencies of
the protocol in Figure 5, because the first message sent
by RESP could not be proven to be a SafeMsg, induc-
tively. We utilize this notion and extend the SafeNet con-
cept across the entire suite of MSA protocols, to show that
no protocol violates the key secrecy of any other protocol.
Doing this step before examining other desired protocol
security goals (postconditions) provides for more elegance
and correctness in the other proofs.

We introduce new notation ;. The meaning of P ¢,
0 is that postcondition § must hold at every intermediate
point of the relevant protocols in program set P. That is, if
the terms in # are defined and bound at the end of a basic
sequence in P, then € holds.

Theorem 1. Let MSA represent all the protocols in the
Mesh Security Architecture and sy a1, represent all of
the key secrecy conditions in Figure 6. Then Osy a1, are
satisfied by MSA. That is,

MSA -y Osr AL

Proof sketch: This theorem is proven in two steps. The
first step is a massive induction over all the basic se-
quences of all the protocols that could be run by any par-
ticipant in a mesh. This induction guarantees that all mes-
sages sent are “safe,” in that critical information is pro-
tected by keys. In the key secrecy goals of Figure 6, the
critical information protected is another key, lower in the
hierarchy. From this, we argue the invariant nature of mul-
tiple SafeNet axioms over the entire MSA protocol suite,
limiting various goals to the protocols where the terms are
instantiated/defined. Then, we use the POS and POSL
axioms [29] to state who can potentially have access to
other keys. By proceeding in this way through the entire
key hierarchy, we establish all the necessary key secrecy
goals, at any point in a run where the keys may be defined.
This proves key secrecy is maintained by all protocols in
MSA.

This theorem guarantees that the parties listed in Figure
6 are the only principals with those keys. This proves that
an attacker could not learn any key in the entire hierarchy
from the MSA protocols.

4.2. Goals and Correctness Result
We present important security postconditions (goals)

below. For each goal, we point out the kinds of proto-
cols to which it applies. Goals are customized for each



protocol; formal instances of each kind of goal we discuss
below are in Appendix A.1. We keep our discussions in
this section more informal for clarity.

AUTH: Authentication as realized by the generalized
matching conversations property (see Section 3.1.1).
In practice, this confirms peer liveness and peer pos-
session of a particular key. This goal applies to all
protocols in the MSA proposal. This goal is ex-
pressed as:

D oyry := Y. ActionsInOrder(
Send(X, XY, msgi),
Receive(Y, X,Y, msgi),
Send(Y, Y, X, msga), -+ ,
Receive(X, Y, X, msg,))
KF: Key freshness as realized by a freshly-generated
nonce from each party as a term in the agreed-upon
key. This goal applies only to protocols which create
a joint (session) key.

® g := KOHonest(k, K) D (New (X, z)A
x CkANew (Y,y) Ay Ck)A
FirstSend(X, x, X,z m)A
FirstSend (Y, y, Y,y, m)

KA: Key agreement as realized by the Has predicate.
This ensures that both parties have the session key.
This goal applies to only those protocols that estab-

lish a session key.

® x4 := KOHonest(k, K) D
Has(X, k) A Has(Y, k)

KD: Transfer of secret information (key delivery) as real-
ized by the key secrecy goals and the Has predicate.
This applies only to those protocols which transmit
keys (either a group transfer key (gtk) or a pairwise
master key (pmk)).

® kp := KOHonest(k, K) D
Has(X, k) A Has(Y, k)

INFO: Authentic exchange of non-secret information
and authenticated selection of sub-elements as real-
ized in detailed protocol description and validated
return information. This applies only to protocols
which must exchange non-security information and
agree on parameters.

P inrO = KOHOIleSt(k, IC) D)
Select(/INFOx,INFOy) = CS,pmkN A
Has(X,CS,pmkN) AHas(Y, CS, pmkN)

Our goals are extensions and clarifications of the goals
adopted by He et al. [23], which in turn are adapted from
the list of desired security properties for 802.11i [1]. No
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security goals have been explicitly specified for the gen-
eral 802.11s protocol suite; however, we anticipate that
the security goals for 802.11i are meaningful for 802.11s
as well, provided they are adapted appropriately. Further-
more, we feel that the goals we present above have intrin-
sic intuitive appeal. We recommend that these goals, in
addition to the key secrecy goals discussed in Section 4.1,
be formally adopted by the 802.11s task group.

