
On τ -adic Representations of Integers

N. Ebeid and M. A. Hasan

Department of Electrical and Computer Engineering

and

Centre for Applied Cryptographic Research

University of Waterloo

Ontario, Canada

June 11, 2007

Abstract

Elliptic curve cryptosystems have become increasingly popular due to their efficiency

and the small size of the keys they use. Particularly, the anomalous curves introduced

by Koblitz allow a complex representation of the keys, denoted τNAF, that make the

computations over these curves more efficient. In this article, we propose an efficient

method for randomizing a τNAF to produce different equivalent representations of the

same key to the same complex base τ . We prove that the average Hamming density of

the resulting representations is 0.5. We identify the pattern of the τNAFs yielding the

maximum number of representations and the formula governing this number. We also

present deterministic methods to compute the average and the exact number of possible

representations of a τNAF.

1 Introduction

Elliptic curve cryptosystems (ECCs) have become increasingly popular due to the efficiency of

their computations and the small size of their keys compared to RSA and discrete logarithm-

based systems. They rely on the hardness of solving the discrete logarithm problem (DLP)

in the additive group of points on the elliptic curve E defined over a finite field Fq. The core

and most costly operation in ECCs is the scalar multiplication, i.e., computing the point kP

1

where P is a point on the curve and k is an integer that is usually the secret. This operation

is basically performed using the binary algorithms [9], which are also called double-and-add

algorithms when used with additive groups. This operation can be performed more efficiently

on Koblitz curves than on other curves.

Koblitz curves [10] are elliptic curves defined over F2. Their advantageous characteristic is

the Frobenius mapping which can be exploited to replace the point doubling operation with a

simple squaring of the point coordinates [16]. Hence, the point multiplication algorithm can

be executed in a much shorter time. This technique is generally not as efficient when using an

arbitrary endomorphism. In order to use this mapping efficiently, Solinas [16] has shown how to

represent the scalar k in a number system of base τ , where τ is a complex number representing

the squaring map. His representation is characterized by being a non-adjacent form where no

two adjacent symbols are non-zero, in order to minimize the number of point additions. A

brief background on this representation is presented in Section 2. In Section 3, we present

our experimental results on an open problem proposed by Solinas. This problem questions the

uniform distribution of points resulting from multiplying a randomly chosen τ -adic NAF by an

input point.

In Section 4, we present an efficient algorithm that takes as input the τ -adic NAF (τNAF)

representation and produces a random τ -adic representation for the same scalar value. The

symbols of the randomized τ -adic representation are output one at a time from right to left

which allows the execution of the right-to-left scalar multiplication along with the randomization

algorithm without the need to store the new representation. The model of our algorithm has

enabled us to derive a number of interesting results with regard to τ -adic representations that

we present subsequently. The characteristics of τNAFs that have the maximum number of

representations and formulas describing that number are presented in Section 5. The average

Hamming density of the representations is derived in Section 6. Deterministic methods for

determining both the average and the exact number of representations of τNAFs of a certain

length are presented in Section 7. Finally, Section 8 contains the conclusion and future work.

2 Koblitz Curves and the τ-adic Representation

Koblitz curves [10]—originally named anomalous binary curves—are the curves Ea, a ∈ {0, 1},
defined over F2

Ea : y2 + xy = x3 + ax2 + 1 (1)

Ea(F2m) is the group of F2m-rational points on Ea. Let µ = (−1)1−a, that is µ ∈ {−1, 1}.

2

The order of the group is computed as

#Ea(F2m) = 2m + 1− Vm, (2)

where {Vh} is the Lucas sequence defined by

V0 = 2, V1 = µ and Vh+1 = µVh − 2Vh−1 for h ≥ 1.

The value of m is chosen to be a prime number so that #Ea(F2m) = f · r is very nearly

prime, that is r > 2 is prime and f = 3− µ.

The main advantage of Koblitz curves when used in public-key cryptography is that scalar

multiplication of the points in the main subgroup, the group of order r, can be performed

without the use of point doubling operations. This is due to the following property. Since these

curves are defined over F2m , then if P = (x, y) is a point on Ea, then the point (x2, y2) is on

the curve, as well. That is the Frobenius (squaring, in this case) endomorphism τ : Ea(F2m)→
Ea(F2m) defined by

(x, y) 7→ (x2, y2), O 7→ O

is well defined. It can also be verified by point addition on Ea that

(x4, y4) + 2(x, y) = µ · (x2, y2).

Hence, the squaring map can be considered as a multiplication by the complex number τ

satisfying

τ 2 + 2 = µτ, (3)

that is

τ =
1

2
(µ +

√
−7).

The norm of τ is 2. Thus, it is beneficial to represent the key k as an element of the ring Z[τ],

i.e.,

k =
l−1
∑

i=0

κiτ
i (4)

for some l where deg(k) ≤ l − 1 and this representation of k is said to be of length l. We can

therefore carry the scalar multiplication kP of a point P on Ea more efficiently by replacing

the doubling operation in the double-and-add algorithm by the squaring map.

