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We present a theory for comparing the expressive power of access control models. The theory is based
on simulations that preserve security properties. We perceive access control systems as state-transition
systems and present two kinds of simulations, reductions and state-matching reductions. In applying the
theory, we highlight four new results and discuss these results in the context of other results that can
be inferred or are known. One result indicates that the access matrix scheme due to Harrison, Ruzzo
and Ullman is limited in its expressive power when compared with a trust-management scheme, thereby
formally establishing a conjecture from the literature. A second result is that a particular RBAC (Role-
Based Access Control) scheme, ARBAC97, may be limited in its expressive power, thereby countering
claims in the literature that RBAC is more expressive than DAC (Discretionary Access Control). A third
result demonstrates that the ability to check for the absence of rights (in addition to the presence of rights)
can cause a scheme to be more expressive. A fourth result is that a trust-management scheme is at least as
expressive as RBAC with a particular administrative scheme (the URA97 component of ARBAC97).
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1. Introduction

An access control system enforces a policy on who may access a resource in a
certain manner (e.g., “Alice may read the file, f”). The protection state (or simply,
state) of the system represents all the accesses that are allowed at a given time. Poli-
cies are generally expressed in terms of the current state of the system, and states that
may result from prospective changes (e.g., “Alice should always have read access to
the file, f”). Thus, when an access control system is perceived as a state-transition
system, it consists of a set of states, rules on how state-transitions may occur and
a set of properties or queries that are of interest in a given state (e.g., “Does Alice

1A preliminary version of this paper appears in the proceedings of the 2004 ACM Conference on
Computer and Communications Security (CCS) [23].
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have read access to the file, f?”) Policies may then be expressed in terms of these
components, and such policies may be verified to hold notwithstanding the fact that
state-transitions occur.

An access control model is generally associated with how the state is represented.
An example of an access control model is the access matrix model [5–7], in which
a state is represented by a matrix in which each cell, indexed by a (subject, object)
pair, contains a set of rights. Formally, an access control model is a set of access
control schemes; a scheme specifies a set of states, and a set of state-transition rules.
An example of a scheme based on the access matrix model is the HRU scheme [6]
for which a state is an access matrix, and a state-transition rule is a set of commands,
each of which is of a particular form. An access control system is an instance of an
access control scheme. A specific set of HRU commands together with a start state is
an example of an access control system. The expressive power of an access control
model captures the notion of whether different policies can be represented in systems
based on schemes from that model.

Comparing the expressive power of access control models is recognized as a fun-
damental problem in computer security and is studied extensively in the literature
[1,3,4,17,19,21,22]. The expressive power of a model is tied to the expressive power
of the schemes from the model. In comparing schemes based on expressive power,
we ask what types of policies can be represented by systems based on a scheme. If
all policies that can be represented in scheme B can be represented in scheme A,
then scheme A is at least as expressive as scheme B.

A common methodology used for comparing access control models is simulation.
When a scheme A is simulated in a scheme B, each system in A is mapped to a
corresponding system in B. If every scheme in one model can be simulated by some
scheme in another model, then the latter model is considered to be at least as ex-
pressive as the former. Furthermore, if there exists a scheme in the latter model that
cannot be simulated by any scheme in the former, then the latter model is strictly
more expressive than the former. Different definitions for simulations are used in the
literature on comparing access control models. We identify three axes along which
these definitions differ.

• The first axis is whether the simulation maps only the state, or also the state-
change rule. The approach of Bertino et al. [2] is to map only the states of two
access control models to a common language based on mathematical logic, and
to compare the results to determine whether one model is at least as expressive
as the other, or whether the two models are incomparable. Other work, such
as [1,3,4,19,21] however, require both the state and the state-change rule to be
mapped under the simulation.
An advantage with an approach such as the one that is adopted by Bertino et
al. [2] is that it captures “structural” differences in how the protection state
is represented in a system based on an access control model. For instance, it is
observed in [2] that the existence of an indirection (the notion of a role) between
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users and permissions in RBAC gives it more expressive power than an access
matrix model. Such “structural” differences are not captured by our theory, or
other approaches that consider both the state and the state-change rule.
We point out, however, that the state-change rule is an important component of
an access control system, and therefore assert that a meaningful theory for ex-
pressive power must consider it as well. In fact, it is often the case that it is the
state-change rule that endows considerable power to an access control system.
Consider, for example, the access matrix schemes proposed by Graham and
Denning [5] and by Harrison et al. [6]. In both schemes, the state is represented
by an access matrix. However, the state-change rules are quite different: in the
Graham-Denning scheme [5], there are only specific ways in which rights may
be transferred, while in the HRU scheme [6], one may define arbitrary com-
mands in a state-change rule. It has also been demonstrated [11] that safety is
decidable in polynomial time in the Graham-Denning scheme, while it is known
to be undecidable [6] in the HRU scheme. Such differences cannot be captured
by an approach that does not consider both the state and the state-change rule.

• The second axis is whether a simulation is required to preserve safety properties.
In the comparison of different schemes based on the access matrix model [1,4,
19,21], the preservation of safety properties is required. If a scheme A is sim-
ulated in a scheme B, then a system in scheme A reaches an unsafe state if
and only if the image of the system under the simulation (which is a system in
scheme B) reaches an unsafe state.
On the other hand, the preservation of safety properties is not required
in the simulations used for comparing MAC (Mandatary Access Control),
DAC (Discretionary Access Control), and RBAC (Role-Based Access Control)
[15,17,22]. Nor is it required in the simulations used for the comparison of
Access Control Lists (ACL), Capabilities, and Trust Management (TM) sys-
tems [3]. In these comparisons, the requirement for a simulation of A in B is
that it should be possible to use an implementation of the scheme B to imple-
ment the scheme A. We call this the implementation paradigm of simulations.

• The third axis is whether to restrict the number of state-transitions that the sim-
ulating scheme needs to make in order to simulate one state-transition in the
scheme being simulated. Chander et al. [3] define the notions of strong and
weak simulations. A strong simulation of A in B requires that B makes one
state-transition when A makes one state-transition. A weak simulation requires
that B makes a bounded (by a constant) number of state-transitions to simulate
one state-transition in A. A main result in [3] is that a specific TM scheme con-
sidered there is more expressive than ACL because there exists no (strong or
weak) simulation of the TM scheme in ACL. The proof is based on the obser-
vation that an unbounded (but still finite) number of state-transitions in ACL is
required to simulate one state-transition in the TM scheme.
On the other hand, an unbounded number of state-transitions is allowed by
Sandhu and Ganta [21]. They use a simulation that involves an unbounded num-
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ber of state-transitions to prove that ATAM (Augmented Typed Access Matrix)
is equivalent in expressive power to TAM (Typed Access Matrix).

Although significant progress has been made in comparing access control models,
this current state of art is unsatisfactory for the following reasons. First, different
definitions of simulations make it impossible to put different results and claims about
expressive power of access control models into a single context. For example, the
result that RBAC is at least as expressive as DAC [15,17] is qualitatively different
from the result that TAM is at least as expressive as ATAM [21], as the former does
not require the preservation of safety properties. These results are again qualitatively
different from the result that ACL is less expressive than Trust Management [3], as
the latter requires a bounded number of state-transitions in simulations.

Second, some definitions of simulations that are used in the literature are too weak
to distinguish access control models from one another in a meaningful way. Sandhu
et al. [15,17,22] show that various forms of DAC (including ATAM, in which simple
safety is undecidable) can be simulated in RBAC, using the notion of simulations
derived from the implementation paradigm. We show in this paper that using the
same notion of simulations, RBAC can be simulated in strict DAC, one of the most
basic forms of DAC where simple safety is trivially decidable. This suggests that
using such a notion of simulations, it is likely that one can show that almost all access
control models have the same expressive power. Thus, this notion of simulations is
not useful in differentiating between models based on expressive power.

Finally, the rationale for some choices made in existing definitions of simulations
is often not clearly stated and justified. It is unclear why certain requirements are
made or not made for simulations when comparing the expressive power of access
control models. For instance, when a simulation involves an unbounded number of
state-transitions, Ganta [4] considers this to be a “weak” simulation, while Chander
et al. [3] do not consider this to be a simulation at all. Neither choice is justified by
Ganta [4] and Chander et al. [3].

In this paper, we build on existing work and seek to construct uniform bases for
comparing access control models. To determine the requirements on simulations in
a systematic and justifiable manner, we start from the rationales and intuitions un-
derlying different definitions for simulations. Our approach is to first identify the
desirable and intuitive properties one would like simulations to have and then come
up with the conditions on simulations that are both sufficient and necessary to satisfy
those properties. Informally, what is desired is that when one scheme can represent
all types of policies that another can, then the former is deemed to be at least as
expressive as the latter.

Our theory is based on definitions of simulations that preserve security properties.
Examples of such security properties are availability, mutual exclusion and bounded
safety. Intuitively, such security properties are the sorts of policies one would want to
represent in an access control system. Security analysis is used to verify that desired
security properties are indeed maintained across state-transitions in an access control



M.V. Tripunitara and N. Li / A theory for comparing the expressive power 235

system. It was introduced by Li et al. [10], and generalizes the notion of safety analy-
sis [6]. In this paper, we introduce compositional security analysis, which generalizes
security analysis to consider logical combinations of queries in security analysis.

We introduce two notions of simulations called state-matching reductions and re-
ductions. We show that state-matching reductions are necessary and sufficient for
preserving compositional security properties and that reductions are necessary and
sufficient for preserving security properties. A state-matching reduction reduces the
compositional security analysis problem in one scheme to that in another scheme.
A reduction reduces the security analysis problem in one scheme to that in another
scheme.

To summarize, the contributions of this paper are as follows.

• We introduce a theory for comparing access control models based on the no-
tions of state-matching reductions and reductions, together with detailed justi-
fications for the design decisions.

• We analyze the deficiency of using the implementation paradigm to compare
access control models and show that it leads to a weak notion of simulations
and cannot be used to differentiate access control models from one another
based on expressive power.

• We highlight four applications of our theory. We show that:

– there exists no state-matching reduction from a rather simple trust-manage-
ment scheme, RT[ ] [10], to the HRU scheme [6]. To our knowledge, this is
the first formal evidence of the limited expressive power of the HRU scheme.
Contrary to the undecidability result of safety analysis in the HRU scheme,
Li et al. [10] show that safety analysis and more sophisticated security analy-
sis in the trust management scheme, RT[�,∩], is decidable. Li et al. [10]
conjecture that these schemes cannot be encoded in the HRU scheme. In this
paper, we present a formal proof for this.
The RT[ ] scheme is certainly not as expressive as the HRU scheme; we con-
clude that the two schemes are incomparable in expressive power with respect
to state-matching reductions.

– there exists no state-matching reduction from a rather simple DAC scheme,
Strict DAC with Change of Ownership (SDCO), to RBAC with
ARBAC97 [20] as the administrative model. Osborn et al. [17] and Sandhu
and Munawer [22] have argued that RBAC is more expressive than various
forms of DAC, including SDCO. To our knowledge, this is the first evidence
of the possible limited expressive power of an RBAC scheme in comparison
to DAC.
However, we show that a reduction does exist from SDCO to the ARBAC97
scheme. Consequently, whether the ARBAC97 scheme is as expressive as
SDCO or not depends on the kind of reduction we consider to be appropriate.
Also, this indicates that it may be possible to extend the ARBAC97 scheme
so that it is indeed as expressive as SDCO with respect to state-matching
reductions.
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– there exists a state-matching reduction from RBAC with an administrative
scheme that is a component of ARBAC97 [20] to RT[∩] [8,9], a trust-
management scheme. This shows that state-matching reductions can be con-
structed for powerful access control schemes in the literature.

– there exists no state-matching reduction from ATAM to TAM, when we per-
mit queries in ATAM that check for both the absence and the presence of a
right in a cell. This revisits the issue addressed by Sandhu and Ganta [21] and
formalizes the benefit from the ability to check for the absence of rights in
addition to the ability to check for the presence of rights.

The remainder of this paper is organized as follows. We present our theory for
comparing access control models in Section 2. In Section 3, we analyze the imple-
mentation paradigm for simulations. In Section 4, we apply our theory to compare
the expressive power of schemes in four cases. We summarize these and other known
results in Section 4.6. We discuss future work and conclude with Section 5. Appen-
dix 5 presents a “simulation” of RBAC in strict DAC.

2. Comparisons based on security analysis

A requirement used in the literature for simulations is the preservation of simple
safety properties. Indeed, this is the only requirement on simulations in [1,19,21].
If a simulation of scheme A in scheme B satisfies this requirement, then a system
in A reaches an unsafe state if and only if the system’s mapping in B reaches an
unsafe state. In other words, the result of simple safety analysis2 is preserved by the
simulation.

Simple safety analysis, i.e., determining whether an access control system can
reach a state in which an unsafe access is allowed, was first formalized by Harrison
et al. [6] in the context of the well-known access matrix model [5,7]. In the HRU
scheme [6], a protection system has a finite set of rights and a finite set of commands.
A state of a protection system is an access control matrix, with rows corresponding
to subjects, and columns corresponding to objects; each cell in the matrix is a set
of rights. A command takes the form of “if the given conditions hold in the current
state, execute a sequence of primitive operations”. Each condition tests whether a
right exists in a cell in the matrix. There are six kinds of primitive operations: enter a
right into a specific cell in the matrix, delete a right from a cell in the matrix, create a
new subject, create a new object, destroy an existing subject, and destroy an existing
object. The following is an example command that allows the owner of a file to grant
the read right to another user.

