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Abstract 
 

Efficient design of social networking applications 
must take account of two guiding principles: the 
adaptive processes by which humans learn and spread 
new information, and the communication and 
technological constraints that in turn define the 
boundaries of human social behavior in virtual 
communities. In this paper, we introduce the concept 
of social learning in decentralized, resource-
constrained networks. We present a mathematical 
model for spread of information and derive the 
optimum strategy that minimizes the total cost of 
learning in cooperative social networks. We then 
extend our model to allow individuals to limit their 
cooperative behavior in spreading their knowledge. 
Our results demonstrate that increased cooperation 
reduces the overall cost and accelerates the rate of 
learning new information. 
 
1. Introduction 
 

Although much remains unknown about the 
evolution of intelligence and learning, today a growing 
body of research suggests that natural selection must 
have favored particular sets of rules, or strategies, for 
animals to learn new information adaptively and 
efficiently [1]. Implicit in this statement is the 
hypothesis that the proecesses by which individual 
members of a population learn and react to their 
environment are optimal and evolutionarily stable.  

Learning, or acquisition of new knowledge, can be 
asocial or social. Asocial learners, or innovating 
members of a population, generate new knowledge at 
some cost, while social learners acquire the new 
information by observing and adopting the behavior of 
others at no cost [2, 3]. Thus, social learning is 
inherently dependent on free utilization of the content 
of social, or public, information embedded in one’s 
social network. Because social learners adopt new 
information for free, and are instrumental in the spread 

of the new knowledge, they are deemed to thrive due 
to a greater and immediate payoff (the cost-benefit 
differential). However, a population of pure social 
learners will gain no new knowledge in the absence of 
innovators. Today, many scholars agree that a winning 
strategy1 is likely a combination of social and asocial 
behaviours, and that social learners must copy others 
discriminantly by selectively adopting the behavior of 
successful individuals [4, 5]. However, it remains an 
open problem as to what set of rules makes up a 
winning strategy for social learning in animals [6]. 

Though humans likely exercise similar strategies, 
what sets them apart from the rest of animals capable 
of social learning is the ability to generate and diffuse 
complex knowledge through sophisticated means of 
communication [7]. In the virtual world, where 
making social contact relies on the use of modern 
communication and information technology, the extent 
and nature of social behavior are influenced by 
resource constraints (e.g., energy, bandwidth, 
processing power, and memory).  Conversely, the 
design of social learning applications must take 
account of social learning concepts that appear to 
govern human social behavior and the manner by 
which they spread information. Thus, the delicate 
fusion of these dichotomous domain constraints, 
namely the social and technological, underscores the 
guiding principles for efficient design of social 
learning systems. 

Contrary to traditional social networks, in online 
settings information is generated and exchanged across 
virtual communities. Hence, regardless of whether a 
node generates new information (asocial learning) or 
scrounges it (social learning), there is a cost, albeit 
different, associated with both types of learning. In the 
virtual context, it is not as easy for social learners to 
acquire new knowledge or technology at the expense 
of innovators. Members of a social network must often 
                                                           
1 A winning strategy, akin to game theory, is a strategy whose final 
payoff (sum of cost-benefit differentials over some time) is the 
greatest relative to other competing strategies. 

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.303

256

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.303

256

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.303

256

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.303

256

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.303

256

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.303

256

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.303

256

2009 International Conference on Computational Science and Engineering

978-0-7695-3823-5/09 $26.00 © 2009 IEEE
DOI 10.1109/CSE.2009.303

256

Authorized licensed use limited to: University of Waterloo. Downloaded on January 7, 2010 at 13:54 from IEEE Xplore.  Restrictions apply. 



establish trust and cooperate to learn new information. 
How to best design a social learning application that 
facilitates cooperation among members of a social 
network while keeping the communication or 
processing cost at bay, is the key question we aim to 
address here.  

In this paper we introduce a computational 
framework for modeling the spread of information in 
decentralized, resource-constrained networks. We use 
this framework to design social learning systems that 
minimize the overall cost to the group. 

The remainder of the paper is organized as follows. 
In Section 2, we provide two examples of potential 
applications for the design of social learning systems 
in resource-constrained networks. In Section 3, we 
present a class of strategies that decouples asocial and 
social learning into separate phases. In Section 4 we 
present the information diffusion and cost models for 
these strategies and derive the optimum strategy that 
minimizes the total cost of learning. In Section 5, we 
extend our basic model to allow individuals to limit 
their cooperative behavior in spreading their 
knowledge. Finally, in Section 6 we draw conclusions 
and point to some further directions for research. 
 
