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11Time-varying systems

This chapter discusses the solution of time-varying linear systems, first encountered in
Section 2 of Chapter 1 and described by Equations (1.11) for continuous-time systems,
repeated here:
d

dt
X(t) = A(t)X(t) + B(t)U(t)(1.11a)

Y(t) = C(t)X(t) +D(t)U(t).(1.11b)

Whether a system is considered to be linear and time-varying or nonlinear is sometimes a
question of semantics and the designation of quantities as inputs, state variables, or time-
varying parameters, as illustrated in Example 14 of Chapter 1. To focus the discussion,
assume a model of the form of (1.11), where the external environment affects the system
through U(t), and the system affects the environment through Y(t) as usual, but the
entries of the coefficient matrices A(t), B(t), C(t), D(t) are known functions of t that
are independent of U(t). Solutions resulting from initial conditions X(t0) and input U(t)
will also depend on the initial time t0 and the interval [t0, t) over which the solutions
are obtained. One natural source of time-varying linear equations is the linearization of
a time-invariant nonlinear system along a time-varying solution trajectory as discussed
in Section 6 of Chapter 1, resulting in Equations (1.29), which are of the form of (1.11).

The discussion in this chapter concerns time-continuous systems because the recur-
sion given in Section 1 of Chapter 2 is adequate for solving most discrete-time systems.
However, the properties of linearity apply to both cases.

Provided that A(t), B(t), C(t), D(t) and U(t) are bounded and piecewise contin-
uous with respect to t, then by the discussion in Section 2.1 of Chapter 2, solutions
exist, satisfy (1.11) except at points of discontinuity, and are continuous and unique. For
simplicity in the following, the coefficient matrices will be assumed to be continuous
functions of t, since discontinuities must be treated specially.

The transform methods of Chapter 3 are inapplicable to (1.11) because the coeffi-
cients in the equations are not constant.

The solution of the LTI case for initial state X(t0) obtained in Chapter 2 is repeated
below for easy reference. The solution of the state for constant A, B, C, and D is

X(t) = e(t−t0)AX(t0) +

∫ t

t0

e(t−τ)ABU(τ) dτ,(2.25)

1



2 Chapter 11 Time-varying systems

and the output is

Y(t) = C

(
e(t−t0)AX(t0) +

∫ t

t0

e(t−τ)ABU(τ) dτ

)
+DU(t).(2.29)

The state-transition matrix Φ(t, t0) = e(t−t0)A appears in the first term of (2.25) and
is convolved with BU(t) in the second term. The output Y(t) in (2.29) is obtained by
multiplying the formula for X(t) by C and adding the term DU. Similarly for the time-
varying equations, if X(t) can be solved from (1.11a), it can be substituted into (1.11b)
to obtain the output.

Solutions of (1.11) will be shown to exhibit the properties of linearity found for LTI
systems in Section 2 of Chapter 2, but the state-transition matrix is not generally defined
by a predetermined formula.

First, the solution for X(t) when U(t) is identically zero will be investigated, fol-
lowed by the complete solution of (1.11).

1 Homogeneous systems

Setting U(t) ≡ 0 in (1.11a) results in

d

dt
X(t) = A(t)X(t).(11.1)

Let an interval [t0, tf ) over which solutions are to be found be given, together with the
initial state X(t0). In order to solve these equations, the entries of A(t) must also be
known over [t0, tf ). As usual, denote the dimension of X(t) by n. There are n equations
to be solved for the n unknown entries of X(t) over the given interval.

In general, Equations (11.1) cannot be solved in closed form as for the LTI case but
typically must be approximated by computer methods. For given t0 and A(t), there are
infinitely many solutions corresponding to different initial states X(t0). However, all of
these solutions can be characterized by solving (11.1) exactly n times, as will be shown.

1.1 Fundamental and state-transition matrices

Let t0 be known and fixed in the following. Select a set of n linearly-independent initial-
condition vectors {ξ1, ξ2, . . . ξn} and, for each i = 1, . . . n, compute the solution
ψi(t) of (11.1) over [t0, tf ) that corresponds to ξi. The vectors ξi may be chosen for
convenience of solution provided they are independent. These solution vectors, written
simply as ψi, define a fundamental matrix Ψ(t) = [ψ1, ψ2, . . . ψn ] , which obeys the
differential equation

d

dt
Ψ(t) = A(t)Ψ(t),(11.2)

with nonsingular initial-condition matrixΨ(t0) = [ ξ1, ξ2, . . . ξn ] . Post-multiply (11.2)
by Ψ−1(t0) to get

d

dt
(Ψ(t)Ψ−1(t0)) = A(t) (Ψ(t)Ψ−1(t0)),(11.3)
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and let Φ(t, t0) = Ψ(t)Ψ−1(t0). This fundamental matrix satisfies (11.2) as follows,

d

dt
Φ(t, t0) = A(t)Φ(t, t0)(11.4)

with initial condition Φ(t0, t0) = Ψ(t0)Ψ
−1(t0) = I, and is unique because the proper-

ties of A(t) guarantee unique solutions of (11.1). Postmultiplying (11.4) by any initial-
condition vector X(t0) gives

d

dt
(Φ(t, t0)X(t0)) = A(t) (Φ(t, t0)X(t0)),(11.5)

which shows that

X(t) = Φ(t, t0)X(t0)(11.6)

is a formula for the solution of (11.1) corresponding to X(t0), since it satisfies (11.5)
and the initial condition Φ(t0, t0)X(t0) = X(t0). Furthermore, any vector X(t) ∈ R

n

corresponds to a unique initial condition X(t0) in (11.6) since Φ(t, t0) is nonsingular,
as shown in the next result. The matrix Φ(t, t0) is therefore called the state-transition
matrix corresponding to Equation (11.1).

Example 1
State-transition

matrix

Although simulation must typically be employed to solve Equation (11.1), some text-
book examples can be solved in closed form. Suppose that solutions are to be found

over [t0, ∞) with A(t) =

[
0 et

0 −1
]
. Choosing initial conditions ξ1 =

[
1
0

]
at t = 0

gives solution ψ1(t) =

[
1
0

]
, and choosing ξ2 =

[
0
1

]
gives solution ψ2(t) =

[
t
e−t

]
.

Therefore the state-transition matrix for initial time t0 is

Φ(t, t0) = Ψ(t)Ψ−1(t0) =

[
1 t
0 e−t

][
1 t0
0 e−t0

]−1

=

[
1 (t− t0) et0
0 e−(t−t0)

]
.

Proposition 1 The state-transition matrix Φ(t, t0) is nonsingular.

Proof: The determinant of the state-transition matrix will be shown to be

detΦ(t, t0) = e
∫ t
t0

trace(A(τ)) dτ(11.7)

where traceA =
∑n

i=1 aii, and therefore, since the exponential function is nonzero for
finite arguments, detΦ(t, t0) �= 0.

If (11.7) is true, differentiating both sides yields

d

dt
detΦ(t, t0) = e

∫ t
t0

trace(A(τ)) dτ trace(A(t)) = (detΦ(t, t0)) trace(A(t))(11.8)
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and conversely. Showing that (11.8) is true, therefore, shows that (11.7) holds. Using
the notation Φ(t, t0) = [φij ] , consider the derivative of the determinant computed as a
sum of products by the first method in Section 2 of Chapter 5:
d

dt
(det [φij ]) =

d

dt

∑
±(φ1iφ2j · · ·) =

∑
±
(
(φ̇1iφ2j · · ·) + (φ1iφ̇2j · · ·) + · · ·

)
(11.9)

=
∑
±(φ̇1iφ2j · · ·) +

∑
±(φ1iφ̇2j · · ·) + · · ·

= det

⎡
⎣ φ̇11 φ̇12 · · ·
φ21 φ22 · · ·
· · ·

⎤
⎦+ det

⎡
⎣φ11 φ12 · · ·
φ̇21 φ̇22 · · ·
· · ·

⎤
⎦+ · · · ,

which is a sum of n determinants, each determinant containing a differentiated row. In
the first determinant, substitute φ̇ij =

∑n
k=1 aikφkj from Equation (11.4) to obtain

det

⎡
⎣ φ̇11 φ̇12 · · ·
φ21 φ22 · · ·
· · ·

⎤
⎦ = det

⎡
⎣ a11φ11+a12φ21+ · · · a11φ12+a12φ22+ · · · · · ·

φ21 φ22 · · ·
· · ·

⎤
⎦ .(11.10)

Now add multiples of lower rows to the first using operations H12(−a12), H13(−a13),
. . . H1n(−a1n) as defined in Section 3.1 of Chapter 5 to get

det

⎡
⎣ φ̇11 φ̇12 · · ·
φ21 φ22 · · ·
· · ·

⎤
⎦ = det

⎡
⎣ a11φ11 a11φ12 · · ·

φ21 φ22 · · ·
· · ·

⎤
⎦ = a11 detΦ(t, t0).(11.11)

Similarly, the other determinants in (11.9) are aii detΦ(t, t0), i = 2, . . . n, and the
sum of the n determinants is trace(A(t)) detΦ(t, t0), as required to demonstrate Equa-
tion (11.8). �

Inverse A formula for the inverse of Φ(t, t0) can be found easily. Let t1, t2, and t3 be in [t0, tf ).
Then from the fundamental properties of Φ(t, t0),

X(t3) = Φ(t3, t2)X(t2) = Φ(t3, t2)Φ(t2, t1)X(t1) = Φ(t3, t1)X(t1),(11.12)

which must be true for any X(t1). Therefore,

Φ(t3, t1) = Φ(t3, t2)Φ(t2, t1)(11.13)

for any three points t1, t2, and t3. Let t3 = t1, so that

Φ(t1, t1) = I = Φ(t1, t2)Φ(t2, t1);(11.14)

that is,

Φ−1(t1, t2) = Φ(t2, t1).(11.15)

Although formulas for Φ(t, t0) are not available in general, some special cases can
be solved in closed form, as in the following.

Piecewise
constant
systems

If A(t) is piecewise constant but has step changes at times t1, t2, . . . in [t0, tf ), then
let Ai be the value of A(t) between ti−1 and ti. By continuity of the solution X(t), the
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composition property (11.13), and the formula for the state-transition matrix for time-
invariant systems, Φ(t, t0) over tk < t < tk+1 is the product

Φ(t, t0) = e(t−tk)Ak . . . e(t2−t1)A1e(t1−t0)A0 .(11.16)

Triangular
systems

If A(t) can be written in upper triangular form, so that in each row i, the only nonzero
entries are in columns i, . . . n, choose initial conditions ξ1 = e1, . . . ξn = en. Then
in each solution ψi, entries i+1, . . . n are zero, entry i satisfies a scalar differential
equation with initial condition 1, and superior entries can be solved as functions of
known quantities.

Commutation In the special case that

A(t)A(τ) = A(τ)A(t)(11.17)

for every t, τ, the state-transition matrix Φ(t, τ) is

Φ(t, τ) = e
∫ t
τ A(s) ds,(11.18)

which will be shown to satisfy Equation (11.4). The series for the right-hand side is

e
∫ t
τ A(s) ds = I+

∫ t

τ
A(s) ds+

1

2

(∫ t

τ
A(s) ds

)(∫ t

τ
A(s) ds

)
+ · · ·(11.19)

and its derivative with respect to t is

d

dt
e
∫ t
τ A(s) ds = A(t) +

1

2
A(t)

(∫ t

τ
A(s) ds

)
+

1

2

(∫ t

τ
A(s) ds

)
A(t) + · · · ,(11.20)

whereas

A(t)e
∫ t
τ A(s) ds = A(t) +A(t)

(∫ t

τ
A(s) ds

)
+ · · · ,(11.21)

and the latter two series are equal if and only if

A(t)

∫ t

τ
A(s) ds =

∫ t

τ
A(s) dsA(t).(11.22)

Assume that (11.17) is true, and take A(t) inside the integrals in (11.22), obtaining
identical integrands. Conversely, if (11.22) is true, differentiating by τ and multiplying
by −1 produces (11.17). Therefore, (11.22) is true if and only if (11.17) is true.

Example 2
Verifying

nonsingularity
and

Equation (11.7)

The nonsingularity of the state-transition matrix Φ(t, t0) of Example 1 will be checked.
In this example, the determinant of Φ(t, t0) is e−(t−t0) �= 0, whereas traceA(t) = −1,
and

e
∫ t
t0

trace(A(τ) dτ
= e

∫ t
t0
(−1) dτ

= e−(t−t0) = detΦ(t, t0),

which also verifies Equation (11.7).
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Example 3
Inverse of

Φ(t, t0)

Calculating the inverse of Φ(t, t0) from Example 1, we get

Φ−1(t, t0) =
1

detΦ(t, t0)
adj(Φ(t, t0)) =

1

e−(t−t0)

[
e−(t−t0) −(t− t0) et0

0 1

]

=

[
1 (t0 − t) et
0 e−(t0−t)

]
= Φ(t0, t).

Example 4
Piecewise

constant A(t)

Let A(t) =
[

0 0
− step(t− 1) 0

]
. Then Φ(t, 0) = I for t < 1, and, for t ≥ 1, Φ(t, 0) =

e

⎛
⎝(t−1)

[
0 0
−1 0

]⎞
⎠
× I =

[
1 0

−t+ 1 1

]
.

Example 5
Triangular A(t)

Suppose that A(t) =
[
1 1
0 t

]
. Then initial condition ξ1 = e1 gives ψ1 =

[
et

0

]
and

ξ2 = e2 results in ψ2 =

[
et0 +

∫ t
0
et−τeτ

2/2 dτ

et
2/2

]
=

[
et
∫ t
0
e−τ2/2 dτ

et
2/2

]
.

Example 6
Diagonal

time-varying
coefficients

Let d
dtX = A(t)X with A(t) =

[−α+ β cos t −3
3 −α+ β cos t

]
= R(t) + Q, where

R = diag[β cos t] and Q =

[−α −3
3 −α

]
. In this special case, A(t) satisfies Equa-

tion (11.17) and, therefore,

Φ(t, 0) = e
∫ t
0 (R(τ)+Q) dτ = e

∫ t
0 R(τ) dτ+tQ = e

∫ t
0 R(τ) dτetQ

where the rightmost equality is true because Q
∫ t
0 R(τ) dτ =

∫ t
0 R(τ) dτQ (see Equa-

tion (2.21)) for this example.

2 Complete solution

It will be shown below that over an interval not containing discontinuites, the solution
for X(t) is given by the formula

X(t) = Φ(t, t0)X(t0) +

∫ t

t0

Φ(t, τ)B(τ)U(τ) dτ.(11.23)

Substituting this formula into Equation (1.11b) gives the complete solution of (1.11) for
Y(t) as

Y(t) = C(t)Φ(t, t0)X(t0) + C(t)

∫ t

t0

Φ(t, τ)B(τ)U(τ) dτ +D(t)U(t).(11.24)

Equation (11.23) is the equivalent, for time-varying systems, of (2.25) for LTI systems,
and Equation (11.24) is the time-varying equivalent to (2.29).
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To show that (11.23) solves (1.11a), first note that at t = t0, the first right-hand term
of (11.23) is X(t0) and the integral is zero, so the formula (11.23) satisfies the initial
condition. Now (11.23) will be shown to satisfy (1.11a), as follows:

d

dt
X(t) =

d

dt
Φ(t, t0)X(t0) +

d

dt

(
Ψ(t)

∫ t

t0

Ψ−1(τ)B(τ)U(τ) dτ
)

(11.25)

= A(t)Φ(t, t0)X(t0) +A(t)Ψ(t)

∫ t

t0

Ψ−1(τ)B(τ)U(τ) dτ

+Ψ(t)Ψ−1(t)B(t)U(t)

= A(t)
(
Φ(t, t0)X(t0) +

∫ t

t0

Φ(t, τ)B(τ)U(τ) dτ
)
+ B(t)U(t)

= A(t)X(t) + B(t)U(t).

Linearity The form of (11.23) shows that the solution of the state X(t) is the sum of two parts:
the free response, which is the initial vector multiplied by the state-transition matrix,
and the forced response, which is an integral. The properties of linearity analyzed in
Chapter 2 are preserved. For fixed t0 and t, the free response is a linear function of
the initial state, and the forced response is a linear function of the input U(t) over the
interval [t0, t). Similarly, the first term on the right of (11.24) is the free response, and the
forced response is the two right-most terms. Therefore, although time-varying systems
do not have a predefined formula for the state-transition matrix Φ(t, t0) as LTI systems
do, solutions can be constructed by superposition in the same way.

Example 7
Complete

solution

The complete solution of Equation (1.11a) will be found for the system with A(t) and
Φ(t, t0) given in Example 1, U(t) = step(t − t0), C(t) = [ t, 0 ] , D(t) = 1, B(t) =[

0
e−t

]
, and initial state X(t0) =

[
1
0

]
. Applying Equation (11.23),

X(t) =

[
1 (t− t0) et0
0 e−(t−t0)

][
1
0

]
+

∫ t

t0

[
1 (t− τ ) eτ
0 e−(t−τ)

][
0
e−τ

]
step(τ − t0) dτ

=

[
1
0

]
+

∫ t

t0

[
t− τ
e−t

]
dτ =

[
1
0

]
+

[
(t− t0)2/2
−(t− t0) e−t

]
,

which is the complete solution for the state X(t). Substituting this into Equation (1.11b)
gives the formula for the output for t ≥ t0 :
Y(t) = [ t, 0 ]

[
1 + (t− t0)2/2
−(t− t0) e−t

]
+ 1 step(t− t0) = t+ t(t− t0)2/2 + 1.

3 Time-varying change of basis

The inputs U(t) and outputs Y(t) of a system are normally predefined, but the state
variables may be chosen to give the desired form of state-space equations. Chapter 7
explores the effect of changing the basis for the state space by making the change of
state variables

X = SX′,(7.1)
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where S is nonsingular and constant. Here, the effect of allowing S to vary with t while
remaining nonsingular will be investigated.

To reduce clutter in the equations, X(t) will be written simply as X in the following,
and similarly for other variables where ambiguity does not result. Differentiating (7.1)
and equating the result to (1.11a) while assuming that S is not constant gives

d

dt
X = ṠX′ + SẊ′ = ASX′ + BU,(11.26)

and solving for Ẋ′(t) gives the new state model
d

dt
X′ = S−1(AS− Ṡ)X′ + (S−1B)U = A′X′ + B′U(11.27a)

Y = (CS)X′ +DU = C′X′ +D′U.(11.27b)

where the matrices defining the new system are A′ = S−1(AS − Ṡ), B′ = S−1B,
C′ = CS, D′ = D. Some useful properties of these transformations will be investigated
in the following.

Equivalent
fundamental

matrices

If Ψ′ is a fundamental matrix for (11.27a), then Ψ = SΨ′ is a fundamental matrix for
(11.1). To show this, observe that if Ψ′ is a fundamental matrix of (11.27a), then

d

dt
Ψ′ = S−1(AS− Ṡ)Ψ′,(11.28)

with Ψ′(t0) nonsingular. By differentiation,

d

dt
Ψ = ṠΨ′ + SΨ̇′ = ṠΨ′ + SS−1(AS− Ṡ)Ψ′ = ṠΨ′ +ASΨ′ − ṠΨ′ = AΨ,(11.29)

withΨ(t0) = S(t0)Ψ
′(t0) nonsingular, as required. As a consequence, the state-transition

matrices of the original and transformed systems are related as follows:

Φ(t, t0) = Ψ(t)Ψ−1(t0) = (S(t)Ψ′(t))(S(t0)Ψ′(t0))−1 = S(t)Φ′(t, t0)S−1(t0).(11.30)

Equivalent
response

The output of the transformed system (11.27) will be written and related to the original
system using (11.30) and (7.1):

Y(t) = C′(t)
(
Φ′(t, t0)X′(t0) +

∫ t

t0

Φ′(t, τ)B′(τ)U(τ) dτ
)
+D(t)U(t)(11.31)

= C(t)
(
S(t)Φ′(t, t0)S−1(t0)

)
S(t0)X

′(t0)

+ C(t)

∫ t

t0

(
S(t)Φ′(t, τ)S−1(τ)

)
B(τ)U(τ) dτ +D(t)U(t)

= C(t)Φ(t, t0)X(t0) + C(t)

∫ t

t0

Φ(t, τ)B(τ)U(τ) dτ +D(t)U(t),

which is (11.24), showing that the original and transformed systems have identical out-
puts for identical inputs if the initial states satisfy X(t0) = S(t0)X

′(t0). The forced
responses, in particular, are identical.

Transforming
A to desired

form

From the form of Equation (11.27a), a change of variables X = SX′ with time-varying
transformation matrix S will replace state matrix A by A′ = S−1(AS − Ṡ). Several
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resulting forms may be desirable, depending on the context, and two such cases will
be discussed. However, the lack of a closed-form solution for Ψ(t) may limit their
usefulness.

The transformation matrix S will be chosen as the product of two matrices S = ΨΨ1

where Ψ is a fundamental matrix for Equation (11.1), giving A′ as shown:

A′ = Ψ−1
1 Ψ−1(AΨΨ1 − Ψ̇Ψ1 −ΨΨ̇1) = Ψ−1

1 Ψ−1(AΨΨ1 −AΨΨ1 −ΨΨ̇1)(11.32)

= −Ψ−1
1 Ψ̇1.

Constant A′ First, if Ψ1 = e−tQ with constant Q, then the transformed matrix is

A′ = −etQe−tQ(−Q) = Q,(11.33)

which applies, for example, when Q is chosen to be 0 to give A′ = 0.

Example 8
Transforming

Example 1

Applying Equation (7.1) with S = Ψ(t) and both A(t) and Ψ(t) given by Example 1
results in

A′ = S−1(AS− Ṡ) =
1

e−t

[
e−t −t
0 1

]([
0 1
0 −e−t

]
−
[
0 1
0 −e−t

])
,

which reduces to 0, as expected from Equation (11.33). With B(t) and C(t) given in
Example 7, the new matrices are

B′ = S−1B =
1

e−t

[
e−t −t
0 1

] [
0
e−t

]
=

[−t
1

]
,

C′ = CS = [ t, 0 ]

[
1 t
0 e−1

]
= [ t, t2 ] .

Periodic
systems

Suppose that A(t) is periodic with period T, so that A(t) = A(t+ T ). It will be shown
that the fundamental matrix Φ(t, 0) can be factored as

Φ(t, 0) = S(t) etQ,(11.34)

where S(t) is periodic with period T and where time-varying similarity transformation
(7.1) applied as in Section 11 using this S(t) results in A′ = Q. Then the stability
properties of the system are determined by Q since, for example, if all eigenvalues of Q
are in the left half-plane, etQ is decreasing and Φ(t, 0) is decreasing.

To show the required properties of Φ(t, 0), let Q satisfy

eTQ = Φ(T, 0);(11.35)

that is, TQ is the logarithm of Φ(T, 0), computed as described in Section 5 of Chapter 7.
Let the transformation matrix be S(t) = Φ(t, 0) e−tQ. Then since Φ(t, 0) is a fundamen-
tal matrix, A′ = Q as in (11.33). Furthermore, S(t) is periodic of period T, which is
shown by computing S(t+ T ) as

S(t+ T ) = Φ(t+ T, 0) e−(t+T )Q = Φ(t+ T, 0) e−TQe−tQ(11.36)

= Φ(t+ T, 0)Φ(0, T ) e−tQ = Φ(t+ T, T ) e−tQ,
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where e−TQ has been replaced using (11.35). Differentiating the left factor of the right-
hand side gives

d

dt
Φ(t+ T, T ) = A(t+ T )Φ(t+ T, T ) = A(t)Φ(t+ T, T )(11.37)

which shows that Φ(t+T, T ) is a fundamental matrix, with Φ(T, T ) = I. Consequently,
Φ(t+ T, T ) = Φ(t, 0) so that in (11.36), S(t+ T ) = Φ(t, 0) e−tQ = S(t) as required.

Example 9
Periodic A(t)

Consider the matrix A(t) given in Example 6. This matrix is periodic with period 2π
for β �= 0. The state-transition matrix was found in Example 6 to have factored form
Φ(t, 0) = S(t) etQ, where S(t) = e

∫ t
0 R(τ) dτ .

Writing Φ(t, 0) in more detail gives

Φ(t, 0) = e
∫ t
0 β cos τ dτ I× e

t

[−α −3
3 −α

]
= (eβ sin te−αt)

[
cos 3t − sin 3t
sin 3t cos 3t

]
,

where the rightmost matrix has been obtained as in Example 19 of Chapter 2. At t =
T = 2π, the value of eβ sin t is 1 and Φ(T, 0) = eTQ, so (11.35) is true as expected. From
the form of etQ, solutions will be asymptotic to 0 provided α > 0; that is, provided the
eigenvalues of Q are in the left half-plane.

4 Further study

Methods for obtaining Φ(t, τ) as an infinite series can be found in textbooks such as [3].
Perturbation methods for systems in which the time-varying components are functions of
a small parameter can also be found. However, the expressions rapidly become unman-
ageable for design purposes.

Some time-varying equations have received extensive study and are found in clas-
sical books on differential equations. Examples are the Bessel, Legendre, Hermite,
Laguerre, and Mathieu equations, and the hypergeometric equations [1].

5 Problems

1 Find the state-transition matrix Φ(t, t0) valid for t and t0 in [0,∞), for the following
matrices:

(a) A(t) =

[
0 t
0 0

]
, (b) A(t) =

[
t 1
0 t

]
.

2 Find the state-transition matrix Φ(t, t0) valid for t and t0 in [0,∞), for the following
matrices:

(a) A(t) = t, (b) A(t) =

[
0 0

− step(t− 1) step(t− 1)− 1

]
.
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3 Find the complete solution over [0,∞) (a) for X(t) and (b) for Y(t) for A(t) given

in Problem 1(a), B =

[
0

t+ 1

]
, C(t) = [ 1, −t2/4 ], D = 0, X(0) =

[
1
0

]
, and

U(t) = step(t).

4 Find the complete solution over [0,∞) (a) for X(t) and (b) for Y(t) for A(t) given in

Problem 1(a), B =

[
t
0

]
, C(t) = [ t, 0 ], D = 0, X(0) =

[
0
−1
]
, and

U(t) = step(t).

5 For A(t) given in Problem 1(a) and B(t), C(t), D(t) given in Problem 3, find a nonsin-
gular state transformation X(t) = S(t)X′(t) such that the resulting matrix A′(t) is zero,
and find the resulting matrices B′(t) and C′(t) for the transformed system.

6 For A(t) given in Problem 1(b) and B(t), C(t), D(t) given in Problem 4, find a nonsin-
gular state transformation X(t) = S(t)X′(t) such that the resulting matrix A′(t) is zero,
and find the resulting matrices B′(t) and C′(t) for the transformed system.

7 For the system for which A(t) =
[
sin t 1
0 0

]
, find the state-transition matrix in the form

Φ(t, 0) = S(t) etQ where S(t) is periodic and Q is constant. Do free solutions approach
0 as t→∞?