In [16], Solinas has shown how to represent k as in (4) in its τ -adic non adjacent form

(τNAF) where κi ∈ {−1, 0, 1} and κiκi+1 = 0 for i ≥ 0—abusing the notation, we will refer to

κi as a signed bit or sbit. However, this results in l ≈ 2m. Therefore, he proposed a reduced

3

τ -adic non adjacent form (RTNAF) for k where k is reduced modulo δ = (τm − 1)/(τ − 1),

hence l = m + a. He has proven that in a τNAF representation the number of 0s is 2
3

on

average. He also mentioned that 1 and -1 are equally likely on average.

3 τNAFs of Length m + a and their Distribution

To obtain a key represented in a reduced τNAF, we can choose an integer k ∈ [1, r − 1], and

apply Solinas’ method to produce its RTNAF. Alternatively, as Solinas suggests [16], we can

directly choose a τNAF of length m + a as follows: the first sbit is generated according to the

following probability distribution

κi =















0 Pr(0) = 1/2

1 Pr(1) = 1/4

1 Pr(1) = 1/4.

(5)

We follow each 1 or 1 with a 0, and after each 0 the subsequent sbit is generated according to

the distribution in (5).

This method can be verified as follows. We can consider the sequence of sbits in a random

τNAF as a Markov chain of three states, namely 0, 1 and 1. We have the limiting probabilities

as follows [16]

π0 = 2/3 and π1 = π1 = 1/6. (6)

Also, from the properties of the NAF representation, we know that a 1 or a 1 must be followed

by a 0. Hence we have the following transition probabilities

P10 = P10 = 1 and P11 = P11 = P11 = P11 = 0. (7)

It remains to determine P00, P01 and P01, which we can calculate by solving the equation

πP = π, (8)

where π = (π0 π1 π1) and P is the transition matrix

P =









P00 P01 P01

1 0 0

1 0 0









(9)

We obtain a unique solution to (8) which is

P00 = 1/2 and P01 = P01 = 1/4. (10)

4

The sequence obtained by this method is selected from the set of all τNAFs of length

m + a. As stated by Solinas [16], their number is the integer closest to 2m+a+2/3, whereas

the order of the main subgroup is r ≈ 2m−2+a. That is the average number of sequences that,

when multiplied by a given point P , would lead to the same point in the main subgroup is

16/3. The deviation from this average is an open problem. We have calculated this deviation

experimentally for E1 over small fields as follows.

We have generated all τNAFs of length m + a for small m. We have then reduced each of

them modulo δ, and stored how many times each of the r lattice point λ0 + λ1τ (λi ∈ Z) in V ,

which is the region spanned by the elements of Z[τ]/δZ[τ], is mapped. The mean and standard

deviation of the distribution of the number of mappings for E1(F2m) for small m are shown in

Table 1.

Table 1: The mean and standard deviation of the number of times the lattice points of the
region V were mapped by all τNAFs of length m + 1.

m 7 11 17 19 23
r 71 991 65587 262543 4196903

mean 4.803 5.511 5.329 5.325 5.330
standard
deviation

0.721 0.734 0.523 0.502 0.482

As we can see from Table 1, the mean approaches 16
3

as m increases. Moreover, the deviation

is small and is decreasing starting from m = 11. Also, in our experiments the number of times

a lattice point was mapped was at most 8.

4 Randomizing the τ-adic Representation of an Integer

Now, having the key k represented as a τNAF, we will present a randomization algorithm to

obtain a different τ -adic representation of the key. The technique used in this algorithm is

similar to the one used by Ha and Moon [6] to randomize the binary representation of the key.

The difference is in the state representation which is similar to the one used in [2]. We can

summarize the Ha-Moon algorithm in the following idea. A carry bit is initialized to 0 and the

input binary representation is scanned, one bit at a time, starting from the least significant

one. Whenever the sum of the current scanned bit and the carry is 0 (mod 2), the output sbit

is 0, otherwise, if the sum is 1, a random decision is drawn as to whether send a 1 or a -1 to

the output. In all cases the carry bit is updated properly. For example, if the current sum is 1

and the output is chosen to be -1, then 2 should be added to the remaining input bits, this is

5

ensured by setting the carry bit to 1.

Similarly, the underlying idea of our algorithm is as follows. The sbits of the input τNAF

are scanned starting from the least significant end. Whenever the scanned bit value, added

to the current carry sbit, is 1, a random decision is drawn based on which the current output

sbit is determined. If the latter was chosen to be 1, no change occurs in the carry sbits and

the following sbit of the input as well as that of the carry are scanned. On the other hand, if

the output sbit was chosen to be 1, this is equivalent to subtracting 2 from the current τNAF

and should be compensated by adding 2 back to it. For the curve E0, 2 = −τ 2 − τ = (110)τ

and for the curve E1, 2 = −τ 2 + τ = (110)τ . Hence, the addition of 2 to the remaining sbits

of the τNAF is handled by adding the τ -adic representation of 2 to the carry sbits. This idea

is captured in the following pseudocode where the subscript τ is omitted since it is implied.

The length of the output representation, the prepending of three 0s to the input as well as the

number of carry sbits needed will be explained in the subsequent discussion of the algorithm

implementation.