2What we call simple safety analysis is called safety analysis in the literature. In [10], more general
notions of safety analysis, for which the traditional safety analysis is just a special case, were introduced.
Here we follow the terminology in [10].
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command grantRead(u1,u2,f)
if ‘own’ in (u1,f)
then enter ‘read’ into (u2,f)
end

In the example, u1, u2 and f are formal parameters to the command. They are in-
stantiated by objects (or subjects) when the command is executed. Harrison et al. [6]
prove that in the HRU scheme, the safety question is undecidable, by showing that
any Turing machine can be simulated by a protection system.

Treating the preservation of simple safety properties as the sole requirement of
simulations is based on the implicit assumption that simple safety is the only inter-
esting property in access control schemes, an assumption that is not valid. When
originally introduced by Harrison et al. [6], simple safety was described as just one
class of queries one can consider. More recently, Li et al. [10] have introduced the
notion of security analysis, which generalizes simple safety to other properties such
as bounded safety, simple availability, mutual exclusion and containment.

In this section, we present a theory for comparing access control models based on
the preservation of security properties.

2.1. Access control schemes and security analysis

Definition 1 (Access Control Schemes). An access control scheme is a state-
transition system 〈Γ, Q,�, Ψ〉, in which Γ is a set of states, Q is a set of queries,
�: Γ × Q → {true, false} is called the entailment relation, and Ψ is a set of state-
transition rules.

A state, γ ∈ Γ, contains all the information necessary for making access control
decisions at a given time. The entailment relation, �, determines whether a query is
true or not in a given state. When a query, q ∈ Q, arises from an access request,
γ � q means that the access request q is allowed in the state γ, and γ �� q means
that q is not allowed. Some access control schemes also allow queries other than
those corresponding to a specific request, e.g., whether every subject that has access
to a resource is an employee of the organization. Such queries can be useful for
understanding the properties of complex access control systems.

A state-transition rule, ψ ∈ Ψ, determines how the access control system changes
state. More precisely, ψ defines a binary relation (denoted by 	→ψ) on Γ. Given
γ, γ1 ∈ Γ, we write γ 	→ψ γ1 if the change of state from γ to γ1 is allowed by

ψ, and γ
∗	→ψ γ1 if a sequence of zero or more allowed changes leads from γ to γ1.

In other words,
∗	→ψ is the reflexive and transitive closure of 	→ψ . If γ

∗	→ψ γ1, we
say that γ1 is ψ-reachable from γ, or simply γ1 is reachable, when γ and ψ are clear
from the context.

An access control model is a set of access control schemes. An access control
system in an access control scheme 〈Γ, Q,�, Ψ〉 is given by a pair (γ, ψ), where
γ ∈ Γ is the current state the system is in and ψ ∈ Ψ the state-transition rule that
governs the system’s state changes.
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Similar definitions for access control schemes appear in [1,3]; our definition from
above also appears in [12], and is different from the definitions in [1,3] in the fol-
lowing two respects. First, our definition is more abstract in that it does not refer
to subjects, objects, and rights and that the details of a state-transition rule are not
specified. We find such an abstract definition more suitable to capture the notion
of expressive power especially when the models or schemes that are compared are
“structurally” different (e.g., a scheme based on RBAC that has a notion of roles
that is an indirection between users and permissions, and a scheme based on the
access-matrix model in which rights are assigned to subjects directly). Second, our
definition makes the set of queries that can be asked an explicit part of the specifi-
cation of an access control scheme. In existing definitions in the literature, the set
of queries is often not explicitly specified. Sometimes, the implicit set of queries is
clear from context; other times, it is not clear.

The HRU Scheme. We now show an example access control scheme, the HRU
scheme, that is derived from the work by Harrison et al. [6]. We assume the exis-
tence of three countably infinite sets: S , O, and R, which are the sets of all possible
subjects, objects, and rights. We further assume that S ⊆ O, i.e., all subjects are also
objects. In the HRU scheme:

• Γ is the set of all possible access matrices. Formally, each γ ∈ Γ is identified by
three sets, Sγ ⊂ S, Oγ ⊂ O, and Rγ ⊂ R, and a function Mγ[ ] : Sγ × Oγ →
2Rγ , where Mγ[s, o] gives the set of rights that are in the cell.

• Q is the set of all queries having the form: r ∈ [s, o], where r ∈ R is a right,
s ∈ S is a subject, o ∈ O is an object. This query asks whether the right r exists
in the cell corresponding to subject s and object o.

• The entailment relation is defined as follows: γ � r ∈ [s, o] if and only if s ∈
Sγ , o ∈ Oγ , and r ∈ Mγ[s, o].

• Each state-transition rule ψ is given by a set of command schemas. Given ψ, the
change from γ to γ1 is allowed if there exists an instance of a command schema
in ψ that when applied to γ gets γ1.

The set of queries is not explicitly specified by Harrison et al. [6]. It is conceivable
to consider other classes of queries, e.g., comparing the set of all subjects that have a
given right over a given object with another set of subjects. In our framework, HRU
with different classes of queries can be viewed as different schemes in the access
matrix model.

Definition 2 (Security Analysis). Given an access control system 〈Γ, Q,�, Ψ〉, a se-
curity analysis instance has the form 〈γ, q, ψ, Π〉, where γ ∈ Γ is a state, q ∈ Q is a
query, ψ ∈ Ψ is a state-transition rule, and Π ∈ {∃,∀} is a quantifier.

An instance 〈γ, q, ψ,∃〉 is said to be existential; it asks whether there exists γ1

such that γ
∗	→ψ γ1 and γ1 � q? If so, we say q is possible (given γ and ψ).

An instance 〈γ, q, ψ,∀〉 is said to be universal; it asks whether for every γ1 such
that γ

∗	→ψ γ1, γ1 � q? If so, we say q is necessary (given γ and ψ).
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Simple safety analysis is a special case of security analysis. A simple safety
analysis instance that asks whether a system (γ, ψ) in the HRU scheme can reach
a state in which the subject s has the right r over the object o is represented as
the following instance: 〈γ, r ∈ [s, o], ψ,∃〉. The universal version of this instance,
〈γ, r ∈ [s, o], ψ,∀〉, asks whether s always has the right r over the object o in every
reachable state. Thus it refers to the availability property and asks whether a partic-
ular access right is always available to the subject s.

We now introduce a generalized notion of security analysis.

Definition 3 (Compositional Security Analysis). Given a scheme 〈Γ, Q,�, Ψ〉, a
compositional security analysis instance has the form 〈γ, ϕ, ψ, Π〉, where γ, ψ, and
Π are the same as in a security analysis instance, and ϕ is a propositional formula
over Q, i.e., ϕ is constructed from queries in Q using propositional logic connectives
such as ∧, ∨, ¬.

For example, the compositional security analysis instance 〈γ, (r1 ∈ [s, o1])∧(r2 ∈
[s, o2]), ψ,∃〉 asks whether the system (γ, ψ) can reach a state in which s has both
the right r1 over o1 and the right r2 over o2. We allow the formula ϕ to have infinite
size. For example, suppose that S , the set of all subjects, is {s1, s2, s3, s4, . . .}, then
the formula ¬(r ∈ [s2, o] ∨ r ∈ [s3, o] ∨ r ∈ [s4, o] ∨ · · ·) is true when no subject
other than s1 has the right r over object o.

Whether we should use security analysis or compositional security analysis is re-
lated to what types of policies we want to represent, and what types of policies we
want to use as bases to compare the expressive power of different access control
models or schemes. With compositional security analysis, we would be comparing
models or schemes based on types of policies that are broader than with security
analysis. For instance, if our set of queries Q contains queries related to users’ ac-
cess to files, then with compositional security analysis we can consider policies such
as “Bob should never have write access to a particular file so long as his wife, Alice
has a user account (and thus has some type of access to some file)”.

2.2. Two types of reductions

In this section, we introduce the notions of reductions and state-matching reduc-
tions that we believe are adequate for comparing the expressive power of access con-
trol models. Before we introduce reductions, we discuss mappings between access
control schemes.

Definition 4 (Mapping). Given two access control schemes A = 〈ΓA, QA,�A, ΨA〉
and B = 〈ΓB , QB ,�B ,ΨB〉. A mapping from A to B is a function σ that maps each
pair 〈γA, ψA〉 in A to a pair 〈γB , ψB〉 in B and maps each query qA in A to a query
qB in B. Formally, σ : (ΓA × ΨA) ∪ QA → (ΓB × ΨB) ∪ QB .
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Definition 5 (Security-Preserving Mapping). A mapping σ is said to be security-
preserving when every security analysis instance in A is true if and only if the image
of the instance is true. Given a mapping σ : (ΓA×ΨA)∪QA → (ΓB×ΨB)∪QB , the
image of a security analysis instance 〈γA, qA, ψA, Π〉 under σ is 〈γB , qB , ψB , Π〉,
where 〈γB , ψB〉 = σ(〈γA, ψA〉) and qB = σ(qA).

The notion of security-preserving mappings captures the intuition that simulations
should preserve security properties. Given a security-preserving mapping from A
to B and an algorithm for solving the security analysis problem in B, one can con-
struct an algorithm for solving the security analysis problem in A using the mapping.
Also, security analysis in B is at least as hard as security analysis in A, modulo the
efficiency of the mapping. If an efficient (polynomial-time) mapping from A to B ex-
ists, and security analysis in A is intractable (or undecidable), then security analysis
in B is also intractable (undecidable). Security preserving mappings are not powerful
enough for comparisons of access control schemes based on compositional security
analysis. We need the notion of a strongly security-preserving mapping for that pur-
pose.

Definition 6 (Strongly Security-Preserving Mapping). Given a mapping σ from
scheme A to scheme B, the image of a compositional analysis instance, 〈γA, ϕA,
ψA, Π〉, in A is 〈γB , ϕB , ψB , Π〉, where 〈γB , ψB〉 = σ(〈γA, ψA〉) and ϕB is ob-
tained by replacing every query qA in ϕA with σ(qA); we abuse the terminology
slightly and write ϕB = σ(ϕA). A mapping σ from A to B is said to be strongly
security-preserving when every compositional security analysis instance in A is true
if and only if the image of the instance is true.

While the notions of security-preserving and strongly security-preserving map-
pings capture the intuition that simulations should preserve security properties, they
are not convenient for us to use directly. Using the definition for either type of map-
ping to directly prove that the mapping is (strongly) security preserving involves
performing security analysis, which is expensive. We now introduce the notions of
reductions, which state structural requirements on mappings for them to be security
preserving. We start with a form of reduction appropriate for compositional security
analysis and then discuss weaker forms.

Definition 7 (State-Matching Reduction). Given a mapping from A to B, σ : (ΓA×
ΨA)∪QA → (ΓB×ΨB)∪QB , we say that the two states γA and γB are equivalent
under the mapping σ when for every qA ∈ QA, γA �A qA if and only if γB �B

σ(qA). A mapping σ from A to B is said to be a state-matching reduction if for
every γA ∈ ΓA and every ψA ∈ ΨA, 〈γB , ψB〉 = σ(〈γA, ψA〉) has the following
two properties:

1. For every state γA
1 in scheme A such that γA ∗	→ψ γA

1 , there exists a state γB
1

such that γB ∗	→ψB γB
1 and γA

1 and γB
1 are equivalent under σ.
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2. For every state γB
1 in scheme B such that γB ∗	→ψB γB

1 , there exists a state γA
1

such that γA ∗	→ψ γA
1 and γA

1 and γB
1 are equivalent under σ.

Property 1 says that for every state γA
1 that is reachable from γA, there exists a

reachable state in scheme B that is equivalent, i.e., answers all queries in the same
way. Property 2 says the reverse, for every reachable state in B, there exists an equiv-
alent state in A. The goal of these two properties is to guarantee that compositional
security analysis results are preserved across the mapping.

The above definition may appear similar to the well-known notion of a bisimula-
tion [14,18]. However, there are important differences between the two. In bisimu-
lation, a state-change in one system must correspond to a state-change in the other
system. In our context, this can be seen as more of a “lock-step” approach. The
above definition for state-matching reductions is less restrictive. It requires only that
for every finite sequence of state-changes in one system, there exists a finite se-
quence of state-changes in the other system. Also, in a bisimulation, when we talk of
corresponding reachable states, we require the labels on the state-changes that lead
to the states to be the same. State-matching reductions impose no such restriction;
the state-changes that lead to corresponding states (states that answer corresponding
queries) are not related to each other in any a-priori manner.

With the following theorem, we justify Definition 7.

Theorem 1. Given two schemes A and B, a mapping σ from A to B is strongly
security-preserving if and only if σ is a state-matching reduction.

Proof. The “if” direction. When σ is a state-matching reduction, given a compo-
sitional security analysis instance 〈γA, ϕA, ψA, Π〉 in scheme A, let 〈γB , ψB〉 =
σ(〈γA, ψA〉) and ϕB = σ(ϕA), we show that 〈γA, ϕA, ψA, Π〉 is true if and only if
〈γB , ϕB , ψB , Π〉 is true.