8 Find a state transformation X = S(t)X′ that transforms the system with the matrices

shown to an input-output equivalent system for which A(t) =

[−1 1
0 −1

]
:

A(t) =

[−1 1 + e−t

0 −1
]
, B(t) =

[−e−t

1

]
, C(t) = [ 1, e−t ], D(t) = 0.

9 From Equation (11.24), the forced response of the output can be rewritten as

Y(t) =

∫ t

t0

H(t, τ)U(τ) dτ,

provided that B(t)U(t) is a continuous function of t. Find an expression for H(t, τ) in
terms of B, C, and Φ(t, τ). The i-th column of H(t, t0) is the forced response to an
impulse applied to the i-th input at time t0. For the system matrices given in Problem 3,
find the impulse-response matrix H(t, t0).

10 Solve Problem 9 for the system defined by the matrices shown:

A(t) =

[
t 1
0 t

]
, B(t) =

[
t
0

]
, C(t) = [ 1, −t2/4 ], D(t) = 0.
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11 The matrix A(t) for a system is given by A(t) =
[

a e−t

−e−t a

]
, with a > 0. Find the

state-transition matrix for this matrix and show that it satisfies Equations (11.7), (11.13),
and (11.15).

12 Find the state-transition matrix Φ(t, τ) for the system with matrix A(t) = t2M where
M ∈ R

n×n is constant.
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Methods for altering and controlling the free and forced responses of dynamical systems
are introduced in this chapter. The three-purpose controller shown in Figure 12.1, for
example, generates a reference signal for the plant output, a feed-forward signal for good
transient performance, and a feedback signal for stability and disturbance cancellation.
On receipt of a command signal, the reference generator produces the desired plant
output Yref(t). The controller is assumed to contain an inverse model of the plant, which
generates the control signal Uref(t) from Yref(t), so that the plant output is then ideally
equal to the reference output. Disturbances, measurement errors, plant instability, or
modelling errors may cause the actual plant output to differ from the reference value, and
the stabilizer must be designed to keep the resulting error signal δY(t) small. Assuming
that both δY(t) and the required stabilizing signal δU(t) are small, then the stabilizer
can be designed for a small-signal model (linearization) of the plant, which, in principle,
may be nonlinear, provided the required inverse exists.

The fundamentals of stabilizer design will be investigated, assuming for simplicity
that the reference signals Yref and Uref(t) are zero. The plant output is measured and
fed back to the controller, with a negative sign by convention.

Before considering the output-feedback stabilization shown in Figure 12.1, a simpler
configuration will be considered. Figure 12.2 shows an LTI plant, for which the state
vector X is measured, rather than the output Y. The measured vector is weighted by by
a constant feedback gain matrix K, and the result subtracted from a reference signal R.

Reference
generator

Yref

δY
Stabilizer

δU

Plant
inverse

Uref

U
Plant

Disturbance

Y

−Command
signal

Controller

Fig. 12.1 The controller in this prototypical control system contains a reference-signal generator, an
inverse of the possibly nonlinear plant, and a feedback stabilizer.

13
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R /
m

U
/
m

A B
C D Y/

p

K
X

/
n

−
/
m

Fig. 12.2 The state feedback configuration. The plant is described by matrices A, B, C, and D. The
state is fed back to the input through matrix K. The vector dimensions are marked on the
figure.

The closed-loop equations for a time-continuous system are then as follows:
d

dt
X(t) = AX(t) + B (R−KX) = (A− BK)X(t) + BR(t)(12.1a)

Y(t) = CX(t) +D (R−KX) = (C−DK)X(t) +DR(t).(12.1b)

The equations for a discrete-time configuration are identical except that the left side of
(12.1a) is replaced by X(t+1).

The closed-loop system will have dynamics and stability determined by the matrix
ACL = A− BK. In particular, closed-loop stability is a typical design criterion, accord-
ing to which the eigenvalues of ACL must be in the left half of the complex plane for
time-continuous systems and in the unit disk for discrete-time systems. This criterion
leads to the fundamental question of whether the closed-loop eigenvalues can be placed
at arbitrary predefined locations by choosing the constant state-feedback gain matrix K.
The eigenvalues of ACL are the transfer-function poles if the system is minimal, and pole
placement for LTI models is based on the following result:

Proposition 1 If (A, B) is a controllable pair, then for any set of real numbers β1, β2, · · ·βn, there
exists a constant matrix K such that the closed-loop matrix ACL = (A − BK) has
characteristic polynomial det(sI −A+ BK) = sn + β1s

n−1 + · · ·βn.

A formal proof of this result can be assembled using the constructions given in the
following sections.

Pole
assignment

Because the characteristic polynomial has real coefficients, its roots are either real or
symmetrically located with respect to the real axis of the complex plane and, within this
limitation, the closed-loop poles can be assigned arbitrarily.

Transient
design

Pole assignment alone does not completely determine transient response to initial condi-
tions or inputs because the zeros of the corresponding transfer functions have not been
considered. For multi-input systems, the situation is further complicated by the non-
uniqueness of the matrix K that produces a given set of closed-loop poles. Thus, when
the shapes of responses are important, pole placement is only part of a complete design
procedure.

Example 1
Degree of

stability

Sometimes it is desirable to ensure that all closed-loop time-constants are smaller than
a maximum value 1/α; that is for time-continuous systems, that the real parts of all
closed-loop eigenvalues are more negative than a given negative number −α. This is
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referred to as degree-of-stability control and is accomplished by constant state feedback
as follows. Define

Z = eαtX, V = eαtU,(12.2)

and employ the equation Ẋ = AX+ BU to obtain

Ż = αeαtX+ eαt(AX+ BU) = αeαte−αtZ+ eαt(Ae−αtZ+ Be−αtV)(12.3)

= (A+ αI)Z+ BV.

For any stabilizing constant state-feedback V = −KZ for this system, the closed-loop
eigenvalues satisfy Reλi(A + αI − BK) < 0. From Problem 13 of Chapter 7, the
eigenvalues of this matrix are λi(A+αI−BK) = α+λi(A−BK), which implies that
Reλi(A−BK) < −α. Therefore, the required input U is given by calculating K so that
(12.3) is asymptotically stable and obtaining the input as

U = e−αtV = −e−αtKeαtX = −KX.(12.4)

1 Single-input systems

Pole placement can be highly effective for stabilizing a single-input linear system. Let
â = [ an, · · · a1 ] be the row vector of coefficients in the characteristic equation
det(sI − A) = sn + sn−1a1 + · · · an and let b̂ = [βn, . . . β1 ] be the desired coeffi-
cients. Assume that a change of basis X = SX′ can be found to transform the original
system matrices A,B to A′,B′, where

A′ = S−1AS =

⎡
⎢⎢⎣

0

−an

1
. . .

· · ·
1
−a1

⎤
⎥⎥⎦ , B′ = S−1B =

⎡
⎢⎢⎣
0
...
0
1

⎤
⎥⎥⎦ .(12.5)

Let the input vector be calculated as U = K′X′ to weight the entries of X′ by the entries
of state feedback matrix K′ = [ k′n, · · · k′1 ] . Written in detail, the product B′K′ is

B′K′ =

⎡
⎢⎢⎣
0
...
0
1

⎤
⎥⎥⎦ [ k′n, · · · k′1 ] =

⎡
⎢⎢⎣

0 · · · 0
· · ·

0 · · · 0
k′n · · · k′1

⎤
⎥⎥⎦ ,(12.6)

so the closed-loop transformed system matrix is

A′ − B′K′ =

⎡
⎢⎢⎣

0

−an−k′n

1
. . .

· · ·
1

−a1−k′1

⎤
⎥⎥⎦ ,(12.7)

which will be given the desired characteristic equation provided that the entries of K′

satisfy −ai − k′i = −βi, for i = 1, . . . n; that is,

K′ = b̂− â.(12.8)
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The feedback signal K′X′ gives the transformed system the desired closed-loop
poles. Expressed in terms of the measured untransformed state X = SX′, this signal
is K′S−1X. Therefore, let

K = K′S−1 = (b̂− â) S−1,(12.9)

for which, since a similarity transformation does not affect the eigenvalues of a matrix,
the eigenvalues of A′ − B′K′ are those of

S(A′ − B′K′)S−1 = S(S−1AS− S−1BKS)S−1 = A− BK = ACL.(12.10)

Thus, the closed-loop untransformed system matrix ACL has the required eigenvalues.
It remains to find the the similarity transformation S that produces (12.5). A formula

for this matrix is given by the product

S = S0S1,(12.11)

where S0 is the column-interchanged controllability matrix

S0 = [An−1B, An−2B, · · ·B ] ,(12.12)

and

S1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
a1 1 0 · · · 0

a2 a1 1
. . . 0

...
. . . . . . . . . 0

an−1 · · · a2 a1 1

⎤
⎥⎥⎥⎥⎥⎦ .(12.13)

The matrix S0 is invertible as required if and only if (A, B) is a controllable pair, and
brings [A, B ] to lower-left reduced row echelon form in a manner to be illustrated
in Example 3 and similar to the process described in Problem 6 of Chapter 9. The
second matrix S1,which is nonsingular by its structure, transforms the result into control
canonical form, that is, (12.5). Thus, the required transformation S exists provided
(A, B) is a controllable pair.

The feedback matrix K can be found by first calculating â by any method, construct-
ing the product S = S0S1, and then by applying (12.9). The coefficients in â are avail-
able from the left column of the transformed A matrix after application of S0, but other
numerical techniques may be preferable in practice, such as computing the eigenvalues
of A and computing â from them.

High-gain
feedback

Equation (12.9) shows that large differences between the desired coefficients and those
of the original characteristic polynomial produce large entries in K. Additionally, large
entries in K result from the near-singularity of the controllability matrix S0, since S1 in
the product S = S0S1 is identically nonsingular. In other words, near-uncontrollability
requires high feedback gain. High feedback gain implies large plant input signals in
response to disturbances or reference-input changes.
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Example 2
Single-input

system

It is desired to place the poles of the system with matrices shown below at locations
−1, −1, −1, for example:

A =

⎡
⎣ −9 7 −1
−11 8 −1
−7 4 −1

⎤
⎦, B =

⎡
⎣−1−1

0

⎤
⎦.

The desired characteristic polynomial is

(s+ 1)(s+ 1)(s+ 1) = s3 + 3s2 + 3s+ 1,

so that b̂ = [ 1, 3, 3 ] . The matrix K may be computed as follows. First, S0 and S−1
0 AS0

are

S0 = [A2B, AB, B ] =

⎡
⎣ 0 2 −1
−1 3 −1
−5 3 0

⎤
⎦, S−1

0 AS0 =

⎡
⎣−2 1 0
−3 0 1
−4 0 0

⎤
⎦.

Thus by inspection, â and S1 are

â = [ 4, 3, 2 ] , S1 =

⎡
⎣ 1 0 0
a1 1 0
a2 a1 1

⎤
⎦ =

⎡
⎣ 1 0 0
2 1 0
3 2 1

⎤
⎦,

and the required feedback matrix is

K = (b̂− â) S−1 = ([ 1, 3, 3 ]− [ 4, 3, 2 ]) S−1
1 S−1

0 = [ 2, −3, 1 ] .

Example 3
Pole placement

by elementary
similarities

As an aid to understanding the multivariable case to follow, the transformations required
in Problem 2 will be performed using a sequence of elementary similarity transforma-
tions, which are defined as follows (see Problem 6 of Chapter 9):

1. Operation Oij interchanges rows i, j in A and B, then columns i, j in the resulting
A and in C.

2. Operation Oi(α), for α �= 0, multiplies row i of A and B by α, then divides column
i of A and C by α.

3. OperationOij(α) adds the product of (row j)× α to row i in A and B, then subtracts
the product of (column i) × α from column j in A and C.

Each of these operation pairs corresponds to a similarity transformation using an ele-
mentary matrix. If a matrix S is initially set equal to I and each column operation is
performed on this matrix as it is performed on A, then the resulting S is the similarity
transformation matrix that has an effect on A identical to that of the sequence of oper-
ation pairs. Performing Gaussian elimination using a sequence of these operation pairs
to transform [A, B ] to lower-left row echelon form is equivalent to testing the columns
of S0 for linear independence from the right.

Starting with the matrix [A, B ] from Problem 2 and transforming to lower left
reduced row echelon form as shown produces the result of transformation S0:

[A, B ] =

⎡
⎣ −9 7 −1 −1
−11 8 −1 −1
−7 4 −1 0

⎤
⎦

O23
O3(−1)
O13(1)−→

⎡
⎣ 2 0 −1 0
−7 −1 3 0
11 1 −3 1

⎤
⎦
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O12
O2(−1)−→

⎡
⎣−1 7 3 0

0 2 1 0
1 −11 −3 1

⎤
⎦ O12(−3)
O32(3)−→

⎡
⎣−1 −2 0 0

0 −1 1 0
1 −2 0 1

⎤
⎦

O1(−1/2)
O21(1)
O31(2)−→

⎡
⎣−2 1 0 0
−3 0 1 0
−4 0 0 1

⎤
⎦.

The effect of transformation S1 can be obtained by further elementary similarities applied
to the above result as follows:

⎡
⎣−2 1 0 0
−3 0 1 0
−4 0 0 1

⎤
⎦
O21(−2)
O31(−3)
O32(−2)−→

⎡
⎣ 0 1 0 0

0 0 1 0
−4 −3 −2 1

⎤
⎦.

Setting T to I and performing each elementary row operation on T as it is performed on
A results in T = S−1

1 S−1
0 at the termination of the above two sequences. Premultiplying

this matrix by b̂− â produces K.

Example 4
Inverse

pendulum

A linearization of an inverse pendulum at the vertical position was obtained in Exam-
ple 19 of Chapter 1 and is repeated here without assuming M � m:

d

dt

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 1 0 0
0 0 −mg/M 0
0 0 0 1
0 0 g(m+M)/(M
) 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
1/M
0

−1/(M
)

⎤
⎥⎥⎦u.(12.14)

From (12.12) the matrix S0, which is column-equivalent to controllability matrix C, is

S0 =

⎡
⎢⎢⎣

mg/(M2
) 0 1/M 0
0 mg/(M2
) 0 1/M

−g(m+M)/(M2
2) 0 −1/(M
) 0
0 −g(m+M)/(M2
2) 0 −1/(M
)

⎤
⎥⎥⎦(12.15)

col∼

⎡
⎢⎢⎣

0 0 1/M 0
0 0 0 1/M

−g/(M
2) 0 −1/(M
) 0
0 −g/(M
2) 0 −1/(M
)

⎤
⎥⎥⎦ ,

which has full rank by inspection of the column-equivalent matrix shown. Therefore, the
system is completely controllable and its poles can be placed arbitrarily using constant
state-feedback matrix K.

The open-loop characteristic polynomial is

det(sI−A) = s2
(
s2 − g(m+M)

M


)
= s2(s2 − γ2),(12.16)

where the fraction has been replaced by γ2 for convenience. The system has a double
pole at the origin and poles at ±γ = ±√g(m+M)/(M
) 
 ±√g/
, where the
approximation applies forM � m. The system is unstable and the shorter the pendulum
length 
, the faster its transient behavior.
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The transformation matrix is S = S0S1 where S0 is given by (12.15); the matrix S1
in (12.13) and S are

S1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
−γ2 0 1 0
0 −γ2 0 1

⎤
⎥⎥⎦ , S =

1

M


⎡
⎢⎢⎣
−g 0 
 0
0 −g 0 

0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ .(12.17)

One pole-placement strategy might be as follows. Stabilize the system by changing
the sign of the eigenvalue at +γ and replacing the eigenvalues at the origin by a complex
pair with damping ratio equal to 1/

√
2 for good transient performance. The desired

closed-loop characteristic polynomial is then

(s+ γ)2(s2 + 2ζωs+ ω2) =(12.18)

s4 + 2(ζω + γ) s3 + (ω2 + 4γζω + γ2) s2 + 2γω(ω + ζγ) s+ γ2ω2,

where ζ is the damping ratio and ω the undamped natural frequency of the complex
eigenvalues. The entries in â are available from (12.16) and those of b̂ are obtained from
(12.18), from which the required state-feedback matrix K given by (12.9) is

K = (b̂− â) S−1(12.19)

= [ γ2ω2, 2γω(ω + γζ), ω2 + 4γζω + 2γ2, 2(ζω + γ) ]
M


−g

⎡
⎢⎢⎣
1 0 
 0
0 1 0 

0 0 g 0
0 0 0 g

⎤
⎥⎥⎦ .

2 Multi-input systems

The multivariable method to be described is a generalization of the technique used for the
single-input case: first transform the system to a form for which the required feedback
is simple to calculate, then account for the transformation. In general, the resulting
feedback matrix K is not unique and contains more parameters than are required to place
the poles. These additional parameters may be employed to improve system robustness
with respect to parameter variations, for example.

Comment The absence of definitive criteria for deciding where to place the poles or for defining
the redundant parameters in K is a major reason why pole placement is typically not a
preferred design method for multi-input, multi-output systems. However, an understand-
ing of pole placement is essential for understanding the consequences of other methods
of state feedback, and the remainder of this section and Section 2.1 should be read with
this in mind.

Solving for K A state feedback matrix K can be obtained as follows.

1. Put [A, B ] into lower-left reduced row echelon form with pivots above the main
diagonal by means of a similarity transformation. If any pivots were on or below
the main diagonal, the system would be of the form of (9.3a) and, by inspection, not
completely controllable. A conceptual method for performing the transformation
is given in Example 3, and this method corresponds to defining the transformation
matrix S0 to contain the rightmost n linearly independent vectors found by scanning
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the matrix [An−1B, · · ·AB, B ] from right to left. Otherwise, the unreduced ech-
elon form can be obtained using a sequence of QR decompositions for numerical
robustness, after which the pivots are transformed to units and the nonpivot entries
in the pivot columns are zeroed.

2. Put the result into control form:
i← 1
while (in row i of A there is a pivot from Step 1 in some column j):

zero row i except for the pivot by adding multiples of column j to other
columns using operations of the type Oij(α)
i← i+ 1

The result for a controllable system is

[ S−1AS, S−1B ] = [A′, B′ ] =
[
J1 0
L J0

]
(12.20)

which is in lower-left row echelon form with unit pivots. Submatrix J1 is zero except
for the unit pivots contained in it, and is illustrated below for a three-input system
with rank(B) = m = 3 :

[
J1 0
L J0

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 1
. . .

1
× · · · × 1
× · · · × × 1
× · · · × × × 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.(12.21)

The pivots in the transformed A are above the main diagonal, but not necessarily in
a straight line. Parameters not identically zero are shown as ×.

Example 5
Discrete time

deadbeat control

The free component of the response of a discrete-time system is of the form given in
Equation (2.4). Therefore, the state feedback U(t) = −KX(t)+R(t) produces a closed-
loop free response which is

Yfree(
) = (C−DK)(A− BK)�−t0X(t0).(12.22)

If all poles of ACL = A− BK are placed at the origin, then Aγ
CL = 0, where γ ≤ n

is the size of the largest block in the Jordan form (see Section 3 of Chapter 7) of ACL.
Therefore, transients caused by initial conditions or disturbances become zero after γ
time steps, and this strategy is called deadbeat control.

From (12.20), solve L− J0K
′ = 0 and let K = K′S−1. The matrix K is not unique

in general since J0 has full row rank but may not be square, but this method gives at
least one K which places the poles at the origin. Since transients decay to zero in at
most n time steps, this method can result in large control signals for sampled systems
with small sampling period.
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2.1 Pole placement for multi-input systems

Performing interchange operations of type Oij only, transform the result of Step 2 to the
block companion form illustrated below for example (12.21):

A′ = S−1AS

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
·

1
× · · × × · · × × · · ×

× · · ×

0 1
·

1
× · · × × · · ×

× · · × × · · ×

0 1
·

1
× · · ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B′ = S−1B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

× 1

× × 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.(12.23)

On the diagonal of A′ there are (k = rankB) square blocks of dimension n1, · · ·nk, and
in the example, k = 3. Not all of the off-diagonal nonzeros (×’s) shown occur in every
case; some elements may be identically zero, depending on the ni. The above matrices
A′, B′ will be written

A′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

J1 0 0
−A11 −A12 −A13

0 J2 0
−A21 −A22 −A23

0 0 J3
−A31 −A32 −A33

⎤
⎥⎥⎥⎥⎥⎥⎦
, B′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
B1

0
B2

0
B3

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.24)

where the Aij have dimension 1×nj and the Bi have dimension 1×m. Let the m×n
feedback matrix for the transformed system be K′. The effect of closing the feedback
loop, that is, subtracting B′K′ from A′, is to subtract linear combinations of the rows of
K′ from the bottom rows of the blocks of A′.

Using the bottom row of each block, solve for K′ in the equation

A′ − B′K′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

J1
−b̂1
0 J2

−A21 −b̂2
0 0 J3

−A31 −A32 −b̂3

⎤
⎥⎥⎥⎥⎥⎥⎦
,(12.25)

where the bi contain coefficients of the desired characteristic equation; that is, in the
example, solve⎡
⎣B1

B2

B3

⎤
⎦K′ =

⎡
⎣ b̂1 0 0
A21 b̂2 0
A31 A32 b̂3

⎤
⎦−
⎡
⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦(12.26)

=

⎡
⎣ b̂1−A11 −A12 −A13

0 b̂2−A22 −A23

0 0 b̂3−A33

⎤
⎦ .
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The closed-loop characteristic polynomial is the product of of the polynomials for the
diagonal blocks of (12.25):

(sn1 + β11s
n1−1 + · · ·β1n1)(s

n2 + β21s
n2−1 + · · ·β2n2)(s

n3 + β31s
n3−1 + · · ·β3n3),(12.27)

where the coefficients are contained in the row vectors b̂i = [βini · · ·βi1], i = 1, 2, 3.

1.Notes In the closed loop system, the lower-left off-diagonal blocks in (12.25) have no effect
on pole locations, and the bottom rows of these blocks can be varied, for example,
to reduce system sensitivity to parameter variations, or to minimize a norm of K.

2. The desired closed-loop characteristic polynomial does not always admit of all com-
plex pole locations. For example, if n1 = n2 = n3 = 1 all three closed-loop poles
must be real. This method can be modified to account for this mild constraint by not
zeroing all upper-right blocks in (12.25) with feedback. With the above block sizes,
if block 23 is not zeroed, then the system has diagonal blocks of size 1 and 2, instead
of 1, 1, 1, so complex poles can be obtained.

3. Equation (12.24) contains exactly the same coefficients as are available in (12.21);
the transformation from (12.21) to (12.24) serves only to identify those parameters
of (12.21) that are to be changed to zero, to values β··, or to arbitrary values.

4. The feedback matrix can be chosen to make the closed-loop matrix upper triangular
rather than lower triangular, giving a possibly different number of arbitrary parame-
ters.

Example 6
Multiple-input

system

To illustrate the above with a very small system, let A,B be

[A,B ] =

⎡
⎣ 1.4 1.6 1.4 −1 2

3.6 4.4 5.6 0 −2
−4.8 −5.2 −7.8 1 6

⎤
⎦.

This system in reduced row echelon form is⎡
⎣−2.2222 0.0556 1 0 0

1.1111 0.2222 0 1 0
8.4444 −0.1111 0 0 1

⎤
⎦,

from which, zeroing all rows to the left of the single pivot in (the current) A gives,⎡
⎣ 0 0 1 0 0
1.1111 0.2222 0 1 0
8.5062 −0.0988 −2.2222 0.0556 1

⎤
⎦,

and, after re-arranging to exhibit the 1×1 and 2×2 controllable blocks the result is⎡
⎣ 0.2222 1.1111 0 1 0

0 0 1 0 0
−0.0988 8.5062 −2.2222 0.0556 1

⎤
⎦,

which is obtained from the original system via the similarity transformation matrix

S =

⎡
⎣−1.1111 12.4444 2

0.1111 27.5556 −2
0.6667 −32.6667 6

⎤
⎦.
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The 2×3 feedback matrix K′ in (12.25) is obtained by equating the closed-loop matrix
A′ − B′K′ to a desired matrix, as shown,⎡
⎣ 0.2222 1.1111 0

0 0 1
−0.0988 8.5062 −2.2222

⎤
⎦ −

⎡
⎣ 1 0

0 0
0.0556 1

⎤
⎦K′ =

⎡
⎣−β11 0 0

0 0 1
× −β22 −β21

⎤
⎦

where each βij appearing above is determined by the desired closed-loop poles, and ×
is an arbitrary parameter. That is, K′ is the solution of[

1 0
0.0556 1

]
K′ =

[
0.2222 1.1111 0
−0.0988 8.5062 −2.2222

]
−
[−β11 0 0
× −β22 −β21

]
,

where the rightmost matrix can also be replaced by other choices, such as[−β11 × ×
0 −β22 −β21

]

to give an upper-right closed-loop triangular form, with two arbitrary parameters. Which
result might be more desirable would depend on the actual plant and the relative loca-
tions of the closed-loop block eigenvalues.

Finally, with K′ obtained from (12.28), the state-feedback matrix for the original
system is K = K′S−1.

3 Feedback, controllability, and observability

State feedback does not affect the controllability of a system, as will be shown. From
the BPH test described on Page 226, the original system is completely controllable if
and only if rank [A−λI, B ] = n for all λ ∈ C, where A ∈ R

n×n. But for any λ, the
rank of this matrix is

rank [A− λI, B ] = rank

(
[A− λI, B ]

[
I 0
−K I

])
= rank [A− BK− λI, B ] ,(12.28)

which shows that the closed-loop system is completely controllable if and only if the
original system has this property.

Observability may be changed by feedback, as in the following example.

Example 7
Feedback affects

observability

The system described by matrices A = 1, B = 1, C = 1, D = 1 is minimal (completely
controllable and observable). Applying state feedback U = R − KX with K = 1
produces the closed-loop matrices

ACL = A−BK = 0, BCL = B = 1, CCL = C−DK = 0, DCL = D = 1

which is controllable but not observable.

Stabilizable
systems

If the first step of the transformation described in Step 1 on Page 19 succeeds, then
the closed-loop poles can be placed as described in Section 2. This is the multivari-
able generalization of the transformation affected by S0 for single-input systems, as
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illustrated in Example 3. If the step fails, then the system has the form shown in Equa-
tion (9.3a) and is not completely controllable. Given any state feedback matrix, partition
it as K = [K1, K2 ] to produce[
A11 0
A21 A22

]
−
[

0
B2

]
[K1, K2 ] =

[
A11 0

A21 − B2K1 A22 − B2K2

]
.(12.29)

The form of the closed-loop matrix shows that the eigenvalues A11, which represents
the uncontrollable part of the system, are unaffected by state feedback. Consequently,
state feedback can place poles to be the roots of an arbitrary characteristic polynomial
if and only if the system is completely controllable. If the eigenvalues of A11 are in the
stable region of the complex plane, then state feedback can be used to place the other
eigenvalues, and the system is described as stabilizable.