In the following Theorem, we  introduce
some notation (~») for ease of exposition.
TLS ~  AUTH,KD means DI'rrs 12, F
OrLs[TLS : CLNT]x ®rrs {auTH,kD},CLNT
and the corresponding goal for the
other node, namely FrLs (1,2} =

OrLs[TLS : SRVR|x ®ryrs (avrH,kD},srRvR- These
state that, with the proper invariants, the protocol from
each perspective provably satisfies the security goals
AUTH and KD , particular to TLS. Similar expansions
have been made for each protocol and the details are in
our full paper [25].

With the changes that we discuss in Section 5, we are
able to prove the component-wise correctness of each of
the protocols of the MSA proposal.

Theorem 2. The following are true, with the notation de-

scribed above.
(i) TLS~ AUTH,KD

(ii) AWAY ~» AUTH,KF, KA, KD,INFO
(iii) MKHSH ~ AUTH,KF, KA, KD,INFO
(iv) GKH ~» AUTH, KD

(v) PUSH ~ AUTH, KD

(vi) PULL ~ AUTH, KD

(vii) DEL ~» AUTH

(viii) ABBH ~» AUTH, KF, KA, KD,INFO

This theorem was one of the major driving forces be-
hind the work. It asserts that the full protocol suite in the
MSA proposal, with a rather complex key hierarchy;, is se-
cure. Each protocol achieves the maximal security goals
for its type. Appendix A contains a proof of part of (viii)
and provides a feel for the proof methodology. The proof
of Theorem 2 depends on the PCL additions of Section 3.

4.3. Composition

The MSA architecture allows for significant variation
in how protocols compose together [4]. Once an estab-
lished state is reached, many protocols (which may have
been run previously to reach the established state) may be
chosen. Reaching an established state may take a vari-
ety of paths, depending on the authentication mechanism
(TLS or pre-shared key) used. Error-handling strategies
will cause protocols to restart, or, potentially, different
protocols to be run. This introduces a complex state di-
agram and complexities of composition.



While staged composition proofs have been presented
previously [28, 23], the presentation in each case has dif-
fered. Staged composition allows arbitrary back arrows
and paths through possible protocol execution paths. This
allows for protocol restarts, lost connections, and other
real-world considerations about the order in which proto-
cols are run. We provide a slightly different presentation
of similar ideas in Section 4.3.1. Readers primarily in-
terested in the proof of MSA may skip this section and
proceed to Section 4.3.2 where the overall MSA security
theorem is presented.

4.3.1 Consistent Composition

The concept of branches within protocols or between
protocols has not been explicitly mentioned in previous
PCL composition theorems. We require this functionality,
to denote how a particular staging can be accomplished
within the MSA framework. One of our motivations is
to allow such possibilities as are represented in Figure 7.
After basic sequence A, either sequence B or sequence C
may follow. Sequence D follows C and both B and D lead
to E. The consistent composition theorem provides the re-
quirements under which such branches will still compose.
This also provides for all manner of if/then functionality
within PCL, if it can be properly created in semantics and
the various results of the if/then statement are properly
modeled in terms of basic sequence breaks. We believe
this fills a gap in the span of PCL.

/\
\/

Figure 7. Branches in PCL

We utilize the definitions of role-prefix, staged role,
and staged composition from [23], suitably augmented for
the retrieve action. Informally, role-prefix defines which
sets of basic sequences can lead to a particular basic se-
quence. A staged role is a particular, legitimate sequence
of basic sequences leading to a particular execution point.
And staged composition allows for sequential implemen-
tation with arbitrary returns to earlier execution points,
with the branching of retrieve potentially following dif-
ferent paths on each iteration.

We use fp, to indicate the precondition for basic se-
quence P;. Additionally, to add simplicity to our exposi-
tion, we use ' to denote the conjunction of all invariants
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within a staged composition of protocols. That is, I is the
totality of all the invariants from each of the protocols @;
that make up a composition of protocols ). This allows
us to state the following theorem succinctly.