First consider the case that the instance 〈γA, qA, ψA, Π〉 is existential, i.e., Π is ∃.
If the instance is true, i.e., there exists a reachable state γA

1 in which ϕA is true. Prop-
erty 1 in Definition 7 guarantees that there exists a reachable state γB

1 that is equiv-
alent to γA

1 ; thus ϕB is true in γB
1 ; therefore, the instance in B, 〈γB , ϕB , ψB ,∃〉, is

also true. On the other hand, if 〈γB , ϕB , ψB ,∃〉 is true, then there exists a reachable
state γB

1 in which ϕB is true. Property 2 in Definition 7 guarantees that there exists
a state in A in which the analysis instance in A is true.

Now consider the case that the instance 〈γA, ϕA, ψA, Π〉 is universal, i.e., Π is ∀.
If the instance is false, i.e., there exists a reachable state γA

1 in which ϕA is false.
Property 1 guarantees that the instance in B is also false. Similarly, if the instance in
B is false, then the instance in A is also false.

The “only if” direction. When σ is not a state-matching reduction, then there
exists γA ∈ ΓA and ψA ∈ ΨA such that 〈γB , ψB〉 = σ(〈γA, ψA〉) violates one of
the two properties in Definition 7.
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First consider the case that Property 1 is violated. There exists a reachable state
γA

1 such that no state reachable from γB is equivalent to γA
1 . Construct a formula

ϕA as follows: ϕA is a conjunction of queries in Q or their complement. For every
query qA in QA, ϕA includes qA if γA

1 �A qA and ¬qA if γA
1 �A ¬qA. (Note that

the length of ϕA may be infinite, as the total number of queries may be infinite.)
Clearly, ϕA is true in γA

1 , but σ(ϕA) is false in all states reachable from γB . Thus,
the existential compositional analysis instance involving ϕA has different answers,
and σ is not strongly security preserving.

Then consider the case that Property 2 is violated. There exists a state γB
1 reach-

able from γB such that no state reachable from γA is equivalent to γB
1 . Construct a

formula ϕA as follows: ϕA is a conjunction of queries in Q or their complement. For
every query qA in QA, ϕA includes qA if γB

1 �B σ(qA) and ¬qA if γB
1 �B σ(qA).

Clearly, ϕA is false in all states reachable from γA, but σ(ϕA) is true in γB
1 ; thus,

the existential compositional analysis instance involving ϕA has different answers,
and σ is not strongly security preserving. �

Note that the proof uses a compositional analysis instance that contains a po-
tentially infinite-length formula. If one chooses to restrict the formulas in analysis
instances to be finite length, then state-matching reduction may not be necessary
for being strongly security-preserving. Also, a state-matching reduction preserves
compositional security properties. If we only need queries from Q to represent our
policies and not compositions of those queries, then the following weaker notion of
reductions is more suitable. However, we believe that the notion of state-matching
reductions is quite natural by itself; it is certainly necessary when compositional
queries are of interest.

Definition 8 (Reduction). Given two access control schemes A = 〈ΓA, QA,�A,
ΨA〉 and B = 〈ΓB , QB ,�B ,ΨB〉. A mapping from A to B, σ, is said to be a re-
duction from A to B if for every γA ∈ ΓA and every ψA ∈ ΨA, 〈γB , ψB〉 =
σ(〈γA, ψA〉) has the following two properties:

1. For every state γA
1 and every query qA in scheme A, if γA ∗	→ψ γA

1 , then in

scheme B there exists a state γB
1 such that γB ∗	→ψB γB

1 and γA
1 �A qA if and

only if γB
1 �B σ(qA).

2. For every state γB
1 in scheme B and every query qA in scheme A, if γB ∗	→ψB

γB
1 , there exists a state γA

1 such that γA ∗	→ψ γA
1 and γA

1 �A qA if and only if
γB

1 �B σ(qA).

Definition 7 differs from Definition 8 in that the former requires that for every
reachable state in A (B, resp.) there exist a matching state in B (A, resp.) that gives
the same answer for every query. Definition 8 requires the existence of a matching
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state for every query; however, the matching states may be different for different
queries. Property 1 in Definition 8 says that for every reachable state in A and every
query in A, there exists a reachable state in B that gives the same answer to (the
image of) the query. Property 2 says the reverse direction. The goal of these two
properties is to guarantee that security analysis results are preserved across the map-
ping. The fact that a reduction, as defined in Definition 8, is adequate for preserving
security analysis results is formally captured by the following theorem.

Theorem 2. Given two schemes A and B, a mapping, σ, from A to B is security
preserving if and only if σ is a reduction.

Proof. The “if” direction. When σ is a reduction, given a security analysis instance
〈γA, qA, ψA, Π〉 in scheme A, let 〈γB , ψB〉 = σ(〈γA, ψA〉) and qB = σ(qA), we
show that 〈γA, qA, ψA, Π〉 is true if and only if 〈γB , qB , ψB , Π〉 is true.

First consider the case that the instance 〈γA, qA, ψA, Π〉 is existential, i.e., Π
is ∃. If the instance is true, i.e., there exists a reachable state γA

1 in which qA is
true. Property 1 in Definition 8 guarantees that there exists a reachable state γB

1 in
which qB is true. Therefore, the instance in B, 〈γB , qB , ψB ,∃〉, is also true. On the
other hand, if 〈γB , qB , ψB ,∃〉 is true, then there exists a reachable state γB

1 in which
qB is true. Property 2 in Definition 8 guarantees that there exists a state in A in which
qA is true; thus the analysis instance in A is true.

Now consider the case that the instance 〈γA, qA, ψA, Π〉 is universal, i.e., Π is ∀.
If the instance is false, i.e., there exists a reachable state γA

1 in which qA is false.
Property 1 guarantees that the instance in B is also false. Similarly, if the instance in
B is false, then the instance in A is also false.

The “only if” direction. When σ is not a reduction, then there exists γA ∈ ΓA

and ψA ∈ ΨA such that 〈γB , ψB〉 = σ(〈γA, ψA〉) violates one of the two properties
in Definition 8.

First consider the case that Property 1 is violated. There exists a reachable state γA
1

and a query qA such that for every state reachable from γB the answer for the query
σ(qA) under the state is different from the answer for qA under γA

1 . If γA
1 �A qA,

then this means that qB is false in every state reachable from γB . Thus the security
analysis instance 〈γA, qA, ψA,∃〉 is true, but its image under σ is false. Thus, the
mapping σ is not security-preserving. If γA

1 ��A qA, then this means that qB is true
in every state reachable from γB . Thus the security analysis instance 〈γA, qA, ψA,∀〉
is false, but its image under σ is true.

Then consider the case that Property 2 is violated. There exists a state γB
1 reach-

able from γB and a query qA such that for every state reachable from γA the answer
for the query qA under the state is different from the answer for σ(qA) under γB

1 .
If γB

1 �B σ(qA), then this means that qA is false in every state reachable from γA.
Thus the security analysis instance 〈γA, qA, ψA,∃〉 is false, but its image under σ is
true. If γB

1 ��B qB , then this means that qA is true in every state reachable from γA.
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Thus the security analysis instance 〈γA, qA, ψA,∀〉 is true, but its mapping in B is
false. �

Comparisons of two access control models are based on comparisons among ac-
cess control schemes in those models.

Definition 9 (Comparing the Expressive Power of Access Control Models). Given
two access control models M and M′, we say that M′ is at least as expressive as
M based on state-matching reductions (or M′ has at least as much expressive power
based on state-matching reductions as M′) if for every scheme in M there exists a
state-matching reduction from it to a scheme in M′. In addition, if for every scheme
in M′, there exists a state-matching reduction from it to a scheme in M, then we
say that M and M′ are equivalent in expressive power based on state-matching
reductions. If M′ is at least as expressive as M, and there exists a scheme A in
M′ such that for any scheme B in M, no state-matching reduction from A to B
exists, we say that M′ is strictly more expressive than M based on state-matching
reductions. We have a similar definition for expressive power based on reductions.

We compare the expressive power of two schemes based on state-matching re-
ductions when compositional queries are needed to represent the policies of interest.
Otherwise, reductions suffice. Observe that we can use the above definition to com-
pare the expressive power of two access control schemes A and B, by viewing each
scheme as an access control model that consists only that scheme.

2.3. Discussions of alternative definitions for reduction

In this section, we discuss alternative definitions that differ slightly from the ones
discussed in the previous section. The first of these definitions is used by Sandhu et
al. [19,21] for simulations.

Definition 10 (Form-1 Weak Reduction). A mapping from A to B, given by σ :
(ΓA × ΨA) ∪ QA → (ΓB × ΨB) ∪ QB , is a form-1 weak reduction if for every
γA ∈ ΓA and every ψA ∈ ΨA, 〈γB , ψB〉 = σ(〈γA, ψA〉) has the following two
properties:

1. For every query qA, if there exists a state γA
1 in scheme A such that γA ∗	→ψA

γA
1 and γA

1 �A qA, then there exists a state γB
1 such that γB ∗	→ψB γB

1 and

γB
1 �B σ(qA).

2. For every query qA, if there exists γB
1 in scheme B such that γB ∗	→ψB γB

1

and γB
1 �B σ(qA), then there exists a state γA

1 such that γA ∗	→ψ γA
1 and

γA
1 �A qA if and only if γB

1 �B σ(qA).
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The intuition underlying Definition 10, as stated by Sandhu [19] is, “systems are
equivalent if they have equivalent worst case behavior”. Therefore, simulations only
need to preserve the worst-case access. Definition 10 is weaker than Definition 8 in
that it requires the existence of a matching state when a query is true in the state, but
does not require so when the query is false. Therefore, it is possible that a query qA

is true in all states that are reachable from γA, but the query σ(qA) is false in some
states that are reachable from γB (the query σ(qA) needs to be true in at least one
state reachable from γB). This indicates that Definition 10 does not preserve answers
to universal security analysis instances. Definition 10 is adequate for the purposes
in [19,21] as only simple safety analysis (which is existential) was considered there.

The decision of defining a mapping to be a function from (ΓA × ΨA) ∪ QA to
(ΓB × ΨB) ∪ QB also warrants some discussion. One alternative is to define a
mapping from A to B to be a function that maps each state in A to a state in B, each
state-transition rule in A to a state-transition rule in B, and each query in A to a query
in B. Such a function would be denoted as σ : ΓA ∪ ΨA ∪ QA → ΓB ∪ ΨB ∪ QB .
One can verify any such function is also a mapping according to Definition 4, which
gives more flexibility in terms of mapping states and state-transition rules from A
to B. By Definition 4, the state corresponding to a state γA may also depends upon
the state-transition being considered.

Another alternative is to define a mapping from A to B to be a function σ : ΓA ×
ΨA×QA → ΓB ×ΨB ×QB , in other words, the mapping of states, state-transition
rules, and queries may depend on each other. This definition will also leads to a
weaker notion of reduction:

Definition 11 (Form-2 Weak Reduction). A form-2 weak reduction from A to B is
a function σ : ΓA × ΨA × QA → ΓB × ΨB × QB such that for every γA ∈ ΓA,
every ψA ∈ ΨA, and every qA ∈ QA, 〈γB , ψB , qB〉 = σ(〈γA, ψA, qA〉) has the
following two properties:

1. For every state γA
1 in scheme A such that γA ∗	→ψ γA

1 , there exists a state γB
1

such that γB ∗	→ψB γB
1 and γA

1 �A qA if and only if γB
1 �B qB .

2. For every state γB
1 in scheme B such that γB ∗	→ψB γB

1 , there exists a state γA
1

such that γA ∗	→ψ γA
1 and γA

1 �A qA if and only if γB
1 �B qB .

It is not difficult to prove that a Form-2 weak reduction is also security preserving,
in the sense that any security analysis instance 〈γA, qA, ψA, Π〉 in A can be mapped
to a security analysis in B. However, it is not a mapping, as the mapping of states
and state-transition rules may depend on the query.

Definition 11 is used implicitly in Theorems 2 and 3 by Li and Tripunitara [12]
for reductions from security analysis in two RBAC schemes to that in the RT Role-
based Trust-management framework [9,10]. As we state in Theorem 7 in this paper,
a form-2 weak reduction used in [12] for one of the RBAC schemes can be changed
to a security-preserving mapping in a straightforward manner.
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We choose not to adopt this weaker notion of reduction for the following rea-
son. Access control schemes have traditionally been specified only as the double
〈Γ, Ψ〉 (sets of states and state-change rules). Queries are usually introduced subse-
quently as part of an analysis instance. An example is the work by Harrison et al. [6],
in which the query that corresponds to safety analysis is introduced as part of the
analysis problem and not as part of the scheme itself. Consequently, disassociating
the queries in the mapping from states and state-change rules gives us some flexibil-
ity. However, we recognize that when access control schemes have been introduced
in the literature, a set of queries has been assumed, sometimes implicitly. Therefore,
in our paper, we consider the set of queries to be part of a scheme.

A third weak form of reduction is introduced by Ammann et al. [1]. That work
discusses the expressive power of multi-parent creation when compared to single-
parent creation.

Definition 12 (Form-3 Weak Reduction). A mapping from A to B, given by σ :
(ΓA × ΨA) ∪ QA → (ΓB × ΨB) ∪ QB , is a form-3 weak reduction if for every
γA ∈ ΓA and every ψA ∈ ΨA, 〈γB , ψB〉 = σ(〈γA, ψA〉) has the following two
properties:

1. For every state γA
1 and every query qA in scheme A, if γA ∗	→ψ γA

1 , then in

scheme B there exists a state γB
1 such that γB ∗	→ψB γB

1 and γA
1 �A qA if and

only if γB
1 �B σ(qA).