Zeros are
unaffected

State feedback changes the system poles, but has no effect on system zeros. This conclu-
sion can be seen by writing the closed-loop equations in the form of Equation (10.16):

[
A− BK− sI 0 B
C−DK −I D

]⎡⎣X(s)
Y(s)
R(s)

⎤
⎦ = 0,(12.30)

where X is an n-vector, Y is a p-vector, and R is an m-vector. Then, setting the input
R(s) to zero, the system poles are the values of s for which nonzero solutions exist; that
is, for which

rank

[
A− BK− sI 0
C−DK −I

]
< n+ p.(12.31)

These values of s are the eigenvalues of A − BK, as previously seen. Similarly, the
system zeros are the values of s for which nonzero solutions exist for zero output Y(s);
that is, the values for which the following condition holds:

n+m > rank

[
A− BK− sI B
C−DK D

]
(12.32)

= rank

([
A− BK− sI B
C−DK D

] [
I 0
K I

])
= rank

[
A− sI B

C D

]
.

This shows that the zeros of the closed-loop system are the zeros of the original system.

Example 8
Reference inputs
and disturbance

rejection

The basic state-feedback design that sends the closed-loop state asymptotically to the
origin is modified in Figure 12.3 to include a reference input Xr and disturbance vector
Xd that is assumed to affect the plant through a matrix F as shown in the figure. so that
the plant model is given by

d

dt
X = AX+ BU+ FXd, with U = K(−E) + [Gr, Gd ]

[
Xr

Xd

]
.(12.33)

The design requirement is to cancel the effect of Xd if possible and to find a state-
feedback control that sends the quantity E = X − Xr to zero in steady state or, more
generally, that sends a given linear combination CrE of this quantity to zero in steady
state.
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Xr

−E
K

U d

dt
X = AX+ BU+ FXd

Y

X

−

FGd

Xd

−

Gr

−

Fig. 12.3 The matrices Gr,Gd, and K are to be designed to cancel the effect of disturbance Xd, which
is assumed to be measurable, and to control the quantity CrE to zero.

Assume that the plant is controllable and K has been designed so that A − BK
defines an asymptotically stable system. Since no eigenvalues of this matrix can be zero
and det(A− BK) is the product of the eigenvalues, this matrix is nonsingular. Assume
also that Xr is the free response of a linear system given by Ẋr = ArXr with Ar known,
so that Xr can contain steps, ramps, sinusoids, and other signals generated by a linear
system. From the diagram and Equations (12.33), the evolution of E is given by
d

dt
E =

d

dt
X− d

dt
Xr = AX+ BU+ FXd −ArXr(12.34)

= A (X−Xr) + B (−KE) + [Gr, Gd ]

[
Xr

Xd

]
+ (A−Ar)Xr + FXd

= (A− BK)E+ ([A−Ar, F ]− B [Gr, Gd ])

[
Xr

Xd

]
.

The left side of this equation is zero in steady state; therefore, E can be solved and
CrE set to zero to give

Cr(A− BK)−1B [Gr, Gd ] = Cr(A− BK)−1 [A−Ar, F ] .(12.35)

The solution and uniqueness of the unknowns Gr and Gd depend on the details of
the known matrices (see Section 7 of Chapter 5), but certain assumptions are typical. If
the plant type is 1 for example, so that there is a pole at the origin, and if Xr represents
a step reference, then Ar can often be assumed equal to A and the feed-forward matrix
Gr set to zero. Typically also, the matrix Cr(A − BK)−1B has full rank but is not
necessarily square.

The solution sketched above depends on the disturbance vector Xd containing mea-
surable quantities (such as ambient temperature, for example). When Xd is not directly
measurable or when it represents plant-model errors, then it must be estimated as described
in Chapter 14.

4 Further study

The constructive demonstration of pole placement given here has the advantage of sim-
plicity and of explicitly showing the free parameters in the feedback matrix K after
the poles have been placed. Other methods, such as given by Brogan [9], are possi-
ble. Except for single-input systems however, eigenvalue placement in the pure form



26 Chapter 12 State feedback and pole placement

discussed in this chapter is not a preferred method of designing state feedback for the
reasons previously mentioned.

5 Problems

1 The matrices shown correspond to a continuous-time LTI system. In each case, find a
state-feedback matrix, if possible, that places all system poles at−5+j0 on the complex
plane.

(a) A =

⎡
⎣ 0 1 0
0 0 1
0 0 0

⎤
⎦, B =

⎡
⎣ 00
1

⎤
⎦; (b) A =

⎡
⎣−1 1 0

0 0 1
2 0 0

⎤
⎦, B =

⎡
⎣ 00
1

⎤
⎦

2 Let the desired closed-loop system pole locations for Problem 1(a) be all at −α+ j0 on
the complex plane. Determine, for (a) α = 10, and (b) α = 1, whether the entries of K
will be larger or smaller in magnitude than for α = 5 as in the solution of Problem 1.

3 An LTI system is defined by matrices A =
[
0 1
0 0

]
, B =

[
0
1

]
. Let the poles all be

placed at−α+ j0 using state feedback u = r−KX(t). Treating α as a fixed parameter,
find the value of the closed-loop control signal u(0+) at t = 0+ for the free response to

initial condition X(0) = [ 0, 1 ]
T
. How does this initial value of u vary as a function of

α? How does this calculation relate to the discussion of high-gain feedback in Section 1?

4 Repeat Problem 3 for the matrices of Problem 1(a) and for matrices of the same form
but of dimension n×n for A and n× 1 for B. In each case, the initial state X(0) is zero
except for the last entry, which is 1.

5 State feedback U = R−KX is to be designed so that the system defined by the matrices
shown will have closed-loop poles at −1 + j0 and −2 + j0.

A =

[
0 −1
1 0

]
, B =

[
1 0
0 1

]
, C = [ 1, 1 ], D = 0.

Find the required state-feedback matrix for K in the form of each of the three cases
shown below. Case (a) provides a nonzero value only to the first input of the plant, case
(b) only to the second input, and case (c) provides nonzero values to both inputs.

(a) K =

[
k11 k12
0 0

]
, (b) K =

[
0 0
k21 k22

]
, (c) K =

[
k11 0
0 k22

]

For each case, calculate the transfer matrix H(s) and the forced response to the input

R(t) =

[
step(t)

0

]
. Sketch the responses or use a computer to graph and compare them.

This problem illustrates that for a multi-input system, the pole locations do not uniquely
define either the state feedback or the system response.
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6 Sometimes state-feedback results can be extended to the case of output feedback. Sup-
pose that the state X(t) of the linear system given in Problem 5 cannot be measured, but
that Y(t) is available. Design a constant output feedback matrix K so that if U(t) =
R(t)−KY(t) the closed-loop poles are placed as required as in Problem 5. How would
this result change if, instead of as given in the problem, the matrix B were changed to
B = [ 0, 1 ]T ?

7 A plant with disturbance and reference inputs as shown in Figure 12.3 has the following
matrices:

A =

[
0 1
2 1

]
, B =

[
0
1

]
, F =

[
1
0

]
, C =

[
3
1

]
, D = 0.

The reference input Xr contains step functions and is generated by the 2×2 matrix Ar =
0.Design K,Gr, and Gd so that the closed-loop poles are at−3,−3 and C (X−Xr) = 0
in steady state.

8 A system is described by the matrices shown:

A =

⎡
⎣−28 10 9
−29 10 10
−36 13 11

⎤
⎦, B =

⎡
⎣ 33
4

⎤
⎦, C = [ 15, −6, −7 ], D = 0.

Find constant state-feedback matrix K to place the closed-loop system eigenvalues at
−3, −4, and −5.

9 An LTI system with size parameters n = 7, m = 3 has been transformed to the form of
A′ and B′ in Equation (12.23), where the diagonal blocks are of size n1 = 2, n2 = 2, and
n3 = 3. A state-feedback matrix K′ is to be found to preserve the diagonal-block sizes
and place the closed-loop eigenvalues at predetermined locations. How many arbitrary
parameters are available in the computation of K′?

10 A system is described by the matrices given below:

A =

⎡
⎣ 5 1 −6
4 1 −5
8 1 −9

⎤
⎦, B =

⎡
⎣ 33
4

⎤
⎦, C = [ 34, −14, −15 ], D = 0.

Calculate the open-loop poles and zeros, and then the state-feedback matrix K that
places the closed-loop eigenvalues and −3, −4, and −5. Is the resulting closed-loop
system a minimal realization of its transfer function?
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11 The plant dimension n can have a significant effect on the size of the entries of the state-
feedback matrix. Consider a single-input plant that has been transformed so that A′ and
B′ have the form shown in Equation (12.5). For simplicity, assume that the bottom row
of A′ contains only zeros and that a state-feedback matrix K′ is to be found to place
all closed-loop poles at −10. Determine the magnitude of the largest entry of K′ for
arbitrary n. What conclusion can you draw about the feasibility of controlling systems
of high order n using one input?
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This chapter introduces a design method that automatically calculates the gain matrix
K in the state-feedback controller for which the plant input is U(t) = R(t) − KX(t).
The matrices describing the plant must be known and the plant must be stabilizable
as described in Chapter 12. An optimization problem is solved to produce K; conse-
quently, the parameters in the function to be optimized must be chosen according to
design specifications such as transient performance, within constraints imposed by the
plant structure.

Some design specifications inherently require optimization of a function of the input
or other variables, without reference to transient performance. However, the feedback
matrix K can also be related to dynamic response. Loosely speaking, the more it is
desired to change the free response of a system, the more input is required and the
larger the entries of K. Therefore, there is a trade-off in the optimization between good
transient response and the size of the inputs.

The controller obtained from optimization may be a relatively complex when n is
large, since there are mn parameters in K when X ∈ R

n and U ∈ R
m. Normally, no

additional derivative action is required in the controller to further improve transient per-
formance, but the controller does not automatically incorporate integral or other dynamic
action as may be required to eliminate the effect of step or other disturbances. Alterna-
tive controller structures are required for disturbance cancellation.

LQ design The class of feedback optimization problems discussed here is known as LQ, since the
dynamical system is linear and the optimization function is quadratic.

The optimization problems for both continuous and discrete time are formulated in
the next section. Basic continuous-time solutions are then derived. This optimization
problem has many variations, and it is shown how to reduce essentially all of them to the
basic form. The solution provides an open-loop control, but because the system is linear,
it is possible to obtain the same input by means of a state-feedback matrix, resulting in
closed-loop control. An important case, that of infinite time interval, results in a constant
state-feedback matrix, which is derived. The essential computation required to produce
this matrix is the solution of an algebraic Riccati equation (ARE), the solution of which
is discussed.

The LQ optimal-control solution for discrete-time systems is also analyzed. It turns
out that the continuous-time optimization can be transformed into an equivalent discrete-
time optimization, and vice-versa.

29
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1 Formulation of the optimization problems

Continuous
time

In basic continuous-time form, the function to be minimized is derived as follows. Let
X(t0) be a fixed but arbitrary initial state of a system that obeys the state equation

d

dt
X = AX+ BU,(13.1)

where, as usual, X ∈ R
n, and U ∈ R

m. The matrices A and B will be assumed to be
constant although much of the development can be extended to time-varying systems
with little difficulty. It is desired to minimize the scalar

φ =
1

2
X(t)TS(t)X(t)

∣∣∣∣
tf

t0

+
1

2

∫ tf

t0

(
X(t)TQX(t) +U(t)TRU(t)

)
dt(13.2)

over a specified interval t ∈ [t0, tf ) with tf = ∞ allowed. The scalar φ is called a cost
function. In this expression, the integral of the term X(t)TQX(t) is the cost of nonzero
state, and the smaller that X(t) is or the faster it approaches zero, the less will be the
integral of this term. The integral of the term U(t)TRU(t) is the cost of the control
signal. The matrix R is symmetric and positive definite (see Section 3.1 of Chapter 8)
and Q is symmetric but only positive semi-definite in general since not all entries of X
may be of interest.

The notation of the first term on the right-hand side of (13.2) simply means that

X(t)TS(t)X(t)
∣∣tf
t0

= X(tf )
TS(tf )X(tf )−X(t0)

TS(t0)X(t0)(13.3)

so that S(t) need only be defined at t0 and tf , such that S(tf ) and−S(t0) are symmetric
and positive semi-definite. This term explicitly weights the initial and the final state
vectors. In most control problems, it suffices to specify that S(t0) = 0 because X(t0) is
fixed, and when tf =∞, the matrix S(tf ) is also zero.

A controller that generates U(t) over [t0, tf ) such that φ is a minimum is required.
A closed-loop control law will be found for which the input vector U is a linear function
of the state vector X at any time.

Discrete time The discrete-time problem is analogous: minimize

φ =
1

2
X(t)TS(t)X(t)

∣∣∣∣
tf

t0

+
1

2

tf−1∑
t=t0

(
X(t)TQX(t) +U(t)TRU(t)

)
(13.4)

subject to

X(t+1) = AX(t) + BU(t), t = t0, . . . tf−1.(13.5)

Choosing Q
and R

In both the continuous-time and discrete-time optimization problems, the matrices Q
and R weight the entries of X(t) and U(t) respectively and are chosen during the design
process. Increasing the entries of R relative to those in Q increases the weight associated
with U(t), so the entries of U(t) will become smaller at optimum, resulting in longer-
lasting transients. Conversely, smaller values or R will result in larger entries of U(t) at
optimum, corresponding to faster transients. Changing the entries of Q has the opposite
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effect. Typically both Q and R are chosen to be diagonal to provide a simple means of
weighting the entries of X(t) and U(t) individually, but off-diagonal terms are allowed
when cross-products of entries of X or U are to be part of the cost function. Thus, the
transients of the controlled system can be shaped indirectly by choice of Q and R.

Variations in the cost functions are obtained by including cross-products of the
entries in X and U in the scalar φ, by including quadratic terms containing entries of
Y ∈ R

p, where

Y(t) = CX(t) +DU(t)(13.6)

with C,D known constant matrices, and by considering the two cases in which D is zero
or not.

Choosing
diagonal
weights

The entries of Q and R must be chosen according to the problem at hand, but one rule
of thumb that is sometimes applied when the maximum desired magnitudes are known
is to weight the variables according to these bounds. Then the cost becomes

φ =
1

2

n∑
i=1

( xi(t)
xi(max)

)2∣∣∣∣∣
tf

t0

+
1

2

∫ tf

t0

( n∑
i=1

( xi(t)
xi(max)

)2
+

m∑
i=1

( ui
ui(max)

)2)
dt,(13.7)

in the time-continuous case, for example, where the max-subscripted values are the
desired maximum values. This rule of thumb gives a starting point for some designs;
the parameters may have to be adjusted to produce acceptable responses and there is no
guarantee that the desired bounds will not be exceeded.

Another method of similar simplicity is to weight variables according to the steady-
state magnitude of their response to step inputs, for example.

Example 1
The effect of

varying weights

The effect of varying weights can be illustrated using a simple system described by
A = 1, B = 1, C = 1, D = 0, X(0) = 1, t0 = 0, tf = ∞. Choosing a fixed weight
R = 1 for the input U in the cost and varying the weight Q on X produces the transients
shown in Figure 13.1. The results of Section 2.5 have been applied to obtain the optimal
closed-loop ACL. Weighting X more heavily with respect to U produces faster transient
response but larger initial inputs.

t1 2 30

0.5

1

X(t)

t1 2 30

−2.5

−5

U(t)

Q = 0
Q = 1
Q = 15 Q = 0

Q = 1
Q = 15

Q ACL

0 −1
1 −√2
15 −4

Optimal ACL
vs Q

Fig. 13.1 Table of optimal matrix ACL and the transients that result when Q is varied. The larger the
weight Q on X, the faster the resulting optimal transient response and the larger the initial
input.
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Example 2
Scalar

continuous-time
system

For the the system described by matrices A = α and B = 1, for which m = n = 1, let
the cost function be

φ =

∫ ∞

t0

(qx(t)2 + ru(t)2) dt,

where r > 0 and q ≥ 0, so that φ is non-negative. If the size of x(t) is of no interest,
then setting q = 0 and u(t) = 0 will trivially minimize φ. Otherwise, this integral is
required to converge for φ to be a minimum. For example, if the input is required to be
u(t) = −kx(t) for nonzero feedback gain k, then minimizing φ implies that x(t) and
u(t) approach zero as t→∞.

Example 3
Scalar

discrete-time
system and

Lagrange
multipliers

Let m = n = 1 and let the discrete-time interval be t ∈ [0, 1] so that the cost function is

φ =
1

2
(s(1)x(1)2 − s(0)x(0)2) + 1

2
(qx(0)2 + ru(0)2)

which is to be minimized subject to the constraint

ax(0) + bu(0)− x(1) = 0,

where the system matrices have been written A = a and B = b. Because x(0) is arbitrar-
ily fixed, the factor s(0) is 0 with no loss of generality and s(1) can be written simply
as s. The unknowns in this minimization are u(0) and x(1). The method of Lagrange
multipliers of elementary calculus can be used to obtain the minimum. Introduce a new
variable γi for each constraint, add the products of the constraints and their multipliers γi
to the function to be minimized, and equate the derivatives with respect to all unknown
variables to zero. For the case at hand there is one constraint; let γ1 be the Lagrange
multiplier, and differentiate the function

sx(1)2

2
+
qx(0)2 + ru(0)2

2
+ γ1(ax(0) + bu(0)− x(1))

with respect to unknowns γ1, u(0), and x(1). Equating the derivatives to zero results
in three algebraic equations in the three unknowns. The derivative with respect to γ1
simply produces the constraint equation. Generalising this method to more general LTI
systems and arbitrary discrete-time intervals solves the discrete-time optimal control
problem and provides clues to the formulation of the continuous-time problem.

Symmetric
weighting
matrices

The matrices S(tf ), S(t0),Q, and R in (13.2) and (13.4) can be assumed to be symmetric.
To show that this assumption implies no loss of generality, consider an arbitrary real
square matrix Q and the quadratic term

XTQX = XT
(1
2
(Q+QT ) +

1

2
(Q−QT )

)
X(13.8)

= XT 1

2
(Q+QT )X+XT 1

2
(Q−QT )X = XTQsX+XTQkX

where Q has been written as the sum of two parts Qs and Qk as shown. By construction,
Qs = QT

s and this matrix is called the symmetric part of Q. The matrix Qk satisfies
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Qk = −QT
k and is said to be skew-symmetric; that is, the entries qij of Qk satisfy

qij = −qji. Consequently, the term XTQkX =
∑n

i,j=1 qijxixj is zero, and the value
of the quadratic term is determined entirely by the symmetric part of Q. Similarly, the
other matrices in the cost function can be assumed to be symmetric.

Tests for
positive

definiteness

From the above, the symmetric part of a real matrix determines whether it is positive-
definite. From the discussion in Section 3 of Chapter 8, a symmetric real matrix has real
eigenvalues and can be diagonalized by an orthogonal similarity transformation. For
the scalar XTQX and symmetric Q, let M be such a transformation matrix, so that if
X = MY, the scalar can be written

XTQX = YTMTQMY =

n∑
i=1

λiy
2
i .(13.9)

This shows that a symmetric matrix Q is positive definite if and only its eigenvalues are
all positive, and Q is positive semidefinite if its eigenvalues are all non-negative.

A further test of symmetric real matrices that is useful for hand calculation is to
compute the leading principal minors of Q = [qij ]:

det q11, det

[
q11 q12
q21 q22

]
, det

⎡
⎣ q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤
⎦ , . . . detQ.

The symmetric matrix Q is positive-definite if and only if all of these minors are posi-
tive, and positive semidefinite if and only if all principal minors are non-negative. The
principal minors include the leading principal minors above and the determinants of all
submatrices of Q obtained by successively removing an ith row and ith column; that is,
of all square submatrices with diagonals on the diagonal of Q.

2 Continuous-time optimization

It will be shown that the solutions of the continuous-time and discrete-time optimiza-
tion problems are closely related, but first the continuous-time case will be discussed in
detail.

The minimisation of (13.2) subject to (13.1) is accomplished as follows. Let Γ(t) ∈
R
n be an arbitrary vector, and add a product, equal to zero when (13.1) holds, to φ in

(13.2) as follows:

φ =
1

2
X(t)TS(t)X(t)

∣∣∣∣
tf

t0

(13.10)

+

∫ tf

t0

(1
2
X(t)TQX(t) +

1

2
U(t)TRU(t) + ΓT (AX(t) + BU(t)−Ẋ)

)
dt.

Integrating the term containing Ẋ by parts results in∫ tf

t0

−ΓT Ẋ dt = −Γ(t)TX(t)
∣∣tf
t0
+

∫ tf

t0

Γ̇TX dt,(13.11)
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so that (13.10) becomes

φ =

(
1

2
XTSX−XTΓ

)∣∣∣∣
tf

t0

(13.12)

+

∫ tf

t0

(
1

2
XTQX+

1

2
UTRU+XTATΓ+UTBTΓ+XT Γ̇

)
dt.

By the calculus of variations, if X(·),U(·), and Γ(·) minimize φ, then the sensitivity
of φ to arbitrary small changes δX(·), δU(·), and δΓ(·) in these functions will be zero.
Equating the differential with respect to X of φ in (13.12) to zero gives

0 = δXT (SX− Γ)|tft0 +

∫ tf

t0

δXT
(
QX+ATΓ+ Γ̇

)
dt(13.13)

in which the left term applies only at t = t0 and t = tf , whereas the right term implies
that

Γ̇ = −QX−ATΓ(13.14)

over (t0, tf ). In typical optimal control problems, X(t0) is an arbitrary but fixed initial
value, implying that δX(t0) = 0 and S(t0) can be set to 0. Then S(tf ) is simply written
as S and the first term of (13.13) reduces to

Γ(tf ) = SX(tf ),(13.15)

which is a final-value constraint on the solution of the differential equation given in
(13.14).

Equating the differential of φ with respect to Γ in (13.10) to zero gives

0 =

∫ tf

t0

δΓT
(
AX+ BU− Ẋ

)
dt,(13.16)

and since δΓ is arbitrary, this equation reduces to the original constraint given by (13.1).
Finally, taking the differential with respect to U yields

0 =

∫ tf

t0

δUT
(
RU+ BTΓ

)
dt,(13.17)

which must be true for arbitrary changes δU, implying that

U = −R−1BTΓ,(13.18)

where R is invertible since it is positive-definite.
Combining (13.1), (13.14), and (13.18) results in⎡

⎢⎣
A−I d

dt
B 0

Q 0 AT+I d
dt

0 R BT

⎤
⎥⎦
⎡
⎣XU
Γ

⎤
⎦ = 0,(13.19)

which contains 2n simultaneous differential equations and m algebraic equations. Elim-
inating U gives[
A−I d

dt
−BR−1BT

Q AT+I d
dt

] [
X
Γ

]
= 0.(13.20)
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This is called the Hamiltonian differential equation of the problem, and consists of 2n
differential equations, which must be solved subject to the n initial conditions given by
X(t0) and the n final conditions given by (13.15).

The above development solves the simplest multi-input optimal control problem.
The optimal input function U(t) is obtained by solving (13.20) over the required interval,
subject to the given boundary conditions, and then substituting in (13.18). This, however,
is open-loop control. A more desirable closed-loop solution can be obtained for linear
systems.

A generalized formulation that allows for the many variations in cost function is
given in Sections 2.1 and 2.2, which follow.

Example 4
Minimizing

speed

A spacecraft is to be slowed as much as possible in tf seconds by a jet of plasma. The
released mass of the plasma is negligible compared to the mass of the spacecraft. The
impulse (the integral of the force over time) of the jet is to be minimized, and the optimal
force is to be found as a function of time.

Let x be the momentum of the craft, which is proportional to velocity since the
change in mass is negligible. The rate of change of momentum is ẋ = u, where u(t) is
the force. The function to be optimized is

φ = sx2(tf ) +

∫ tf

0
u2(t) dt,

where the design constant s weights the momentum at tf . Thus the problem matrices
are A = 0, B = 1, Q = 0, R = 1, and S = s. Equation (13.20) is then

[
ẋ
γ̇

]
=

[
0 −1
0 0

] [
x
γ

]

with x(0) fixed and γ(tf ) = sx(tf ). Denoting the matrix on the right of the above
equation as H, write the solution as

[
x(t)
γ(t)

]
= etH

[
x(0)
γ(0)

]
=

[
1 −t
0 1

] [
x(0)
γ(0)

]
,

where γ(0) is unknown but where γ(tf ) = sx(tf ). The value of γ(t), a constant in this
example, is obtained from these equations as

γ(t) =
sx(0)

1 + stf
.

Substituting this into Equation (13.18) gives the optimum input function u(t) as

u(t) = − sx(0)

1 + stf
.
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2.1 A generalized formulation

In order to avoid treating the many cases individually, temporarily define the composite
matrices

M =

[
A 0 B
C −I D

]
, N =

[
I 0 0
0 0 0

]
, X̃ =

⎡
⎣XY
U

⎤
⎦(13.21)

and consider the simplified and generalized problem of minimizing

φ =
1

2
X̃(t)T S̃(t)X̃(t)

∣∣∣∣
tf

t0

+
1

2

∫ tf

t0

X̃(t)T Q̃X̃(t) dt(13.22)

subject to constraint equation

N
d

dt
X̃ = MX̃,(13.23)

where Q̃ and S̃ are square real matrices and S̃(tf ) and−S̃(t0) are symmetric and positive
semidefinite.

The solution can be developed similarly to the previous section. Let Γ̃(t) ∈ Rq

be an arbitrary vector. Include constraint (13.23) pre-multiplied by Γ̃T in cost function
(13.22):

φ =
1

2
X̃T S̃X̃

∣∣∣∣
tf

t0

+

∫ tf

t0

(1
2
X̃T Q̃X̃+ Γ̃T (MX̃−N ˙̃X)

)
dt.(13.24)

By the calculus of variations, at a minimum the change in φ with respect to arbitrary
differential δΓ̃(.) in Γ̃(.) must be zero:

0 =

∫ tf

t0

δΓ̃T (MX̃−N ˙̃X) dt,(13.25)

and this yields the original constraint Equation (13.23).

To take the differential with respect to X̃, integrate the term−Γ̃TN ˙̃X by parts to get

φ = (
1

2
X̃T S̃X̃− Γ̃TNX̃)

∣∣∣∣
tf

t0

+

∫ tf

t0

(1
2
X̃T Q̃X̃+ Γ̃TMX̃+ ˙̃Γ

T
NX̃
)
dt.(13.26)

Now equate the first variation of φ with respect to variation δX̃(.) in X̃(.) to 0:

0 = δX̃T (S̃X̃−NT Γ̃)
∣∣∣tf
t0
+

∫ tf

t0

δX̃T (Q̃X̃+MT Γ̃+NT ˙̃Γ) dt.(13.27)

Since δX̃ is arbitrary in (t0, tf ), the equation

Q̃X̃+MT Γ̃+NT ˙̃Γ = 0(13.28)

must hold. Together, Equations (13.28) and (13.23) give[
M−N d

dt
0

Q̃ MT +NT d
dt

][
X̃
Γ̃

]
= 0,(13.29)
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which is a set of differential and algebraic equations, in general. From the first term of
(13.27), these equations are subject to transversality (boundary) conditions defined at
t = 0 and t = tf by

δX̃(t)T (S̃X̃(t)−NT Γ̃(t)) = 0.(13.30)

With N defined in (13.21), normally the term X̃T S̃X̃ is chosen to be XTSxxX or, to
include Y at tf in the cost when D = 0, to be YTSyyY = XTCTSyyCX with Sxx and
Syy positive-semidefinite. Then for example, if t0, tf are finite and X(t0) = X0 is a
fixed initial vector and X(tf ) is free, then δX(t0) = 0 and the boundary conditions are

X(t0) = X0(13.31a)

SX(tf ) = Γ(tf ),(13.31b)

where S is either Sxx or CTSyyC as appropriate.