Theorem 3. Let Q be a staged composi-
tion of protocols @Q1,Q2,...,Q, and P;P;, €
SComp({Q1,Q2,...,Qn)) and P; € Q;. Then Q +

Op, [P; Pi]x0p,,,, if for all RComp((P1, Ps, ..., Py,)) €
Q, all of the following hold:
(Invariants)
(i) ViVS§ € BS(QZ) - api VAN F[S}XF
(Preconditions)
(i) Q1 ®Q2® -+ ® Qn FVi.0p[Plx0p,,,

(i)Vi.VS € Uj>1 BS(P;).0p,[S]x0p,
((V)Q1RQ2Q - ®Qp - Start(X) D Op,

Theorem 3 states the conditions under which a partic-
ular run through a set of actions reaches its ultimate goal.
The “Invariants” condition requires that no basic sequence
violate any invariant of any basic sequence, with its proper
preconditions, and invariants holding before the basic se-
quence. The “Preconditions” conditions require that each
basic sequence’s postconditions imply the next basic se-
quence’s preconditions, that no basic sequence ever vi-
olate any preceding basic sequence’s preconditions, and
that the start state is valid.

We point out that Theorem 3 is dependent on basic se-
quences as its fundamental building block. The protocols
themselves, while useful distinctions in understanding and
modeling the system, are not critical. In particular, the
@;’s could be single basic sequences and the entire the-
orem still holds. This allows us to model at the level of
basic sequences. This level of granularity has been sug-
gested before [23], but we make it explicit.

This allows, for example, the behavior of the retrieve
action that we discuss Section 3.3. Retrieve allows two
different paths through a larger staged composition. In
one path, a locally stored value is returned. In the other
path, an entire protocol is run. As protocols compose con-
sistently at the granularity of basic sequences in the initial
protocol, retrieve fundamentally denotes alternate meth-
ods of staging the composition. In all protocols that use
retrieve, the invariants and various preconditions in the
protocol are proven against all possible stagings of the re-
trieve action.

4.3.2 Composition in MSA

We wish to apply Theorem 3 to the protocols of the MSA
proposal. We view the protocols of staged composition
as the protocols given previously. As mentioned, we con-
sider arbitrary breaks at the basic sequence level, for mid-
protocol composition as well as overall composition. We



need to prove that all protocols within MSA (compris-
ing PLE, TLS, 4WAY, MKHSH, GKH, PULL, PUSH,
DEL, and ABBH, (both ABBH.INIT and ABBH.SIMO)
satisfy the necessary conditions for composition.

Theorem 4. Let Q be a specific composition of proto-
cols from MSA and RComp({P1, P, ..., P,)) € Q and
I'=Trrs 2 AN Tawavi ANCyukasu i Al arm (1,2 A
Tpppg1,2) Al aBBH1. Then:
(i) ViNS € BS(Qy). F 0p, AT[S]xT
(ii) ®Paway F Ourxasy NOcrn
Sy xusu b Opusu NOpuLr NOpeL
v rasa - OaBBH
SappH - 0ckH
(iii)ViV S € Uj>i BS(Pj).le. [S]Xepi
(iv)0p, -

Proving that all the protocols securely compose is a
lengthy induction process, which we omit owing to space
constraints. We briefly discuss the meaning of the various
subpoints. No portion of any protocol in MSA violates
the invariants (i) or changes the preconditions (7i%) of any
MSA protocol. All nodes in a mesh start with the correct
information, by assumption (iv). Point (ii) gives the pro-
tocols which guarantee certain subsequent protocols can
be completed with other legitimate nodes, via pre and post
condition matching.

This theorem states that, given any MSA protocol, if
the MKD and the players in the protocol are honest (that
is, they conform to the protocol specification), then the se-
curity of that protocol is ensured, regardless of what other
protocols may be running in the system. By extension, a
mesh of honest nodes guarantees our security goals; the
Mesh Security Architecture is sound.