Algorithm 1. Randomization of the τ -adic representation

Input: k = (κl−1, . . . , κ1, κ0) where k is a τNAF.

Output: k′ = (dl+1, . . . , d0), a random τ -adic representation of k.

1. Prepend (κl+2, κl+1, κl) = (0, 0, 0) to k.

2. (c2i
, c1i

, c0i
)← (0, 0, 0). // carry sbits.

3. for i from 0 to l + 2 do

3.1 bi ← κi + c0i
; ri ←R {0, 1}. // ri is random bit

3.2 if (bi = 0) then

di ← 0; (c2i+1
, c1i+1

, c0i+1
)← (0, c2i

, c1i
).

3.3 else if (bi = ±2) then

di ← 0; (c2i+1
, c1i+1

, c0i+1
)← (0, c2i

, c1i
)± 2/τ .

// for E0, 2/τ = (11) and for E1, 2/τ = (11).

3.4 else // bi = ±1

3.4.1 if (ri = 0) then

di ← bi; (c2i+1
, c1i+1

, c0i+1
)← (0, c2i

, c1i
).

3.4.2 else

di ← −bi; (c2i+1
, c1i+1

, c0i+1
)← (0, c2i

, c1i
) + bi ∗ 2/τ .

6

As an illustration of the algorithm outcome, let k = (101)τ be the input τNAF, then the

algorithm would output one of the following representations for the curve E0: (101)τ , (11101)τ ,

(11011)τ , (1111)τ . Note that the τNAF is a possible output if the input sbits are sent to the

output unchanged and the carry remains 0. Moreover, since the τNAF of an element of the

ring Z[τ] is unique [16, Theorem 1], the other representations have adjacent non-zero sbits, i.e.,

are not τNAFs.

The algorithm can be implemented as a look-up table as in Table 2 for the curve E1. It

is also described as a nondeterministic finite automaton (NFA) as in Figure 1, serving the

analysis in Section 7.2. As mentioned above, the sbit sequence of the key is scanned from

the least significant end to the most significant end. The current state si is the combination

of the current sbit κi and the carry sbits (c2i
c1i

c0i
)τ . Based on the next sbit κi+1 and the

random decision bit ri, the output sbit di and the next state si+1 are determined. Depending

on whether κ0 is 1, 0 or 1 the first state S0 will be s4, s12 or s20 respectively where the carry

sbits are initialized to 0. Note that only the states in Table 2 are reachable, that is, not all

combinations of the carry sbits occur in the algorithm. Moreover, by verifying the different

states of the algorithm, we can observe that only three carry sbits are needed.

We will illustrate the calculation of the carry sbits and the state transitions using the

following example. Let k = (100101)τ . Then, κ0 = 1 and c20
= c10

= c00
= 0 (S0 = s4). If

r0 = 0, d0 = κ0 = 1, the carry sbits do not change and the next state S1 = s12. Otherwise,

d0 = 1; to change the value of κ0 from 1 to 1, we should add (−2) to the remaining sbits of k. For

the curve E1, −2 = τ 2−τ = (110)τ . This results in the carry sbits being c21
= 0, c11

= 1, c01
= 1,

and the next state S1 = s14.

The output sbit di is determined by κi + c0i
. If the latter is 0 or ±2, then di = 0, and the

carry sbits are adjusted accordingly, e.g., as in the states s2 and s3 in Table 2. Otherwise, if

κi + c0i
= ±1, then if ri = 0, then di = κi + c0i

, else di = −(κi + c0i
) and a ±(11)τ is added

to (c2i
, c1i

)τ . Note that the output di is determined along with the next state Si+1. In other

words, when the algorithm is in state Si, the last sbit that was sent to the output is di−1.

In Figure 1, the arrows are labeled with κi+1/di. Solid arrows correspond to transitions

where ri is ×, i.e., only one transition per value of κi+1 is possible. Dashed arrows correspond

to ri = 0 and dotted arrows correspond to ri = 1.

7

Table 2: State transition table for the randomized τ -adic representation

for the curve E1.