Example 5
Generalized

systems

Not only does Equation (13.23) represent the general class of state-space systems, it
can also model systems with improper transfer matrices, which therefore do not have
state-space models. Consider the differentiator

y(t) =
d

dt
u(t),

for which Equation (13.23) is

[
1 0 0
0 0 0

]
d

dt

⎡
⎣xy
u

⎤
⎦ =

[
0 −1 0
1 0 1

] ⎡⎣xy
u

⎤
⎦ .

The above development implies that an optimal design can be obtained by solving
(13.29) subject to suitable boundary conditions, and that this method is analogous to
the classical optimal control design method for state-space systems.

2.2 Particular cases

When Equations 13.23 represent a state-space model as in Equation (13.21) and only
the initial and final states appear in the first term of the cost function, then the following
substitutions are required:⎡
⎣Qxx Qxy Qxu

QT
xy Qyy Qyu

QT
xu QT

yu Quu

⎤
⎦ ← Q̃,

⎡
⎣S 0 0
0 0 0
0 0 0

⎤
⎦← S̃,

[
Γ
V

]
← Γ̃.(13.32)

These substitutions correspond to minimization of the cost function

φ =
1

2
XTSX

∣∣∣∣
tf

t0

+
1

2

∫ tf

t0

[XT ,YT ,UT ] Q̃

⎡
⎣XY
U

⎤
⎦ dt(13.33)
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subject to (13.1) and (13.6). Special cases of the the above general matrix Q̃ are used in
practice. With the above substitutions, (13.29) becomes⎡
⎢⎢⎢⎢⎢⎣

A−I d
dt

0 B 0 0
C −I D 0 0
Qxx Qxy Qxu AT+I d

dt
CT

QT
xy Qyy Qyu 0 −I

QT
xu QT

yu Quu BT DT

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
X
Y
U
Γ
V

⎤
⎥⎥⎥⎥⎦ = 0(13.34)

which is a set of simultaneous algebraic and differential equations, as is (13.29) in gen-
eral. Adding multiples of the second and fifth rows of (13.34) to other rows in order to
eliminate Y and V produces⎡
⎢⎢⎢⎢⎢⎣

A− I d
dt

0 B 0 0
C −I D 0 0
Q′

xx 0 Q′
xu AT+I d

dt
0

QT
xy Qyy Qyu 0 −I

Q′
xu
T 0 R̂ BT 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
X
Y
U
Γ
V

⎤
⎥⎥⎥⎥⎦ = 0(13.35)

where

R̂ = Quu+DTQyu+QT
yuD+DTQyyD(13.36a)

Q′
xx = Qxx+CTQT

xy+QxyC+CTQyyC(13.36b)

Q′
xu = Qxu+CTQyu+QxyD+CTQyyD.(13.36c)

Deleting Y and V from these equations leaves the following:⎡
⎢⎣
A− I d

dt
B 0

Q′
xx Q′

xu AT+I d
dt

Q′
xu
T R̂ BT

⎤
⎥⎦
⎡
⎣XU
Γ

⎤
⎦ = 0.(13.37)

Provided that Q̃ in (13.33) is chosen such that R̂ in (13.36a) is nonsingular, then U
can be solved as

U = −R̂−1(Q′
xu
T
X+ BTΓ),(13.38)

and substituted into (13.37) to leave the simplified equations[
Â−I d

dt
−BR̂−1BT

Q̂ ÂT+I d
dt

] [
X
Γ

]
= 0(13.39)

where

Â = A− BR̂−1Q′
xu
T(13.40a)

Q̂ = Q′
xx −Q′

xuR̂
−1Q′

xu
T
.(13.40b)

Equation (13.39) is identical in form to Equation (13.20) of the basic formulation.
With the above general development in hand, the solution of (13.29) subject to

(13.30) is most simply approached in its particular cases by simplification, as follows.
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Basic case Setting all off-diagonal submatrices of Q in (13.32) to zero, with Qyy = 0, Quu = R,
and Qxx written simply as Q corresponds to minimizing (13.2). Then the expression
(13.38) for the control vector becomes, as before,

U = −R−1BTΓ(13.41)

and the submatrices in (13.39) are

R̂ = R,(13.42a)

Â = A,(13.42b)

Q̂ = Q.(13.42c)

Y in the cost Minimizing (13.2) with D = 0, the term XTQX replaced by YTQY, and Y = CX
corresponds to setting the off-diagonal submatrices of Q̃ equal to zero as before and
writing Quu = R, Qxx = 0, with Qyy written simply as Q. Then R̂, U, and Â are the
same as for the basic case, but

Q̂ = CTQC.(13.43)

Nonzero D If the above conditions hold but D �= 0 then the control vector is

U = −R̂−1(DTCX+ BTΓ)(13.44)

and equations (13.42) become

R̂ = R+DTD,(13.45a)

Â = A− BR̂−1DTC,(13.45b)

Q̂ = CT (C−DR̂−1DT )C.(13.45c)

Other cases can be simplified similarly. In addition to the above examples, in prac-
tice R, Qyy and Qxx are often chosen to be diagonal when the cost associated with the
entries of U and of X or Y can be considered independently.

Example 6
Equivalent

optimization

We wish to find the matrices in (13.39) given the system matrices A = 0, B = 1, C = 1,
D = 1, and cost-function matrices

S̃ =

⎡
⎣ s 0 0
0 0 0
0 0 0

⎤
⎦ , Q̃ =

⎡
⎣ 0 0 0
0 q 0
0 0 r

⎤
⎦ .

Substitutions (13.36) give

R̂ = r + 0 + 0 + q = r + q, Q′
xx = 0 + 0 + 0 + q = q, Q′

xu = 0 + 0 + 0 + q = q.

From (13.38) the optimal input is

u(t) = −(qx(t) + γ(t))/(q + r),

and (13.39) must be solved for matrices given by (13.40b) as

Â = 0− q/(q + r) = −q/(q + r), Q̂ = q − q2/(q + r).
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2.3 Constructing a state feedback solution

The optimal input function U in (13.38) is a linear combination of state vector X and
co-state vector Γ. To obtain these vectors, (13.39) must be solved subject to constraints
derived from (13.30), according to the problem at hand. Not only can such solutions
normally be obtained, but it turns out that a linear expression for Γ as a function of X
is obtainable for all X0, so that U(t) is a linear function of X(t) at any time t, giving a
closed-loop state-feedback control configuration. Equation (13.39) is of identical form
to Equation (13.20); therefore in the following, the caret on the matrices Â, Q̂, and R̂
will be dropped for simplicity of notation.

Suppose that Γ is a linear function of X, as follows:

Γ(t) = P(t)X(t).(13.46)

Then from (13.38), a feedback solution results, with U proportional to X for all time.
The matrix P(t) can be found as follows. Substitute formula (13.46) into the bottom

block equation of (13.20) to get

QX+ATPX+ ṖX+ PẊ = 0(13.47)

and substitute for Ẋ from the top block equation to obtain

(Ṗ+ PA+ATP− PBR−1BTP+Q)X = 0.(13.48)

This equation is to be true for all X(t), which can take on any value since X(t0) is
arbitrary. Therefore, the parenthesized factor in this equation is zero and the matrix P(t)
relating Γ(t) to X(t) satisfies

−Ṗ = PA+ATP− P(BR−1BT )P+Q,(13.49)

subject to boundary conditions derived from (13.30). For example, (13.46) and (13.31)
imply that

P(tf ) = S(tf ),(13.50)

which is the boundary condition that allows (13.49) to be solved backwards in time over
the interval [t0, tf ].

Riccati
differential

equation

Equation (13.49) is of a form known as a Riccati differential equation. The computa-
tional requirement of the optimization has been reduced to the backward solution of
this nonlinear differential equation subject to a final condition, instead of solving the 2n
linear differential equations given by (13.20) subject to boundary conditions.

The right-hand side of (13.49) is locally Lipschitz (see Section 2.1 of Chapter 2), its
solutions are therefore unique for given boundary conditions, and from the symmetry
of (13.49) and (13.50), P is symmetric. Thus a symmetric matrix S(tf ) ≥ 0 has to be
specified as part of the problem specification.

It can also be shown that under reasonable assumptions, namely the stabilizability
of (13.1), positive-definiteness of R, and observability of (13.1) by output vector Q1/2X
where Q = (Q1/2)2, that the solution P to (13.49) exists and is bounded and positive-
definite for all t in (t0, tf ) [57, 18]. These conditions can be relaxed somewhat; if
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(13.1) is merely stabilizable by inputs U and detectable by output vector Q1/2X, then
P(t) is positive semi-definite and the uncontrollable modes of the system, which are
asymptotically stable, are unchanged by the addition of feedback.

Feedback
matrix

The optimal control vector is obtained by substituting for Γ(t) in (13.38) to obtain a
linear function of X(t) as follows:

U(t) = −R̂−1(Q′
xu
T
+ BTP(t))X(t) = −K(t)X(t).(13.51)

This is the required state feedback, with time-varying feedback matrix

K(t) = R̂−1(Q′
xu
T
+ BTP(t)).(13.52)

The term Q′
xu
T is this formula is often zero, as can be seen by examining (13.36c), which

shows that Q′
xu �= 0 only if non-zero diagonal blocks have been specified in Q̃ or if

CTQyyD �= 0. Thus, in the basic case of optimizing the cost in (13.2) subject to con-
straint (13.1), the matrix Q′

xu is zero.

Summary To optimize (13.24) over [t0, tf ] using state feedback, specify Q̃ and S̃ as in (13.32) with
matrix S = Sxx to weight X(tf ) or S = CTSyyC to weight Y(tf ) (assuming D = 0).
Calculate the substitutions (13.36) and (13.40) to obtain a system of the form of (13.20).
Solve (13.49) backwards in time over [t0, tf ] with starting condition (13.50). Then the
optimal state feedback matrix is given by (13.52).

For the basic case (13.2), simply specify S(tf ), Q and R, integrate (13.20) back-
wards in time subject to (13.50) and then, from (13.52), the optimal state feedback matrix
is given by

K(t) = R−1BTP(t).(13.53)

Example 7
Backward
solutions

Given a differential equation d
dtX = F(X, t) and final condition X(tf ) = ξ, it is desired

to find X(t) over [t0, tf ]. Let t = tf − s and X̃(s) = X(tf − s). Then
d

dt
X(t) =

d

d(tf − s)X(tf − s) = − d

ds
X̃(s)(13.54)

= F(X(t), t) = F(X(tf − s), tf − s) = F(X̃(s), tf − s).
Negating both sides of this equation gives

d

ds
X̃(s) = −F(X̃(s), tf − s),(13.55)

which is a differential equation that can be solved forward in the usual way from s = 0
to s = tf − t0 as an initial value problem, with initial condition X̃(0) = ξ. Given X̃(s)
over [0, tf − t0], substituting X(t) = X̃(tf − t) gives X(t) over [t0, tf ].

Example 8
Optimal state
feedback for

Example 6

The matrix P(t) (written p(t) since it is a scalar) for the optimization defined in Exam-
ple 6 is graphed in Figure 13.2 for t0 = 0, tf = 3, q = r = s. The solution exhibits an
initial transient starting at t = tf and approaches a steady-state value from right to left.
From (13.52), the optimal state-feedback matrix is K(t) = (1 + p(t))/2.



42 Chapter 13 Optimal control

t

p(t)

t0 tf

s
p(tf ) = s

Fig. 13.2 The solution of the Riccati differential equation calculated numerically from right to left for
the system defined in Example 6.

2.4 Properties of the optimal feedback solution

The basic problem of minimizing (13.2) subject to (13.1) with S(0) = 0 and S(tf ) writ-
ten as S for notational simplicity will be considered here. The consequences of using the
Riccati differential equation (13.49) to obtain a feedback solution will be investigated.
We shall show that P(t0) defines the optimal cost as a function of the initial state (see
also Example 8 of Chapter 8), and that as tf → ∞, P(0) approaches a constant as
observed in Example 8.

Optimal cost To calculate the optimal cost, let the system input be given by

U(t) = −R−1BTP(t)X+V(t)(13.56)

with no loss of generality, where P(t) satisfies Equation (13.49) and V(t) is to be deter-
mined. Then the closed-loop equation for the state vector is

Ẋ = (A− BR−1BTP)X+ BV.(13.57)

Writing U(t) in the form of (13.56) allows the integrand in the cost function (13.2)
to be written as

XTQX+UTRU = − d

dt
(XTPX) +VTRV,(13.58)

which will be shown as follows. Consider the quadratic XTPX and its derivative:
d

dt
(XTPX) = ẊTPX+XT ṖX+XTPẊ(13.59)

= XT (A− BR−1BTP)TPX+XT ṖX+XTP(A− BR−1BTP)X

+VTBTPX+XTPBV

= XT (ATP+ PA− 2PBR−1BTP+ Ṗ)X+ 2VTBTPX

= XT (−Q− PBR−1BTP)X+ 2VTBTPX

where the last equality is obtained using (13.49). Solving for the quantity XTQX from
this expression gives

XTQX = − d

dt
(XTPX)−XTPBR−1BTPX+ 2VTBTPX.(13.60)

Now apply the formula (13.56) for U to the term UTRU in (13.58) to obtain

UTRU = (VT −XTPBR−1)R(−R−1BTPX+V)(13.61)

= XTPBR−1BTPX− 2VTBTPX+VTRV.
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Then adding (13.60) and (13.61) produces (13.58) as required.
The consequence of (13.58) is that the integral in the formula (13.2) can be calcu-

lated, giving an expression for the closed-loop cost φCL as shown:

φCL =
1

2
X(tf )SX(tf ) +

1

2

∫ tf

t0

(
− d

dt
(XTPX) +VTRV

)
dt(13.62)

=
1

2

(
X(tf )SX(tf )−X(tf )P(tf )X(tf ) +X(t0)P(t0)X(t0) +

∫ tf

t0

VTRVdt
)
.(13.63)

However, P(tf ) = S, so this reduces to

φCL =
1

2

(
X(t0)P(t0)X(t0) +

∫ tf

t0

VTRVdt
)
,(13.64)

where V(t) is still to be determined. Since R is a positive-definite matrix, the integral is
non-negative, and φCL will be minimized by setting V(t) to zero.

The optimal cost φmin is therefore given by

φmin =
1

2
X(t0)P(t0)X(t0).(13.65)

Increasing tf The important case of infinite tf will be investigated. Most of the development to this
point applies to time-varying systems as well as to LTI systems. In the following, assume
that A, B, Q, R, S, and t0 are constant. Then the Riccati differential equation (13.49) is
time-invariant (see Section 3 of Chapter 1) and its solution P(t) depends on tf − t but
not directly on the absolute values of tf or t.

We shall show that the optimal cost φ in (13.2) is bounded and non-decreasing with
increasing tf , and must therefore have a limit as tf →∞. First, (13.49) is time-invariant
and the integrand in (13.2) is nonnegative; therefore φ is non-decreasing with increasing
tf . Now since the plant has been assumed to be stabilizable, a constant state feedback
K matrix can be found such that the closed-loop system eigenvalues λi are in the left
half-plane, in which case the entries of X and U are linear combinations of terms of
the form tαeλi (see Example 17 of Chapter 7), where α is a nonnegative integer. The
integral of such terms over [t0,∞) is finite. Therefore, the optimal cost is bounded.

The most important engineering case, for which tf is infinity, will be investigated
next.

2.5 Infinite time interval and the Hamiltonian matrix

Algebraic
Riccati

equation
(ARE)

Since the minimum cost given by (13.65) has a limit as tf → ∞, solutions P(t) of
(13.49) become asymptotically constant for t far to the left of tf . Hence for tf arbitrarily
large, P can be assumed a constant matrix that satisfies the algebraic Riccati equation
(abbreviated ARE) obtained from (13.49) by setting Ṗ = 0:

0 = PA+ATP− PBR−1BTP+Q.(13.66)

Solution of the optimal feedback problem for constant matrices and tf =∞ reduces to
finding a positive-definite symmetric solution of this nonlinear algebraic equation rather
than the solution of the Riccati differential equation (13.49).
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Since P is constant, Equation (13.53) gives a state feedback minimizing (13.2) sub-
ject to (13.1) as

U(t) = −KX(t) = −R−1BTPX(t)(13.67)

with constant state feedback matrix K. Furthermore, the resulting closed-loop system

Ẋ = (A− BR−1BTP)X(13.68)

is asymptotically stable for constant P, for if it were not, a stabilizing state feedback
U = KX, with K constant, could be found to give a finite, hence lower, cost φ.

A constant P allows some properties of the optimal feedback to be easily found. In
particular, equation (13.20) becomes

([ A −BR−1BT

−Q −AT

]
− I

d

dt

)[ I
P

]
X = 0(13.69)

where the matrix

H =

[
A −BR−1BT

−Q −AT

]
(13.70)

is called the Hamiltonian matrix. Two simple but very important properties of H will be
demonstrated. First, apply the nonsingular matrix

Z =

[
0 I
−I 0

]
(13.71)

as a similarity transformation to HT to obtain

Z−1HTZ = −H.(13.72)

The eigenvalues of a matrix are invariant under transposition and similarity transforma-
tions, so taking the eigenvalues of the matrices on both sides of this equation leads to
the conclusion that the eigenvalues of H are eigenvalues of −H. However, negating a
matrix negates its eigenvalues; that is, λi(−H) = −λi(H), so one must conclude that the
eigenvalues of H are distributed symmetrically across the imaginary axis of the complex
plane.

To show the second property of H, apply

Ẑ =

[
I 0
−P I

]
(13.73)

as a similarity transformation to obtain

ẐHẐ−1 =

[
A− BR−1BTP −BR−1BT

−Q−ATP− PA+ PBR−1BTP −AT + PBR−1BT

]
.(13.74)

Provided P in Ẑ satisfies (13.66), the lower-left block of this matrix is zero. There-
fore, the eigenvalues of this matrix, and hence of H, are those of the upper-left block
together with those of the lower-right block. The upper-left block is the closed-loop
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matrix ACL = A − BK defined previously. The lower-right block is the negative trans-
pose of ACL and hence its eigenvalues are the negative of the eigenvalues of ACL. There-
fore, the eigenvalues of H are the stable closed-loop optimal system eigenvalues and
their right half-plane mirror images.

Closed-loop
eigenvalues

An important design simplification is obtained from the above properties of H. The
closed-loop system poles are readily obtained by constructing H and finding its left half-
plane eigenvalues. Solving for P or K is not required.

Summary To optimize (13.2) over [t0, ∞), specify the matrices R, and Q. Then find for the
positive-semidefinite, symmetric matrixP that solves (13.66). Then the optimal constant-
gain feedback control vector is given by U(t) = −R−1BTPX(t) = −KX(t).

To optimize (13.33) over [t0, ∞), compute R̂ from (13.36a), Â from (13.40a), Q̂
from (13.40b), and substitute these values for R, A, and Q in (13.66). Then U(t) is
given by (13.38).

Example 9
Hamiltonian

matrix for
Example 1

For the system described in Example 1, the Hamiltonian matrix is given by

H =

[
1 −1
−q −1

]
,

where Q = q is the weight assigned to the state in the cost function. The eigenvalues
of this matrix are given by λ = ±√1 + q and are placed symmetrically with respect to
the imaginary axis. Setting q = 0, for example, stabilizes the original system using a
minimal control signal and gives a closed-loop system with pole at −1, as in Example 1.

Example 10
Stabilizing

control

Sometimes the performance of a closed-loop system is not particularly important but
the system is required to be asymptotically stable. Then, provided the system is observ-
able, setting Q = 0 in the basic control configuration results in a Hamiltonian matrix
(13.70) that has the eigenvalues of the open-loop system and their imaginary-axis mirror
images. The mirror images of the unstable open-loop eigenvalues are moved to the left-
half plane and the others are unchanged in the closed-loop result. Thus, for example, for
the matrices

A =

[
2 1
0 −2

]
, B =

[
0
1

]
, R = 1, Q = 0,

the Hamiltonian matrix is

H =

⎡
⎢⎣
2 1 0 0
0 −2 0 −1
0 0 −2 0
0 0 −1 2

⎤
⎥⎦,

from which, by inspection, the closed-loop system will have two eigenvalues at −2.
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Example 11
Inverse

pendulum

For a linearization of the system described in Example 19 of Chapter 1, a constant
state-feedback matrix was obtained in Example 4 of Chapter 12 to assign the closed-
loop eigenvalues to specified locations. Since optimal control with infinite time inter-
val results in a constant state-feedback matrix, the two methods can produce identical
results (see Problem 16). However, optimal control is most often applied numerically
and iteratively to obtain the desired responses. Suppose that the example parameters are
M = 1 kg, m = 0.2 kg, 
 = 1m. Then the linearized model is given below, written
using the physical variables in the state vector:

d

dt

⎡
⎢⎢⎣
x
v
θ
ω

⎤
⎥⎥⎦ =

⎡
⎢⎣
0 1 0 0
0 0 −1.96 0
0 0 0 1
0 0 11.76 0

⎤
⎥⎦
⎡
⎢⎢⎣
x
v
θ
ω

⎤
⎥⎥⎦+

⎡
⎢⎣

0
1
0
−1

⎤
⎥⎦u.(13.75)

We wish to obtain a state feedback such that, starting at x = 0, v = dx/dt = 0,
θ = 15◦ = 0.26 rad, ω = dθ/dt = 0, the cart displacement should be limited to |x(t)| <
0.5m and the angle to |θ(t)| < 20◦ = 0.35 rad. The maximum force is not specified
but an initial estimate might be the weight of the cart and pendulum; that is, g (m +
M) = 11.76N. Then, by application of the rule of thumb given by Equation (13.7), the
nonzero entries in the cost matrices are obtained as q11 = 4m−2, q33 = 8.2 rad−2, and
R = 7.2× 10−3 N−2. The state-feedback matrix that results from these values is

K = [−13.52, −23.16, −123.5, −37.30 ](13.76)

and the eigenvalues of the closed-loop matrix A−BK are at−4.99±j4.02 and−2.08±
j1.13.

The responses are shown in Figure 13.3; the figure shows that the bounds on dis-
placement and angle are met but that the initial force is considerably higher than esti-
mated. If such a force is not obtainable, then the value of R must be increased, reducing
the force but resulting in larger transients. In fact, there is no guarantee that a set of
desired bounds can be met without changing the massesm andM or pendulum length 
.

t1 2
0

0.5

0.25

0

−0.25

x

θ

x(max)
θ(max)

−θ(max)

t1 2
0

30

15

0

−15

u
u(max)

Fig. 13.3 Closed-loop responses of cart position x, angle θ of the inverse pendulum, and input force u.
The desired bounds xmax, θmax, and umax are shown.

2.6 Solving for constant P: the continuous-time case

Equation (13.66) is nonlinear in the unknown matrix P. From the form of the equation,
P can be taken to be symmetric and must be positive-definite or, for the relaxed condi-
tions discussed in Section 2.3, positive-semidefinite. There is more than one solution
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of (13.66) in general but only one will satisfy this condition. The required solution of
(13.66) for P can be obtained in several ways.

First, the solution of nonlinear algebraic equations requires, in general, the use of
potentially infinite processes that converge to an exact solution. It will be shown that
solving for P is closely connected with the problem of finding eigenvectors, and hence
eigenvalues, of the Hamiltonian matrix. Finite methods do not exist for finding the roots
of algebraic equations of arbitrary order, and such roots must be found by successive
approximation, a process requiring convergence of the solution estimate.

Second and consequential to the above, no single method of solution can be expected
to be best in all circumstances. However, reliable methods are available for situations
in which the required matrices can be assumed to be exactly known and no larger than
several tens of rows or columns.

The following examples are either of expository interest or illustrate the principles
used by reliable library algorithms. Methods based on direct solution of the Riccati
differential equation (13.49), Newton methods, and methods based on eigenspaces of
the Hamiltonian matrix are mentioned.

Example 12
The ARE for

Example 1

The ARE can be solved directly for very small problems, since this equation is quadratic
in the unknown matrix P. The system of Example 1 with weight Q = q and unknown
matrix P = p has algebraic Riccati equation

PA+ATP− PBR−1BTP+Q = p · 1 + 1 · p− p · 1 · p+ q = 0,

the solutions of which are p = 1±√1 + q. The required positive semidefinite solution
is p = 1 +

√
1 + q, and results in the constant state feedback matrix K = R−1BTP =

1 +
√
1 + q containing parameter q. This result shows that increasing the weight Q on

the state vector in the cost increases the state feedback gain given by K.

Example 13
Solving (13.49)

Library integration routines may be employed to solve (13.49) backward in time (see
Example 7) from a final condition P(tf ) = S obtained from (13.50). Because P is
symmetric, only n(n+1)/2 simultaneous differential equations need be solved, but dif-
ficulties of choosing S and the extreme length of integration interval sometimes required
for adequate convergence of P make this method generally unsuitable.

Example 14
Solving (13.69)

Equation (13.69) may be solved backward in time. Thus for

d

dt

[
X
Γ

]
= H

[
X
Γ

]
; Γ(tf ) = SX(tf )(13.77)

where H is the Hamiltonian matrix defined in (13.70), the solution is[
X(t)
Γ(t)

]
= Φ(t−tf )

[
X(tf )
Γ(tf )

]
(13.78)

where

Φ(t) = etH(13.79)
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for which the inverse Φ(t)−1 = Φ(−t) always exists (see Example 16 of Chapter 2).
The solution at time t = tf −Δ is[
X(tf −Δ)
Γ(tf −Δ)

]
= Φ(−Δ)

[
X(tf )
SX(tf )

]
=

[
Φ11 Φ12

Φ21 Φ22

] [
X(tf )
SX(tf )

]
(13.80)

where Φ(−Δ) has been partitioned into n× n blocks as shown, so that

Γ(tf −Δ) = (Φ21 +Φ22S)(Φ11 +Φ12S)
−1X(tf −Δ).(13.81)

However, by definition,

Γ(tf −Δ) = P(tf −Δ)X(tf −Δ),(13.82)

so that

P(tf −Δ) = (Φ21 +Φ22S)(Φ11 +Φ12S)
−1.(13.83)

Repeated use of the above steps gives a sequence P(tf ) = S, P(tf−Δ),P(tf−2Δ) . . . ,
starting at an assumed value S. The essential requirement for this method is accurate
computation of e(−ΔH), but even with an exact result, P may converge extremely slowly.
Consequently, this method, although once widely applied, is normally rejected for gen-
eral use. Its main value is as a simple algorithm for approximate step-wise solution of
time-varying problems, for which Φ(−Δ) typically must be re-calculated at each step
as the entries of H vary over time.