2. For every state γB
1 in scheme B and every query qA in scheme A, if γB ∗	→ψB

γB
1 , then either (a) there exists a state γA

1 such that γA ∗	→ψ γA
1 and γA

1 �A qA

if and only if γB
1 �B σ(qA), or (b) there exists a state γB

2 such that γB
1

∗	→ψB

γB
2 and a state γA

1 such that γA ∗	→ψ γA
1 , and γA

1 �A qA if and only if γB
2 �B

σ(qA).

As pointed out by Ammann et al. [1], this form of reduction suffices for preserving
simple safety properties in monotonic schemes – those schemes in which once a
state is reached in which a query is true, in all reachable states from that state, the
query remains true. Therefore, this form of reduction cannot be used to compare
schemes when queries can become false after being true. As with the reduction from
Definition 10, this form of reduction cannot be used for universal queries.

3. The implementation paradigm for simulation: An examination

Several authors use the implementation paradigm for simulations, e.g., Osborn et
al. [17] state that “a positive answer [to the question whether LBAC (lattice-based
access control) can be simulated in RBAC] is also practically significant, because
it implies that the same Trust Computing Base can be configured to enforce RBAC
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in general and LBAC in particular”. However, in these papers [15,17,22], a precise
definition for simulations is not given. This makes the significance of such results un-
clear, at least in terms of comparing the expressive power of different access control
models.

In this section, we analyze the implementation paradigm and argue that this does
not lead to a notion of simulations that is meaningful for comparing the expressive
power of different access control models. More precisely, the notions of simulations
derived from this paradigm are so weak that almost all access control schemes are
equivalent.

To formalize the implementation paradigm for simulation, a natural goal is to use
an implementation of an access control scheme for another scheme. Intuitively, if a
scheme A can be simulated in a scheme B, then there exists a simulator that, when
given access to the interface to (an implementation of) B, can provide an interface
that is exactly the same as the interface to (an implementation of) A.

When considering the interface of an access control scheme, we have to consider
how state-transitions occur. Intuitively, an access control system changes its state
because some actors (subjects, principals, users, etc.) initiate certain actions. An im-
plementation of an access control scheme thus has an interface consisting of at least
the following functions:

• init(γ): set the current state to γ.
• query(q): ask the query q and receives a yes/no response.
• apply(a): apply the action a on the system, which may result in a state-transition

in the system.
• functions providing other capabilities, e.g., traversing the subjects and objects

in the system.

A simulator of A in B is thus a program that takes an interface of B and provides
an interface of A that is indistinguishable from an implementation for A. In other
words, the simulator is a blackbox that when given access to a backbox implemen-
tation of B, gives an implementation of A. This intuition seems to make sense if the
goal is to use an implementation of B to implement A.

It is tempting to start formalizing the above intuition; however, there are several
subtle issues that need to be resolved first.

As can be easily seen, for any two schemes A and B, a trivial simulator exists. The
simulator implements all the functionalities of A by itself, without interacting with
the implementation of B. Clearly, one would like to rule out these trivial simulators.
One natural way to do so is to restrict the amount of space used by the simulator to
be sub-linear in the size of the state of the scheme it is simulating. It seems to be a
reasonable requirement that the simulator takes constant space on its own, i.e., the
space used by the simulator does not depend on the size of the state. (The space used
by the implementation of B is not considered here.)

Another issue is whether to further restrict a simulator’s internal behavior. When
the simulator receives a query in the scheme A, it may issue multiple queries to
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the blackbox implementation of B before answering the query; it may even perform
some state-transition on B before answering the query. Similarly, the simulator may
perform multiple queries and state-transitions on B to simulate one state-transition
in A.

If no restriction is placed, then the notion of simulation is too weak to separate dif-
ferent access control models. For example, Munawer and Sandhu [15] constructed
a simulation of ATAM in RBAC. In Appendix 5, we give a simulation of RBAC in
strict DAC, a discretionary model that allows only the owner of an object to grant
rights over the object to another subject and ownership cannot be transferred. Ac-
cording to these results, the simplest DAC (in which security analysis is efficiently
decidable) has the same expressive power as ATAM (in which simple safety analysis
is undecidable). This illustrates the point that, without precise requirements, simula-
tion is not a very useful concept for comparing access control models.

If one places restrictions on the simulator, then the question is what restrictions
are reasonable. Our conclusion is that it is very difficult to justify such requirements.
In the following, we elaborate on this.

One possibility that we now argue to be inadequate is to restrict the internal be-
havior of the simulator, e.g., to restrict it to issue only one query to B in order to
answer one query in A and to make bounded number of state-transitions in B to sim-
ulate one state-transition in A. Under these restrictions, one can prove that RBAC
cannot be simulated in the HRU model. The assignment of a user to a role in RBAC
results in the user gaining all the accesses to objects implied by the permissions as-
sociated with that role; therefore, it changes the answers to an unbounded number of
queries (queries involving those permissions.) One may argue that the assignment of
a user to a role is a single “action” in RBAC, and therefore, the acquiring of those
permissions by that user is accomplished in a single “action”. The corresponding
assignment of rights in the HRU access matrix cannot be accomplished by a sin-
gle command, or a bounded number of command for that matter, as each command
only changes a bounded number of cells in the matrix. Thus, any mapping of the
user-assignment in RBAC involves an unbounded number of commands being ex-
ecuted in HRU. Nonetheless, one can argue that this is balanced by the efficiency
of checking whether a user has a particular right in the two models. A naive imple-
mentation of an RBAC model may involve having to collect all roles to which that
user is assigned, and then collecting all permissions associated with those roles, and
then checking whether one of those permissions corresponds to the object and access
right for which we are checking. The time this process takes depends on the size of
the current state and is unbounded. The corresponding check in HRU is simpler: we
simply check whether the corresponding access right exists in the cell in the matrix.
Thus, we can argue that there is a trade-off between time-to-update, and time-to-
check-access between the two schemes. Therefore, we argue that it does not make
sense to restrict the number of steps involved in the simulation.

Another possibility that we now argue to be inadequate is to measure how much
time the simulator takes to perform a state-transition and to answer one query in the



M.V. Tripunitara and N. Li / A theory for comparing the expressive power 249

worst case and require that there cannot be a significant slowdown. This possibility is
complicated by the fact that the efficiency of these operations are not predetermined
in any access control scheme, the implementation can make trade-offs between time
complexity and space complexity and between query answering and state-transitions.
Any comparison must involve at least three axes, query time, state-transition time,
and space. Furthermore, the best ways to implement an access control scheme is not
always known. Finally, these implementation-level details do not seem to belong in
the comparison of access control models; as such models by themselves are abstract
models to study properties other than efficiency.

In summary, when no restriction is placed on the simulations, the “implementation
paradigm” does not separate different access control schemes. On the other hand, it
seems difficult to justify the restrictions that have been considered in the literature.
Therefore, our analysis in this section suggests that the “implementation paradigm”
does not seem to yield effective definitions of simulations that are useful to compare
access control models. This also suggests that expressive power results proved under
this paradigm should be reexamined.

4. Applying the theory

In this section, we apply our theory from Section 2 to compare the expressive
power of different access control schemes. In the following section, we show that
the HRU access matrix scheme is not as expressive as a relatively simple trust man-
agement scheme, RT[ ]. We then examine two particular results from literature using
our theory: (1) that RBAC is at least as expressive as DAC (Sections 4.2 and 4.3),
and (2) that TAM is at least as expressive as ATAM (Section 4.5), and in each case,
assert the opposite. We show also that the trust management scheme RT[∩] is at least
as expressive as an RBAC scheme (Section 4.4).

Proof Methodology. In this section, we prove the existence of reductions and state-
matching reductions as well as the nonexistence of state-matching reductions. To
prove that there exists a reduction or state-matching reduction from a scheme A to
a scheme B, we constructively give a mapping and show that the mapping satisfies
the requirements. To prove that there does not exist a state-matching reduction from
a scheme A to a scheme B is more difficult, as we have to show that no mapping
satisfies the requirements for a state-matching reduction. Our strategy is to use proof
by contradiction. We find in scheme A a state γA, a state-transition rule ψA, as
well as a state γA

1 that is reachable. Suppose, for the sake of contradiction, that a
state-matching reduction exists, then there exist states γB and γB

1 such that γB is
equivalent to γA, γB

1 is equivalent to γA
1 , and γB

1 is reachable from γB . We show that
among the sequence of states leading from γB and γB

1 , there exists one for which
there is no matching state that is reachable in A.
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4.1. Comparing the HRU scheme to a trust management scheme

The HRU scheme [6] is based on the access matrix model, and has generally been
believed to have considerable expressive power, partly because it has been shown
that one can simulate a Turing Machine in the HRU scheme. In this section, we
show that there does not exist a state-matching reduction from a relatively simple
trust management scheme, RT[ ] [10], to the HRU scheme. That RT[ ] cannot be
encoded in the HRU scheme is informally discussed and conjectured by Li et al. [10].
Using the theory presented in Section 2, we are able to formally prove this. To our
knowledge, this is the first formal evidence of the limited expressive power of the
HRU scheme.

As safety analysis is efficiently decidable in RT[ ] but undecidable in the HRU
scheme, there does not exist a state-matching reduction from the HRU scheme to
the RT[ ] scheme either. This shows that the expressive powers of the HRU scheme
and of RT[ ] are incomparable.

The fact that the HRU scheme can simulate Turing Machine shows that it can
compute any computable function when used as a computation device. When used as
an access control scheme, the HRU scheme may nonetheless be limited in expressive
power. For example, it cannot encode an access control system where in one state a
subject has no right over any object and in the next state the subject obtains rights
over a potentially unbounded number of objects.

The HRU scheme
Γ We assume the existence of countably infinite sets of subjects, S , objects O

and rights R, with S ⊂ O. Each state γ is characterized by 〈Sγ , Oγ , Rγ , Mγ[ ]〉
where Sγ ⊂ S is a finite set of subjects that exist in the state γ, Oγ ⊂ O is a finite
set of objects that exist in the state γ, Rγ ⊂ R is a finite set of rights that exist in the
state γ, and Mγ[ ] is the access matrix, i.e., Mγ[s, o] ⊆ Rγ gives the set of rights
s ∈ Sγ has over o ∈ Oγ in the state γ. Mγ[s, o] is defined only when s ∈ Sγ and
o ∈ Oγ . It may appear that we allow Rγ to differ across states. The definition for
state-change rules precludes this possibility.

Ψ A state-change rule, ψ, in the HRU scheme is a command schema, i.e., a set
of commands. Each command takes a sequence of parameters, each of which may
be instantiated by an object, Each command has also an optional condition, which is
a conjunction of clauses. Each clause checks whether a right is in a particular cell of
Mγ[ ]. Following the (optional) conditions in a command is a sequence of primitive
operations. The primitive operations are one of the following: (1) create an object;
(2) create a subject; (3) enter a right into a cell of the access matrix; (4) remove a
right from a cell of the access matrix; (5) destroy a subject; (6) destroy an object. We
refer the reader to Harrison et al. [6] for more details on the syntax of commands.
A state-change is the successful execution of a command.

Q We allow queries of the following two forms: (1) r ∈ M [s, o], and (2) r �∈
M [s, o]. In the queries, r ∈ R, s ∈ S and o ∈ O. To our knowledge, these are the
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only kinds of queries that have been considered in the context of the HRU scheme
in the literature. In particular, these are the queries that are pertinent to the safety
property [6].
� Let q be the query r ∈ M [s, o]. Then, given a state γ, γ � q if and only if

r ∈ Rγ , s ∈ Sγ , O ∈ Oγ and r ∈ Mγ[s, o]. Otherwise, γ �� q, or equivalently
γ � ¬q. Let q̂ be the query r �∈ M [s, o]. Then γ � q̂ if and only if r ∈ Rγ , s ∈ Sγ ,
o ∈ Oγ and r �∈ Mγ[s, o]. Otherwise, γ �� q̂, or equivalently γ � ¬q̂.

Observe that one should view both r ∈ Mγ[s, o] and r �∈ Mγ[s, o] as atomic
queries. In particular ¬(r ∈ Mγ[s, o]) is not equivalent to r �∈ Mγ[s, o]. It is possible
that γ �� r ∈ Mγ[s, o] and γ �� r �∈ Mγ[s, o]; this happens when either s or o does not
exist in γ. Even though it is not possible that γ � ((r ∈ Mγ[s, o]) ∧ (r �∈ Mγ[s, o])).

The RT[ ] scheme
Γ We assume the existence of countably infinite sets of principals (e.g., A, B, C)

and role names (e.g., r, s, t, u). A role is formed by a principal and a role name, sep-
arated by a dot (e.g., A.r, X.u). An RT[ ] state consists of statements which are as-
sertions made by principals about membership in their roles. Two types of assertions
are supported. These are simple member (e.g., A.r ←− B) and simple inclusion
(e.g., A.r ←− B.r1). One reads the ←− symbol as “includes”. The example for the
first kind of statement asserts that B is a member of A’s r role. The example for the
second kind of statement asserts that every member of B.r1 is a member of A.r. The
portion of a statement that appears to the left of the ←− symbol is called its head,
and the portion that appears to the right is called the body. We refer the reader to Li
et al. [9] for more details on the syntax and semantics of RT[ ] statements.