5. Modifications to MSA

Our analysis of the protocols and key hierarchy of the
MSA proposal indicate that it was largely well-designed.
We have two recommendations that have been incorpo-
rated into the 802.11s draft (as of March 2008) and are
necessary for Theorem 2 to hold; otherwise, the protocols
are insecure.

5.1. Include Mesh Nonce in 4WAY

The draft specification of 4WAY during MSA authen-
tication does not properly provide key freshness. The pro-
posal has the key generation nonce (MKDnonce) provided
by the MKD used both to derive the pmkmkd (see Figure
2) and as the nonce to derive the session key (ptk). This is
shown in Figure 8.

This enables an attack that proceeds as follows. At
some point, a legitimate node (X) disconnects from the
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mesh. The attacker then starts MSA authentication with
the same MA with which X connected before. The rogue
node does PLE (claiming to be X') and then continues to
the 4WAY protocol, where the MKDnonce is the same.
The rogue node re-uses the nonce X used and now the
same ptk is derived. The attacker may then utilize some
information recorded from the legitimate conversation or
otherwise abuse the mesh. If TLS is used and not a pre-
shared key, then this particular attack no longer works.

The solution adopted by 802.11s is to modify the
derivation of pmkmkd so that it does not require an MKD-
nonce, so that 4WAY is responsible only for transporting
nonces used to derive the ptk. The MKDnonce was re-
moved as it did not provide significant benefit to the archi-
tecture and was not required for our key freshness goal. At
this point, key freshness (for the ptk) can be proven and
the attack outlined above is thwarted.

5.2. Include MAC Address in the Group
Key Handshake protocol (GKH)

In the original proposal, GKH does not provide au-
thentication. Recall from section 4.2 that the AUTH
goal requires matching conversations between two differ-
ent nodes. In the proof of this property, it became apparent
to us that the proposal did not protect against a reflection
attack.

MAC addresses were contained in the GKH message
headers (to facilitate transport of the messages) but were
not incorporated in the calculation of the message integrity
code (mic) included in each GKH message. GKH mes-
sages are protected using the ptk, a pairwise key known
only to two parties, but either party may initiate the GKH.
Owing to this symmetry, the first GKH message could
be reflected back to the sender, and would be accepted as
valid because of the presence of a valid mic. This reflec-
tion attack could change the security state at the MP that
sends the first message of GKH, such as by installing a
stale gtk or installing its own gtk as if it were its neigh-
bor’s gtk.

The proposed modification includes the explicit iden-
tification of sender and receiver in the protected portion
of the message, and updates the processing of GKH mes-
sages to verify this information upon reception. This pre-
vents the replay attack because the sender and receiver
MAC addresses would not match if a reflection attack is
attempted.

6. Conclusions and Future Work

We have proven the security of the MSA, under stan-
dard assumptions. We provided and justified a few rec-
ommendations that were incorporated (as of March 2008)



PLE

4WAY

MKDnonce
x, hashpi, = mic

PULL
MKDnonce

Figure 8. MSA Authentication. The text above a double-headed arrow (e.g., 4WAY) is a protocol, and text below (e.g.,

MKDnonce) is some data that is sent as part of the protocol.

into the 802.11s draft standard, which is still being devel-
oped. We also hope that providing a security proof dur-
ing the design and review process will lead to additional
efforts in that regard. We feel that protocol design is im-
portant and an analysis of a system should be done before
implementation, not after. In the process of this analysis,
we made a number of contributions to PCL.

The most important contribution, from our perspective,
is the ability to handle simultaneity, with the introduction
of action groups and associated axioms and proof tech-
niques. The definition of generalized authentication using
generalized matching conversations is also required for si-
multaneous peer-to-peer protocols. The select and retrieve
actions were also designed to extend naturally to examina-
tions of other architectures.

This paper also takes a deeper dive into the details of
the protocols than is often undertaken. While examining
only the security components (nonces, keys, etc.) simpli-
fies analysis, it also leaves a gap. Our experience leads
us to believe that gaps in analysis are often dangerous, as
they lead to assumptions about security, implementation
difficulties, and unforeseen attack vectors. Some level of
abstraction is necessary, but adding a model for authenti-
cated information exchange is critical for many applica-
tions.