Example 15
Newton methods

Another method relies on a Newton-like sequence of approximations to solve (13.66)
directly. The object is to minimize

q = ‖PA+ATP− PLP+Q‖(13.84)

in a suitable norm, where for brevity L replaces BR−1BT . For a symmetric perturbation
ΔP of P,

q +Δq = ‖PA+ATP− PLP+Q+ΔP(A+ LP) + (A+ LP)TΔP+ΔPLΔP‖,(13.85)

from which, q may be reduced for any Pi not satisfying (13.66) by solving

Xi(A+ LPi) + (A+ LPi)
TXi + (PiA+ATPi − PiLPi +Q) = 0(13.86)

for Xi, and letting Pi+1 = Pi + μXi for sufficiently small μ. This method and its
variants suffer from the general defects of Newton algorithms, namely relatively slow
convergence and the difficulties of choosing the initial guess P0 sufficiently close to the
solution to guarantee convergence. One use of the method is for iterative refinement of
approximate solutions obtained by other methods. Each iteration requires the solution of
the above continuous-time Lyapunov equation discussed in Section 3.2 and Section 3.3
of Chapter 8.
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Example 16
Eigenvector

methods

Useful algorithms can be based on computing a set of basis vectors for the stable eigen-
space of (13.69) or, in general, of (13.29). All such algorithms contain a potentially
infinite iterative process for isolating the stable eigenvalues and corresponding eigenvec-
tors, which constitute a basis for the stable eigen-space.

Construct the Hamiltonian matrix H discussed in Section 2.5 and the nonsingular
matrix V partitioned using the notation V = [V−,V+] such that

V−1HV =

[
Λ− 0
0 Λ+

]
,(13.87)

where the eigenvalues of Λ− are in the left half-plane and the eigenvalues of Λ+ are their
unstable mirror images. The matrices Λ− and Λ+ need not be diagonal. By defining the
transformation of variables[
X(t)
Γ(t)

]
= [V−, V+ ]

[
W1(t)
W2(t)

]
,(13.88)

and by setting t0 = 0 for convenience, we obtain the solution of (13.20) as[
X(t)
Γ(t)

]
= etH

[
X(0)
Γ(0)

]
= VetV

−1HVV−1V

[
W1(0)
W2(0)

]
(13.89)

= [V−, V+ ]

[
etΛ− 0
0 etΛ+

] [
W1(0)
W2(0)

]
= V−etΛ−W1(0) +V+e

tΛ+W2(0).

The solution X(t) must be asymptotically stable, otherwise (13.2) is not a minimum.
Therefore, Γ = PX must also be asymptotically stable. Since etΛ+ is nonsingular and
V− has full column rank, W2(0) must be 0 and the solution reduces to[
X(t)
Γ(t)

]
= V−

(
etΛ−W1(0)

)
=

[
I
P

]
X(t),(13.90)

where the rightmost term uses the substitution of (13.69). This equation shows that the
columns of [I,P]T are linear combinations of the columns of V−, in which case there is
a nonsingular matrix M̂ that satisfies[
I
P

]
= V−M̂ =

[
V1

V2

]
M̂,(13.91)

where V− has been partitioned into V1 and V2 as shown. Solving for M̂ = V−1
1 in this

equation leads to the equation

V2 = PV1(13.92)

to be solved for the required P.

The above argument depends on classifying the eigenvalues of H into sets of values
in the negative and positive half-planes; if there are eigenvalues on the imaginary axis,
the optimization problem is singular. In the simplest case, V− can contain the eigenvec-
tors of H corresponding to stable eigenvalues. More generally, the columns of V− need
only span the range of these eigenvectors.
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As a concrete example, consider the matrix H containing parameter q given in Exam-
ple 9. An eigenvector corresponding to stable eigenvalue

√
1+q is given by

V− =

[
1

1 +
√
1+q

]
=

[
V1

V2

]
,

to which (13.92) can be applied to get p = 1 +
√
1+q as in Example 12.

Example 17
The Schur matrix

The eigenvector method described in Example 16, although conceptually simple, can be
improved at very little cost to avoid the computation of actual eigenvectors, resulting in
one of the premier methods available for solving the matrix Riccati equation for systems
up to medium size with no special structure. The essential requirement is the compu-
tation of V−, a basis for the stable eigen-space of H. By a minor modification of the
almost universally used QR-algorithm for computing matrix eigenvalues, an orthogonal
matrix V can be constructed such that

VTHV =

⎡
⎣L1 · · ·

. . .
...
Lt

⎤
⎦(13.93)

is in real Schur form, which is upper block-triangular, with diagonal blocks Li that are
either scalar, equal to real eigenvalues of H, or of size 2× 2, with eigenvalues equal to
complex-conjugate eigenvalue pairs of H (see Problem 7 of Chapter 7). Furthermore,
the diagonal blocks of the resulting VTHV can be ordered such that the eigenvalues of
the upper-left n× n submatrix are the left half-plane eigenvalues of H. Then a suitable
matrix V− is given by the leftmost n columns of V as in Example 16.

The matrix H of Example 9 is put into real Schur form by the orthogonal matrix

V =
1

(1 + (1 +
√
1+q)2)1/2

[
1 −(1 +√1+q)

1 +
√
1+q 1

]
,

for example, to get

VTHV =

[−√1+q q − 1
0

√
1+q

]
.

Since V− is the first column of V in this example, (13.92) can be applied to obtain P as
previously.

Example 18
The matrix sign

function

Computing the sign function of the Hamiltonian matrix is the core of a method of con-
siderable simplicity and speed for solving the ARE. This function is defined consistently
with the sign function of complex scalars z, which is

sign(z) =

⎧⎨
⎩

1, Re(z) > 0
undefined, Re(z) = 0
-1, Re(z) < 0

.(13.94)
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For a Jordan block Jδi of size δi and eigenvalue λi as described in Section 3 of Chapter 7,
define the sign function to be the diagonal matrix

sign(Jδi) = diag[sign(λi)](13.95)

of size δi. For any real matrix A, let W−1AW = J = diag[Jδi ] be its Jordan form and,
as in Equation (7.33), define

sign(A) = W sign(J)W−1.(13.96)

The solution of the ARE can be found by calculating sign(H), as follows. Let W be
the identically non-singular matrix

W =

[
0 I
−I P

] [
I 0
−V I

]
=

[
V I

−I+ PV P

]
(13.97)

where P satisfies the algebraic Riccati equation (13.66) and where V satisfies the Lya-
punov equation

ACLV +VAT
CL + BR−1BT = 0(13.98)

with ACL = A− BR−1BTP. Then matrix multiplication and simplification results in

W−1HW =

[−AT
CL 0

0 ACL

]
.(13.99)

If all eigenvalues of ACL are in the open left half-plane then, from the form of the matrix

above, the rightmost n vectors

[
I
P

]
of W span the image of the eigenvectors of H

corresponding to left half-plane eigenvalues. Furthermore, sign(ACL) = −I and

sign(H) = W sign(W−1HW)W−1 = W

[
I 0
0 −I

]
W−1.(13.100)

Now define matrix F to be

F = I+ sign(H) = W

([
I 0
0 I

]
+

[
I 0
0 −I

])
W−1(13.101)

=

[
V I

−I+ PV P

] [
2I 0
0 0

] [
P −I

I−VP V

]

= 2

[
V

−I+ PV

]
[P, −I] = [F1, F2]

which has been partitioned as [F1,F2] as shown, where F1 and F2 are 2n × n. If F is
known, then P can be found by solving

F2P = −F1.(13.102)

This equation is overdetermined but has a solution since F1 is in the column range of F2.
Furthermore, F2 is the first block column of the identically nonsingular matrix W and
is therefore of full column rank, so the solution is unique. The computation P has now
been reduced to one of solving this set of linear equations, together with the computation
of sign(H), which will be investigated next.
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Let f(z) = z2 − 1 so that, provided Re(z0) �= 0, the Newton sequence

zk+1 = zk − f(zk)

f ′(zk)
=

1

2
(zk +

1

zk
)(13.103)

converges rapidly to sign(z0). The matrix algorithm is directly analogous to the scalar
algorithm:

H0 = H, Hk+1 =
1

2
(Hk +H−1

k ).(13.104)

This sequence of matrices Hk converges rapidly to sign(H) and does not require the
direct calculation of eigenvectors or their images. Library algorithms accelerate conver-
gence by scaling the result of each step.

Example 19
Sign function for

Example 9

To apply the matrix-sign method to the parameterized H given in Example 9, a matrix
containing eigenvectors, such as

W =

[
1 1

1−√1+q 1 +
√
1+q

]

can be employed to transform H to Jordan form J = W−1HW =

[√
1+q 0
0 −√1+q

]

from which, by inspection, sign(J) =
[
1 0
0 −1

]
and

F = I+W sign(J)W−1 =
1√
1+q

[
1 +
√
1+q −1

−q √
1+q − 1

]
= [F1, F2 ] .

Solving (13.102) gives p = 1 +
√
1+q as before.

3 Discrete-time optimization

Much of the previous discussion of continuous-time optimization is applicable to the
discrete-time optimization problem, but the form of the equations is different. The basic
optimization problem is given by Equations (13.4) and (13.5). A general formulation
will be considered and then simplified as necessary to handle the many variations of
cost function, as in Section 2.1. Analogous to (13.22) and (13.23), the cost function

φ =
1

2

tf∑
t=t0

X̃(t)T Q̃X̃(t)(13.105)

is to be minimized, subject to

NX̃(t+1) = MX̃(t), t = t0, . . . tf−1.(13.106)

This constrained algebraic optimization problem can be solved by the method of
Lagrange multipliers without invoking the calculus of variations. Time-varying matrices
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can be allowed with minor limitations, but the development will assume the matrices to
be constant.

Introducing a time-indexed sequence of Lagrange multiplier vectors Γ̃(t+1), t =
t0, . . . tf−1 and adding the products of these multiplied by the constraint equations to
(13.105) gives

φ =

tf−1∑
t=t0

1

2
X̃(t)T Q̃X̃(t) + Γ̃(t+1)T (MX̃(t)−NX̃(t+1)) +

1

2
X̃(tf )

T Q̃X̃(tf ).(13.107)

At a minimum, the derivative of this function with respect to all variables is zero.
Differentiating gives the following:

∂φ

∂X̃(t)
= Q̃X̃(t) +MT Γ̃(t+1)−NT Γ̃(t), t = t0, . . . tf−1(13.108a)

∂φ

∂X̃(tf )
= Q̃X̃(tf )−NT Γ̃(tf ),(13.108b)

∂φ

∂Γ̃(t+1)
= MX̃(t)−NX̃(t+1), t = t0, . . . tf−1.(13.108c)

Equating (13.108a) and (13.108c) to zero gives[
N 0
0 MT

] [
X̃(t+1)
Γ̃(t+1)

]
=

[
M 0
−Q̃ NT

] [
X̃(t)
Γ̃(t)

]
, t = t0, . . . tf−1.(13.109)

These equations are analogous to (13.29). The initial condition X̃(t0) is typically
fixed but arbitrary, and the final condition is obtained by equating (13.108b) to zero.

The state-space substitutions given by (13.21) and (13.32) will be applied to Equa-
tion (13.109), producing⎡
⎢⎢⎢⎢⎣
I 0 0 0 0
0 0 0 0 0
0 0 0 AT CT

0 0 0 0 −I
0 0 0 BT DT

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
X(t+1)
Y(t+1)
U(t+1)
Γ(t+1)
V(t+1)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

A 0 B 0 0
C −I D 0 0
−Qxx −Qxy −Qxu I 0
−QT

xy −Qyy −Qyu 0 0

−QT
xy −QT

yu −Quu 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
X(t)
Y(t)
U(t)
Γ(t)
V(t)

⎤
⎥⎥⎥⎥⎦ .(13.110)

Eliminating Y(t) and V(t) leaves the equation⎡
⎣ I 0 0
0 0 AT

0 0 BT

⎤
⎦
⎡
⎣X(t+1)
U(t+1)
Γ(t+1)

⎤
⎦ =

⎡
⎣ A B 0
−Q′

xx −Q′
xu I

−Q′
xu
T −R̂ 0

⎤
⎦
⎡
⎣X(t)
U(t)
Γ(t)

⎤
⎦ ,(13.111)

where the formulas for R̂, Q′
xx, and Q′

xu are identical to the continuous-time case in
Equations (13.36). If the optimization problem is nonsingular then R̂ is invertible and
U(t) is obtained from

R̂U(t) = −Q′
xu
T
X(t)− BTΓ(t+1).(13.112)

Finally, eliminatingU(t) from (13.111) gives the following, analogous to time-continuous
equations (13.39):[
I Ŝ
0 ÂT

] [
X(t+1)
Γ(t+1)

]
=

[
Â 0
−Q̂ I

] [
X(t)
Γ(t)

]
,(13.113)
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where Â and Q̂ are given as for the time-continuous case in (13.40a) and (13.40b) respec-
tively, and where, for future simplicity, Ŝ is defined as

Ŝ = BR̂−1BT .(13.114)

Equations (13.113) constitute a two-point boundary-value problem with initial constraint
given by fixed X(t0) and final constraint obtained by setting (13.108b) to zero for the
cost function at hand.

The formulas corresponding to the general cost function are rather cumbersome, but
simplify drastically in the most common cases, as follows.

Basic case Minimizing (13.4) subject to (13.5) implies that Qxy, Qxu, Qyy, and Qyu are zero, Qxx

and Quu can be written simply as Q and R respectively, and the submatrices in (13.113)
are given by formulas (13.42), with U(t) given by

U(t) = −R−1BTΓ(t+1).(13.115)

Y in the cost Substituting Q in the basic case with CTQC accounts for the replacement of the term
X(t)TQX(t) in the cost function by Y(t)TQY(t), provided that D is zero.

Nonzero D If Y is included in the cost as above and D �= 0, then

U(t) = −R̂−1(DTQCX(t) + BTΓ(t+1))(13.116)

and the submatrices in (13.113) are given by formulas (13.45).

Example 20
Scalar

discrete-time
system

For the basic system described by matrices A = e, B = e− 1, C = 1, D = 0 with fixed
x(0), let the optimization interval be t ∈ {0, 1}, and let the cost be

φ =
1

2

(
x2(0) + x2(1) + u2(0)

)
.

The optimal input u(0) is to be found by the method of Lagrange multipliers.
There is one constraint equation:

x(1) = Ax(0) + Bu(0)

and therefore one Lagrange multiplier Γ(1) = γ(1) is required. The modified cost
becomes

φ =
1

2

(
x2(0) + x2(1) + u2(0)

)
+ γ(1) (ex(0) + (e−1)u(0)− x(1)),

so that the cost is optimized by solving the following equations.
∂φ

∂x(1)
= x(1)− γ(1) = 0

∂φ

∂u(0)
= u(0) + γ(1) (e−1) = 0

∂φ

∂γ(1)
= ex(0) + (e−1)u(0)− x(1) = 0.

Solving for u(0) gives

u(0) = − (e−1) e
1 + (e−1)2x(0).
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3.1 Feedback solutions

To obtain a feedback solution for U(t), let Γ(t) = P(t)X(t) in (13.112), so that

R̂U(t) = −BTP(t+1)(ÂX(t) + BU(t))−Q′
xu
T
X(t)(13.117)

and solve for U(t) to obtain

U(t) = −(R̂+ BTP(t+1)B)−1(BTP(t+1)Â+Q′
xu
T
)X(t),(13.118)

which has the form of a time-varying state-feedback matrix multiplying X(t).
To obtain the sequence of values of P(t) required in (13.118), substitute Γ(t) =

P(t)X(t) into the top equation of (13.113) to get

(I+ ŜP(t+1))X(t+1) = ÂX(t),(13.119)

multiply by (I+ ŜP(t+1))−1, and substitute the resulting formula for X(t+1) into the
bottom equation of (13.113) to obtain

ÂTP(t+1)(I+ ŜP(t+1))−1ÂX(t) = −Q̂X(t) + P(t)X(t).(13.120)

This equation is true by definition for all X(t); therefore the following discrete-time
equivalent of the Riccati differential equation (13.49) can be solved backward in time to
obtain the required sequence of matrices P(t):

P(t) = Q̂+ ÂTP(t+1))(I+ ŜP(t+1))−1Â.(13.121)

Typically, the term X̃(tf )
T Q̃X̃(tf ) in (13.107) is simply X(tf )

TSX(tf ), and the starting
condition of this equation then is

P(tf ) = S.(13.122)

Example 21
Feedback

solution for
Example 20

For the system of Example 20, the cost-function matrices are

R̂ = 1, Q̂ = 1, Â = e, S = 1, Ŝ = (e−1)2.
The solution of (13.121) is required only at its final point; that is, P(1) = S = 1, so that
the optimal input u(0) is given by (13.118) as

u(0) = −(1 + (e−1)2)−1(e−1) ex(0),
which is the solution previously found for this example.

Constant P A reasoning similar to that for the time-continuous case can be given to show that P
can be assumed constant if the optimization interval is infinite. The required matrix P is
then the positive-definite, symmetric solution of the discrete algebraic Riccati equation
(DARE) obtained by setting P(t) constant in (13.121):

ÂTP(I+ ŜP)−1Â− P+ Q̂ = 0.(13.123)

Once P is known, from (13.118) the constant state-feedback matrix K is given by

K = (R̂+ BTPB)−1(BTPÂ+Q′
xu
T
)(13.124)

so that the closed-loop system matrix ACL = A− BK is

ACL = A− B(R̂+ BTPB)−1(BTPÂ+Q′
xu
T
).(13.125)

For the basic case of the optimization problem, Q′
xu
T is zero in this formula.
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Example 22
Infinite tf for
Example 20

Extending the optimization interval to [0, ∞) in Example 20 requires constant P to be
found from Equation (13.123), which becomes, in this example,

ep(1 + (e−1)2)−1e− p+ 1 = 0,

the positive solution of which is

p =
−e+√e2 + 1

e− 1
.

Substituting this into (13.124) gives the constant state-feedback matrix K as

K =
−e+ e

√
e2 + 1

1 + (e−1)2 .

Example 23
Parameterized

example

As in Example 1, let A = 1, B = 1, C = 1, D = 0, Q = q, and R = 1, with
the optimization to be over the infinite interval [t0,∞), but suppose that the system is
discrete time. Then the discrete algebraic Riccati equation (13.123) is

1 · (1 + 1 · p)−1 · 1− p+ q = 0,

and the positive solution of this is p = (q/2) (1 +
√

1 + 4/q). The constant state-
feedback gain is given by (13.124) to be K = p/(1+p). From (13.125), the closed-loop
system matrix is

ACL = 1− p/(1 + p) = 1− q(1 +
√

1 + 4/q)/2

1 + q(1 +
√
1 + 4/q)/2

,

which has magnitude less than 1 and approaches zero as q → ∞, implying faster tran-
sient decay of closed-loop solutions to the origin as q increases.

3.2 Computation of P: the discrete-time case

Pencil of
matrices

Methods of solving (13.123) for constant matrix P will be investigated briefly. Let
Γ(t) = PX(t) and take the Z transform of (13.113) to get([

I Ŝ
0 ÂT

]
z −
[

Â 0
−Q̂ I

])[
I
P

]
X(z) = (Lz −K)

[
I
P

]
X(z) = 0(13.126)

where the matrices L and K are defined by this equation. An expression of the form
Lz−K is called a pencil of matrices. From the form of the equation, the only possibility
of nonzero solutions X(z) is for this pencil of matrices to be singular. The values of z at
which the pencil is singular are called generalized eigenvalues, and vectors X̂ for which
(Lz − K) X̂ = 0 are called generalized eigenvectors. Thus from (13.126), the pencil of
matrices[
I Ŝ
0 ÂT

]
z −
[

Â 0
−Q̂ I

]
= Lz −K(13.127)
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is to have eigenvectors

[
I
P

]
X(zi) corresponding to eigenvalues zi. For reasons identical

to those of the time-continuous case, the sequence {X(t)}must be asymptotically stable;

therefore, the matrix
[
I
P

]
must span the range of stable eigenvectors of the pencil, and P

can be found as in Example 16: find a basis V−, partitioned as in (13.91), for the range
of the eigenvectors corresponding to asymptotically stable eigenvalues of the pencil, and
solve Equation (13.92) for P.

Example 24
Eigenvalues of
matrix pencils

When the entries of K and L are finite, eigenvalues of K− Lz may be infinite, as when
K = 1 and L = 0; or indeterminate, as when K = L = 0.

If the pencil is not square or if det(Lz−K) ≡ 0 then the pencil is said to be singular.
For square pencils, a procedure called the QZ algorithm uses orthogonal matrices Q and
Z such that

QT (K− Lz)Z = K̄− L̄z

where K̄ and L̄ are upper triangular with diagonal entries αi in K̄ and βi in L̄. The
eigenvalues are given by αi/βi, which is indeterminate if αi = βi = 0, or infinite if
αi �= 0 and βi = 0.

Relation to
continuous

optimization

Rather that developing the details of methods obtained from the pencil of matrices
(13.127), it will be shown that any method that solves the continuous-time case can
also be employed for the discrete-time optimization.

Consider the pencil eigenvector equation

(Lz −K) X̂ = 0(13.128)

and apply the bilinear transformation

z =
s+ 1

s− 1
,(13.129)

which maps values of s in the open left-hand plane to the interior of unit circle, to obtain(
(K− L)s− (K+ L)

)
X̂ = 0.(13.130)

Suppose for a moment that K−L is singular. Then either (13.130) has an eigenvalue
at infinity (see Example 24) and (13.126) has an eigenvalue at z = 1, or if K + L is
singular as well there is the possibility that (13.130) has arbitrary eigenvalues, as does
(13.126). In either case the eigenvalues of (13.126) cannot be sorted into stable and
unstable values, and the original discrete optimization is singular. Hence, singularity of
K − L implies a singular optimization problem, which is assumed not to apply to the
following.

Pre-multiply (13.126) by (K− L)−1, giving(
sI− (K− L)−1(K+ L)

)[ I
P

]
X = 0.(13.131)
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Let P satisfy the discrete-time algebraic Riccati equation

ÂTP(I+ ŜP)−1Â− P+ Q̂ = 0(13.132)

and let V satisfy the discrete Lyapunov equation

ACLVACL
T −V + (I+ ŜP)−1Ŝ = 0.(13.133)

From the discussion in Section 3.4 of Chapter 8, a solution V is guaranteed to exist when
λi(ACL)λj(ACL) �= 1 for all eigenvalue pairs i, j as is true when ACL is asymptotically
stable; that is when |λi(ACL)| < 1 for all i. Then L and K will be transformed, using a
change of basis:[
X
Γ

]
=

[
I
P

]
X =

[
I 0
P I

] [
I −V
0 I

]
X̃ =

[
I −V
P I−PV

]
= NX̃,(13.134)

where N is defined in this equation. This change of basis and premultiplication by a
matrix W changes (13.128) to W(Lz −K)NX̃ = 0. The matrix W is

W =

[
I ACLV
0 I

] [
(I+ŜP)−1 0
−AT

CLP I

]
,(13.135)

so that L and K become respectively

WLN =

[
I 0
0 −AT

CL

]
, WKN =

[
ACL 0
0 I

]
.(13.136)

Inspection of these two matrices shows that W(Lz − K)N (and hence Lz − K)
has eigenvalues λi(ACL), together with their inverses. The inverse of transformation
(13.129) is

s =
z + 1

z − 1
.(13.137)

Consequently, an eigenvalue zi of Lz−K corresponds to a value si given by this formula,
whereas its inverse 1/zi corresponds to

1/zi + 1

1/zi − 1
= −zi + 1

zi − 1
= −si.(13.138)

Therefore, the eigenvalues of (13.131) will occur symmetrically with respect to the imag-
inary axis of the s-plane.

Summary A constant matrix P that solves a nonsingular discrete optimization problem of the form
of (13.4) subject to constraint (13.5) can be obtained by constructing the matrices

L =

[
I Ŝ
0 ÂT

]
, K =

[
Â 0
−Q̂ I

]
, H = (K− L)−1(K+ L)(13.139)

and applying the methods of Section 2.6 to H. The state-feedback matrix is given by
(13.124).
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Example 25
Application to
the system of

Example 23

The above method applied to the system given in Example 23 produces matrices

L =

[
1 1
0 1

]
, K =

[
1 0
−q 1

]
, K− L =

[
0 −1
−q 0

]
, K+ L =

[
2 1
−q 2

]
,

so that the equivalent H given by (13.139) is

H =

[
1 −2/q
−2 −1

]
.

This matrix has eigenvalues at s = ±√1 + 4/q. An eigenvector corresponding to the
left half-plane eigenvalue is

V− =

[
2

q(1 +
√
1 + 4/q)

]
=

[
V1

V2

]
.

Solving (13.92) gives p = (q/2) (1 +
√

1 + 4/q) as in Example 23.

4 Further study

The optimal state-feedback control of LTI systems is a now-classical problem that has
been studied for decades. Many books have been written on the subject. Two that
continue to be well worth consulting are [37] and [57]. An excellent treatment is in [18].
Reference [60] is a more recent addition to the literature. Many modern books such
as [7] devote a chapter or more to the subject. For a discussion of the numerical aspects
of solving the ARE for constant P, see [39].

5 Problems

1 Solve for the steady-state value P(t0) for tf = ∞ in Example 8 using the results of
Section 2.5.

2 Rework Examples 1, 9, 23, and 25 for parameter value q = 3.

3 A constant optimal state-feedback matrix is to be found for a system, using cost-function
matrices Q = qI and R = rI in (13.2), where q and r are parameters. The design begins
by solving for q0 = r0 = 1. For the choices of q and r given below, determine whether
the time-constants of the closed-loop system will be faster, slower, or the same as for the
initial solution.
(a) q = 100, r = 1, (b) q = 1, r = 100, (c) q = 100, r = 100.

4 Write the following quadratic forms in matrix notation XTAX.

(a) x21+6x1x2+3x22, (b) 2x21−4x1x2+x
2
2, (c) x21−2x22−3x23+6x1x3−6x2x3.
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5 Determine whether each of the following matrices is positive-definite and positive-semidefinite:

(a) Q =

[
7 10
2 4

]
, (b) Q =

⎡
⎣ 1 2 0
2 3 2
0 2 5

⎤
⎦ , (c) Q =

⎡
⎣ 1 1 0
1 3 1
0 1 0

⎤
⎦.

6 Write the following quadratic forms as scalar functions of the entries x1, x2, . . . of X.

(a) XT

[
1 2
2 3

]
X, (b) XT

[
2 2
−2 1

]
X, (c) XT

⎡
⎣ 1 0 1
0 −2 −3
0 0 −3

⎤
⎦X.