Ψ A state-change rule in a system based on the RT[ ] scheme consists of two
sets, G and S. Both consist of RT[ ] roles. G is the set of growth-restricted roles, i.e.,
if A.r ∈ G, then statements with A.r at the head cannot be added in future states.
S is the set of shrink-restricted roles, i.e., if A.r ∈ S, then roles with A.r at the head
cannot be removed in future states. We refer the reader to Li et al. [10] for more
details on the two sets, and the intuition behind them.

Q Li et al. [10] define three kinds of queries in RT[ ]. (1) {B1, . . . , Bn} � A.r
– this kind of query asks whether the role A.r is bounded by the set of pricipals
{B1, . . . , Bn}; (2) A.r � {B1, . . . , Bn} – this kind of query asks whether each
principal B1, . . . , Bn is a member of A.r; (3) X.u � A.r – this kind of query asks
whether the set of member of A.r is included in the set of members of X.u.
� Given a state, we check if a query is entailed by first evaluating the set of

members of each RT[ ] role in the query. This is done using credential chain dis-
covery [13]. We then compare the two sets and check if the set to the left includes
the set to the right. The first two kinds of queries are called semi-static queries as
one of the sides in the query is a set of users that is independent of the state, and
needs no further evaluation. We refer the reader to Li et al. [13] for more details on
query-entailment in RT[ ].
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Theorem 3. There exists no state-matching reduction from the RT[ ] scheme to the
HRU scheme.

Proof. By contradiction. Assume that there exists a state-matching reduction, σ,
from the RT[ ] scheme to the HRU scheme. We denote components of a RT[ ] system
with the superscript R and the HRU scheme with the superscript H . We now consider
a system based on the RT[ ] scheme. Let γR be the start-state in our RT[ ] system
such that γR has no statements. The state-change rule in our RT[ ] system is G =
S = ∅. We now consider the start-state in the corresponding HRU system σ(γR) =
γH and the state-change rule σ(ψR) = ψH . Let k be the number of objects in γH ,
i.e., k = |OγH |. Let l be the maximum number of primitive operations of the form

“enter right” in any of the commands in ψH . Let m be the maximum number of
primitive operations of the form “remove right” in any of the commands in ψH .

Choose some n > (k2 + l + m) + 1. Our choice of n is such that for any γH
1 such

that γH 	→ γH
1 , fewer than n − 1 queries that are true in γH (i.e., are entailed by

γH ) are false in γH
1 (i.e., are not entailed by γH

1 ). The reason is that: (1) as γH has
at most k objects (some or all of which may be subjects), a command may contain
statements to destroy all these objects. Consequently, these statements can cause up
to k2 queries of the form r �∈ M [s, o] to be false in γH

1 when they are true in γH ;
(2) as a command in ψH has at most l statements to enter rights in to cells, these
statements can cause up to l queries of the form r �∈ M [s, o] to be false in γH

1 when
they are true in γH ; (3) as a command in ψH has at most m statements to remove
rights from cells, these statements can cause up to m queries of the form r ∈ M [s, o]
to be false in γH

1 when they are true in γH . We emphasize that these are the only
possibilities for queries to become false in a state-change from γH ; the number of
queries that are entailed by γH , but not γH

1 is fewer than n − 1.
Consider queries qR

i for each integer i such that 1 � i � n in the RT[ ] system
where qR

i is of the form {Bi} � A.r for some principals A, B1, . . . , Bn and some
role A.r. We make two observations about these queries. The first is that γR �
qR

1 ∧ · · · ∧ qR
n . The reason is that A.r is empty in γR and therefore is a subset of

every set of the form {Bi}. The second observation is that in all states reachable
from γR, either all queries of the form qR

i such that 1 � i � n are entailed, or
at most one of those queries is entailed. The reason is that for the set of users in
the role A.r to be a subset of {Bi} for a particular i, it must be either empty, or
contain exactly one element, Bi. Now consider the state γR

t such that γR ∗	→ψ γR
t

and γR
t � qR

1 ∧ ¬qR
2 ∧ · · · ∧ ¬qR

n . That is, qR
1 is true in γR

t , but none of the other
queries of the form qR

i is true. We use the subscript t only to demarcate the state
and not as a count of the number of state-changes needed to reach it. In fact, γR

t
can be reached from γR with a single state-change: we simply add the statement
A.r ←− B1 to our RT[ ] system.

Now consider the corresponding states and queries in the HRU system produced as
output by σ. Let γH = σ(γR), γH

t = σ(γR
t ), and qH

i = σ(qR
i ) for 1 � i � n. As we
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assume that σ is a state-matching reduction, γH � qH
1 ∧· · ·∧qH

n , and there exists γH
t

such that γH ∗	→ψ γH
t and γH

t � qH
1 ∧¬qH

2 ∧· · ·∧¬qH
n . Also, given the assumption

that σ is a state-matching reduction, the queries qH
1 , . . . , qH

n are distinct from one
another. The reason is that given any two distinct queries in the RT[ ] system, there
exist reachable states in the RT[ ] system such that one of the queries is true and the
other is false. Consequently, such reachable states must exist for the corresponding
queries in the HRU system as well.

Consider any sequence of state-changes from γH to γH
t . Pick the first state in

the sequence γH
c in which at least one of the queries qH

i is false. Consider the state
γH
c−1 immediately preceding it. Then, γH

c−1 � qH
1 ∧ · · · ∧ qH

n . Because one step of

change cannot make n − 1 queries to go from true to false, in γH
c , some queries

q1, q2, q3, . . . , qn are false but at least 2 queries in them are true. As we argued in
the previous paragraph, there cannot exist a matching state in A for γH

c . We now
have the desired contradiction to the existence of a state-matching reduction from
the RT[ ] scheme to the HRU scheme. �

As we point out in the introduction to this section, it is easy to infer that there is
no state-matching reduction from the HRU scheme to the RT[ ] scheme, because we
know that safety is undecidable in the HRU scheme [6], but is efficiently decidable in
the RT[ ] scheme [10]. Consequently, we conclude that the HRU and RT[ ] schemes
are incomparable in terms of expressive power.

What underlie the non-existence of state-matching reductions in both directions
are the state-transition rules in the schemes. In an RT[ ] system, it is possible, with a
single state-change, to award a privilege or right to an unbounded number of princi-
pals. This is not possible in an HRU system, in which each state-change can award
rights to only a bounded number of subjects. This is the intuition behind the non-
existence of a state-matching reduction from the HRU scheme to the RT[ ] scheme.
We point out that the first paragraph in the proof for the theorem above suggests an
example of an RT[ ] system for which we cannot produce a corresponding HRU sys-
tem. Conversely, the state-changes in RT[ ] cannot have preconditions; state-changes
in an HRU system can have preconditions. This is the intuition behind the non-
existence of a state-matching reduction from the RT[ ] scheme to the HRU scheme.

The class of queries is also important in this distinction. It may be possible, for
example, for there to exist a state-matching reduction from RT[ ] to the HRU scheme
if we adopt a broader class of queries in the HRU scheme. However, it is unclear what
the class of queries must be. Furthermore, we must also ask whether any new kinds
of queries we adopt make sense in the context of the HRU scheme.

4.2. Examining comparisons of RBAC and DAC

Munawer and Sandhu [15] present a simulation of ATAM in RBAC and conclude
that RBAC is at least as expressive as ATAM. Osborn et al. [16,17,22] give simula-
tions of various MAC and DAC schemes in RBAC. The main conclusion of Osborn
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et al. [16,17,22] is that as MAC and DAC can be simulated in RBAC, a Trusted Com-
puting Based (TCB) needs to include an implementation of RBAC only, and DAC
and MAC policies can be successfully represented and enforced by the TCB.

In the simulations used in [15–17,22], the preservation of safety (or other security)
properties is not identified as an objective. From the above conclusion in [16,17,22],
it seems that they follow the implementation paradigm. As discussed in Section 3,
this paradigm leads to a weak notion of simulations, as exemplified by the simulation
of RBAC in strict DAC in Appendix 5.

We observe also that the problem of comparing RBAC with DAC as stated by Os-
born et al. [17,22] is ill-defined (or at least not clearly defined). RBAC by itself only
specifies the structures to store access control information, but not how to manipu-
late these structures, which are specified by administrative models. In other words,
only the set Γ of states is precisely defined, the set Ψof state-transition rules is not.
The counterpart of RBAC is the access matrix model, instead of DAC (or MAC).
In DAC, we specify that access control information is stored in a matrix, and we
also specify rules on how to change the access matrix. The statement that RBAC is
at least as expressive as DAC (or MAC) is similar to saying that the access matrix
model is at least as expressive as DAC or MAC. Comparing the RBAC model with
the access matrix model is not fruitful either, as both models can include arbitrary
state-transition rules.

4.3. Comparing ARBAC97 with a form of DAC

To compare any RBAC-based model with DAC, one needs to specify the admin-
istrative model (state-transition rules) for RBAC. In existing comparisons of RBAC
and DAC [15,17,22], new and rather complicated administrative models are intro-
duced “on the fly” to simulate the effects in DAC. In this section, we compare the
expressive power of RBAC with ARBAC97 [20] as the administrative model to that
of SDCO, a rather simple form of DAC. We first present precise characterizations of
SDCO and the ARBAC97 scheme. We then assert that there does not exist a state-
matching reduction from SDCO to the ARBAC97 scheme, given a natural query set
for each scheme.

This result is significant as it shows that we cannot assert that RBAC is more
expressive than DAC without qualifying the assertion; a strongly security-preserving
mapping does not exist from SDCO to ARBAC97. Our conclusion provides the first
evidence that the expressive power of RBAC (or at least some reasonable incarnation
of it) may be limited.

We then show that a reduction does indeed exist from SDCO to the ARBAC97
scheme. That is, the ARBAC97 scheme captures SDCO in some limited way. Our
results indicate that it may be possible to extend RBAC schemes so that they can
indeed be as expressive as DAC schemes. We briefly discuss this further after we
present our results; however, whether this is indeed possible and in what way are
issues that are beyond the scope of this paper.
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The SDCO scheme
Γ SDCO is a scheme based on the access matrix model and is a special case of

the HRU scheme (see Section 2.1) and the Graham-Denning scheme [5,11]. Each
state γ ∈ Γ is 〈Sγ , Oγ , Mγ[ ], Rγ〉 where Sγ , Oγ and Rγ are finite, strict subsets
of the countably infinite sets S (subjects), O (objects) and R (rights) respectively.
The set of rights for the scheme is Rγ = {own, r1, . . . , rn}, where own is the distin-
guished right indicating ownership of the object. Mγ[ ] is the access matrix.

Ψ The state-transition rules are the commands createObject, destroyObject and
grantOwn, and for each ri ∈ Rγ − {own}, a command grant_ri.

command createObject(s, o) command destroyObject(s, o)
create object o if own ∈ [s, o]
enter own into [s, o] destroy o

command grantOwn(s, s′, o) command grant_ri(s, s′, o)
if own ∈ [s, o] if own ∈ [s, o]

enter own into [s′, o] enter ri into [s′, o]
remove own from [s, o]

Q Each query is of one the following forms: (1) Is s ∈ S?; (2) Is o ∈ O?; and
(3) Is r ∈ M [s, o]?
� The entailment relation is defined as follows for each type of query from

above. In each of the following, γ ∈ Γ is a state. (1) γ � s ∈ S if and only if
s ∈ Sγ ; (2) γ � o ∈ O if and only if o ∈ Oγ ; (3) γ � r ∈ M [s, o] if and only if
r ∈ Rγ ∧ s ∈ Sγ ∧ o ∈ Oγ ∧ r ∈ Mγ[s, o].

The ARBAC97 scheme
Γ We assume the existence of the countably infinite sets U (users), P (permis-

sions) and R (roles). An ARBAC97 state is 〈UA, PA, RH, AR〉 where UA is the user-
role assignment relation that contains a pair 〈u, r〉 for every user u ∈ U that is
assigned to a role r ∈ R. PA is the permissions-role assignment relation that con-
tains a pair 〈p, r〉 for every permission p ∈ P that is assigned to the role r ∈ R. RH
is the role-hierarchy, and for r1, r2 ∈ R, r1 � r2 ∈ RH means that all users that are
members of r1 are also members of r2, and all permissions that are assigned to r2 are
authorized to users that are members of r1. AR ⊂ R is a set of administrative roles. In
ARBAC97 [20], changes to AR may be made only by a central System Security Of-
ficer (SSO) who is trusted not to leave the system in an undesirable state; if the SSO
effects a state-transition, then she does security analysis to ensure that the resulting
state is acceptable. Therefore, in our analysis, we assume that AR does not change.

Ψ State-transitions in the ARBAC97 scheme are predicated on the relations that
are part of the URA97 (user-roles assignment), PRA97 (permission-role assignment)
and RRA97 (role-role assignment) components. We introduce the notion of a role
range that is used in the definition of the state-transitions. A role range, ξ is written
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as (r1, r2), where r1 and r2 are roles, and every role r that satisfies r1 � r ∧ r �
r2 ∧ r �= r1 ∧ r �= r2 is in the role range ξ. We write r ∈ ξ when r is in the role
range ξ. We represent as Ξ the set of all role ranges. Role ranges in ARBAC97 satisfy
some other properties, and we refer the reader to Sandhu et al. [20] for those. Those
properties are not relevant to our discussion here.