This paper opens opportunities for applying PCL to
other peer-to-peer protocols, where ordering may not be
as strict as in server-client models. Other protocol sys-
tems, particularly those on standard-track, would be natu-
ral candidates for additional analysis.

Finally, we provide a new, more general composition
theorem, which explicitly allows for mid-protocol com-
position and branching. As it is not unusual for protocols
to intermix, explicitly allowing multiple potential paths
through basic sequences is important, and should naturally
extend to other situations.
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A. SIMO Security

A.1. Security Goals for SIMO

Here we detail the five PCL security goals for the SIMO abbreviated
handshake protocol (the AUT H goal was presented in Figure 4 and is



repeated here). These directly correspond to the security goals detailed
in Section 4.2. Unlike the generic goals presented there, these are the
specific instances for the SIMO protocol.

Goals SIMO:

®s1vo,auTH = KOHonest(ptkx v, {pmkx y,pmky,x}) D
(Send(X, SIMO1X) < Receive (Y, SIMOIX))A

(Send(Y, SIMO1Y) < Receive(X, SIMO1Y))A

(Send(Y, SIMO5Y) < Receive(X, SIMO5Y))A

(Send(X, SIMO1X) < Receive(X, SIMO1Y) <

(Send(X, SIMO5X) A Receive (X, SIMO5Y))A

(Send(Y, SIMO1Y) < Receive (Y, SIMO1X) <

Send(Y, SIMO5Y))

®simo KF =

KOHonest(ptkx vy, {pmkx. y,pmky x}) D

(New (X, z) ANz C ptkx vy A New (}A’,y) Ny C ptkx y)A
FirstSend (X, z, X, &, SIMO1X)A

FirstSend(Y, y, Y, y, SIMO1Y)

PsIMO,KA =
KOHonest(ptkx,y, {pmkx v,pmky,x}) D
Has(X, pthyy) A Has(Y, pthyy)

Ps1MO,KD =

KOHonest(ptkx vy, {pmkx,y,pmky,x })A
Receive(Y, SIMOX5) D

Has(X, gtky ) A Has(Y, gtkx)

PsIMO,INFO =

KOHonest(ptkx y, {pmkx y,pmky, x }) D
SELECT(INFOx,INFOy) = CS, pmkNA
Has(X, CS,pmkN) A Has(Y, CS,pmkN)

A.2. Proof Security Goals, SIMO

Proof Sketch Generalized Authentication, SIMO Wwe
only need to show the proof from a single point of view as the roles
are symmetric. Let principal X be the principal from whose view we
are establishing the proof from and let Y be the other principal. As the
proof assumes X has completed the protocol successfully, we know that
SIMO1X was sent before SIMO5X and SIMO1Y was received before
SIMOSY. Thus to complete the proof we must show that Y sent exactly
SIMOL1Y before SIMOSY and received exactly SIMO1X before sending
SIMOS5Y. We can determine the MIC in SIMOSY could have only been
sent by Y if X, Y and T are honest. Since all the variables used in the
protocol are contained in the MIC of SIMOSY, we know that X and Y
share identical variables. Now using the honesty of Y we are sure that Y’
sent SIMO1Y and received SIMO1X before sending SIMOSY and that
it was sent exactly as X received it. Again if Y is honest since X and Y
share variables, then Y must have received SIMO1X exactly as X had
sent it. This gives us generalized authentication.

Generalized Authentication:
AA1,ARP,AA4,0ABBH,1
[ABBH : SIMO| x

Send(X,Y, X,“ABBH1”, INFOx,x) <

Receive(X, X, Y, “ABBH1”, INFOy,y) <

(Receive(X, X, Y, “ABBH5”, INF Oy, y, z, enc, mic1 )A
Send(X, Y, X,“ABBH5”, INFOx, z,y, enco, mico)) (1)

ARP,HASHS',0apBH 1
[ABBH : SIMO]x
Receive(X, X, Y, “ABBH5”, INFOy, y, z, enc1, mic1) D
3Z.Computes(Z, HASHy ¢ . . (
X,Y,“ABBH5”, INFOy,y,x,enci, INFOx))A
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Sends(Z, HASH,4, .  (