7 The input for the system given by ẋ = u is to be found by optimizing the cost function
φ =

∫ t1
t0
(x2 + u2) dt. Find u(t) over the interval [t0, t1) as a function of time and as a

function of x(t) over this interval.

8 Write the Hamiltonian matrix H for the system described in Problem 7 with t1 → ∞.
What will be the eigenvalue of the closed-loop optimal system?

9 For the system with matrices given by

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C = [ 1, 0 ], D = 0,

and infinite interval [0,∞), solve for the optimal constant state-feedback matrix K for
cost function

φ =

∫ ∞

0
(y2 + ρ2u2) dt,

where ρ is a parameter. How do the transients of the closed-loop system differ in the
two cases that ρ is very small and very large?

10 Solve Problem 9 for the case where D has been changed to D = 1.

11 Find the constant state-feedback matrix that minimizes the cost function shown for the
system with matrices shown:

φ =

∫ ∞

0

(
XT
[
4 0
0 0

]
X+ u2

)
dt, A =

[
0 1
0
√
5

]
, B =

[
0
1

]
.

12 Find the constant state-feedback matrix that minimizes the cost function shown for the
system with matrices shown:

φ =

∫ ∞

0
(XTX+ u2) dt, A =

[−2 1
0 1

]
, B =

[
1
0

]
.
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13 Find the constant state-feedback matrix that optimizes the system given by

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C = [ 1, 0 ], D = 0

over the interval [0,∞) with respect to the cost function

φ =

∫ ∞

0
(y2 + 4u2) dt.

14 The state feedback to control the roll angle of a rocket by altering the fin angle is to be
designed. The rate of change of fin angle can be controlled. Denoting fin angle as x1,
roll velocity as x2, and roll angle as x3, the plant equations are

ẋ1 = u, ẋ2 = (k/τ)x1 − (1/τ)x2, ẋ3 = x2,

where τ = 1 s and k = 10. The cost function is

φ =

∫ ∞

0

(
x21

(π/12)2
+

x23
(π/180)2

+
u2

π2

)
dt.

Find the constant state-feedback matrix for this controller.

15 Find the constant state-feedback matrix that solves the steady-state LQ problem for the
following data:

A =

[
0 8
−8 0

]
, B = Q = R = I.

16 Verify that a diagonal cost matrix Q in Equation (13.2) with tf = ∞ can be found to
produce closed-loop eigenvalues identical to the result of pole placement in Example 4
of Chapter 12. Proceed as follows: substitute γ2 = g(m+M)/(M
) and −mg/M =
g−γ2
 in A of the model given in the example. Construct the Hamiltonian matrix H for
R = 1 and diagonal Q. Using a symbolic-algebra program, calculate the characteristic
polynomial φ(s) of H and solve for the diagonal elements of Q such that the coefficients
of φ(s) equal those of the desired characteristic polynomial

β(s) = (s2 − γ2)2 (s2 + 2ζωs+ ω2)(s2 − 2ζωs+ ω2)

= (s2 − γ2)2 (s4 + 2ω2δs2 + ω4),

where δ = 1− 2ζ2.

17 A controller for a plant described by H(s) = 1/(s+a) is required to produce zero steady-
state output error for reference step signals of arbitrary size, unknown in advance. This
requirement can be formulated as an infinite-interval optimization problem that assigns
a positive cost to the error. The closed-loop system corresponds to Figure 12.3, with
zero disturbance vector. However, the given plant has no pole at the origin; the con-
troller must include an integrator to create a type 1 system capable of zero steady-state
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step error. Putting an integrator in series with the plant results in state-space equations
containing the matrices

A =

[
0 0
1 −a

]
, B =

[
1
0

]
, C = [ 0, 1 ], D = [ 0 ],

as shown in Figure P13.17, where u′ is the input of the composite plant.

(sI−A)−1

Cr

Xr

r −e
[ k1, k2 ]

u′ 1

s

u = x1 1

s+ a

y = x2
−−

Fig. P13.17 Integral control in series with the plant

Because A contains a pole at the origin, a step input r can be represented as the free
response of the plant; that is

Ẋr = AXr, r = CXr.

Then the system equations can be written using the state vector E = X−Xr as

d

dt
E =

d

dt
X− d

dt
Xr = AX+ Bu′ −AXr = AE+ Bu′,

with the quantity

−e = y − r = CE

to go to zero in steady-state. The function to be minimized becomes

φ =

∫ ∞

0
(ρ2e2 + (u′)2)dt,

subject to the above equations, where ρ is a tuning parameter and the term in u′ has been
included to result in finite inputs and a nonsingular optimization problem.

Let α = 2 and ρ = 1. First, solve for K = [ k1, k2 ] so that u′ = −KE =
−K [ e1, e2 ]

T . Then solve for e1 in terms of e = e2, using the equation for Ė given
above. Referring to Figure P13.17, write the expression for u in terms of e alone and,
using this expression, redraw the diagram to show that the resulting controller with input
e and output u is in PI (proportional plus integral) form.
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The powerful state-feedback design methods described in Chapters 12 and 13 suffer
from an important defect: the plant state vector is not always accessible by direct phys-
ical measurement. Some entries of the state vector X may have been defined simply
to provide sufficient detail for adequately modeling plant behavior. Moreover, measur-
ing the n variables in X and designing the mn parameters in the state feedback matrix
K may be more complex than necessary for adequate control. The input vector U and
output vector Y, however, typically have clear physical significance and accessibility.

This chapter investigates the simple configuration illustrated in Figure 14.1. The
controller must be designed to generate the plant input U(t) from the reference R(t) and
measured plant output Y(t). Complications may arise because of model inaccuracies,
external disturbances acting on the plant, and noise in the measured values of Y(t).

A B
C D

Y
Controller

R U

Fig. 14.1 Output-feedback control requires the controller to generate the control signal U from the
measured plant output Y and the reference signal R.

Although continuous-time notation is primarily employed in this chapter, much of
the development applies equally in discrete time, and the observers to be discussed are
often implemented as discrete-time systems.

Plant simplifi-
cations

Before considering the details of the controller design, it is instructive to inquire what
may be assumed about the plant. We should expect to be able to define the closed-
loop transient behaviour by generating U(t) if the plant is completely controllable as
described in Chapter 9. If the plant is also completely observable then measurement of
Y(t) should allow the determination of X(t), after which the techniques of Chapter 12
and Chapter 13 should be applicable.

If necessary to simplify controller design, the following may be assumed of the plant,
as illustrated in Figure 14.2:

Zero D The matrix D is zero. If it were not, then a step at t = 0 applied at one or more of the
inputs corresponding to the entries of U would result in an instantaneous change in Y
at t = 0+, which does not occur for physical systems exhibiting inertia, for example.

63
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[
A B
C D

]
Plant

/
p

Y

∑
P1

Q1
Reduced

Controller
Reference

D

U′
/
m′

U
/
m

−
Y′
/
p′Controller

Reduced plant
[

A BQ1

P1C 0

]

Fig. 14.2 The controller cancels the effect of D on the plant output, generates p′ independent outputs
in Y′, and distributes the m′ independent inputs over the plant input U. The reduced con-
troller can be designed for the resulting reduced plant with input U′, output Y′, and matrices
shown.

Equivalently, nonzero D implies a nonzero transfer matrix H(s) in the limit as s→∞,
hence an infinite bandwidth. However, the effect of a nonzero D in the plant model can
be cancelled within the controller by subtracting DU from the measured plant output Y,
as in Figure 14.2, provided D is known and Y can be accurately measured.

Full-rank B The matrix B has full column rank m. If this is not true but rank(B) = m′ < m, then B
spans a subspace of dimensionm′ and there are, effectively, onlym′ independent inputs.
Such a situation can occur when there is input redundancy. Find a basis BQ1 for the
column rangeR(B) of B as described in Section 4.1 of Chapter 6 and let

U = Q1U
′.(14.1)

Then the plant state equation becomes

d

dt
X = AX+ (BQ1)U

′,(14.2)

which describes a plant with full-rank matrix BQ1 and input m′-vector U′. The matrix
Q1 can be chosen to scale plant input values as well as to distribute the m′ independent
inputs in U′ over the m entries of U.

Full-rank C The matrix C has full row rank p. Otherwise, if rank(C) = p′ < p, then the entries of
Y are linearly dependent and contain only p′ independent variables. This situation can
occur when there is redundancy of output sensors. Find a basis P1C for the row range
(a row compression) of C. Then let

Y′ = P1Y,(14.3)

so that the plant output equation becomes

Y′ = P1CX+ P1DU = (P1C)X+ P1DU,(14.4)
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which describes a plant with full-rank matrix P1C and output vector Y′ of dimension p′.
The rightmost term in this formula is zero if D has been cancelled as in Figure 14.2.

Reducing the plant as described is not always necessary but can considerably sim-
plify the discussion of design methods.

Example 1
Reduced system

The system with matrices given below has nonzero D matrix and neither B nor C has
full rank. A state feedback matrix is to be obtained to place the poles at −2 and −1± j.

A =

⎡
⎣ 0 1 0
0 0 1
1 −1 1

⎤
⎦, B =

⎡
⎣ 0 0
0 0
2 1

⎤
⎦, C =

⎡
⎣ 1 0 0
2 2 0
0 1 0

⎤
⎦, D =

⎡
⎣ 0 0
0 0
0 1

⎤
⎦.

The matrix Q1 shown produces a basis BQ1 for the column range of B,which has rank 2,
and similarly the matrix P1 produces a row compression of C:

Q1 =

[
1/4
1/2

]
, P1 =

[
1/2 1/4 −1/2
−1/2 1/4 1/2

]
.

Neither P1 nor Q1 is unique, but the matrices shown have been chosen to utilize both
inputs in U and all measured variables in Y, and to result in a gain of 1. The following
reduced system equations can then be used for controller design, provided that D is
cancelled in the controller if output feedback is employed:

d

dt
X =

⎡
⎣ 0 1 0
0 0 1
1 −1 1

⎤
⎦X+

⎡
⎣ 00
1

⎤
⎦U′, Y′ =

[
1 0 0
0 1 0

]
X.

The desired closed-loop characteristic polynomial is s3 + 4s2 + 6s+ 4 and the plant is
in control canonical form, so the state-feedback matrix for the reduced system is

K = [ 4, 6, 4 ] − [−1, 1, −1 ] = [ 5, 5, 5 ].

Therefore, the input vector of the original system with reference input R is

U = Q1U
′ = Q1(R−KX) =

[
1/4
1/2

]
R−

[
5/4 5/4 5/4
5/2 5/2 5/2

]
X.

1 Observers

One strategy for output feedback is to separate the controller design into two parts as
shown in Figure 14.3: design a state-feedback matrix K on the assumption that the state
X has been measured, and design a system to provide a vector X̂ that suitably approx-
imates X from measurements of the plant input U and output Y. The subsystem that
produces X̂ from U and Y is called an observer. In the context of controller design, Y
must be measured but U is generated by the controller itself. Nevertheless, the configu-
ration shown in the figure is convenient for obtaining the observer equations. In general,
the observer must contain dynamics in order to estimate the state X of the plant.



66 Chapter 14 Output feedback

A B
C 0

Plant

∑

K Observer

Y
/
p

U
/
m

/
n

X̂

−

R

Controller

Fig. 14.3 The observer provides a vector X̂ that is fed back through the state-feedback matrix K.

1.1 The full-order observer

Assume that in Figure 14.3 the observer has the same order n as the plant. The observer
state model can then be taken to be

d

dt
X̂ = AoX̂+ [L, M ]

[
Y
U

]
= AoX̂+ LY +MU,(14.5)

where the output is X̂, the input vector contains the plant output Y and input U, and
the matrices Ao, L, and M are to be determined. Since X̂ is to approximate X, it is
convenient to define the observer error vector

E = X− X̂(14.6)

and to require E to approach 0.Writing the equation for the time-derivative of E in terms
of the observer and plant equations gives
d

dt
E =

d

dt
X− d

dt
X̂(14.7)

= AX+ BU−AoX̂− LCX−MU

= (A− LC)X−AoX̂+ (B−M)U

= (A− LC) (X− X̂) + (A− LC−Ao) X̂+ (B−M)U

= (A− LC)E+ (A− LC−Ao) X̂+ (B−M)U.

By inspection of this equation, we see that E will approach zero if the rightmost two
terms are zero and the matrix A−LC is asymptotically stable. Therefore, let M and Ao

be chosen as

M = B,(14.8a)

Ao = A− LC,(14.8b)

and choose L so that A− LC has the required eigenvalues. Then (14.7) becomes

d

dt
E = (A− LC)E(14.9)

and the limit of E(t) is 0 as t→∞.
The eigenvalues of a matrix equal those of its transpose; therefore, the choice of L to

place eigenvalues of A − LC can be performed by designing LT in AT − CTLT , using
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the methods of Chapter 12. Arbitrary eigenvalue assignment requires AT and CT to be
a controllable pair; that is,

rank [CT , ATCT , . . . (AT )n−1CT ] = rank

⎡
⎢⎢⎣

C
CA

...
CAn−1

⎤
⎥⎥⎦ = n.(14.10)

Therefore, the computation of L reduces to a state-feedback computation such as dis-
cussed in Chapters 12 and 13. The eigenvalues can be placed arbitrarily provided the
plant is completely observable.

Open versus
closed loop

Figure 14.3 was used as the motivation for developing the observer equations, but no-
where in the equations does the matrix K appear, nor is the value of U restricted. The
generation of U by a controller is not required. In theory then, an open-loop observer
can be designed simply to measure U and Y and to generate X̂ that asymptotically
approaches X, even if the plant is unstable. In practice however, unmodelled perturba-
tions, measurement noise, and unmodelled nonlinearities may affect the error.

Observer
poles

In the context of feedback control illustrated by Figure 14.3, the closed-loop plant tran-
sient response to initial conditions will depend on the error E between the observer-
supplied state approximation X̂ and the true value of X. Therefore, a design rule of
thumb is to choose L to give observer poles well to the left (for time-continuous sys-
tems) of the closed-loop plant poles, so that observer time-constants are considerably
faster than the closed-loop plant, as illustrated in Figure 14.4. However, a low-pass
feedback-loop gain is often desirable, and observer time-constants that are too fast may
result in a high feedback-loop bandwidth and consequent sensitivity to high-frequency
noise or disturbances.

Closed-loop
plant poles

Observer poles

Re(s)

Im(s)

0

Fig. 14.4 For analog systems, observer poles are normally placed to the left of the designed closed-
loop system poles.

Example 2
Observer for

Example 1

A full-order observer will be designed for the reduced system of Example 1. Since the
closed-loop plant has poles at −2 and at −1 ± j, observer poles at, say, −12 will be
chosen. A matrix that places all poles of Ao = A− LC at this value, and the matrix Ao
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that results are shown:

L =

⎡
⎣ 13 −11
12 −131
0 24

⎤
⎦, Ao =

⎡
⎣−13 1 11
−12 0 132

1 −1 −23

⎤
⎦.

The effect of the observer on the closed-loop free response to initial plant state X =

[ 1, 1, 1 ]
T

is shown in Figure 14.5.

t0 1 2 3 4 5

y1

1
measured X
observer

t0 1 2 3 4 5

y2

1

−1
−2
−3

measured X
observer

Fig. 14.5 Free output responses for the reduced plant of Example 1 are shown. The solid lines are
for the plant with state feedback and the dashed lines are for output feedback with full-order
observer. The initial plant state is nonzero but the initial observer state is zero.

Example 3
Observer for the

inverse
pendulum

In Example 11 of Chapter 13, a state-feedback LQ design was performed for specified
numerical parameters of a linearized inverse pendulum.

Assuming that the cart position x = x1 and pendulum angle θ = x3 only are mea-
sured, then D = 0 for the linearized system and the C matrix is

C =

[
1 0 0 0
0 0 1 0

]
.

The eigenvalues of A − LC of a full-order observer should be well to the left of
those of A − BK. One way to find a matrix L that produces suitable eigenvalues is to
solve the LQ problem, replacing (A, B) with (AT , CT ), the input weighting matrix R
with I2, and Q with a diagonal matrix nonzero only in the second and fourth diagonal
entries, so that the state variables v = x2 and ω = x4 are weighted heavily. Setting
these two diagonal entries to μ = 105, for example, results in all four eigenvalues near
−12.5± j12, and the matrix

L =

[
25 300 0 0
0 0 25 300

]T


[

25.15 316.2 −0.0400 −0.0366
−0.0400 −1.996 25.62 328.2

]T
,

where L is a simplified version of the computed LQ result on the right for the given value
of μ.

Internal model As developed above, the observer is a dynamical system described by the equation

d

dt
X̂ = (A− LC) X̂+ LY + BU = AX̂+ BU+ L(Y − CX̂).(14.11)
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This equation shows that the observer contains a model of the plant, augmented by an
additional term that weights the error between the measured value of Y and the predicted
value Ŷ = CX̂. If the initial values X(t0) and X̂(t0) are equal, then the output error
Y − Ŷ in the response to U(t) remains zero for all time. The rightmost term in this
equation can be regarded as a correction for error in the predicted value X̂ of X.

The
separation

principle

It is instructive to write the state-space equations for the closed-loop system in Fig-
ure 14.3 for an observer constructed as described. A state vector can be chosen to contain
the entries of X together with those of X̂, but the state will be chosen instead as[
X
E

]
=

[
I 0
I −I

] [
X
X̂

]
.(14.12)

The result will be externally equivalent since these two state vectors are related by a
nonsingular matrix in Equation (14.12). Including R and E in the plant equation gives
d

dt
X = AX+ B(R−KX̂) = AX+ BR− BK(X− E)(14.13)

= (A− BK)X+ BKE+ BR,

and combining this with Equation (14.9) gives the following model of the closed-loop
system:
d

dt

[
X
E

]
=

[
A− BK BK

0 A− LC

] [
X
E

]
+

[
B
0

]
R(14.14a)

Y = [C, 0 ]

[
X
E

]
.(14.14b)

Inspection of these equations shows that the closed-loop eigenvalues are in two sets:
the eigenvalues of A − BK and the eigenvalues of A − LC. This conclusion and its
consequences are called the separation principle. The first set is obtained by calculating
K assuming state feedback, and the second set by calculating L for the observer. Thus, if
the plant is completely controllable and observable, the closed-loop poles can be placed
arbitrarily in two independent design steps: state-feedback design and observer design.

Closed-loop
properties

The response to the reference input R and to disturbances will be investigated. Taking
transforms and solving for Y(s) as a function of R(s) in (14.14) gives

Y(s) = C(sI−A+ BK)−1BR(s),(14.15)

which is identical to the closed-loop response relation for state feedback. The observer
has no effect. In fact, the system defined by Equation (14.14) is not completely control-
lable from input R. However, an observer must provide an approximation of the plant
state under non-ideal conditions. The plant equations will be modified to include a mea-
surement noise vector V(t) and a vector W(t) to account for plant disturbances and
modeling errors, as follows:
d

dt
X = AX+ BU+W(14.16a)

Y = CX+V.(14.16b)

The closed-loop result is shown in Figure 14.6. Including the noise and disturbance
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d

dt
X = AX+ BU+W

Y = CX+V

∑

K

d

dt
X̂ = AX̂+ BU

+ L(Y − CX̂)

W V

Y

/
p

U
/
m

X̂
/
n

−

R

Fig. 14.6 The closed-loop system with observer, perturbation vector W(t), and measurement
noise V(t).

vectors changes Equations (14.14) to

d

dt

[
X
E

]
=

[
A− BK BK

0 A− LC

] [
X
E

]
+

[
B I 0
0 I −L

]⎡⎣ R
W
V

⎤
⎦(14.17a)

Y = [C, 0 ]

[
X
E

]
+ [ 0, 0, I ]

⎡
⎣ R
W
V

⎤
⎦ .(14.17b)

As a function of perturbation W, for example, the output transform Y(s) obtained from
these equations is

Y(s) = C(sI− (A− BK))−1(I+ BK(sI− (A− LC))−1)W(s).(14.18)

The poles of the transfer function defined by this equation are, in general, the poles of
A− BK and of A− LC.

1.2 Reduced-order observers

The state-feedback matrices obtained in Chapter 12 and Chapter 13 required no dynam-
ics in the controller, whereas the controller shown in Figure 14.3 and developed in Sec-
tion 1.1 is a dynamical system of order n equal to the order of the plant model. However,
assuming that C has full row rank p (or the plant model has been modified as described
at the beginning of this chapter), then knowledge of p components of X is available
directly from Y, and only n− p variables require estimation at any time.

To find a reduced-order observer, first perform a column compression on the rank-p
plant matrix C using nonsingular matrix S = [ S1, S2 ] such that

CS = C [ S1, S2 ] = [ Ip, 0 ] .(14.19)

Then the change of basis X = SX′ transforms the plant equations to
d

dt
X′ = A′X′ + B′U =

[
A11 A12

A21 A22

]
X′ +

[
B1

B2

]
U(14.20a)

Y = C′X′ = [ Ip, 0 ]X
′,(14.20b)

where the matrices have been partitioned conformably; that is, A11 is p×p and B1 has p
rows. The output vector Y is identical to the first p entries of the current state vector X′.
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An observer will be designed with output Z that converges to the last n− p components
of X′ plus a linear combination of the first p components. That is, as t→∞,[
Z
Y

]
→
[ −F In−p

Ip 0

]
X′ =

[ −F In−p

Ip 0

]
S−1X(14.21)

for some matrix F to be found. Then limt→∞ X̂ = X, where

X̂ = S

[ −F In−p

Ip 0

]−1 [
Z
Y

]
= S

[
0 Ip

In−p F

] [
Z
Y

]
= S2Z+ (S1 + S2F)Y.(14.22)

The resulting closed-loop configuration is shown in Figure 14.7.

Plant
∑

K

S

[−F I
I 0

]−1 Dynamics

Y

/
p

Y

U
/
m

Z
/

n−p/
n

X̂

−

R

Observer

Fig. 14.7 Dynamics of order n− p are required in a reduced-order observer.

In order to obtain the required dynamics, let the (n−p)-vector Z satisfy the following
equation containing matrices to be found:

d

dt
Z = AoZ+ LY +MU.(14.23)

For simplicity of notation, write T for [−F, In−p ] . Since Z is to approach TX′, define
the error vector

E = TX′ − Z(14.24)

and calculate its rate of change as shown:
d

dt
E =

d

dt
TX′ − d

dt
Z(14.25)

= T(A′X′ + B′U)− (AoZ+ LC′X′ +MU)

= Ao(TX
′ − Z) + (TA′ −AoT− LC′)X′ + (TB′ −M)U.

The error will approach zero if Ao has eigenvalues placed for asymptotic stability and if
the rightmost two terms above are zero as implied by the following equations:

TB′ −M = 0(14.26a)

TA′ −AoT− LC′ = 0.(14.26b)

When written in detail, the second of these two equations is

[−F, In−p ]

[
A11 A12

A21 A22

]
−Ao [−F, In−p ]− L [ Ip, 0 ] = 0,(14.27)
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of which the rightmost of the two blocks can be written to define Ao as

Ao = A22 − FA12.(14.28)

The eigenvalues of this matrix can be placed by choosing F as for Equation (14.9). Since
observability is unaffected by similarity transformation,

rank

[
C

A− λI
]
= rank

[
C′

A′ − λI
]
= rank

⎡
⎣ I 0
A11 − λI A12

A21 A22 − λI

⎤
⎦ .(14.29)

If the plant is completely observable, then by the BPH test (Example 9 of Chapter 9),
these matrices have full column rank for all λ ∈ C. The rightmost matrix in (14.29)

has full column rank only if the matrix

[
A12

A22 − λI
]

has full column rank. Therefore,

complete observability of the plant implies that F can be designed to give Ao the required
eigenvalues.

With F and Ao now known, the matrix L is obtained by writing the left block of
Equation (14.27) as

L = [−F, I ]
[
A11

A21

]
+AoF.(14.30)

Finally, Equation (14.26a) gives

M = [−F, I ]
[
B1

B2

]
.(14.31)

The state-space equations of the observer are given by (14.23) together with (14.22).

Closed-loop
properties

Just as for the full-order observer, the value of K does not enter into the equations and
the observer will theoretically produce a valid open-loop estimate of X. The separation
principle continues to hold. To see this, write the state-estimate vector X̂ as

X̂ = S

[
T
C′

]−1 [
Z
Y

]
= S

[
T
C′

]−1 [
TX′ − E
C′X′

]
= S

[
T
C′

]−1 ([ T
C′

]
X′ −

[
E
0

])
(14.32)

= S
(
X′ −

[
0 Ip

In−p F

] [
E
0

])
= SX′ − S

[
0

In−p

]
E = X− S2E.

Then the plant input is U = R−K(X−S2E) and the closed-loop equations for the plant
with observer are
d

dt

[
X
E

]
=

[
A− BK BKS2

0 Ao

] [
X
E

]
+

[
B
0

]
R(14.33a)

Y = [C, 0 ]

[
X
E

]
.(14.33b)

The poles of this system are the eigenvalues of A − BK, corresponding to the closed-
loop state-feedback system, together with the eigenvalues of Ao, which are the poles of
the reduced-order observer.

In contrast to the full-order observers, the bandwidth in the transfer from Y to com-
ponents of X̂ is infinite, so high-frequency noise may be a design factor.
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Example 4
Reduced-order

observer

A reduced-order observer for the reduced plant of Example 1 will have order 1 since
there are three state variables and two independent outputs. A similarity matrix satisfy-
ing Equation (14.19) and the corresponding transformed matrices are given by

S =

⎡
⎣ 1 0 0
0 0 1
0 1 0

⎤
⎦, A′ =

⎡
⎣ 0 0 1
1 1 −1
0 1 0

⎤
⎦, B′ =

⎡
⎣ 01
0

⎤
⎦, C′ =

[
1 0 0
0 1 0

]
.

A matrix F that places the poles of Ao in Equation (14.28) at −12 as in Example 2 and
matrices Ao, L, and M computed from (14.28), (14.30), and (14.31) respectively are
shown:

F = [−6, 6 ], Ao = −12, L = [−66, 79 ], M = 6.

Example 5
Reduced-order

observer for the
inverse

pendulum

For the inverse pendulum of Example 3 with numerical values given in Example 11 of
Chapter 13, a similarity matrix S that interchanges the second and third entries of the
state vector produces the transformed matrix A′ shown, where A22 is 2× 2:

A′ =

⎡
⎢⎣
0 0 1 0
0 0 0 1
0 −1.96 0 0
0 11.76 0 0

⎤
⎥⎦

The matrix F = μI2 assigns a double eigenvalue at−μ to Ao = −μI2. Then for μ = 12,
the observer equations (14.23) and (14.22) are as shown:

d

dt
Z =

[−12 0
0 −12

]
Z+

[−144 −1.96
0 −132.24

]
Y +

[
1
−1
]
U

X̂ =

⎡
⎢⎣
0 0
1 0
0 0
0 1

⎤
⎥⎦Z+

⎡
⎢⎣

1 0
12 0
0 1
0 12

⎤
⎥⎦Y +

⎡
⎢⎣
0
0
0
0

⎤
⎥⎦U.

