Introduction

An understanding of dynamical system models is important in diverse disci-
plines: automatic control, communications, filter design, specialized computer
circuit design, power systems, and robotics, as well as in other branches of en-
gineering, and indeed, in many branches of the physical, biological and social
sciences. Many of the dynamical system models of interest can be put into
a common framework, that of the so-called “state-space” model. Engineering
examples will be emphasized here, and the important class of linear, constant
models will be analyzed in detail.

State-space models are sets of equations of a particular form, with several
useful attributes: first, their form contributes to an intuitive understanding of
the behavior of many dynamical systems; second, efficient computational tech-
niques are available for solving them; and third, a large body of theory is avail-
able for analyzing them.

A general description of state-space equations will be given, and then several
simple examples will be put into state-space form. The modeling consequences
of linearity and time-invariance will be given, and then the simplest systems,
those that are both linear and time-invariant, will be introduced. Finally, a tech-
nique for finding a linear approximation of a nonlinear system near a known
solution will be given.

The structure of state-space models

State-space models are collections of equations corresponding to the logical
structure illustrated by Figure 1.1. As will be seen, this logical structure ap-
plies to a variety of physical objects, such as electromechanical systems, digital
computers, and digital software processes. Writing the equations is extremely
simple for a model corresponding to this diagram, but the starting point may be
a model of different structure, in which case the corresponding equations have
to be manipulated to rewrite them in state-space form.
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The components of a dynamical system.

All variables in the model are assumed to be a function of an independent
variable, usually time, which justifies the adjective “dynamic” for the system.
Thus there is a set, typicalliy = R, the set of real numbers for analog systems,
for which time is continuous, JF = Z, the integers, for discrete-time systems
such as computer circuits.

At each timet € T, a set ofm independent external quantitias, i =
1---m calledinputsis assumed to affect the system, and at each time the system
is assumed to produce a setpodjuantitiesy;, i = 1 - - - p calledoutputs,which
may affect the external environment.

For modeling purposes, inside the system there are two logically distinct
types of components, grouped together in Figure 1.1. There is a set of memory-
less components that compute instantaneous functions of the external inputs and
of internal variables;, i = 1- - - n which are calledtatevariables. The second
set of components contains memory elements that store the internal variables.
Thus, the memoryless part computes the functions

y1(t) = g1 (@1 (t), - - (t), ua (t), - - - um(t), 1)

Up(t) = ol (8),+~ 2n(t), 11 (1), um (1) 1).

These functions specify thesystem outputs at each timén terms of the input
and state variables at timeand in terms of itself. By convention, the above
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equations are often written as
Y(t) = G(X(),U(t), 1).

In this equationy (¢) is a column of variableg, (), - - - y,(t), and is referred
to as a vector of dimensign or ap-vector, with entries (or elementg)(t), i =
1,---p. Similarly X(¢) is ann-vector andU(¢) is anm-vector. The entries of
vectorG are the quantitieg;(- - -), i = 1, - - - p, which are functions of the entries
x;(t), i = 1,---n of the state vectoK(¢); of the entriesu;(t),7 = 1,---m of
the input vectoiU(¢); and oft.

Similarly, the state-update values in Figure 1.1 are given by equations of the
form

U)l(t) - fl(xl(t)ﬂ o 'xn(t)aul(t)v o ’um(t)vt)

wWnt) = fou(1 (D), 2n(t),ur(t), -~ (£), 1)

and these equations are abbreviated, by convention, as
W(t) = F(X(t), U(t), 1).

Two possible memory types will be considered. The continuous-time mem-
ory shown in Figure 1.2 containsintegrators, for which, using vector notation,

d
%X(t) = W(t)a

where the time-derivative of a vector is the vector of derivatives of its entries.
The discrete-time memory of Figure 1.3 containdelays, for which

X(t+1) = W(t).
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When the equations for the memory and memoryless parts are combined to elim-
inateW(t), the continuous-time state-space equations take the form

SX (1) = FX(1), U (1) 1)

Y(t) - G(X(t)a U(t)7 t)v
and the equations for a discrete-time system have the form
X(t+1) = F(X(t),U(¢), )

Y(t) = G(X(¢),U(t),t).

The right-hand sides of (1.7) and (1.8) contain only state variables and sys-
tem inputs, and the equations explicitly determﬁ@ﬁ(t) in (1.7), X(¢t+1) in
(1.8), andY(¢) in both cases. Writing state-space equations from some other
starting point requires the above left-hand variables to be solved exclusively in
terms of the above right-hand variables.

Often the model inputs and outputs represent real-valued quantities, that
is, U(t) € R™ andY(¢) € RP, in which case the state vect®i(¢) normally
contains real values as well, that ¥(¢) € R"™; but as will be seen, it may be
convenient to allovk(¢) € C", the complex:-vectors.

Other kinds of variables are possible, however. For example, in binary com-
puter circuits, all variables exceptake values from the s¢0, 1}, and provided
the model is linear, it is possible to wrilé(t) € Z5*, Y(¢) € Z5, X(t) € Z%,
whereZ, is the set of integers modulo 2.

In summary, defining a state-space model requires definition of the input,
output, and state vectors; the time 'Setand the vector functiorB(- - -), G(- - )
in (1.7) or (1.8). Systems described by ordinary differential equations (1.7a)
contain integrators in the memory of the corresponding conceptual model. Dis-
crete-time systems described by (1.8a) contain delay elements that store quanti-
ties for one time interval. In both circumstances, the state variables are conve-
niently chosen as the contents of the memory elements.

wi(t) = z1(t+1)

————o

wp(t) = zp(t+1)

:
467

Discrete-time memory.