URA97

{
can_assign ⊆ AR × CR × Ξ
can_revoke ⊆ AR × Ξ PRA97

{
can_assignp ⊆ AR × CR × Ξ
can_revokep ⊆ AR × Ξ

RRA97
{

can_modify ⊆ AR × Ξ

CR is a set of pre-requisite conditions. A pre-requisite condition is a propositional
logic formula over regular roles. For instance, c = r1∧r2 is a pre-requisite condition
that indicates: “role r1 and not role r2”, where r1, r2 ∈ R.

We postulate that a state-transition is the successful execution one of the following
operations.

assignUser(a, u, r) revokeUser(a, u, r)
if ∃ 〈ar, c, ξ〉 ∈ can_assign such that if ∃ 〈ar, ξ〉 ∈ can_revoke such
a is a member of ar ∧ u satisfies c ∧ that a is a member of ar ∧
r ∈ ξ then r ∈ ξ then

add 〈u, r〉 to UA remove 〈u, r〉 from UA

assignPermission(a, p, r) revokePermission(a, p, r)
if ∃ 〈ar, c, ξ〉 ∈ can_assignp such that if ∃ 〈ar, ξ〉 ∈ can_revokep such
a is a member of ar ∧ p satisfies c ∧ that a is a member of ar ∧
r ∈ ξ then r ∈ ξ then

add 〈p, r〉 to PA remove 〈p, r〉 from PA

addToRange(a, ξ, r) removeFromRange(a, ξ, r)
if ∃〈ar, ξ〉 ∈ can_modify such that if ∃〈ar, ξ〉 ∈ can_modify such that
a is a member of ar then a is a member of ar then

add r1 � r to RH remove r1 � r from RH
add r � r2 to RH remove r � r2 from RH
where ξ = (r1, r2) ∧ r �= r1 ∧ r �= r2 where ξ = (r1, r2)) ∧ r �= r1

∧ r �= r2

addAsSenior(a, r, s) removeAsSenior(a, r, s)
if ∃〈ar, ξ〉 ∈ can_modify such that if ∃〈ar, ξ〉 ∈ can_modify such that
a is a member of ar ∧ r, s ∈ ξ then a is a member of ar ∧ r, s ∈ ξ then

add r � s to RH remove r � s from RH
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Q,� We allow queries of the following forms that are all natural for the AR-
BAC97 scheme: (1) given a role r, does there exist a user u such that 〈u, r〉 ∈ UA?,
(2) given user u, does there exist a role r such that 〈u, r〉 ∈ UA?, (3) given user
u and role r, is 〈u, r〉 ∈ UA?, (4) given a permission p, does there exist a role r
such that 〈p, r〉 ∈ PA? (5) given permission p, does there exist a role r such that
〈p, r〉 ∈ PA?, (6) given permission p and role r, is 〈p, r〉 ∈ PA?, (7) given roles r1,
r2, is r1 � r2 ∈ RH?, and (8) give user u and permission p, is u authorized to
have the permission p? That is, do there exist roles r1, r2 such that 〈u, r1〉 ∈ UA
∧ 〈p, r2〉 ∈ PA ∧ r1 � r2 ∈ RH? The entailment relation, �is based simply on
whether the conditions checked in a query hold in the given state.

Before we introduce Theorem 5, we introduce the following lemma as an inter-
mediate result on the state-change rules in ARBAC97. The intermediate result aids
in the proof of the theorem. It also provides some intuition as to why there exists no
state-matching reduction from SDCO to the ARBAC97 scheme.

Lemma 4. Let ψ be a state-transition rule, and γ and γ′ be states in the ARBAC97
scheme. Then, for any two queries q1 and q2, there exists no γ′ such that γ′ � t(¬q1∧
q2) when γ � (q1 ∧ ¬q2) and γ 	→ γ′.

Proof. We observe that the operations assignUser, assignPermission, addToRange
and addAsSenior can cause queries to become only true, and not false. Similarly, the
operations revokeUser, revokePermission, removeFromRange and removeAsSenior
cannot cause a query to become true. Therefore, given a state-transition in the AR-
BAC97 scheme, it cannot cause a query that is true to become false and another
query that is false to become true in the new state. �

Theorem 5. There exists no state-matching reduction from SDCO to ARBAC97.

Proof. By contradiction. Assume that there exists a state-matching reduction from
SDCO to ARBAC97. Let S = {s1, s2, s3, . . .}. In SDCO, adopt as γ a state with the
following properties. Let s1 ∈ Sγ , o ∈ Oγ and own ∈ M [s1, o]. Let qi be the query
“own ∈ [si, o]” for each i = 1, 2, . . . , and qo be the query “o ∈ Oγ”. These queries
are mapped to qA

i and qA
o respectively in the ARBAC97 scheme. We observe that

γ � (q1 ∧ ¬q2 ∧ ¬q3 ∧ · · · ∧ qo). There exists a state γ̃ reachable from γ such that
γ̃ � (¬q1 ∧ q2 ∧¬q3 ∧ · · · ∧ qo). And, there exists no reachable state γ̂ such that γ̂ �
(q1 ∧ ¬q2 ∧ · · · ∧ qj ∧ · · · ∧ qo) or γ̂ � (¬q1 ∧ ¬q2 ∧ · · · ∧ ¬qj ∧ · · · ∧ qo) for any
j �= 1. (if o ∈ Oγ , then there must be exactly one subject that owns o). Consider
the state γA in ARBAC97 that corresponds to γ (if there does not exist one, then we
have the desired contradiction). We know that γA � (qA

1 ∧ ¬qA
2 ∧ ¬qA

3 ∧ · · · ∧ qA
o ).

There must also exist a reachable state γ̃A that corresponds to γ̃ (if there does not
exist one, then we have the desired contradiction). By Lemma 4, we know that γ̃A is
not reachable from γA is a single state-transition. Therefore, there must exist some
state γ̂A that is reachable from γA such that γ̂A � (qA

1 ∧¬qA
2 ∧ · · · ∧ qj ∧ · · · ∧ qA

o )
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or γ̂A � (¬qA
1 ∧ ¬qA

2 ∧ · · · ∧ ¬qA
j ∧ · · · ∧ qA

o ) for at least one j �= 1. As there
exists no corresponding state in the SDCO scheme that is reachable from γ, we have
a contradiction to the assumption that there exists a state-matching reduction from
SDCO to ARBAC97. �

The above theorem demonstrates that the ARBAC97 scheme is not as expressive
as SDCO in the sense of the existence of a strongly security preserving mapping. The
following theorem, however, demonstrates that if we weaken the desired mapping to
only a security preserving mapping, then the ARBAC97 scheme is indeed at least as
expressive as SDCO.

Theorem 6. There exists a reduction from SDCO to ARBAC97.

Proof. By construction. We present a mapping as required by Definition 8 and then
prove that the mapping satisfies the two properties for it to be a reduction. Let γ =
〈Sγ , Oγ , Mγ[ ], Rγ〉 be the start-state of a given SDCO system, ψ its state-change
rule and Q the set of queries. The mapping, σ, produces as output 〈γA, ψA〉 with
input 〈γ, ψ〉 and output qA for each q ∈ Q. We first define γA.

γA = 〈UAγ , PAγ , RHγ , ARγ〉, where,
UAγ =

{
〈a, admin〉

}
∪

{
〈s, subjectExists〉 | s ∈ Sγ

}
∪

{
〈s, or〉 | r ∈ Mγ [s, o]

}
PAγ = ∅
RHγ =

{
top � or � bottom | or ∈ Oγ × Rγ

}
ARγ = {admin}

We point out that we can infer from the above definition for γA that the
set of all possible roles in the ARBAC97 system is R = (O × Rγ) ∪
{admin, subjectExists, bottom, top}, where we represent the role corresponding to
〈o, r〉 ∈ O × Rγ as or . The role admin is used to ensure that state-changes are en-
abled, the role subjectExists is used to meaningfully map queries of the form “s ∈ S”
and the roles bottom and top form a role range that is used in the state-change rules
below. We now present ψA.

ψA = 〈can_assign, can_revoke, can_assignp, can_revokep, can_modify〉, where,
can_assignp = ∅
can_revokep = ∅
can_assign =

{
〈admin, true, ξ〉

}
can_revoke =

{
〈admin, ξ〉

}
can_modify =

{
〈admin, ξ〉

}
where ξ = 〈top, bottom〉

Finally, the queries in Q are mapped as follows by σ.

σ (“s ∈ S”) = “〈s, subjectExists〉 ∈ UA”
σ (“o ∈ O”) = “∃u such that 〈u, oown〉 ∈ UA”
σ (“r ∈ M [s, o]”) = “〈s, or〉 ∈ UA”
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We now show that property (1) for a reduction is satisfied by the above mapping.
Let γ0 be a start-state in SDCO. We produce the corresponding start-state γA

0 in

ARBAC97 using σ above. Given a state γk and query q such that γ0
∗	→ψ γk, we

show that there exists γA
k and query qA such that γA

0
∗	→ψA γA

k where γA
k � qA

if and only if γk � q. If γk = γ0, then γA
k = γA

0 . If q is “s ∈ S”, then qA is
“〈s, subjectExists〉 ∈ UA”. We know from the definition for UAγ above that qA is
true if and only if q is true. If q is “o ∈ O”, then qA is “∃ u such that 〈u, oown〉 ∈ UA”.
We know that every object that exists in SDCO has an owner associated with it (that
is, own ∈ Mγ0 [s, o] for some subject s). Consequently, from the definition for UAγ

above, there exists some s such that 〈s, oown〉 ∈ UAγ0 if and only if q is true. Finally,
if q is “r ∈ M [s, o]” then qA is “〈s, or〉 ∈ UA”. Again, by the definition of UAγ

above, we know that q is true if and only if qA is true.
Consider some γk reachable from γ0 and a query q. We show the existence of

γA
k that is reachable from γA

0 and that answers qA the same way by construc-
tion. If q is of type “s ∈ S”, we let γA

k = γA
0 . If q is of type “o ∈ O” or

“r ∈ M [s, o]”, we do the following. We consider each state-transition in the se-
quence γ0 	→ψ γ1 	→ . . . 	→ γk in the SDCO system. If the state-transition
is the execution of createObject(s, o), we execute addToRange(a, ξ, oown) (where
ξ = 〈top, bottom〉) and assignUser(a, s, oown). If the state-transition in SDCO
is the execution of destroyObject(s, o), we execute revokeUser(a, u, or) for every
〈u, or〉 ∈ UA for every r, and removeFromRange(a, ξ, oown). If the state-transition
in SDCO is the execution of grantOwn(s, s′, o), we execute revokeUser(a, s, oown)
and assignUser(a, s′, oown). If the state-transition in SDCO is the execution of
grant_ri(s, s′, o), we execute assignUser(a, s′, ori ).

Now, consider each possible query q. If q is “s ∈ S”, then γA
k = γA

0 . In our SDCO
scheme, the subjects are fixed at the start and never change. So γA

k � qA if and only
if γ0 � q. If q is “o ∈ O”, then γk � q if and only if o exists in the state γk. This
is the case if and only if some subject s has the own right over o. This is the case if
and only if we have the role oown in the range ξ and the user corresponding to s is a
member of that role. Therefore, γk � q if and only if γA

k � qA. And finally, if q is
“r ∈ M [s, o]”, then γk � q if and only if r has been granted to s by the owner of o.
This is true if and only if we have assigned the user corresponding to s to the role or.
Thus, again, γk � q if and only if γA

k � qA.
We prove that property (2) for a reduction is satisfied by our mapping also by con-

struction. Let γA
0 be the start-state in ARBAC97 corresponding to γ0, the start-state

in SDCO. Then, if γA
k is a state reachable from γA

0 and qA is a query in ARBAC97
whose corresponding query in SDCO is q, we construct γk, a state in SDCO reach-
able from γ0 as follows. If q is “s ∈ S”, we let γk = γ0. Otherwise, for each role oown

that has a member s, we execute createObject(s, o). For each role or that has a mem-
ber s′, if the role oown has a member s, we execute grant_r(s, s′, o). If q is s ∈ S,
then qA is 〈s, subjectExists〉 ∈ UA, and clearly γA

k � qA if and only if γk � q, as
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the subjects that exist do not change from the start-state in SDCO, and the members
of subjectExists do not change from the start-state in ARBAC97. If q is “o ∈ O”,
γA
k � qA if and only if ∃ s such that 〈s, oown〉 ∈ UAγk . And if qA is true, we would

have added the own right to Mγk [s, o], which means that γk � q if and only if γA
k

�qA. And finally, if “q is r ∈ M [s, o]”, γA
k � qA if and only if 〈s, or〉 ∈ UAγk . The

condition that qA is true is the only one in which we would have added the right r to
Mγk [s, o], and therefore γk � q if and only if γA

k � qA. �

As we discuss in the introduction to this section, the existence of the weaker notion
of a reduction from SDCO to the ARBAC97 scheme may indicate that it is possi-
ble to extend the ARBAC97 scheme to be as expressive as the SDCO scheme under
the stronger notion of a state-matching reduction as well. Lemma 4 gives us some
intuition as to why a state-matching reduction does no exist from SDCO to the AR-
BAC97 scheme; the kinds of queries and the state-transition rules in the ARBAC97
scheme underlie the non-existence of a state-matching reduction from SDCO.