The free closed-loop responses for the full-order observer of Example 3 and the reduced-
order observer are displayed in Figure 14.8, using the gain K and initial plant state
given in Example 11 of Chapter 13. The initial observer state is set to zero in both
cases, so these responses correspond to the effect of an impulse in the noise vector W
in Equations (14.16). For both observers, the responses are somewhat greater than for
state feedback with matrix K.

t1 2
0

0.5

0.25

0

−0.25

x

θ

full-order observer
reduced-order observer

Fig. 14.8 Closed-loop free responses of cart position x, angle θ of the inverse pendulum for a full-order
and reduced-order observer. The state-feedback matrix is the same as for Figure 13.3.
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2 Optimal observers: the Kalman filter

Consider an open-loop full-order observer of Section 1.1 without closing the loop on
the plant through a state-feedback matrix. Then Figure 14.6 can be redrawn as in Fig-
ure 14.9, where plant and observer noise vectors W and V have been included as in
Equations (14.16). Blocks containing D matrices are shown in gray in the figure and do
not affect the conclusions but these blocks are assumped to be zero in the plant model
Equations (14.16). The observer model is given by Equation (14.11). An intuitive expla-
nation of the Kalman filter (estimator) will be given in the following.

∑
C(sI−A)−1

∑
B D

∑
L

∑
C(sI−A)−1

∑
B DX X̂

V

W

−

U

Y

Ŷ

Z

EstimatorPlant

Fig. 14.9 The steady-state Kalman filter is a full-order observer with gain matrix L computed optimally
according to the intensity of the noise vectors W and V. The input U has no effect on
the error Z in the output estimate. The D matrices shown in gray can be included without
affecting the calculation of L.

Figure 14.9 makes certain conclusions evident. First, assume that L = 0 and note
that the transfer from U to Y is C(sI − A)−1B + D (when D is included), which is
also the transfer from U to Ŷ. Since Y and Ŷ are subtracted, Z is independent of U,
and changing L to nonzero values will not affect this independence. This intuitive result
can be confirmed by writing the equations for Z and solving as a function of U. Con-
sequently, the effect of U on X is identical to its effect on X̂, and the error X − X̂ is
independent of U. This error is therefore entirely a function of the noise vectors W and
V, assuming as in the following that the initial states of the plant and estimator are iden-
tical or that the free plant response is asymptotic to zero and initial transients can be
ignored.

Suppose that the measurement noize V is identically zero. Increasing the gain L to
infinity will force X̂ to follow X exactly as input W causes X to vary. However, if V
is nonzero then the measured Y contains noise and has to be averaged, requiring long
estimator time constants and small values in L. In the case that W is zero, then the plant
is driven only by the input U and the estimator gain L should be zero to ignore the plant
output Y entirely.

When neither W nor V is zero then the intensity of these two noise vectors must be
weighed to obtain an optimal estimator gain L.

LQG design The process known as LQG design makes specific assumptions about W and V and
results in an optimal estimator gain matrix L. Assume that W and V are independent
zero-mean random noise vectors with Gaussian distribution and covariance matrices
(measures of noise intensity) Q̃ and R̃ respectively. To obtain L in steady state, solve the



Section 4 Problems 75

Riccati equation

AP̃+ P̃AT − P̃CT R̃−1CP̃+ Q̃ = 0(14.34)

(the dual of the ARE for the control problem), for symmetric, positive-definite P̃, and
calculate the steady-state gain matrix L as

L = P̃CT R̃−1.(14.35)

The Kalman filter is most often implemented in discrete time to provide open-loop
information about dynamic processes such as navigation or the optimal “fusion” of mea-
surements, often arriving at different times, from several sensors.

3 Further study

The introduction of the state-space model resulted in intense research related to observers
that lasted for more than two decades. A classic publication is reference [42]. A range
of observer structures and design criteria are often found in design textbooks such as
[37] or [62].

Optimal state estimation in the form of the Kalman filter dates from the introduction
of the state-space model, as described in [33]. The results are summarized in compendia
such as [59].

4 Problems

1 Find a reduced model with zero D matrix and full-rank B and C matrices for the system
described by the following data:

A =

[
0 1
1 2

]
, B =

[
1 −1
2 −2

]
, C =

[
1 1
1 1

]
, D =

[
1 0
0 0

]
.

Are the matrices in the reduced system unique? Are they unique if the matrices BQ1

and P1C are constrained to have Euclidean norm of 1?

2 Design a full-order observer with poles at −20 to estimate the state of the system with
matrices given in Problem 8 of Chapter 12.

3 Design a reduced-order observer with poles at −20 to estimate the state of the system
with matrices given in Problem 8 of Chapter 12. Write the observer equations in state-
space form.

4 Design a reduced-order observer with poles at −15 to estimate the state of the system
with matrices given in Problem 10 of Chapter 12.
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5 Design a full-order observer with poles at −15 to estimate the state of the system with
matrices given in Problem 10 of Chapter 12.

6 Write the state-space equations for Figure 14.9 with D �= 0 using the entries of X and
X̂ as state variables. Compare the resulting equations to Equations (14.11) and (14.16).
How does the value of the vector Z in the diagram differ for the two cases of D �= 0 and
D = 0?

7 Suppose that an optimal observer weighting matrix L has been designed for Figure 14.9
and that the filter poles are near −15 for the system of Problem 5. What are the weights
associated with the noise vector W relative to the noise vector V assuming a diagonal
Q̃? In other words, if R̃ is 1, what should Q̃ be to obtain observer poles at −15? What
does the relative magnitudes of these weights imply about the relative mean sizes of the
noise vectors?
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This chapter extends elementary classical results to multi-input, multi-output systems
and describes methods to design controllers that have very simple structure when appro-
priate assumptions are met. Figure 15.1 shows a prototype of a multivariable control
loop containing plant transfer matrix H(s), forward-path compensator K(s), and a diag-
onal gain block G = diag [ gi ] . This configuration is the multivariable generalization
of the classical single-input, single-output control loop. Increasing the loop-gain param-
eters gi reduces the error E, thus improving performance, provided that closed-loop
stability and robustness to perturbations are adequately maintained.

If the feedback path in Figure 15.1 is cut, the gain of the resulting open loop from
one side to the cut to the other is HKG. This quantitiy is called the return ratio matrix
(or simply the return ratio) of the system and, in the diagram, it is also the gain of the
forward path. The closed-loop transfer matrix from R to Y can be obtained by writing
an implicit equation for the output Y as

Y = HKG (R−Y),(15.1)

and then solving for Y to get

Y = (I+HKG)−1HKGR.(15.2)

R ∑ E
/
p

G = diag [ gi ]
U′ Compensator

K(s)
/
m

U Plant
H(s) /

p

Y

−

Fig. 15.1 The principle of high-gain feedback is to ensure that if the loop gains gi become large and
the output Y remains finite, the error E becomes small. The compensator must be designed
to adjust plant structure and frequency response if necessary.

1 Root loci of multi-input, multi-output systems

A basic observation about the migration of closed-loop poles of single-input, single-
output systems under high-gain feedback with gain parameter g is that as g → ∞,
the closed-loop poles approach the open-loop zeros or infinity. This behavior holds

77
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for multi-input, multi-output systems and explains why non-minimal phase systems
(continuous-time systems with zeros in the right-half plane or discrete-time systems with
zeros outside the unit circle) can be difficult to control. Transient performance specifi-
cations requiring high feedback gain may not be achievable, because the closed-loop
system is guaranteed to become unstable as poles approach the zeros.

An informal development of the above result will be given. For simplicity, assume
that the number m of plant inputs equals the number p of outputs and that the gains gi in
Figure 15.1 have identical value g. Let the plant transfer matrix in the left-factored form
described in Section 1 of Chapter 10 be

H(s) = AH(s)−1BH(s),(15.3)

where AH(s) and BH(s) are polynomial matrices such that the transmission poles are
the values of s for which AH(s) has less than full rank, and the transmission zeros are
the values of s for which BH(s) has less than full column rank.

Similarly, let the compensator be described by

K(s) = AK(s)−1BK(s).(15.4)

Then the closed-loop system obeys the equations

[ −AH BH 0
−gBK −AK gBK

]⎡⎣YU
R

⎤
⎦ = 0,(15.5)

and its system poles are the values of s for which

det

[ −AH BH

−gBK −AK

]
= 0.(15.6)

Finite
closed-loop

poles

For g = 0, this determinant becomes detAH detAK and the system poles are the poles
of the open-loop plant together with those of the compensator. Assume that rankBH =
m except at a finite number of zeros (otherwise there would be less than m effective
inputs) and perform elementary operations on the above matrix to obtain the following:[
I −AH(gBK)−1

0 I

] [ −AH BH

−gBK −AK

] [
I −(gBK)−1AK

0 I

]
(15.7)

=

[
0 BH +AH(gBK)−1AK

−gBK 0

]
.

As shown in Example 6 of Chapter 10, such operations may change the number of poles
or zeros at s =∞. For finite values of s, however, this matrix loses rank as g → ∞ at
the values for which either BK or BH lose rank, since the upper-right block approaches
BH as g becomes large. Thus, as g → ∞, the finite closed-loop poles approach the
zeros of the plant together with the zeros of the compensator.

Asymptotes The asymptotes of the infinite closed-loop poles depend on the structure of the plant
and compensator parameters in (15.6) and are best described by means of examples.
However, the use of arbitrarily large gain normally implies that the asymptotes should be
designed to correspond to the negative real axis, since vertical asymptotes can result in
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small damping ratio and other patterns can result in closed-loop instability. The desired
asymptotes can be obtained as follows.

Choose AK and BK so that the open-loop gain HK approaches s−1I for large s. This
requires the plant to have a right inverse at high frequency. Then the closed-loop system
shown in Figure 15.1 is described approximately at high frequency by the equations

[−sI I 0
−gI −I gI

]⎡⎣ Y
U′

R

⎤
⎦ = 0,(15.8)

where U′ is the input to the compensator. The closed-loop system poles are the values
of s for which nonzero solutions exist with R ≡ 0; that is, the values of s for which

det

[−sI I
−gI −I

]
= 0.(15.9)

This condition is true for s = −g, which is the desired asymptote for s as g →∞.
Finite gain In practice, the loop gain parameter g cannot be increased without bound but must be

limited, for example, to produce a specified closed-loop system bandwidth. Neverthe-
less, the design technique is simple and useful: establish desired finite zeros and negative
asymptotes, and turn up the gain “sufficiently.”

First-order
cutoff

Many physical plants are low-pass, which corresponds to D = 0 in a state-space model.
Assume further that a given system has first-order cutoff; that is, that the magnitude
of the entries of the transfer matrix change by −20 dB per decade at high frequency.
Expand the transfer matrix H(s) in terms of its Markov matrices as

H(s) = H0 + s−1H1 + s−2H2 + . . .(15.10)

= D+ s−1CB+ s−2CAB+ . . . .

By assumption, H(s) is approximately equal to the term s−1CB at high frequency,
which implies that D = 0 and CB is nonsingular. The required compensator gain is

K = (CB)−1.(15.11)

Alternatively, let the plant left denominator AH be written as

AH(s) = diag [ sni ]A0 + diag [ sni−1 ]A1 + terms of lower degree in s,(15.12)

where A0 is assumed to be nonsingular. Because the plant is low-pass, each row i of
BH(s) contains entries of degree ni − 1 at most and this matrix can be written as

BH(s) = diag [ sni−1 ]B1 + diag [ sni−2 ]B2 + terms of lower degree in s.(15.13)

Assume that B1 is nonsingular. Then at high frequency, AH(s) and BH(s) can be
approximated by their high-degree terms and the plant transfer matrix approaches

(diag [ sni ]A0)
−1(diag [ sni−1 ]B1) = s−1A−1

0 B1,(15.14)

which is nonsingular and changing in magnitude by −20 dB per decade. Choosing the
compensator to be

K = (A−1
0 B1)

−1 = B−1
1 A0(15.15)
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produces the required high-gain asymptotes.

Simple
controller

design

Suppose the plant has no finite zeros as is often the case, or they are in the desired region
of the complex plane. If the plant exhibits first-order low-pass cutoff at high frequencies
and is sufficiently well known to allow high gain feedback without danger of instability,
then formula (15.11) or (15.15) povides a simple design method for K, with which the
loop gain g can be set to give desired performance.

Example 1
Numerical

example

Consider the system described by matrices

A =

⎡
⎣ 0 1 0

0 0 1
−2 2

√
2− 1

√
2− 2

⎤
⎦, B =

⎡
⎣ 0 0
1 0
0 1

⎤
⎦, C =

[
1 2 1
0 0 2

]
, D = 0.

This plant has poles at 1/
√
2 ± j/

√
2 and −2, one zero at −0.5, and exhibits first-

order cutoff (that is, D = 0 and det(CB) �= 0) so, with high-gain feedback g (CB)−1,
the closed-loop poles will approach −0.5 or infinity. The root loci are as shown in
Figure 15.2 for the compensator matrix

K = (CB)−1 =

[
2 1
0 2

]−1

=
1

4

[
2 −1
0 2

]
.

Figure 15.2 shows that two poles migrate to −∞ and one moves to −0.5 as g →∞.

Re

Im

0 1 2−0.5−2

Fig. 15.2 The closed-loop root loci start at the open-loop pole locations (marked by squares) for g = 0.
As g → ∞, one pole approaches −0.5 (marked by a small circle) and the others move left
on the negative real axis.

2 Integral control

The steady-state error E in Figure 15.1 will be zero for step reference signals or constant
disturbances provided the gain in each of the m loops is infinity at zero frequency. That
is, as s→ 0, the loop gain H(s)K(s) should have the form

H(s)K(s)→M diag [ s−ki ] ,(15.16)

where M is nonsingular and ki > 0, i = 1, . . .m. The nonnegative integers ki are the
generalization of the system type parameter of single input, single output plants. If one or
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more ki = 0 then the controller must introduce the required integral action. Introducing
the proportional-plus-integral (PI) gain term

gi = 1 +
ρi
s

=
s+ ρi
s

(15.17)

for each loop in which ki = 0 will provide the desired zero-frequency gain. If an
integrator is introduced into all m loops, then the system order is increased by m, which
is the additional number of open-loop poles at the origin. In addition, m open-loop
zeros will have been added along the real axis at −ρi, i = 1, . . .m. Assume that the
plant state-space matrices satisfy D = 0 and det(CB) �= 0 as previously. Then the PI
conpensator has transfer matrix

K(s) = s−1 diag [ s+ ρi ] (CB)
−1.(15.18)

Example 2
PI control for

Example 1

Introducing integral action and two controller zeros at−5 to the controller of Example 1
results in the root loci shown in Figure 15.3 for the compensator

K(s) =
s+ 5

s
(CB)−1 =

s+ 5

4s

[
2 −1
0 2

]
.

Re

Im

0 1−2−5 −0.5

Fig. 15.3 The PI terms in the compensator introduce two poles at 0 and two zeros at −5. For large
values of gain one locus approachs the zero at −0.5, two approach the zeros at −5, and
the other two move left along the real axis. The x marks show the poles for g = 13, which
might be chosen to give acceptable system transients in the absence of other specifications,
although the slowest mode is near −0.5.
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3 Derivative action

In cases where the plant has a cutoff faster than first-order in one or more loops, then
derivative action, or PID (proportional, integral, derivative) control may be appropriate.
For example, suppose that in the plant representation (15.10), the matrices H0 and H1

are zero and H2 is nonsingular, giving a second-order high-frequency cutoff. Then an
expression for the plant inverse at high frequency is given by

H(s)−1 = s2H−1
2 − sH−1

2 H3H
−1
2 − (H−1

2 H4H
−1
2 −H−1

2 H3H
−1
2 H3H

−1
2 ) + . . . ,(15.19)

which can be verified by multiplying both sides of the above formula by H(s) = s−2H2+
s−3H3 + s−4H4 + . . . and comparing terms. For left-directed asymptotes, the product
HK should be s−1I at high frequency as before, and the controller is

K(s) = s−1H(s)−1(15.20)

= sH−1
2 −H−1

2 H3H
−1
2 − s−1(H−1

2 H4H
−1
2 −H−1

2 H3H
−1
2 H3H

−1
2 ) + . . . .

Retaining only the leftmost three terms shown gives a PID controller. The fact that three
terms of the plant inverse are included in the controller means that HK 
 s−1I over
a range of high frequencies. However, the proportional and integral gain matrices may
have to be adjusted if the zeros of K(s) are not in appropriate places and very high
gain is required. Considerable design freedom is available, as any nonsingular integral
coefficient matrix will produce a decoupled system at steady state, for example.

Controller
loop

structures

It may be that different controller structures are required in different loops. Assume
that the plant denominator AH(s) is given by (15.12) with A0 a nonsingular upper-right
echelon matrix, and that the numerator matrix BH(s) (15.13) is of the form

BH(s) = diag [ sni−di ] (B1 + s−1B2 + terms of lower degree in s),(15.21)

where each di shown is a non-negative integer called the relative degree of row i,
i = 1, . . . p. Assume that the plant has an inverse at high frequency so that B1 is non-
singular. The details of the computation of these matrices are beyond the scope of the
discussion and are omitted since the required structures are often available by inspection.
For example, if all di = 1 corresponding to first-order cutoff, then choosing AK = B1

and BK = A0 gives (15.15) as before.
Inspection of (15.6) shows that if the rows of [BK(s), AK(s) ] are row-wise pro-

portional to those of [ s−1AH(s), BH(s) ] and AK(s) is nonsingular as s → ∞, then
HK → s−1I as required. Then choosing AK equal to B1 and the rows of BK(s) of
desired structure and proportional to the rows of AH(s) at high frequency gives the
desired asymptotes.

Example 3
PID action in

one loop

The transfer matrix is shown below for a linearized three-phase generator driven by a
motor [28], with rate of change of power angle y1, output voltage deviation y2, input
torque deviation u1, field voltage deviation u2, and load perturbation disturbance u3:⎡
⎢⎣ −7.018

φ(s)
0.5729
φ(s)

−6.445
φ(s)

9.763s2 + 41.61s+ 34.3
γ(s)

1.497s3 + 13.72s2 + 17.78s+ 6.237
γ(s)

1.583
s+ 0.8333

⎤
⎥⎦.
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The two denominator pole functions shown are φ(s) = s2+4.678s+4.774 and γ(s) =
s4 +12.72s3 +45.49s2 +54.95s+20.79. The open-loop step responses in Figure 15.4
show the non-diagonal nature of the transfer matrix and the steady-state step error.The
control objectives are zero steady-state disturbance response, fast decoupled response to
control inputs, and closed-loop pass-bands from r1 to y1 and r2 to y2 of approximately
40 rad/s, where r1 and r2 are reference signals for y1 and y2, respectively.

t1 2 3 4 5

−1
0

1

2

y2(t)

y1(t)

u1(t) = step(t)

t1 2 3 4 5
0

0.2

0.4 y2(t)

y1(t)

u2(t) = step(t)

Fig. 15.4 The open-loop step responses for the generator show an interaction between u1 and y2, and
between u2 and y1.

The first row of the transfer matrix has relative degree 2 and therefore requires deriva-
tive action to produce left-directed high-gain asymptotes, whereas the second row has
relative degree 1 and does not require derivative action. Integrators are required in both
loops for zero steady-state position error and disturbance response.

Therefore, choose a PID controller to generate u1 and a PI controller for u2 to pro-
duce closed-loop step responses such as in Figure 15.5. The controller matrices are of
the form

BK(s) =

[
s+ α+ β/s 0

0 1 + ν/s

]
, AK(s) = B1 =

[−7.018 0.5729
0 1.497

]
,(15.22)

where B1 is the high-degree coefficient matrix, shown in (15.21), of the numerator of
the plant without disturbance input. For a controller as close as possible to a system
inverse at high frequencies, candidate controller parameters can be chosen from φ(s)
by inspection as α = 4.678, β = 4.774, and from γ(s) as ν = 12.72. These values
are suitable because they produce controller zeros in the left half of the complex plane.
The loop gains must now be adjusted to meet the closed-loop bandwidth criterion; for
this example, increasing both loop gains by a factor of approximately 40 produces the

t0.5 1
−0.5

0

0.5

1
y1(t)

y2(t)

r1(t) = step(t)

t0.5 1
0

0.5

1
y2(t)

y1(t)

r2(t) = step(t)

t1 2

−0.02

0

0.02 y2(t)

y1(t)

u3(t) = step(t)

Fig. 15.5 The closed-loop compensated system is significantly decoupled. The figure shows faster
step responses than for the open-loop plant, zero steady-state error, and zero steady-state
disturbance response. The compensator is a plant inverse only at high frequencies, so there
is a small transient interaction.
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requred bandwidth values and produces responses to step reference signals and distur-
bance shown in Figure 15.5.

4 Further study

References [4] and [24] provide excellent introductions to feedback control in general.

5 Problems
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Appendix

The following sections contain solutions of odd-numbered problems.

Chapter 11 Solutions

1 To calculate Φ(t, 0) assume initial conditions ξ1 = e1 and ξ2 = e2.

(a) Choosing ξ1 = e1 results in ψ1 = e1. For ξ2 = e2, the solution is ψ2 =

[
t2/2
1

]
.

Therefore Φ(t, 0) =
[
1 t2/2
0 1

]
.

(b) Choosing ξ1 = e1 results in ψ1 =

[
et

2/2

0

]
. For ξ2 = e2, first solve ẋ2 = t x2 to

get x2(t) = et
2/2. Then

x1(t) = Φ(t, 0)x1(0) +

∫ t

0
Φ(t, τ)x2(τ) dτ

=

∫ t

0
et

2/2e−τ2/2eτ
2/2dτ = tet

2/2,

where Φ(t, τ) is the state-transition matrix for x1(t). Thus

Φ(t, 0) =

[
et

2/2 et
2/2 + t et

2/2

0 et
2/2

]
.

2 To calculate Φ(t, 0) :

(a) The solution of ẋ = a(t)x is x(t) = e
∫ t
t0

a(τ) dτ
x(t0), so Φ(t, t0) = e

∫ t
t0

a(τ) dτ
=

e
∫ t
t0

τ dτ
= e(t

2−t20)/2.

(b) Apply Equation (11.16) with A0 =

[
0 0
0 −1

]
, A1 =

[
0 0
−1 0

]
to get

Φ(t, 0) = etA0 =

[
1 0
0 e−t

]

for 0 ≤ t < 1, and

Φ(t, 0) = e(t−1)A1e1A0 =

[
1 0

−(t− 1) 1

][
1 0
0 e−1

]
=

[
1 0

1− t e−1

]

for t ≥ 1.
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3 The given A(t) has the property A(t)A(τ) = A(τ)A(t), so the state-transition matrix is

Φ(t, 0) = e

∫ t
0

[
0 τ
0 0

]
dτ

= e

[
0 t2/2
0 0

]
=

[
1 t2/2
0 1

]
.

Solving (a) for X(t) gives

X(t) =

[
1 t2/2
0 1

][
1
0

]
+

∫ t

0

[
1 t2/2
0 1

][
1 −τ2/2
0 1

][
0

τ + 1

]
step(τ) dτ

=

[
1
0

]
+

[
1 t2/2
0 1

] ∫ t

0

[−τ2(τ + 1)/2
τ + 1

]
dτ

=

[
1
0

]
+

[
1 t2/2
0 1

][− 1
2 (

t4

4 + t3

3 )
t2

2 + t

]
=

[
1 + t4

8 + t3

3
t2

2 + t

]
.

Now (b), substituting this in Y(t) = C(t)X(t) +D(t)U(t) gives

Y(t) = [ 1, −t2/4 ]
[
1 + t4

8 + t3

3
t2

2 + t

]
+ 0 = 1 +

t3

12
.

4 The matrix A(t) has the property A(t)A(τ) = A(τ)A(t), so the state-transition matrix
is

Φ(t, 0) = e

∫ t
0

[
0 τ
0 0

]
dτ

= e

[
0 t2/2
0 0

]
=

[
1 t2/2
0 1

]
.

Solving (a) for X(t) gives

X(t) =

[
1 t2/2
0 1

][
0
−1
]
+

∫ t

0

[
1 t2/2
0 1

][
1 −τ2/2
0 1

][
τ
0

]
step(τ) dτ

=

[−t2/2
−1

]
+

[
1 t2/2
0 1

] ∫ t

0

[
τ
0

]
dτ =

[−t2/2
−1

]
+

[
1 t2/2
0 1

][
t2/2
0

]

=

[
0
−1
]
.

For (b), substituting this in Y(t) = C(t)X(t) +D(t)U(t) gives

Y(t) = [ t, 0 ]

[
0
−1
]
+ 0 = 0.

5 To give A′(t) = 0 the transformation is S(t) = Ψ(t)e−t0 = Ψ(t)I, where Ψ(t) is a
fundamental matrix. The state-transition matrix, which is a fundamental matrix, was

found in the solution to Problem 1, so let S(t) =

[
1 t2/2
0 1

]
. This will produce the

matrices A′(t) = S−1(AS− Ṡ) = 0,

B′(t) = S−1B =

[
1 −t2/2
0 1

][
0

t+ 1

]
=

[−t2(t+ 1)/2
t+ 1

]
,

C′(t) = CS = [ 1, −t2/4 ]
[
1 t2/2
0 1

]
= [ 1, t2/4 ],

and D(t) is unchanged.
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6 To give A′(t) = 0 the transformation is S(t) = Ψ(t)e−t0 = Ψ(t)I, where Ψ(t) is a
fundamental matrix. The state-transition matrix, which is a fundamental matrix, was
found in the solution to Problem 1, so let

S(t) =

[
et

2/2 et
2/2 + t et

2/2

0 et
2/2

]
.

This will give the matrices A′(t) = S−1(AS− Ṡ) = 0,

B′(t) = S−1B =

[
e−t2/2 ×

0 ×
][
t
0

]
=

[
te−t2/2

0

]
,

C′(t) = CS = [ t, 0 ]

[
et

2/2 et
2/2 + t et

2/2

0 et
2/2

]
=
[
tet

2/2, tet
2/2 + t2et

2/2
]
,

and D(t) is unchanged.

7 First, the state transition matrix Φ(t, 0) will be found. Write A(t) =
[
α(t) 1
0 0

]
for

simplicity, where α(t) = sin t, which has period T = 2π. Solving d
dtX = A(t)X for

initial condition ξ1 = e1 givesψ1 =

[
φ(t)
0

]
, where φ(t) = e

∫ t
0 α(τ) dτ = e1−cos t. Initial

condition ξ2 = e2 gives x2(t) = 1 and

x1(t) = φ(t) · 0 +
∫ t

0
φ(t)(φ(τ))−1 · 1 dτ = φ(t)γ(t),

where γ(t) =
∫ t
0 (φ(τ))

−1 dτ. Thus

Φ(t, 0) =

[
φ(t) φ(t)γ(t)
0 1

]
, and Φ(T, 0) =

[
φ(T ) φ(T )γ(T )
0 1

]
=

[
1 γ(T )
0 1

]
.