X,V ,“ABBH5”, INFOy,y,z,enc1, INFOx)) <
Receive (X, X, )A/, “ABBH5”, INFOy,y,z,enci, micy)

0aBBH,s1,1, HASH1
KOHonest(ptkx,y, {pmkx y,pmky,x}) D
Computes(Z, HASHy ¢,  (

X,V ,“ABBH5”, INFOy,y,z,enc1, INFOx)) D

Has(Z,ptkxy) D Z=XVZ=YVZ="T

2,3,AA1,TaABBH,1,9ABBH,1

[ABBH : SIMO] x

KOHonest(ptkx .y, {pmkx,y,pmky,x}) D
Send(Z, HASH 11, (

X,V ,“ABBH5”, INFOy,y,z,enc1,INFOx)) D Z =Y

2,4,0ABBH,1
[ABBH : SIMO] x

KOHonest(ptkx,y, {pmkx v, pmky,x}) D
Computes (Y, HASH . o (

X,V ,“ABBH5”, INFOy,y,z,enc1, INFOx))A
Send(Y, HASH sz, + (

X,Y,“ABBH5”, INFOy,y,z,enc1, INFOx))

5, HASHL1,0ABBH,1

[ABBH : SIMO] x

Has(Y, ptkx vy )A

Has(Y, X,Y,“ABBH5”, INFOy,y, z, enci, micy)

5,6, )HONESTY,ABBH,1
[ABBH : SIMO)] x

KOHonest(ptkx,y, {pmkx v, pmky,x}) D
Send(Y, X,Y,“ABBHI”, INFOy,y) <

Receive(Y, Y, X, “ABBHI”, INFOx,z) <

Send(Y, X,Y,“ABBH5”, INFOy, y, z, enci, micy)

2,7,0ABBH,1
[ABBH : SIMO] x

KOHonest(ptkx v, {pmkx. y,pmky x}) D

Send(Y, X,Y,“ABBH5”, INF Oy, y, z, enc1, mic1) <
Receive (X, X,Y,“ABBH5”, INFOy,y, z, enci, micy)

FS1,ANS3, eABBH,l
[ABBH : SIMO| x

FirstSend(X, z,Y, X, “ABBHI1”, INFOx, )

9,FS2,0ABBH,1
[ABBH : SIMO) x

Send(X,Y, X,“ABBHI”, INFOx,z) <
Receive(Y,Y, X, “ABBH1”, INFOx, z)

FS1,ANS3,0aBBH 1
[ABBH : SIMO] x

Honest(Y) D
FirstSend(Y, y, X, Y, “ABBHI1”, INF Oy, y)

7,11,FS2,0ABBH,1
[ABBH : SIMO] y
KOHonest(ptkx,y, {pmkx v, pmky,x}) D

@

3

“

(&)

(©)

(O]

®)

©

(10

an



Send(Y, X,Y,“ABBHI”, INFOy,y) <
Receive(Y, X, Y, “ABBHI”, INF Oy, y) 12)

1, 7, 8, 10, 12, eABBH,l

[ABBH : SIMO] x

KOHonest(ptkx vy, {pmkx v,pmky,x}) D

(Send(X,Y, X,“ABBHI”, INFOx,z) <

Receive(Y,Y, X, “ABBH1”, INFOx, z))A

(Send(Y, X,Y,“ABBHI1”, INFOy,y) <

Receive(Y, X, Y, “ABBHI”, INFOy, y))A

(Send(Y, X,Y,“ABBH5”, INFOy, y, , enci, mic1) <
Receive (X, X,V ,“ABBH5”, INFOy,y, z, enci, micy))A
(Send(X,Y, X,“ABBH1”, INFOx,x) <

Receive(X, X, Y, “ABBHI1”, INFOy,y) <

(Receive (X, X,Y,“ABBH5”, INFOy,y, x, enci, micy)A
Send(X, Y, X,“ABBH5”, INFOx, z,y, enco, micp)))A
(Send(Y, X,Y,“ABBHI1”, INFOy,y) <

Receive(Y, Y, X, “ABBH1”, INFOx,z) <

Send (Y, X,Y ,“ABBH5”, INFOy,y, z, enci, micy)) (13)
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