There may exist other schemes based on RBAC for which there is a state-matching
reduction from SDCO. In extending the ARBAC97 we have adopted in this paper,
an approach may be to adopt a different query set. We observe that for certain other
query sets as well, the non-existence of a state-matching reduction holds. As an ex-
ample, suppose we map the query for the presence of a right in SDCO to a query
for the absence of a permission in RBAC. In this case as well, there exists no state-
matching reduction from SDCO. It is unclear to us how to extend the query set of the
ARBAC97 scheme so that there would exist a state-matching reduction from SDCO.

Another possiblity is to extend the state-transition rules. Again it is not obvious
how this is to be done, and we leave the question of whether there exists a meaningful
set of state-transition rules (an administrative model) for RBAC for which there is a
state-matching reduction from SDCO is an open problem.

4.4. Comparing an RBAC scheme with a Trust Management Language

In this section, we compare a particular RBAC scheme to the trust management
scheme, RT[∩]. The RBAC scheme we consider is called Assignment And Revoca-
tion (AAR) [12]. In AAR, the state is an RBAC state, and state-transition rules are
those from the URA97 component of the ARBAC97 [20]; users may be assigned to
and revoked from roles.

RT[∩] is a trust management scheme in which a state is a set of credentials is-
sued by the principals involved in the system. A credential denotes membership in
a principal’s role. A credential is one of three types: (1) A principal is asserted to
be a member of another principal’s role, (2) All the principals that are members of
a principal’s role are asserted to also be members of another principal’s role, and
(3) All the principals that are members of two roles (the intersection of the members
of the roles) are also members of another principal’s role.
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We first present precise characterizations of the AAR scheme and RT[∩]. Li and
Tripunitara [12] present a form-2 weak reduction (see Definition 11) from AAR to
RT[∩]. We assert with the following theorem that the result can be made stronger.

The AAR scheme
Γ In AAR, a state is the RBAC state 〈UA, PA, RH〉, as discussed in the previous

section for ARBAC97.
Ψ The state-transitions allowed are the operations assignUser and revokeUser

from the previous section, with the exception that negation is not allowed in pre-
requisite conditions. In addition, in AAR, we require that for every role for which
there is a can_assign entry, there is also a can_revoke entry. That is, if ∃ 〈ar, c, ξ〉 ∈
can_assign such that ar has at least one member and c may evaluate to true, then
∀ r ∈ ξ, ∃ 〈ar′, ξ′〉 ∈ can_revoke such that r ∈ ξ′ and ar′ has at least one member.

Q,� Queries are of the form s1 � s2, where s1 and s2 are user-sets. A user-set is
an expression that evaluates to a set of users. A set of roles, a set of permissions and
a set of users are user-sets, as are unions and intersections of user-sets. We refer the
reader to Li and Tripunitara [12] for more details on user-sets. Entailment involves
evaluating the user-sets s1 and s2 to the sets of users S1 and S2 respectively, and de-
termining whether S1 ⊇ S2. Several interesting queries related to safety, availability,
liveness and mutual-exclusion can be posed as comparisons of user-sets.

The RT[∩] scheme
Γ An RT[∩] state is a set of credentials, each of which is one of the following

types: (1) A.r ←− U , (2) A.r ←− B.r1, and (3) A.r ←− B.r1 ∩ C.r2. Each of
A, B, C, U is a principal, r, r1, r2 is a role name, and A.r, B.r1, C.r2 is a role. The
symbol ←− is read as “includes”. Statement (1) asserts that U is a member of A’s r
role. Statement (2) asserts that all members of the role B.r1 are members of the role
A.r. Statement (3) asserts that anyone that is a member of both B.r1 and C.r2 is a
member of A.r.

Ψ A state-transition in RT[∩] is either the removal of a credential, or the addition
of one. State-transitions are controlled by growth and shrink-restricted sets of roles
— G and S respectively. A role that is in the growth-restricted set may not have
any assertions added with that role at the head of the assertion, and a role that is in
the shrink-restricted may not have any assertions removed. Thus, the state-transition
rules are represented as 〈G, S〉.

Q,� We allow queries of the form c1 � c2 where each c1 and c2 is either an
RT[∩] role, a credential, or credentials joined by union, ∪ or intersection, ∩. We
observe that this is slightly different from the definition for queries in [12]. The
reason is that in that work, only a form-2 weak reduction (see Definition 11) is
presented, and therefore queries are processed in conjunction with each state and
state-transition rule in the mapping. We seek to map queries independently of states
and state-transition rules. Entailment in RT[∩] is done using credential chain dis-
covery [13]: we find a chain of credentials that proves a (portion of a) query, if one
exists.
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Theorem 7. There exists a state-matching reduction from the AAR scheme to RT[∩].

Proof. By construction. We show that the mapping presented by Li and Tripuni-
tara [12] from AAR to RT[∩] is a state-matching reduction. We consider each asser-
tion from Definition 7 in turn. Each role r in AAR is associated with the role Sys.r
in RT[∩]. We show that after a series of state-transitions, the role-memberships in
AAR match the role-memberships in the corresponding state of RT[∩].

Assertion 1: Let γ be the given AAR state, and γ
∗	→ψ γ′. Then, γ = γ0 	→ψ

γ1 . . . 	→ψ γm = γ′. Each state-transition is either the assignment of a user to a role
using assignUser or revocation of a user’s membership in a role using revokeUser.
Let the corresponding states in RT[∩] be γT = γT

0 , γT
1 , . . . γT

m = γT ′
. The users

that are members of any role r in γ are the same as the users that are members of the
corresponding role Sys.r in γT . If the state-transition from γi to γi+1 is the result
of the assignment of the user u to the role r, then we effect the following changes
to transition from the state γT

i to γT
i+1: we add the two statements ASys.r ←− u

and BSys.r ←− u. If the state-transition is the result of the revocation of the user
u from the role r, then we remove all statements that exist of the following two
forms: ASys.r←−u and RSys.r←−u. We observe that in γT ′

, any HSys.r has as
members all users that were ever members of the role r. Consequently, in γT ′

, each
Sys.r has as members those users that are members of r in γ′. Therefore, we can
assert that γ′ � q iff γT ′ � qT .

Assertion 2: In RT[∩], the only roles that can grow are the ASys and BSys roles.
The only roles that can shrink are the ASys and RSys roles. Given γT = σ(γ) where
γ is a given AAR state and γT ′

is the corresponding RT[∩] state, let γT ∗	→ψ γT ′
.

We construct the AAR state γ′ that corresponds to γT ′
as follows. For each statement

of the form BSys.r←−u or of the form ASys.r←−u, we assign the user u to the
role r. Now, we compare the user-role memberships of each user to the roles r and
Sys.r. There cannot be any users in Sys.r that are not in r: the reason is that we have
not revoked any user membership in r (starting from the user-role membership in the
state γ). There may be users in r that are not in Sys.r. Given the requirement that
every role for which there is a can_assign, we also have a can_revoke, the only way
for these extra users to be in r and not Sys.r is that there exists a can_assign that
permits those users to be assigned to r (starting at the state γ). We revoke such users’
membership from r using the relevant can_revoke entries. Now, the memberships in
r and Sys.r are identical, and we can assert that for all queries q, γT ′ � σ(q) iff
γ′ � q. �

4.5. Comparing ATAM with TAM

TAM is a scheme based on the access matrix model and is similar to the HRU
scheme [6] (see Section 2.1). Every object is typed, and the type cannot change
once the object is created. State-transitions occur via the execution of commands
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that are similar to HRU commands. We specify a type for every parameter to a com-
mand. ATAM is the same as TAM, except that in a condition in an ATAM com-
mand, the absence of a right in a cell of the access matrix may be checked (and
not just the presence of a right). Below, we present characterizations of the two
schemes.

Sandhu and Ganta [21] present a mapping from the ATAM to TAM. Based on the
mapping, one may conclude that TAM is at least as expressive as ATAM. As the
converse is trivially true (TAM is a special case of ATAM), one may conclude that
ATAM and TAM have the same expressive power; we gain nothing from the ability to
check for the absence of rights in the condition of an ATAM command. Sandhu and
Ganta [21] make the observation that the simulation of a command in ATAM may
require the execution of an unbounded number of commands in TAM, and conclude
with the following comment: “. . . practically testing for the absence of rights appears
to be useful. It is an open question whether this claim can be formalized . . .”. In this
section, we formalize this claim by asserting that there is no state-matching reduction
from ATAM to TAM.

The TAM scheme
Γ TAM is similar to the HRU scheme (see Section 2.1). Each state γ ∈ Γ is

〈Sγ , Oγ , Mγ[ ], Rγ , Tγ , typeOf 〉 where Sγ , Oγ , Rγ and Tγ are finite, strict subsets
of the countably infinite sets S (subjects), O (objects), R (rights) and T (types of
objects and subjects) respectively. The function typeOf : (Sγ ∪Oγ) → Tγ , maps each
subject and object to a type that cannot change once the subject or object is created.
Mγ[ ] is the access matrix.

Ψ A state-transition rule is a set of commands. Each command has an optional
list of conditions that are joined by conjunction. A command then consists of prim-
itive operations. Each parameter to the command is associated with a type. Each
condition may check only for the presence of a right in a cell.

Q,� We allow queries of the form “is r ∈ M [s, o]?” Entailment is defined as
follows. Given a state γ ∈ Γ, γ � r ∈ M [s, o] if and only if s ∈ Sγ ∧ o ∈ Oγ ∧ r ∈
Rγ ∧ r ∈ Mγ[s, o].

The ATAM scheme
Γ, Ψ, Q,� An ATAM state is the same as a TAM state. State-transition rules

are the same as for TAM, except that a condition in a command may check for
the absence of a right (as opposed to only the presence of a right). In ATAM, we
allow Q to contain queries of the following two forms: (1) Is r ∈ M [s, o]?, and
(2) Is r �∈ M [s, o]? This is consistent with the intent of Sandhu and Ganta [21] to
determine whether the ability to check for the absence of rights does indeed add
more expressive power. �is defined the same as in TAM for a query of type (1). For
a query of the type (2), �is defined as follows. Given a state γ ∈ Γ, γ � r �∈ M [s, o]
if and only if s ∈ Sγ ∧ o ∈ Oγ ∧ r ∈ Rγ ∧ r �∈ Mγ[s, o].
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Theorem 8. There exists no state-matching reduction from ATAM to TAM.

Proof. By contradiction. Assume that there exists a state-matching reduction σ from
ATAM to TAM. Consider an ATAM scheme in which ψ (the state-transition rule)
consists of the following commands.

command createSubject(X: t) command addRight(Y : t, Z: t)
create subject X of type t enter r into [Y , Z]

Adopt as γ0 (the start state) in ATAM a state with no subjects or objects. (that is,
Sγ0 = Oγ0 = ∅). The set of rights, Rγ0 = {r}, and there is a single type t for
all subjects (no objects other than subjects exist or can be created in our ATAM
system). We denote components of the TAM system under the mapping σ with a
superscript T . For example, σ(γ0) = γT

0 and σ(ψ) = ψT .
We assume that the countably infinite set of subjects S = {s1, s2, . . .}. In the

ATAM system, we wish to consider queries of the form qi,j = r ∈ M [si, sj] and
q̂i,j = r �∈ M [si, sj] for some si, sj ∈ S. First, we make the observation that any
two distinct queries p, q ∈ {qi,j |si, sj ∈ S}∪ {q̂i,j |si, sj ∈ S} are mapped to distinct
queries in TAM. That is, p �= q ⇒ pT �= qT . Otherwise, pick a pair p, q such that
p �= q but pT = qT . For any two such queries p and q, there exists a state γ in ATAM
such that γ0

∗	→ψ γ and γ � p ∧ ¬q. Clearly, a corresponding reachable state (that
answers the queries p and q the same way) does not exist in TAM, which gives us
the desired contradiction. We observe also that by the definition of a state-matching
reduction, queries are mapped independent of the start state and the state-change
rules.

Consider ψT , the command schema in TAM. As a query in TAM is of the form
r ∈ M [s, o], we can determine an upper bound, m, for the number of queries a
command in the TAM system can change from false to true when executed. These
are queries of both types qT

i,j and q̂i,j
T . One way to determine a value for m is to

count the number of “enter right” primitive operations in each command and take
the maximum (even though this maximum may not be a tight upper bound). m is
constant, and may be dependant on γ and ψ, but not the set of queries. Choose some
n > m.

Now, consider the state in ATAM γk such that γ0
∗	→ψ γk and γk � ¬q1,1 ∧ q̂1,1 ∧

¬q1,2 ∧ q̂1,2 ∧ · · · ∧ ¬qn,n ∧ q̂n,n (we use the subscript k only to distinguish the
state, and not as a count of the number of state-changes needed to reach it). That
is, γk does not entail any of the queries of the type qi,j and entails all queries of
the type q̂i,j for all integers i, j such that 1 � i, j � n. The state γk corresponds
to Sγk = {s1, . . . , sn} with no right r in any of the cells. One way to reach this
state from γ0 is to execute the command createSubject n times with the parameter
instantiated to si in the ith execution.

We assume that as σ, a state-matching reduction exists, there exists a correspond-
ing rechable state γT

k in TAM that answers the (mapped) queries the same way.