State Input Output
Next

state

Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

s1 1 0 1 0 0 0 1 0 0 1 s11

0 1 1 1 0 0 s16

s2 1 0 1 1 0 × 0 0 0 1 s11

s3 1 0 0 1 0 × 0 0 1 1 s14

s4 1 0 0 0 0 0 1 0 0 0 s12

0 1 1 0 1 1 s14

s5 1 0 0 1 0 × 0 0 0 0 s12

s6 1 0 1 1 0 × 0 0 1 0 s15

s7 1 0 1 0 0 0 1 0 0 1 s13

0 1 1 0 1 0 s15

s8 0 1 0 0 1 × 0 0 1 0 s1

0 × 0 0 1 0 s9

1 × 0 0 1 0 s17

s9 0 0 1 0 1 × 0 0 0 1 s3

0 × 0 0 0 1 s11

1 × 0 0 0 1 s19

s10 0 0 1 1 1 0 1 0 0 1 s3

1 1 1 0 1 0 s1

0 0 1 0 0 1 s11

0 1 1 0 1 0 s9

1 0 1 0 0 1 s19

1 1 1 0 1 0 s17

s11 0 0 0 1 1 0 1 0 0 0 s4

1 1 1 0 1 1 s6

0 0 1 0 0 0 s12

0 1 1 0 1 1 s14

1 0 1 0 0 0 s20

1 1 1 0 1 1 s22

s12 0 0 0 0 1 × 0 0 0 0 s4

0 × 0 0 0 0 s12

8

Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

1 × 0 0 0 0 s20

s13 0 0 0 1 1 0 1 0 0 0 s4

1 1 1 0 1 1 s2

0 0 1 0 0 0 s12

0 1 1 0 1 1 s10

1 0 1 0 0 0 s20

1 1 1 0 1 1 s18

s14 0 0 1 1 1 0 1 0 0 1 s5

1 1 1 0 1 0 s7

0 0 1 0 0 1 s13

0 1 1 0 1 0 s15

1 0 1 0 0 1 s21

1 1 1 0 1 0 s23

s15 0 0 1 0 1 × 0 0 0 1 s5

0 × 0 0 0 1 s13

1 × 0 0 0 1 s21

s16 0 1 0 0 1 × 0 0 1 0 s7

0 × 0 0 1 0 s15

1 × 0 0 1 0 s23

s17 1 0 1 0 0 0 1 0 0 1 s11

0 1 1 0 1 0 s9

s18 1 0 1 1 0 × 0 0 1 0 s9

s19 1 0 0 1 0 × 0 0 0 0 s12

s20 1 0 0 0 0 0 1 0 0 0 s12

0 1 1 0 1 1 s10

s21 1 0 0 1 0 × 0 0 1 1 s10

s22 1 0 1 1 0 × 0 0 0 1 s13

s23 1 0 1 0 0 0 1 0 0 1 s13

0 1 1 1 0 0 s8

The algorithm keeps scanning the l sbits of the input τ -adic NAF, starting from the least

significant end, moving from a state to another according to the look-up table. When the most

significant sbit κl−1 is reached, the algorithm is in state Sl−1, with the last output bit dl−2.

To exit the algorithm from the state Sl−1, the value of the current input sbit κl−1 should

be added to the carry (c2l−1
c1l−1

c0l−1
)τ and sent to the output. We can see from Table 2 that,

9

for all states, the result of this addition cannot exceed three sbits. Hence, the output τ -adic

representation can be of length at most l + 2. This exit step is equivalent to prepending at

most three 0s to the τNAF and continuing the algorithm as before with all subsequent random

decisions ri = 0. The algorithm then stops when the state s12 is reached, since in this state

κi = c2i
= c1i

= c0i
= 0. As with adding the carry to the current sbit, it can be verified from

Table 2 that the paths from all states to s12 are at most three transitions long. We will refer

to those paths as exit paths. However, from some states, there exist two exit paths that satisfy

this length restriction. For example, if Sl−1 = s4, then Sl = s12 and dl−1 = 1. Alternatively,

Sl = s14, Sl+1 = s13, and Sl+2 = s12, with the respective output dl−1 = 1, dl = 1, dl+1 = 1.

Other states that have two possible exit paths are s7, s10, s11, s13, s14, s17 and s20.

The same randomization technique can be applied to the τ -adic representation of integers

when the points are on the curve E0. In this case, 2 = −τ 2 − τ = (110)τ , which will produce

different carry sbits than for the curve E1, and hence different states. Those states and the

transitions between them are listed in Table 3. For this curve, the states that have two possible

exit paths are s2, s4, s9, s11, s13, s15, s20 and s22. We have included the representations of the

τNAFs of length 1 ≤ l ≤ 4 on the curve E0 in Appendix A. As can be seen in this appendix, the

number of representations is not uniform among the τNAFs, which is expected to be true for

any length l. Hence, it is not favorable to choose a key by choosing a random τ -adic expansion.

Table 3: State transition table for the randomized τ -adic representation

for the curve E0.