2. Motivation 
 

To make our discussion more concrete, we consider 
the learning behaviors and how they translate to 
specific computational/communication task with 
respect to two social networking applications. In the 
context of these applications, a social network 
comprises members that trust one another to cooperate 
in sharing application specific information when 
necessary despite the cost.  

 
2.1. Security in social networks 
 

The first application is the problem of spreading 
information about the identities of adversaries (e.g., 
spammers in an IP-based telephony system) in 
decentralized, resource-constrained settings. We 
consider the following question: how do the members 
of a social network cooperate to identify an adversary 
that has begun to victimize them? In this application 
members trust one another to not be an adversary [8, 
9]. A context in which this problem arises is Spam 
over IP Telephony (SPIT) [10]. SPIT is the act of 
sending unsolicited messages over an IP-based 
telephony system. We consider settings such as mobile 
networks, in which there are resource-constraints; that 
is, communication is associated with a cost.  

In this setting, innovation, or asocial learning, is 
analogous to the act of accepting calls from unknown 

sources at the risk of getting spammed for which there 
is an associated cost. This cost may consist of 
measurable quantities, such as the cost of cell phone 
minutes and battery life. It can also relate to non-
quantifiable effects, such as the psychological stress 
caused by being spammed. Observation, or social 
learning, relates to calling other members of the group 
in the hope of learning the identity of the spammer. In 
this case, given a relatively high degree of cooperation, 
it is fair to assume that the cost of innovation is much 
higher than the cost observation.  

 
2.3. Targeted advertisement 
 

In targeted advertisement, the objective is to have a 
subset of group members learn about and adopt a new 
product and subsequently recommend the product to 
other members of their network [11, 12]. The ultimate 
goal is to spread the knowledge about the product 
through word-of-mouth advertising which should lead 
to further product adoption by other group members. 

In this application, the advertising source incurs all 
of the cost by offering large incentives to initially 
targeted group members to try a product, and smaller 
incentives to spread the word about the product to 
other members of the group. Hence, the marketing 
strategy of the advertiser is to minimize the total cost 
of incentives given to the members while effectively 
targeting groups and spreading the information about 
the product.  Here, the initially targeted members who 
adopt the product are viewed as innovators (asocial 
learners) and those who receive information about the 
products are considered observers (social learners). 

 
3. Strategy 
 

A strategy is defined as a set of rules that specify 
which behavior should be adopted at each point in time 
to achieve a desired objective. Our objective is that all 
members of a social network, represented by the set F, 
learn a particular set of information in a decentralized 
setting. An optimal strategy is a strategy by which the 
objective is achieved while minimizing some cost 
parameter such as latency or resource-consumption. As 
a starting point for our work, we adopt a particular 
strategy that we call . Our strategy comprises three 
phases. In the first phase, members of F innovate, in 
the second, they observe, and in the last, they exploit. 
To simplify the analysis we assume that there is no 
cost associated with exploitation. This simple model 
represents a wide range of strategies which begin with 
innovation.   

In the innovation phase of , some members of F 
are targeted to receive a particular set of application-
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dependent information at a relatively high cost. We 
associate a per-member cost, SC , with innovation. In 
the observation phase of , members of F stop 
innovating. For example, in the security application, 
they accept calls only from members of F, and in the 
advertising application we stop targeted ads and let the 
information propagate in the social network.  

Inherent to the innovation and observation 
behaviors is the notion of time; we need a notion of 
time in our formulation for the cost. We model time 
discretely. Each unit of time is called a round; we have 
M rounds of innovation and N rounds of observation. 
We assume that in each round of the observation 
phase, a member who does not have the information 
has one instance of communication with another 
member of F. The former acquires the information if 
the latter has it. 
 
4. Information Diffusion Model 
 

We now study the innovation and observation 
phases of more closely. We wish to identify the 
convergence properties and cost characteristics of . 
Let nX  be the proportion of F that has learned the 
desired information (e.g. knows who the spammer is) 
at the end of round n; 0X is the proportion that learned 
the information at the end of the innovation phase. We 
have the following progression for nX . 