M.V. Tripunitara and N. Li / A theory for comparing the expressive power 265

Consider any sequence γT
0 	→ψT γT

1 	→ψT · · · 	→ψT γT
k . Pick the first state, γT

c

in the sequence that satisfies the following condition: γT
c � qT

i,j ∨ q̂i,j
T for all in-

tegers i, j such that 1 � i, j � n. Such a state exists: γT
k is such a state, and may

be the only state in the sequence that meets the condition. We observe also that γT
0

does not satisfy the condition, thereby implying that the sequence has at least one
state-change.

Consider the state γT
c−1 in the sequence just before γT

c . γT
c−1 has the following

property: there exist integers v, w with 1 � v, w � n, such that γT
c−1 � ¬(qT

v,w ∨
q̂v,w

T ) ⇒ γT
c−1 � ¬qv,w ∧ ¬q̂v,w

T . For every state in the ATAM system that entails
the corresponding formula of queries ¬qv,w∧¬q̂v,w, the state also entails at least one
of the following two formulae of queries: (1) Q1 = ¬qv,1 ∧ ¬q̂v,1 ∧ ¬qv,2 ∧ ¬q̂v,2 ∧
· · · ∧ ¬qv,n ∧ ¬q̂v,n ∧ ¬q1,v ∧ ¬q̂1,v ∧ · · · ∧ ¬qn,v ∧ ¬q̂n,v , or, (2) Q2 = ¬qw,1 ∧
¬q̂w,1 ∧¬qw,2 ∧¬q̂w,2 ∧· · ·∧¬qw,n∧¬q̂w,n∧¬q1,w ∧¬q̂1,w ∧· · ·∧¬qn,w ∧¬q̂n,w.

The reason is that a state in ATAM that entails ¬qv,w ∧ ¬q̂v,w is one in which
either the subject sv or sw, or both do not exist (v = w is allowed, and does not
affect our arguments). None of the queries of either type qi,j or q̂i,j corresponding
to a subject that does not exist in a state is entailed by the state. Therefore, in TAM,
γT
c−1 � QT

1 ∨ QT
2 (where QT

1 and QT
2 are obtained from Q1 and Q2 respectively by

adding the superscript T to each query in the formula).
Consider the state-change in TAM from γT

c−1 to γT
c . It must change (at least) n

queries that appear in QT
1 or QT

2 from false to true. This is not possible, as each state-
change can change at most m < n queries from false to true. We have the desired
contradiction to the existence of a state-matching reduction from the ATAM scheme
to the TAM scheme. �

Thus, the notion of state-matching reductions formalizes the difference in expres-
sive power between ATAM and TAM. One may ask whether there exists a reduction
from ATAM to TAM. One may also ask whether reductions or state-matching reduc-
tions exist from ATAM to TAM when we allow TAM to contain queries of the type
“is r �∈ Mγ[s, o]?” as well (but a command only allows checking for the presence of
a right in a cell in the condition). These are open questions.

4.6. Summary of results

In applying our theory to compare access control schemes, we have considered
four broad models: DAC, RBAC, Trust Management and Access Matrix. In Fig. 1,
we present results that we have shown in this paper, and that are known or can be
inferred.

The results that we present in Fig. 1 are the following.

• DAC – SDCO is one of the sub-schemes discussed by Osborn et al. [17]. It
is also a sub-scheme of the Graham-Denning scheme [5]. Consequently, there
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Fig. 1. Comparisons between schemes in four broad access control models: DAC, RBAC, Trust Manage-
ment and Access Matrix. A solid line shows the existence of a state-matching reduction (e.g., there is
a state-matching reduction from AAR to RT[∩]). A dotted line shows the existence of a reduction (e.g.,
there is a reduction from SDCO to ARBAC97). Arrows are sometimes double-headed for brevity. An “X”
qualifies one of the above relationships by indicating that such a relationship does not exist. For example,
there is no state-matching reduction from the Graham-Denning scheme [5] to the HRU scheme [6] and no
state-matching reduction from the HRU scheme to the Graham-Denning scheme.

exist state-matching reductions from SDCO to the family of DAC schemes pre-
sented by Osborn et al. [17] and the Graham-Denning scheme [5].

• DAC and RBAC

– There exists no state-matching reduction from the ARBAC97 scheme to the
Graham-Denning scheme. The intuition is that some state-changes (e.g., user
to role assignment) in ARBAC97 support more sophisticated preconditions
than those that are supported in the Graham-Denning scheme. This result
shows that the most general DAC scheme from the literature is not as expres-
sive as an RBAC scheme.

– There exists no state-matching reduction from SDCO to the ARBAC97
scheme. This is Theorem 5 in this paper.

– There exists a reduction from SDCO to the ARBAC97 scheme. This is The-
orem 6 in this paper.

– There exists no state-matching reduction from AAR to SDCO. This follows
from the fact that AAR allows for the specification of preconditions to the
assignment of a user to a role. SDCO cannot capture such complex precon-
ditions.
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• RBAC – AAR is a sub-scheme of URA97, which in turn is a sub-scheme of
ARBAC97. Consequently, there exists a state-matching reduction from AAR to
URA97, and from URA97 to ARBAC97.

• RBAC and Trust Management

– There exists no state-matching reduction from the URA97 scheme to RT[∩].
The intuition is that URA97 supports negative preconditions in the assign-
ment of user to roles and this cannot be captured in RT[∩].

– There exists a state-matching reduction from AAR to RT[∩]. This is Theo-
rem 7 in this paper.

– There exists no state-matching reduction from RT[∩] to AAR. The intuition
is that AAR has the constraint that every role to which a user can be assigned
must be such that users can be revoked from it (see Section 4.4 for a de-
scription of AAR). As there is no such constraint on the state-change rules of
RT[∩], AAR is not as expressive as RT[∩] under state-matching reductions.

– There exists no state-matching reduction from AAR to RT[ ]. The intuition
is that AAR supports conjunction in its preconditions in state-changes which
cannot be captured in RT[ ]. That is, if we weaken RT[∩] to RT[ ], it loses
sufficient expressive power that it is no longer as expressive as AAR under
state-matching reductions.

• Trust Management – There exists a state-matching reduction from RT[ ] to
RT[∩]; this is obvious because RT[ ] is a sub-scheme of RT[∩].

• Trust Management and Access Matrix

– There exists no state-matching reduction from RT[ ] to the HRU scheme.
This is Theorem 3 in this paper. There is also no state-matching reduction
from the HRU scheme to RT[ ]. See Section 4.1 for a discussion of the intu-
ition behind these results.

• Access Matrix – There exists a state-matching reduction from the HRU scheme
to TAM, but not vice-versa. This is because the HRU scheme is a special case
of TAM in which all subjects and objects are constrained to be of a single type.
There is a state-matching reduction from TAM to ATAM; TAM is a sub-scheme
of ATAM. There is no state-matching reduction from ATAM to TAM; this is
Theorem 8 in this paper.

• Access Matrix and DAC

– There is no state-matching reduction from the Graham-Denning scheme to
the HRU scheme. The intuition is that in the HRU scheme, commands are
more “free form” than in the Graham-Denning scheme. There is also no state-
matching reduction from the HRU scheme to the Graham-Denning scheme.
The reason is that in the Graham-Denning scheme, when a subject is de-
stroyed, rights to objects owned by the subject are transferred to subjects that
control the subject being destroyed. That is, a potentially unbounded number
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of subjects get rights to objects in a single state-change. This cannot be ef-
fected in an HRU system. We refer the reader to Li and Tripunitara [11] for
more discussions on the distinction between the Graham-Denning scheme
and the HRU scheme.

Open problems. Figure 1 and our discussions above suggest that there exist several
open problems in the comparison of various access control schemes. We list some of
them here.

• It is unknown whether the schemes discussed by Osborn et al. [17] can be fully
captured by the Graham-Denning scheme [5]. For example, Osborn et al. [17]
discuss a DAC scheme with the feature that when a user is granted a right, he
gets it with a certain depth which is an integer. If he were to grant the right to
another user, the right is granted with the depth decremented by one. A user
that has the right with depth 0 cannot grant the right any further. The maximum
depth is a constant specified as part of the access control system. This feature
controls the delegation depth with regards to the right. It is unclear whether
there exists a state-matching reduction or reduction from such a scheme to the
Graham-Denning scheme.

• It is unknown whether the ARBAC97 scheme [20] is at least as expressive as
all or some of the schemes in the RT family [9]. Also, we do not know whether
there exists a state-matching reduction or reduction from one of the access ma-
trix schemes to the ARBAC97 scheme. It is also unclear how and whether we
can extend the ARBAC97 scheme to be as expressive as the SDCO scheme,
and indeed, the full Graham-Denning scheme, with respect to state-matching
reductions. These questions would continue the investigation into the issue of
the expressive power of general RBAC models [15,17,22].

• As we point out in Section 4.5, we do not know whether there exists a state-
matching reduction from ATAM to TAM if we allow queries that check for
the absence of rights in TAM. In proving Theorem 8, we assume that such
queries are not allowed in TAM. We believe there that this captures our intent
of demonstrating that checking for the absence of rights does indeed add ex-
pressive power to ATAM. However, if we disallow checking for the absence of
rights in only the state-change rules and keep the queries the same in TAM and
ATAM, then the problem is open as to whether ATAM continues to be more
expressive than TAM with respect to state-matching reductions or reductions.

5. Conclusions and future work

We have presented a theory to compare the expressive power of access control
models. Our theory is based on perceiving an access control system as a state-
transition system, and asking whether there exist security-preserving or strongly
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security-preserving mappings between two schemes. We have highlighted four appli-
cations of our theory and shown that: (1) the HRU scheme and a trust management
scheme, RT[ ], are incomparable with one another; (2) RBAC with ARBAC97 as
its administrative model is at least as expressive as a particular DAC scheme un-
der the relatively weak notion of reductions, but not under the stronger notion of
state-matching reductions; (3) the trust-management scheme RT[∩] is at least as
expressive as RBAC with the URA97 component of ARBAC97 as its administra-
tive model; and (4) the higher expressive power of ATAM when compared to TAM
can be formalized using the notion of state-matching reductions. To our knowledge,
(1) is evidence that the expressive power of the HRU scheme is limited, (2) is the
first known evidence that the expressive power of RBAC may be limited, and (4) for-
mally demonstrates the benefit from the ability to check for the absence of a right in
addition to the presence of a right.

As future work, we propose to use our theory to compare more models with each
other. For instance, we would like to compare various versions of DAC and “layer”
these versions based on their relative expressive power. Also, while our theory is
based on capturing the notion of policies that can represented and verified in an ac-
cess control system, we do not believe that reductions and state-matching reductions
capture all the types of policies we would want to consider. For instance, a reason-
able question to ask during a security audit may be: “did Alice get her write access
to a sensitive file only after her husband, Bob was given privileged access to the sys-
tem?” This can be perceived as a policy issue, and we may want to express this as
some expression involving queries. Neither reductions not state-matching reductions
capture such query expressions. As part of our future work, we propose to expand
our theory to include such policies.

In particular, we would like to explore the use of logics beyond propositional logic;
for example, it is likely the Computational Tree Logic (CTL) will be useful in cap-
turing policies of the kind we discuss above. Adoption of more sophisticated logics
as the basis for our queries will give us richer queries, and allow us to distinguish
between access control schemes more meaningfully.
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Appendix A. A “Simulation” of RBAC in Strict DAC

We now informally describe a simulation of RBAC in strict DAC, the simplest
form of DAC. The point of this simulation is to show that if precise requirements are
not specified on simulations, then anything is possible.
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The state of a strict DAC model is represented by an access matrix, which has
one subject for each user and each role and one object for each permission. There
is also one special subject admin, who is the creator and owner of every object in
the system. All subjects are also objects. We use three rights, “own”, “dc”, and “c”.
We assume that the implementation of the strict DAC model provides the following
functionality, it internally sorts all the objects and can return the first object, given
an object o, it return the object next to o. The commands implemented in the strict
DAC are as follows:

command create(s, o)
create o;
enter own into (s,o);

end;
command delete(s, o)
if own ∈ (s,o)
destroy o;

end;
command grant-dc(s1, s2, o)
if own ∈ (s1,o)
enter dc into (s2,o);
enter c into (s2,o);

end;
command grant-c(s1, s2, o)
if own ∈ (s1,o)
enter c into (s2,o);

end;
command revoke-dc(s1, s2, o)
if own ∈ (s1,o)
remove dc from (s2,o);

end;
command revoke-c(s1, s2, o)
if own ∈ (s1,o)
remove cfrom (s2,o);

end;

The addition of new users, roles, and permissions are carried out by the simulator
in the straightforward way, i.e., have admin executes a creation command; admin
then becomes the owner of these objects. When a new user-role assignment, (u, r),
is added, the following procedure is executed, observe that only constant space is
needed for the simulation.

addUR(u,r) {
run command grant-dc(admin, u, r);
while (propagate());
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}
propagate() {
repeat = false;
for every s,o1,o2 in the matrix {
if c �∈(s,o2) && c ∈(s,o1) && c ∈(o1,o2) {
run command grant-c(admin, s, o2);
repeat = true;

}}
return repeat;
}

The procedures for adding a role-permission assignment and a role-role inheri-
tance relationship is similar.

Whenever a user-role assignment is removed, the simulator executes the following
procedure, which first clear all the propagated rights and redo the propagation.

removeUR(u,r) {
if (dc ∈ (u,r)) {
run command revoke-dc(admin, u, r);
clear();
while (propagate());
}
}
clear() {
for every s,o in the matrix {

if c ∈(s,o) {

run command revoke-c(admin, s, o2);
}}}
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