State Input Output
Next

state

Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

s1 1 0 1 1 0 × 0 0 1 0 s14

s2 1 0 1 0 0 0 1 0 0 1 s11

0 1 1 0 1 0 s14

s3 1 0 0 1 0 × 0 0 1 1 s15

s4 1 0 0 0 0 0 1 0 0 0 s12

0 1 1 0 1 1 s15

s5 1 0 0 1 0 × 0 0 0 0 s12

s6 1 0 1 0 0 0 1 0 0 1 s13

0 1 1 1 0 0 s8

10

Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

s7 1 0 1 1 0 × 0 0 0 1 s13

s8 0 1 0 0 1 × 0 0 1 0 s2

0 × 0 0 1 0 s10

1 × 0 0 1 0 s18

s9 0 0 1 1 1 0 1 0 0 1 s3

1 1 1 0 1 0 s6

0 0 1 0 0 1 s11

0 1 1 0 1 0 s14

1 0 1 0 0 1 s19

1 1 1 0 1 0 s22

s10 0 0 1 0 1 × 0 0 0 1 s3

0 × 0 0 0 1 s11

1 × 0 0 0 1 s19

s11 0 0 0 1 1 0 1 0 0 0 s4

1 1 1 0 1 1 s7

0 0 1 0 0 0 s12

0 1 1 0 1 1 s15

1 0 1 0 0 0 s20

1 1 1 0 1 1 s23

s12 0 0 0 0 1 × 0 0 0 0 s4

0 × 0 0 0 0 s12

1 × 0 0 0 0 s20

s13 0 0 0 1 1 0 1 0 0 0 s4

1 1 1 0 1 1 s1

0 0 1 0 0 0 s12

0 1 1 0 1 1 s9

1 0 1 0 0 0 s20

1 1 1 0 1 1 s17

s14 0 0 1 0 1 × 0 0 0 1 s5

0 × 0 0 0 1 s13

1 × 0 0 0 1 s21

s15 0 0 1 1 1 0 1 0 0 1 s5

1 1 1 0 1 0 s2

0 0 1 0 0 1 s13

0 1 1 0 1 0 s10

1 0 1 0 0 1 s21

1 1 1 0 1 0 s18

11

Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

s16 0 1 0 0 1 × 0 0 1 0 s6

0 × 0 0 1 0 s14

1 × 0 0 1 0 s22

s17 1 0 1 1 0 × 0 0 1 1 s11

s18 1 0 1 0 0 0 1 0 0 1 s11

0 1 1 1 0 0 s16

s19 1 0 0 1 0 × 0 0 0 0 s12

s20 1 0 0 0 0 0 1 0 0 0 s12

0 1 1 0 1 1 s9

s21 1 0 0 1 0 × 0 0 1 1 s9

s22 1 0 1 0 0 0 1 0 0 1 s13

0 1 1 0 1 0 s10

s23 1 0 1 1 0 × 0 0 1 0 s10

The Ha-Moon randomization algorithm [6] was proposed as a countermeasure to differential

power analysis (DPA) attacks on ECCs. The output of the algorithm was a random binary

signed-digit (BSD) representation of the input binary representation of the key. The resulting

BSD representation is then used by the binary algorithm [9, Section 4.6.3] allowing negative

digits. Later on, it was shown in [4, 13], that this randomization method does not serve its

purpose since the number of intermediate points possibly computed at any iteration of the

binary algorithm is only two. Guessing the value of an intermediate point is at the core of a

conventional DPA attack. The reason behind this limited number of intermediate points is that

the following relation always hold for some key k = (kn−1, . . . , k0)2 with BSD representation

k′ = (k′
n, . . . , k′

0)2, where k′
i ∈ {−1, 0, 1}

j−1
∑

i=0

ki2
i =

j−1
∑

i=0

k′
i2

i + cj2
j, (11)

for any 0 < j ≤ n, where cj ∈ {0, 1} is the carry bit in the Ha-Moon algorithm. The carry takes

only one of two values, and so does the intermediate point computed by the binary algorithm

using the BSD representation of the key.

Similar arguments apply to the τ -adic representation. However, from Tables 2 and 3, we

can see that the carry sbits can take one of 9 possible values. Hence, the adequacy of this

randomization method as a DPA countermeasure depends on the application and the life length

12

of the key. It is interesting to study the probability of occurrence of a certain intermediate value

of the representation in relation to the sbits values of the original τ -NAF similar to the study

presented by [4] on the BSD representation. It is also interesting to investigate the number of

carry patterns that would result if the input is the shortest τ -adic representation of an element

of Z[τ] [17]. Note that in this case, the number of carry sbits may be more than 3 and it is not

guaranteed that the number of states is finite.

5 τNAF with the Maximum Number of Representations

Let k be a τNAF of length l sbits, possibly having 0(s) as the leading sbit(s), and let ϑ(k, l)

be the number of τ -adic representations of k. Note that those representations are of length at

most l + 2 as in Section 4. In the following, we will focus our discussion on “positive” τNAFs,

i.e., those having κl−1 = κl−2 = . . . = κi = 0 and κi−1 = 1 for some 0 < i ≤ l. Since −k is

obtained from k by interchanging the 1s with the 1s, in the same way, the representations of −k

can be obtained from those of k, hence, ϑ(k, l) = ϑ(−k, l). Let kmax,l be the τNAF of length l

that has the maximum number of representations among other τNAFs of the same length (cf.

Table 8 in Appendix A). Also, let α(k, l′) be the number of representations of a τNAF k that

are of length at most l′ sbits. According to these definitions, for any τNAF k of length up to

l, we have

ϑ(k, l) = α(k, l + 2) ≤ ϑ(kmax,l, l).

For example, from Table 7, we have α((101)τ , 2) = 1, α((101)τ , 3) = 2, . . . , α((101)τ , 6) = 7 <

ϑ((101)τ , 4) = 8.

Now we state the following theorem.

Theorem 1 Let l ≥ 1 and w = b l−1
2
c. For l odd,

kmax,l = τ 2w +
w−1
∑

i=0

(−1)w−1−iτ 2i. (12)

For l even,

kmax,l =
w
∑

i=0

(−1)w−iτ 2i. (13)

And for any τNAF k of length up to l + 3,

α(k, l + 2) ≤ ϑ(kmax,l, l). (14)

Moreover, for l ≥ 3,

ϑ(kmax,l, l) = ϑ(kmax,l−1, l − 1) + ϑ(kmax,l−2, l − 2). (15)

13

In order to prove the theorem, we will use the following lemmas.