0n  for     XX1XX nnn1n )(              (1) 

The intuition behind (1) is that in round n+1, the 
probability that someone that does not have the 
information (the proportion nX1 ) calls someone that 
does, is nX . An Implicit assumption in (1) is that group 
members fully cooperate in spreading their knowledge. 
In Section 5, we model a case of limited cooperation. 
We can immediately infer some properties of (1). For 
example, it converges at the limit, that is, for 

),( 1 0X0  and ),( 0X1 0  there exists an N such 
that 1 X N . We say that N is the number of rounds 
in which X converges.  

To understand the behavior of the system depicted 
by (1), we seek a closed form solution for nX . We 
rewrite (1) as follows. 

0n  for     X2XX nn1n )(                      (2) 

Equation (2) is the familiar logistic equation [13] 
with growth parameter r = 2. If we adopt Y = X/2, we 
can rewrite (2) in its canonical form as follows.  

0n  for     Y1Y2Y nn1n )(                  (3) 

The dynamic properties of (3) have been well studied 
[14]. It has been shown that for the growth parameter r 
> 3, the equation exhibits chaotic behavior. Here r = 2, 
and thus the equation is stable and has the steady state 
value of 21Y /*  (or 1X * ). For 21Y0 / , nY  is 
monotonically increasing for 0n , until convergence 
is attained. While closed form solutions exist for 
logistic differential equations for generic values of r, 
such solutions exist for only a handful of specific 
values of r for logistic difference equation. For 

2r (i.e. equation (3)), the closed form solution is the 
following for 0n . 

n
0

n

0
n

2
0

X12
n

Y212
n

XX 11e1    

e1
2
1

Y       

)()ln(

)ln(

     (4) 

Logistic equations have been previously considered 
in the literature in different applications including 
security (in the context of worms) [15-17]. To our 
knowledge, our proposed model is the first to apply the 
logistic equation to the problem of information sharing 
in resource-constrained networks in a cost-
minimization context. 

We seek a meaningful characterization for the cost 
in terms of particular strategies we evaluate. Here, we 
study a set of strategies that decouples innovation and 
observation behaviors in separate phases. The 
following is our formulation for the total system cost. 

1NM

Mn
n0C

1M

0m
miC OIC                          (5) 

In the above formulation, iC  is the cost of innovation 
incurred by each member of the social network that 
chooses to innovate, 0C  is the cost of observation, kI is 
the number of innovators in round k and lO  is the 
number of observers in round l. This is a rather 
abstract characterization of the cost. Our intent is to 
customize it based on particular strategies. 

We adapt the cost function as expressed by (5) 
for ; Equation (6) expresses this. The intuition is that 
in each round, each member in the nX1 proportion 
incurs the cost of 1. The proportion 0X incurs a cost of  

SC in the innovation phase. 

n2
1N

0n

00sC

1N

0n

n0sC0sC

X1X  (4)) Equation(by  

X1XXC              

)(

)(),(

           (6) 

We do not split the innovation behavior into rounds; 
we assume that it occurs in a single round. Also, we 
assume that SC is normalized by the cost of 
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observation. Thus, each round in the observation phase 
consists of several instances of what we call legitimate 
communication, each of which incurs the normalized 
cost of 1. In the exploitation phase of , members use 
what they have learned in previous rounds.  

We now make some observations about our system 
as expressed by (1) and (6). In Figure 1 we show the 
relationship between  ),( 0sC XC  and 0X for a particular 
value of SC . We have one real minimum for the values 
of 0X that are relevant, that is, ),( 1 0X0 . It turns out 
that this is true for all meaningful values of  0X  and 

SC . This is an interesting result because it 
demonstrates that there is a unique initial condition, 

*
0X , that results in minimum total cost for any given 

choice of  SC . The following theorem establishes this 
general result. 

 
Theorem 1 For ),( 1 0X0  and 1Cs  a constant, 

)( 0XC  has exactly one real minimum. 
 
Proof. If 1Cs   then the value of 0X  for which 

)( 0XC  is minimized is 1X0
*  (i.e. N=0) because then 

1XC 0 )( . Otherwise, 1XC 0 )( . For 1sC , we set 

0X1y  and take the derivative of )(yC with respect 
to y. 