Since Φ(T, 0) has an eigenvalue pair at −1, the logarithm is

logeΦ(T, 0) = α0I+ α1Φ(T, 0),

where loge 1 = α0 + α1(1) and d
dz loge z|z=1 = 1 = d

dz (α0 + α1z)|z=1 = α1, so that

TQ = logeΦ(T, 0) = (−1)
[
1 0
0 1

]
+ 1

[
1 γ(T )
0 1

]
=

[
0 γ(T )
0 0

]
,

from which

Q =

[
0 γ(T )

T
0 0

]
, and etQ =

[
1 t

T γ(T )
0 1

]
=

[
1 t

T

∫ T
0
e−(1−cos τ)dτ

0 1

]
.

Thus Φ(t, 0) = S(t)etQ where

S(t) = Φ(t, 0) e−tQ =

[
φ(t) φ(t)γ(t)
0 1

][
1 −t

T γ(T )
0 1

]

=

[
e1−cos t e− cos t

(∫ t
0
ecos τdτ − t

2π

∫ 2π
0
ecos τdτ

)
0 1

]
,

which is periodic, as can be seen by observing that S(0) = S(2π).
Because Q does not have eigenvalues exclusively in the left half-plane, it cannot be

concluded that all free solutions are asymptotic to 0.



92 Chapter 11 Solutions

8 Find Φ(t, 0) and S(t) = Φ(t, 0) e−tQ. Initial condition e1 gives solution Ψ1(t) =[
e−t

0

]
. Initial condition e1 gives solution x2 = e−t and

x1 = e−t · 0 +
∫ t

0
e−teτ (1 + eτ )e−τdτ = e−t(1 + t− e−t),

so that the state-transition matrix is

Φ(t, 0) =

[
e−t e−t(1 + t− e−t)
0 e−t

]
.

The desired matrix and the required exponent are

Q =

[−1 1
0 −1

]
, e−tQ =

[
et −t et
0 e−t

]
,

so that the transformation matrix S(t) is

S(t) = Φ(t, 0) e−tQ =

[
e−t e−t(1 + t− e−t)
0 e−t

]
.

[
et −t et
0 e−t

]
=

[
1 1− e−t

0 1

]
.

9 Taking C(t) andD(t)U(t) under the integral sign using the sifting property of an impulse
as for Equation (2.32), and requiring D(t)U(t) to be continuous, we get

Y(t) =

∫ t

t0

{C(t)Φ(t, τ)B(τ) + δ(t− τ)D(τ)}U(τ) dτ.

Therefore the matrix H(t, τ) is

H(t, τ) =

{
C(t)Φ(t, τ)B(τ) + δ(t− τ)D(τ) t ≥ τ,
0 t < τ.

For the given matrices, with Φ(t, 0) calculated from Problem 1(a), the impulse-response
matrix H(t, t0) is

H(t, t0) = C(t)Φ(t, 0)Φ(t0, 0)
−1B(t0) + 0δ(t− t0)

= [ 1, −t2/4 ]
[
1 t2/2
0 1

][
1 t20/2
0 1

]−1[
0

t0 + 1

]
= (t2/4− t20/2)(t0 + 1).

10 The state-transition matrix Φ(t, 0) as given in the solution of Problem 1(b) is

Φ(t, 0) =

[
et

2/2 et
2/2 + t et

2/2

0 et
2/2

]
.

Therefore

H(t, t0) = C(t)Φ(t, 0)Φ(t0, 0)
−1B(t0) + 0δ(t− t0)

= [ 1, −t2/4 ]
[
et

2/2 et
2/2 + t et

2/2

0 et
2/2

][
et

2
0/2 et

2
0/2 + t0 e

t20/2

0 et
2
0/2

]−1[
t0
0

]

= e(t
2−t20)/2t0.
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11 The product A(t)A(τ) is[
a e−t

−e−t a

][
a e−τ

−e−τ a

]
=

[
a2 − e−t−τ a(e−τ + e−t)
−a(e−τ + e−t) a2 − e−t−τ

]

which equals the product A(τ)A(t). Then formula (11.18) can be applied.

Chapter 12 Solutions

1 Since the systems have one input variable, Equation (12.9) applies, as follows.

(a) The matrices are in control form, so S = I. By inspection, â = [ 0, 0, 0 ]. The

coefficients of the desired polynomial are b̂ = [ 125, 75, 15 ] . Therefore

K = (b̂− â)S−1 = [ 125, 75, 15 ] .

(b) For the given matrices, [A, B ] is in lower left reduced row echelon form, so S0 =
I. From the leftmost column of A, the vector of coefficients â is â = [−2, 0, 1 ] ,
so S and K are

S1 =

⎡
⎣ 1 0 0
1 1 0
0 1 1

⎤
⎦, K = [ 127, 75, 14 ]

⎡
⎣ 1 0 0
−1 1 0
1 −1 1

⎤
⎦ = [ 66, 61, 14 ].

2 The entries of K are given by Equation (12.9). In this equation, â = 0 so, in this case,
the entries of K are linear combinations of b̂ = [α3, 3α2, 3α ] . Therefore, if α > 5,
the entries of K will be larger, and if α < 5, the entries of K will be smaller than the
corresponding values in the the solution of Problem 1

3 In closed-loop, the free response of the state is

Xfree(t) = et(A−BK)X(0),

and u(t) = −KX(t) for r = 0. To place both poles at the required location, K =
[α2, 2α ] . The Laplace transform of u(·) is

u(s) = −K(sI−A+K)−1X(0) =
−α2 − 2αs

(s+ α)2

and, by the initial-value theorem,

u(0+) = lim
s→∞ su(s) = −2α.

Therefore, the more the value of α is increased to get fast transient response, the larger
the control signal has to be relative to perturbations of the second entry of the state
vector.
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4 Taking the Laplace transform for For a system of dimension n, the required state feed-
back contains the coefficients of the polynomial (s + α)n; that is, K = [αn, . . . nα ] ,
so that the Laplace transform of u(·) is

u(s) = −K(sI−A+K)−1X(0) =
−αn . . .− nαsn−1

(s+ α)n
.

By the initial-value theorem,

u(0+) = lim
s→∞ su(s) = −nα,

which is −3α for the matrices of Problem 1(a). In each case the initial value of u is
proportional to α.

5 In each case, the required closed-loop characteristic polynomial is

det(sI− (A− BK)) = (s+ 1)(s+ 2) = s2 + 3s+ 2.

(a) The following are calculated in order:

A− BK =

[−k11 −1− k12
1 0

]
,

det(sI− (A− BK)) = s2 + k11s+ (1 + k12), k11 = 3, k12 = 1,

H(s) = [ 1, 1 ]

[
s+3 2
−1 s

]−1

=
[ 1
s+2 ,

1
s+2

]
.

(b) The following are calculated in order:

A− BK =

[
0 −1

1− k21 −k22
]
,

det(sI− (A− BK)) = s2 + k22s+ (1− k21), k21 = −1, k22 = 3,

H(s) = [ 1, 1 ]

[
s 1
−2 s+3

]−1

=
[

s+5
(s+1)(s+2)

, s−1
(s+1)(s+2)

]
.

(c) The following are calculated in order:

A− BK =

[−k11 −1
1 −k22

]
,

det(sI− (A− BK)) = s2 + (k11 + k22)s+ (k11k22 + 1),

k11 =
3 +
√
5

2
, k22 =

3−√5
2

,

H(s) = [ 1, 1 ]

[
s+ (3 +

√
5)/2 1

−1 s+ (3−√5)/2
]−1

=
1

(s+1)(s+2)
[ s+ (5−√5)/2, s+ (1 +

√
5)/2 ] .

The forced responses for the three cases are shown in Figure S12.5.
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Response

0

1

2

1 2 3 4
Time (s)

(a)

(b)

(c)

Fig. S12.5 Forced response to a step at the first input

6 Since U(t) = R(t)−KY(t) and D = 0, the system of Problem 5 is described in closed
loop by the equations

Ẋ = (A− BKC)X+ BU,

Y = CX,

where K is 2×1 and contains two parameters. The closed-loop characteristic polynomial
is

det(sI− (A− BKC)) = s2 + (k1 + k2)s+ (1 + k1 − k2).
Equating k + 1 + k2 to 3 and 1 + k1 − k2 to 2 as required gives k1 = 2 and k2 = 1.

If B =

[
0
1

]
then K is 1×1 and contains only one parameter, so the two coefficients

of the desired closed-loop polynomial cannot be obtained in general, and result in the
inconsistent equations k = 3 and 1− k = 2 for the desired pole locations.

7 The transformation matrix S required for finding K is a unit matrix since the system as
given is in the required control form. Since A − BK is to have two poles at −3, the
desired characteristic polynomial is β(s) = (s + 3)2 = s2 + 6s + 9, from which K is
given by

K = (b̂− â) S−1 = ([ 9, 6 ] − [ 2, 1 ]) I = [ 11, 7 ].

The matrix A− BK and its inverse are

A− BK =

[
0 1
−9 −6

]
, (A− BK)−1 =

1

9

[−6 −1
9 0

]
,

and Equation (12.35) becomes

[ 3, 1 ]
1

9

[−6 −1
9 0

][
0
1

]
[Gr, Gd ] = [ 3, 1 ]

1

9

[−6 −1
9 0

][
0 1 1
2 1 0

]
,

which simplifies to

−1

3
[Gr, Gd ] = −[ 2/3, 4/3, 1 ],

from which,

Gr = [ 1, 4 ], Gd = 3.
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8 First, A and B are transformed to control form using the similarity transformation S
shown:

A′ =

⎡
⎣ 0 1 0

0 0 1
−3 −6 −7

⎤
⎦, B′ =

⎡
⎣ 00
1

⎤
⎦, S =

⎡
⎣ 1 3 3
1 4 3
1 3 4

⎤
⎦.

K = (b̂− â) S−1 = ([ 60, 47, 12 ] − [ 3, 6, 7 ])

⎡
⎣ 7 −3 −3
−1 1 0
−1 0 1

⎤
⎦

= [ 353, −130, −166 ].

9 From the given pole locations, the factors of the desired characteristic polynomial are
s2 + 6s+ 18, s2 + 6s+ 18, and (s+ 4)(s2 + 6s+ 18) = s3 + 10s2 + 42s+ 72.

10 The open-loop poles are the eigenvalues of the given A and the zeros can be calculated
as in Chapter 10, but these quantities are also available from the control form required
for pole placement. The required similarity matrix S and the resulting system matrices
are

S =

⎡
⎣ 1 3 3
1 4 3
1 3 4

⎤
⎦, A′ = S−1AS =

⎡
⎣ 0 1 0
0 0 1
0 0 −3

⎤
⎦, C′ = CS = [ 5, 1, 0 ].

By inspection of these matrices, we see that the eigenvalues of A are the roots of s3+3s2,
equal to 0, 0, and −3. Similarly, the zeros are the roots of s + 5; that is, there is a zero
equal to −5. Modifying the bottom row of A′ by means of state feedback to produce a
pole at −5 will create a pole-zero cancellation at −5, since D = 0 and C′ will remain
unchanged. Therefore, the closed-loop system will not be minimal. The state-feedback
matrix is given by

K = (b̂− â)S−1 = ([ 60, 47, 12 ] − [ 0, 0, 3 ])

⎡
⎣ 7 −3 −3
−1 1 0
−1 0 1

⎤
⎦

= [ 364, −133, −171 ].

11 The entries of K′ are given by K′ = b̂ − â and, in this example, â = 0. The desired
characteristic polynomial is as shown, expanded by invoking the binomial theorem:

(s+ 10)n =
n∑

k=0

(
n

k

)
sk 10n−k.

The largest entry in K′ is the largest coefficient in this polynomial and is equal to 10n.
Consequently the control of systems of high dimension by one input signal may require
high-gain feedback.
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Chapter 13 Solutions

1 From Example 6, the matrices required in the ARE are

R̂ = r + q = 2s, Â = −q/(q + r) = −1/2, Q̂ = q − q2/(q + r) = s/2,

and the ARE is

0 = PA+ATP− PBR−1BTP+Q

= p(−1/2) + (−1/2)p− p · 1 · (1/2s) · 1 · p+ s/2,

or

p2 + 2sp− s2 = 0,

the positive solution of which is p = s(
√
2− 1).

2 Substituting the numerical values into the Equation (13.66) gives the ARE with unknown
p as

0 = 2p− p2 + q,

which has positive solution p = 1 +
√
1+q. Then the closed-loop matrix is

ACL = A− BR−1BTP = 1− 1−
√

1 + q,

which equals −2 for q = 3. The Hamiltonian matrix is

H =

[
1 −1
−q −1

]
,

which has eigenvalues equal to±√1 + q and, for q = 3, the left-plane eigenvalue equals
−2.

3 Refer to Section 1:

(a) Increasing q relative to r weights the state vector heavier, resulting in faster tran-
sients and larger initial inputs. Time-constants will be smaller (faster).

(b) Increasing r relative to q will have the opposite effect to (a); that is, smaller initial
input values and larger time-constants (slower convergence to the origin).

(c) Since q and r have been increased by the same ratio, no change to transient behav-
ior results.

4
(a) XT

[
1 3
3 3

]
X, (b) XT

[
2 −2
−2 1

]
X, (c) XT

⎡
⎣ 1 0 3
0 −2 −3
3 −3 −3

⎤
⎦X.
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5 Refer to Example 3:

(a) The symmetric part of the matrix is Qs =

[
7 6
6 4

]
, the leading principal minors of

which are 7 and −8, so the matrix is neither positive-definite nor positive semidef-
inite.

(b) The second principal minor is det

[
1 2
2 3

]
= −1 so the matrix is not positive-

definite or positive semidefinite.

(c) The 3, 3 element is zero so XTQX = 0 for any nonzero vector XT = [ 0, 0, x3 ] ,
so the matrix cannot be positive definite. Its principal 1 × 1 minors are 1, 3, 0,
its 2 × 2 minors are 2, 0, −1, and its 3 × 3 minor is −1. Any minor less than
zero (there are two in this case) indicates a matrix that is not positive semidefinite.
Alternatively, one of the three computed eigenvalues is negative, giving the same
conclusion.

6 (a) x21 + 4x1x2 + 3x22, (b) 2x21 + x22,
(c) x21 + x1x3 − 2x22 − 3x1x3 − 3x2x3 − 3x23.

7 The required matrix data are A = 0, B = 1, Q = 1, R = 1, and S = 0, so Equa-
tion (13.49) reduces to

−dp
dt

= p2 − 1,

with final condition p(t1) = 0. In this case, the equation is separable:
dp

p2 − 1
=

dp

(p− 1) (p+ 1)
=
( 1/2

p− 1
+
−1/2
p+ 1

)
dp

=
1

2
d ln(p− 1)− 1

2
d ln(p+ 1) = dt

and integrating from t to t1 gives
1

2

(
ln(p(t1)− 1)− ln(p(t)− 1)− ln(p(t1) + 1) + ln(p(t) + 1)

)
=

1

2
ln

(
p(t1)− 1

p(t)− 1
· p(t) + 1

p(t1) + 1

)
= t1 − t.

Since p(t1) = 0, this reduces to

1

2
ln

1 + p(t)

1− p(t) = t1 − t,

which can be solved for p(t) to give

p(t) =
e2(t1−t) − 1

e2(t1−t) + 1
=
et1−t − e−(t1−t)

et1−t + e−(t1−t)
= tanh(t1 − t),

and this function is positive for t < t1. As a function of X, the input u(t) is

u(t) = −R−1BTP(t)X = −K(t)X = −(tanh(t1 − t))x(t).
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The state x(t) is the solution of the differential equation

ẋ = −(tanh(t1 − t))x(t),
with initial condition x(t0). The solution is

x(t) = x(t0)e
− ∫ t

t0
tanh(t1−τ) dτ

,

so u(t) is

u(t) = −(tanh(t1 − t))x(t0)e−
∫ t
t0

tanh(t1−τ) dτ
.

8 The Hamiltonian matrix for the matrices A = 0, B = 1, Q = 1, R = 1, is

H =

[
A −BR−1BT

−Q −AT

]
=

[
0 −1
−1 0

]
,

of which the eigenvalues are ±1 so the eigenvalue of the optimal closed-loop system
with constant feedback is −1.

9 The integrand of the cost function is

y2 + ρ2u2 = XTCTCX+ ρ2u2,

so the ARE (13.66) is[
0 0
1 0

][
p11 p12
p12 p22

]
+

[
p11 p12
p12 p22

][
0 1
0 0

]

−
[
p11 p12
p12 p22

][
0
1

]
ρ−2[ 0, 1 ]

[
p11 p12
p12 p22

]
+

[
1
0

]
[ 1, 0 ] = 0.

Writing the top-left, top-right, and bottom-right entries of this matrix equation gives,
respectively,

−ρ−2p212 + 1 = 0,

p11 − ρ−2p12p22 = 0,

2p12 − ρ−2p222 = 0.

From the third equation,

p22 = ρ
√

2p12

and, for real positive-definite P, the positive square root must be taken and p12 must be
positive. From the first equation,

p12 = ±ρ
and the positive value must be taken. Then from the second equation,

p11 = ρ−2p12p22 =
√

2ρ,
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of which the positive square root is taken, and P is

P =

[√
2ρ ρ
ρ ρ

√
2ρ

]

The top-left element is positive and the second principal minor is

detP = ρ2,

which is positive, so P is positive-definite as required. The state feedback matrix is

K = R−1BTP = ρ−2 [ 0, 1 ]

[√
2ρ ρ
ρ ρ

√
2ρ

]
=

[
1
ρ

√
2√
ρ

]
.

Large values of ρ give small entries in K, and vice-versa. Thus, large values of ρ
result in small control signal u(t) and slow transients. Small values of ρ will give fast
transients.

10

11 The ARE is[
0 0
1
√
5

][
p11 p12
p12 p22

]
+

[
p11 p12
p12 p22

][
0 1
0
√
5

]
−
[
p11 p12
p12 p22

][
0 0
0 1

][
p11 p12
p12 p22

]

+

[
4 0
0 0

]
= 0.

Writing the top-left, top-right, and bottom-right entries of this matrix equation gives the
three equations

−p212 + 4 = 0,

p11 + p12
√
5− p12p22 = 0,

2p12 + 2p22
√
5− p222 = 0.

Solving the third equation for p22 gives

p22 =
√
5±
√

5 + 2p12

where, from the first equation,

p12 = ±
√
4 = ±2.

From the second equation,

p11 = p12(−
√
5 + p22).

Choosing the positive square-root in each case gives

P =

[
6 2
2 3 +

√
5

]
,

which is positive-definite. Therefore, the state-feedback matrix is

K = R−1BTP = [ 2, 3 +
√
5 ].
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13 Since the numerical values of all matrices are known, this problem can be solved numer-
ically. Alternatively, the ARE reduces to the three equations shown in the entries of P:

−p212/4 + 1 = 0,

p11 − p12p22/4 = 0,

2p12 − p222/4 = 0.

Solving the third equation for p22 gives

p22 = ±2
√

2p12

which must be positive, so the positive square root is required and p12 must be positive.
Therefore, from the first equation,

p12 = 2.

From the second equation,

p11 = 2

and, therefore,

P =

[
2 2
2 4

]
,

which is positive-definite. The feedback matrix is

K = R−1BTP = [ 1/2, 1 ].

14

15 This problem can be solved numerically. Alternatively, the ARE reduces to the three
equations shown in the entries of P:

−16p12 − p211 − p212 + 1 = 0,

−8p22 + 8p11 − p11p12 − p12p22 = 0,

16p12 − p212 − p222 + 1 = 0.

Solving for p12 in the first and third equation gives, respectively,

p12 = −8±
√

65− p211
p12 = 8±

√
65− p222,

where p11 and p22 must be positive. From the second equation, which reduces to

p12 =
8(p11 − p22)
p11 + p22

and from the symmetry of the equations with respect to p11 and p22, The values p12 = 0,
p11 = p22 = 1 are seen to satisfy the equations and produce a positive-definite solution
matrix P = I. Therefore, the state-feedback matrix is

K = R−1BTP = I.



102 Chapter 14 Solutions

16 Constructing H for R = 1 and Q = diag [ a, b, c, d ] results in the characteristic polyno-
mial φ(s) = det(sI−H) shown:

φ(s) = s8 − (d+ 2 γ2
2M2 + 
2b) s6


2M2
+

(c+ 2 b
 g + γ4
2M2 + 
2a) s4


2M2

− g(bg + 2 a
) s2


2M2
+

ag2


2M2
.

The desired characteristic polynomial is

β(s) = s8 + 2 (ω2δ − γ2) s6 + (ω4 − 4 γ2ω2δ + γ4) s4

+ 2 γ2ω2(γ2δ − ω2) s2 + γ4ω4.

Equating terms and solving gives

a = γ4ω4 

2M2

g2
,

b = 2 γ2ω2(gω2 − gγ2δ − 
 γ2ω2)

2M2

g3
,

c = ω2(g2ω2 − 4 g2γ2δ + 3 
2γ4ω2 − 4 gγ2ω2
+ 4 gγ4δ 
)

2M2

g2
,

d = −2ω2(δ g3 + γ2
2gω2 − γ4
2gδ − γ4
3ω2)

2M2

g3
.

17 Solving the LQ problem with the given numerical parameters gives K = [ 0.4495,
0.1010 ] . Then u′ = −KE = −k1e1 − k2e2. But e2 = e in Figure P13.17 and, from the

second row of Ė = AE + Bu′, the first entry e1 of E is obtained in terms of the second
entry as e1 = ae2 + ė2 or, using the Laplace transform, as e1 = ae2 + s e2. Then the
expression for u is

u =
u′

s
=
−k1se2 − k1ae2 − k2e2

s
= −
(
k1 +

k1a+ k2
s

)
e2,

which has PI form. The redrawn closed-loop diagram with input r is shown:

r
−e

k1a+ k2
s

k1

u 1

s+ a

y

−

Fig. S13.17 The controller redrawn in PI form

Chapter 14 Solutions

1 Calculating a column compression of B and a row compression of C gives

BQ1 =

[
1
2

]
ρ, P1C = [ 1, 1 ]ν,
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where ρ and ν are arbitrary parameters, and consequently the result is not unique. Setting
the Euclidean norms to 1 requires ρ = 1/

√
5 and ν = 1/

√
2, giving unique matrices.

2 The poles of A − LC are those of AT − CTLT and techniques from Chapter 12 can be
used to place the poles at −20. First, AT and CT are transformed to control form using
the similarity transformation S shown:

A′ = S−1ATS =

⎡
⎣ 0 1 0

0 0 1
−3 −6 −7

⎤
⎦, B′ = S−1CT =

⎡
⎣ 00
1

⎤
⎦,

S =

⎡
⎣ 65 111 15
−19 −43 −6
−34 −51 −7

⎤
⎦.

Then LT is calculated as

LT = (b̂− â) S−1 = ([ 8000, 1200, 60 ] − [ 3, 6, 7 ]) S−1

= [ 115.9, 852.8, −490.2 ].

3 A similarity matrix S transforming C to the form CS = [ Ip, 0 ] and the resulting trans-
formed A are given by

S =

⎡
⎣ 0.0484 0.3408 0.3976
−0.0194 0.9373 −0.0732
−0.0226 −0.0732 0.9146

⎤
⎦, S−1AS =

⎡
⎣ 0.3548 1.254 0.6293
−2.141 −1.380 −3.776
−2.613 −1.050 −5.975

⎤
⎦.

Then the matrix F that places the poles of Ao at−20 and the resulting observer matrices
are given by

F =

[
41.03
−29.87

]
, Ao =

[−52.82 −29.60
36.40 12.82

]
, M =

[−120.10
93.62

]
,

L =

[−163.44
238.15

]
, S1 + S2F =

⎡
⎣ 2.16

40.63
−30.35

⎤
⎦,

with S2 given by the rightmost two columns of S above. The observer equations in
state-space form are given by Equations (14.23) and (14.22) with the matrices given
above.

4 A similarity matrix S transforming C to the form CS = [ Ip, 0 ] and the resulting trans-
formed A are given by

S =

⎡
⎣ 0.0216 0.3525 0.3777
−0.0089 0.9330 −0.0717
−0.0095 −0.0717 0.9231

⎤
⎦, S−1AS =

⎡
⎣−0.1833 2.478 −1.702

0.1537 3.308 −3.892
0.2800 5.048 −6.124

⎤
⎦.
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Then the matrix F that places the poles of Ao at−15 and the resulting observer matrices
are given by

F =

[
18.28
301.87

]
, Ao =

[−537.6 367.6
−743.1 507.6

]
, M =

[−651.8
−901.6

]
,

L =

[ −7474
−10454

]
, S1 + S2F =

⎡
⎣ 191182
263

⎤
⎦,

with S2 given by the rightmost two columns of S above.

5 The matrices AT and CT can be transformed to control form shown using the similarity
transformation S shown:

A′ = S−1ATS =

⎡
⎣ 0 1 0
0 0 1
0 0 −3

⎤
⎦, B′ = S−1CT =

⎡
⎣ 00
1

⎤
⎦,

S =

⎡
⎣−20 96 34

15 −37 −14
5 −44 −15

⎤
⎦.

Then LT is

LT = (b̂− â) S−1 = ([ 3375, 675, 45 ] − [ 0, 0, 3 ]) S−1 = [ 2401, 2341, 3254 ].

6 From the diagram, the plant equations are
d

dt
X = AX+ BU+W

Y = CX+DU+V,

which differ from Equations (14.16) by including the term DU in the output equation.
The observer equation is

d

dt
X̂ = AX̂+ BU+ L(Y − CX̂−DU),

which includes the therm DU in the rightmost parentheses.
The vector Z is

Z = Y − Ŷ = CX+DU+V − (CX̂+DU) = C (X− X̂) +V,

which is independent of D and therefore identical in the two cases.
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7 Setting R̃ to 1, Q̃ to diag[qi], i = 1, . . . 3 and constructing the Hamiltonian matrix H
of Equation (13.70), we can calculate its characteristic polynomial using a symbolic
calculator program as

det(sI−H) =

s6 − (9q1 + 9q2 + 16q3 + 9) s4 + (3q1 + 10q2 + q3) s
2 − (q1 + q2 + q3).

By equating the coefficients of this polynomial to those of the desired polynomial

det(sI−H) = (s2 − 152)3,

the diagonal entries of Q are obtained as

q1 =
1718 915 256

49
= 35.08× 106, q2 = −443 169 918

49
= 9.044× 106,

q3 = −102 514 959

7
= 14.64× 106.

The relative weights in Q̃ are of the order of 106 times those of R̃. These matrices
are covariance matrices, that is, their diagonal entries are the mean of the square of
the entries in W and V. Thus to obtain observer poles at −15 for this plant, the mean
magnitude of V must be approximately 10−3 of the entries of W. In other words, the
design of fast observer transients requires accurate measurement of the plant output.
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