Lemma 1 If k is divisible by τ e then ϑ(k, l) = ϑ
(

k
τe , l − e

)

.

Proof. Looking at Table 2 and Table 3, we find that random decisions are made at the states

where κi + c0i
= ±1. In this case, there are two possible transitions emerging from these

states, that is there are two possible paths that can be followed, each yielding a family of

representations where the sbit di is either 1 or 1.

When the least significant sbit(s) is (are) 0, the algorithm enters state s12 and does not exit

this state until the first 1 or 1 is encountered. Until then, there are no new representations

that are formed, and the least significant 0s are sent to the output as they are. Any other

representation formed thereafter will have the same number of least significant 0s as k.

In other words, if k is divisible by τ e, so are its representations. That is, they will all have

e least significant 0s. Therefore, the possible representations for k when represented in l sbits

will be the same representations for k
τe when represented in l − e sbits with e 0s appended to

each of the latters. �

Lemma 2 If k is a τNAF of length l and k ≡ (−1)b (mod τ) where b ∈ {0, 1}, then the τNAF

of k + (−1)b is of length at most l + 3.

Proof. To convert a number in a τ -adic form into a τNAF, we can use the transformations

given by Gordon [5] for the curve E1. The following transformations (and their negatives) are

the equivalent ones for the curve E0.

τ + 1→ −τ 2 − 1 (11→ 101), (16)

τ − 1→ −τ 3 + 1 (11→ 1001), (17)

2→ τ 3 + τ (2→ 1010). (18)

Now, consider the following cases for the least significant sbits of k ≡ 1 (mod τ) when 1 is

added, where the transformation (18) is used after the addition. Other cases are recursions

of the following ones. The subscript τ was removed since it applies to all of the following

representations.

(. . . 1001) + 1 = (. . . 0010),

(. . . 1001) + 1 = (. . . 2010),

(. . . 0101) + 1 = (. . . 1110) = (. . . 0010), using (16)

(. . . 10101) + 1 = (. . . 11110) = (. . . 01010), using -(17) (i.e., the negative of (17))

(. . . 10101) + 1 = (. . . 11110) = (. . . 21010), using -(17)

14

(. . . 100101) + 1 = (. . . 101110) = (. . . 111010) = (. . . 001010), using -(17) and (16)

(. . . 100101) + 1 = . . . = (201010), using -(17) and (16).

When any of the transformations (16) to (18) is used, the resulting carry will either cancel an

existing sbit, be added to a 0 or result in a 2 or -2. We can see from the above cases that the

absolute result of adding a carry to an sbit will not exceed 2. Thus, the resulting τNAF of

k + 1 is at most 3 sbits longer than k. The same argument applies to k ≡ −1 (mod τ). �

Lemma 3 For any τNAF k ≡ (−1)b (mod τ) of length l, where b ∈ {0, 1}, we have

ϑ(k, l) = ϑ

(

k − (−1)b

τ 2
, l − 2

)

+ α

(

k + (−1)b

τ
, l + 1

)

,

where k + (−1)b is in τNAF representation.

Proof. We will consider here the case of k ≡ 1 (mod τ) but the same arguments apply to

k ≡ −1 (mod τ). Recall that ϑ(k, l) is the number of representations of k that are of length at

most l + 2. Since k mod τ 6= 0, this is also true for the τ -adic representations of k. That is,

their least significant sbit (LSSB) will be either 1 or 1. For those representations that have 1

as the LSSB, if this 1 is replaced with 0, they will become representations of k − 1. Since k is

a τNAF, then k − 1 is a τNAF divisible by τ 2. From Lemma 1, we know that the number of

representations of k − 1 is ϑ(k − 1, l) = ϑ
(

k−1
τ2 , l − 2

)

and that those representations will have

their 2 LSSBs equal to 00. Therefore, they can all be used as representations of k by replacing

the least significant 0 with 1.

On the other hand, for those representations that have 1 as their LSSB, if this 1 is replaced

with 0, they will become representations of k + 1. Since 2 = (110)τ for the curve E1 and

2 = (110)τ for the curve E0, we can see that k + 1 ≡ 0 (mod τ), hence all the representations

of k + 1 have 0 as their LSSB. Those representations that are of length l + 2, with their least

significant 0 replaced with 1, are counted among the ϑ(k, l) representations of k and their num-

ber is α(k + 1, l + 2) = α
(

k+1
τ

, l + 1
)

, where the equality follows from Lemma 1. �

The following lemmas are carried on E0 but there exist corresponding lemmas on E1.

Lemma 4 For l odd and w = l−1
2

, if k = τ 2w +
∑w−1

i=0 (−1)w−1−iτ 2i, then
∑w−1

i=0 (−1)w−iτ 2i+1 + (−1)w is among the representations of k. In other words,
k−(−1)w

τ
= k+(−1)w−1

τ
=
∑w−1

i=0 (−1)w−iτ 2i.