)(
)(
)()( S

n
C1

d

dC
C 12

1N

1n

n y2
y
y

y  

We consider the roots of   )(yC and apply Descartes’ 
rule of signs [18]. )(yC has exactly one positive real 
root - there is exactly one change of sign across 
consecutive coefficients as  0C1 s . There are no 
negative real roots because )( yC has no sign change 
across consecutive coefficients. To show that the root 
represents a minimum in (0, 1), we first observe 
that 00yC )( . Also, 0C SC

N 121y )()(  
because N1y . That is, )(yC changes from 
negative to positive in (0, 1). This means that: (1) 

)(yC has a root in (0, 1), and, (2) this root corresponds 
to a minimum for )(yC .   ■ 

Now that we have established that there exists a 
real minimum for ),( 1 0X0 , we can find  *

0X  using a 
root-finding algorithm [19]. Figure 2 shows the 
relationship between 0X  and N for 3810  ( 3810 is  
approximately the smallest single-precision floating 
point  number  in  MATLAB.)  We  see an exponential 
decrease in   N   as  0X   increases. Figure 3  shows  the      
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Figure 1. The relationship between 0X and 

),( 0sC XC  for 8sC .  
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Figure 2.  The relationship between 0X and N  
for 3810 .  
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Figure 3. The relationship between sC and 

0X for which the total cost is minimized.  
 
relationship between the normalized cost of 
innovation, and the *

0X  for which the total cost, is 
minimized. We consider only 1sC ; the cost of 
innovation is at least as much as engaging in 
observation. The graph shows that the decrease in *

0X  
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slows significantly with increase in sC  beyond a 
certain threshold. 

Figure 4 shows the relationship between sC and N 
for which cost is minimized, *N , across all possible 
values of 0X . We observe that *N increases but starts 
to converge. This is consistent with Figure 3; *N is a 
function of *

0X  and *
0X exhibits little variation for large 

values of sC . Finally, Figure 5 shows the relationship 
between sC and the minimum total cost across all 
possible values for 0X . This is also consistent with 
Figure 3. That is, the minimum total cost grows 
linearly with sC for relatively constant 0X . The 
convergence of the minimum total cost is interesting, 
because this suggests that even for high values of sC , 
we can hope to establish an upper bound on the total 
cost provided we choose the correct value for 0X , that 
is, we innovate for as long as is needed to minimize the 
cost. 
 
5. Modeling Limited Cooperation 
 

We now extend our basic model to allow 
individuals to limit their cooperative behavior. The 
extent of cooperation could be based on an 
individual’s decision to control cost during the 
observation phase and is governed by resource 
constraints.  It has been shown that spread of new 
information among members of networks has likely 
played a key role in the evolution and sustenance of 
cooperation in human populations [21, 22].  

Here, we examine the effect of degree of 
cooperation among members of a network on the 
overall cost and the rate of spread of new knowledge. 
We introduce a new parameter , to represent the 
degree of cooperation by those who have the 
information in the observation phase. Then, the 
information diffusion model in the observation phase 
can be described by the following recursion.  

]1,0(     whereXX1XX nnn1n )(     (7) 

Although the growth of  nX  is now a function of , 
the total cost as a function of 0X is still given by (6):  

)(),(
1N

0n

n0sC0sC X1XXC                 (8) 

The following theorem establishes that the total cost 
has only one real minimum, and thus is an extension of 
Theorem 1 when members of a network may no longer 
be fully cooperative.  
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Figure 4: The relationship between sC and N 
for which the total cost is minimized. 
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Figure 5. The relationship between sC and the 
minimum total cost across all values of 0X . 

Theorem 2 For ],[ 1 0X0 , ],( 1 0 , and constant 
1sC , )( 0XC  has exactly one real minimum, 

S0 CXC )(min . 
 
Proof (by contradiction): First note that )0( 0XC   
and SCXC )1( 0  which then implies that there exists 
at least one real minimum, and the global minimum in  
[0,1] is at most  sC . We now establish that there is 
exactly one real minimum. Re-write (7) as 

]1,0(   whereX1X1X1 nn1n ))((   (9) 

It is clear from (9) that nX1  declines at a 
monotonically decreasing rate of nX1 . As 0X  
increases from 0 to 1, the first term on the right hand 
side of (8) increases at a constant rate while the second 
term declines at a monotonically decreasing rate. Now 
suppose that (8) has more than one minimum. Then it 
follows that for some 0X greater than the value for 
which the first minimum occurs, the rate of change of 
the second term on the right hand side of (8) would 
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have to increase to attain a second minimum. This 
contradicts the monotonicity premise implied by (9).  ■ 

Note that, unlike the full cooperation model, the 
minimum total cost may occur at S0 C1XC )( . That 
is, when the cost of observation is relatively high, 
asocial learning is the most cost effective learning 
strategy. This happens when the degree of cooperation 
is low (i.e.,  is small).   

It is possible to numerically find the value of 0X  
for which the cost is minimized. However, it can be 
computationally expensive.  We begin by transforming 
(7) to the more familiar logistic equation with growth 

parameter 1r . Let XY
1

 and rewrite (7) in 

its canonical form as follows:  
0n  for   Y1Y1Y nn1n )()(               (10) 

An analytical solution to (9) as a function of 0Y  in 
matrix form is given in [20]: 

0n  for      eYTY 1
n

n                  (11) 

where T is defined by: 
kkj

kj 1kj
k1T )()(, ,                     (12) 

],[  ,Y Y ,Y 3
0

2
00Y  and ],,,[  0 0 11e  (where 1e is the 

transpose of 1e ). To solve for nY , we need to compute 
the nth power of T. Although T is an infinite matrix, 
only the finite nn 22  upper-left corners of the matrix 
are needed. Substituting (10) into (8) leads to a cost 
function which is a polynomial in 0X from which we 
can obtain the initial condition that minimizes total 
cost.  

Figure 6 illustrates the relationship between  
),( 0XC sC  and 0X for 8sC  and 5.0 . As 

expected, the total cost has only one minimum 
for ],[ 1 0X0 . It is interesting to note that the minimum 
total cost in Figure 6 is higher than that of Figure 1. In 
other words, when members of a network are not fully 
cooperative, they collectively incur a higher cost. In 
Figure 7, the minimum total cost is plotted as a 
function of  for 15sC . As can be seen, the 
minimum total cost is a monotonically decreasing 
function of the degree of cooperation: a less 
cooperative group of individuals is doomed to pay a 
higher price for social learning and spread of 
knowledge in the long run.  

Another interesting result is that of Figure 8, where 
the relationship between the number of rounds  (N)  
and the degree of cooperation ( ) is plotted for those 
values of  N where the total cost is  minimized.  As  the 
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Figure 6. The relationship between 0X and 

),( 0XC sC for 8sC  and 5.0 . 
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Figure 7. The relationship between and the 
minimum total cost for 15sC . 
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Figure 8. The relationship between and N for 
which the total cost is minimized across all 
values of  0X  for 15sC . 
 
degree of cooperation increases, learning of new 
knowledge is expedited and new information is 
propagated at a faster rate. Putting the results of 
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Figures 6-8 together, it becomes clear that the benefit 
of cooperation is two-fold: it pays off to cooperate 
because it reduces the cost and increases the rate of 
learning new information.  
 
6. Concluding Remarks 
 
We introduced a novel computational framework 
based on social learning concepts and the logistic 
equation for efficient learning and spread of new 
information in decentralized, resource constrained 
networks. We showed that when members of a social 
network cooperate to learn new information, the 
overall cost can be minimized. We then developed a 
model of limited cooperation and demonstrated that 
both the cost and rate of learning new information are 
dependent on the extent of cooperation among 
members of a social network.  

Much research in evolutionary biology, 
anthropology, and economics has been devoted to 
understanding the conditions under which cooperation 
has evolved when resources are finite [23, 24]. More 
recently, it has been shown that learning and 
transmission of new information has likely been 
critical in the evolution of cooperation [21, 22].  Here 
we have shown the converse—that when members of a 
network cooperate to learn new knowledge, learning 
and transmission of information can be achieved at a 
faster rate and a lower cost.   

There is considerable scope for future work. One 
aspect concerns applications of our approach to some 
of which we allude in Section II.  Another extension is 
to formulate an optimal strategy when it is critical for 
members of a network to learn and disseminate more 
than one informational component (e.g., identities of 
multiple attackers). Finally, we plan to investigate a 
repertoire of strategies from a more foundational 
standpoint, where an agent-based simulation 
framework paired with game theoretic notions is used 
to examine the optimality of various strategies in a 
changing environment. 
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