Proof. Without loss of generality, let w be odd, then k = (1 0 1 0 1 0 . . . 1 0 1 0 1)τ . When

15

the least significant 1 is replaced by 1, 2 = (110)τ is added to k. Hence,

k = (1 0 1 0 1 0 . . . 1 0 2 1 1)τ

= (1 0 1 0 1 0 . . . 2 1 0 1 1)τ

= . . .

= (1 0 1 0 2 1 . . . 0 1 0 1 1)τ

= (1 0 2 1 0 1 . . . 0 1 0 1 1)τ

= (0 1 0 1 0 1 . . . 0 1 0 1 1)τ . �

Lemma 5 For l even and w = b l−1
2
c = l

2
− 1, if k =

∑w
i=0(−1)w−iτ 2i, then τ 2w+3 + τ 2w+1 +

∑w−1
i=0 (−1)w−1−iτ 2i+1 +(−1)w−1 is among the representations of k. In other words, k−(−1)w−1

τ
=

k+(−1)w

τ
= τ 2w+2 + τ 2w +

∑w−1
i=0 (−1)w−1−iτ 2i

Proof. Without loss of generality, let w be odd. Then, k is of the form (0 1 0 1 0 . . . 1 0 1)τ .

As before, the least significant 1 can be replaced by 1 and −2 = (110)τ added to k. Hence, we

obtain the following

k = (0 1 0 1 0 . . . 2 1 1)τ

= . . .

= (0 1 0 2 1 . . . 0 1 1)τ

= (0 2 1 0 1 . . . 0 1 1)τ

= (1 1 0 1 0 1 . . . 0 1 1)τ

= (1 0 1 0 1 0 1 . . . 0 1 1)τ . �

Lemma 6 Let k be τNAF of length l with κl−1 = 1 (1). Then, the representations of k that

are of length l + 2 will have dl+1 = 1 (1), where di are the sbits output from the algorithm as

in Table 3. Moreover, if dl−1 = 1 in any of the representations of k, then the length of this

representation is l + 2.

Proof. Considering Table 3, when the most significant sbit κl−1 = 1 is read, the algorithm

will be in one of the states s17 to s23. Representations that are of length l + 2 are resulting

from those states that have exit paths consisting of three transitions as single exit paths (s21

and s23) or as alternate paths (s20 and s22). It can be easily checked from the table that the

last output sbit in all such paths is 1. It can be also checked that dl−1 = 1 occurs only on the

alternate exit paths from s20 and s22, hence the second part of the lemma is proved. The same

arguments applies for κl−1 = 1. �

16

Now we employ the previous lemmas to prove Theorem 1 by induction.

Proof of Theorem 1. From the algorithm using Table 3, we can verify the following (cf.

Tables 4 to 7 in Appendix A):

• ϑ((1)τ , 1) = 2, those two representations are (1)τ , (111)τ . kmax,1 = 1.

• ϑ((1)τ , 2) = 3, those representations are (1)τ , (111)τ , (1011)τ . From Lemma 1, we have

ϑ((10)τ , 2) = ϑ((1)τ , 1) = 2. So, kmax,2 = 1.

• ϑ((101)τ , 3) = 5. kmax,3 = 101. The five representations are (101)τ , (11101)τ , (11)τ ,

(1111)τ , (10111)τ . The first two representations are the same representations of (100)τ

for l = 3, with 1 as the least significant sbit instead of 0. From Lemma 1, we have

ϑ((100)τ , 3) = ϑ((1)τ , 1) = 2. The remaining three representations are the same represen-

tations of (1)τ for l = 2 shifted left by τ with 1 added. Note that the representations of 1

are the negative of the representations of 1. Hence, ϑ((101)τ , 3) = ϑ((1)τ , 2) + ϑ((1)τ , 1).

• For l = 1, we can see from Table 7 that for all τNAFs k of length up to l + 3 = 4,

α(k, 3) ≤ ϑ(kmax,1, 1).

We see that, in Theorem 1, (12) and (14) are true for l = 1, (13) is true for l = 2 and (15)

is true for l = 3. Now assume that the theorem is true up to some length l − 1.

From Lemma 1, kmax,l ≡ (−1)b (mod τ), for b ∈ {0, 1}. From Lemma 3, we know that

ϑ(kmax,l, l) = ϑ

(

kmax,l − (−1)b

τ 2
, l − 2

)

+ α

(

kmax,l + (−1)b

τ
, l + 1

)

. (19)

From Lemma 2, we know that
kmax,l+(−1)b

τ
will be of length at most l + 2 and, based on our

assumption, for any τNAF k of length up to l + 2, α(k, l + 1) ≤ ϑ(kmax,l−1, l − 1) is true.

Let l be odd and k′ of length l be equal to τ 2w +
∑w−1

i=0 (−1)w−1−iτ 2i where w = l−1
2

, that is

k′ ≡ (−1)w−1 (mod τ). Then, we have k′−(−1)w−1

τ2 = τ 2(w−1)+
∑w−2

i=0 (−1)w−2−iτ 2i = kmax,l−2 (the

last equality follows from our assumption that (12) in Theorem 1 is true up to τNAFs of length

l − 1). Also, from Lemma 4, we have k′+(−1)w−1

τ
is equivalent to

∑w−1
i=0 (−1)w−iτ 2i = −kmax,l−1.

Since α(−kmax,l−1, l + 1) = ϑ(−kmax,l−1, l − 1) = ϑ(kmax,l−1, l− 1), then both terms of (19) are

maximal and, hence, k′ = kmax,l, proving (12).

Now, let l be even and k′ of length l be equal to
∑w

i=0(−1)w−iτ 2i where w = b l−1
2
c = l

2
− 1,

that is k′ ≡ (−1)w (mod τ). Then, we have k′−(−1)w

τ2 =
∑w−1

i=0 (−1)w−1−iτ 2i = kmax,l−2. Also,

from Lemma 5, k′+(−1)w

τ
is equivalent to τ 2w+2 + τ 2w +

∑w−1
i=0 (−1)w−1−iτ 2i = τ 2w+2 + kmax,l−1.

According to Lemma 6, the representations of kmax,l−1 that are of length l + 1 have their most

17

significant term equal to −τ 2w+2. Therefore, all the representations of τ 2w+2 + kmax,l−1 will be

of length at most l + 1 and can be used as representations for k′ by shifting them to the left

by one sbit and adding to them (−1)w−1. Hence, α(τ 2w+2 + kmax,l−1, l + 1) = ϑ(kmax,l−1, l− 1),

and k′ = kmax,l, proving (13).

From the previous discussion and (19), we can see that (15) is true.

Now, it remains to prove (14), that is for all τNAFs k of length up to l + 3,

α(k, l + 2) ≤ ϑ(kmax,l, l).

We have already assumed that for any τNAF k of length up to l+2, α(k, l+1) ≤ ϑ(kmax,l−1, l−
1) < ϑ(kmax,l, l) is true, where the last inequality follows from (15). Now, let k be a τNAF of

length l + 3. If k ≡ 0 (mod τ), from Lemma 1 we have,

α(k, l + 2) = α

(

k

τ
, l + 1

)

≤ ϑ(kmax,l−1, l − 1), by assumption

< ϑ(kmax,l, l).

Otherwise, if k ≡ (−1)b (mod τ), then some of the representations of k will have 1 as their

LSSB and the others will have 1. Without loss of generality, let b = 0. From Lemma 3, the

representations that end with 1 and are of length l+2, are those of k−1
τ2 that are of length l with

an appended 01. Hence, their number is α
(

k−1
τ2 , l

)

≤ ϑ(kmax,l−2, l− 2). On the other hand, the

representations of k that end with 1 and are of length l + 2 are those of k+1
τ

that are of length

l +1 with an appended 1. Their number is α(k+1
τ

, l +1) ≤ ϑ(kmax,l−1, l− 1). Note that k−1
τ2 and

k+1
τ

are τNAFs of length l + 1 and l + 2, respectively. Hence, we have

α(k, l + 2) = α(
k − 1

τ 2
, l) + α(

k + 1

τ
, l + 1)

≤ ϑ(kmax,l−2, l − 2) + ϑ(kmax,l−1, l − 1)

≤ ϑ(kmax,l, l). �

ϑ(kmax,l, l) as a Fibonacci Number

The Fibonacci numbers form a sequence defined by the following recurrence relation [11]

F (0) = 0, F (1) = 1, F (l) = F (l − 1) + F (l − 2), l > 1. (20)

The closed-form expression of Fibonacci numbers, which is known as Binet’s formula, is

F (l) =
ϕl − (1− ϕ)l

√
5

, (21)

18

where

ϕ =
1 +
√

5

2
, (22)

ϕ is known as the golden ratio.

From Theorem 1, we can see that the values of ϑ(kmax,l, l) for l ≥ 1 form a Fibonacci

sequence, where from Tables 4 and 5, we have

ϑ(kmax,1, 1) = 2 = F (3),

ϑ(kmax,1, 2) = 3 = F (4),

hence,

ϑ(kmax,l, l) = F (l + 2) =
ϕl+2 − (1− ϕ)l+2

√
5

. (23)

It is also important to notice that the recurrence relation of ϑ(kmax,l, l) in Theorem 1 is

identical to the recurrence we obtained for the maximum number of binary signed digit (BSD)

representations of an integer [3, Lemma 6]. Since the values of ϑ(kmax,l, l) for l = 1, 2 agree

with the values of δ(kmax,n, n) for n = 1, 2, respectively, in the BSD system, then the formula

we obtained for δ(kmax,n, n) is directly applicable to the τ -adic representation system. That is,

for l even, let m = l
2
, then we have

ϑ(kmax,l, l) = 3m − (m− 1)3m−2 +

(

m−3
∑

i1=1

i1

)

3m−4

−
(

m−5
∑

i1=1

i1
∑

i2=1

i2

)

3m−6 +

(

m−7
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

i3

)

3m−8 − · · · .
(24)

And for l odd, with m = l−1
2

, we have

ϑ(kmax,l, l) = 2 · 3m −
[

3m−1 + 2(m− 1)3m−2
]

+

[

(m− 2)3m−3 + 2

(

m−3
∑

i1=1

i1

)

3m−4

]

−
[(

m−4
∑

i2=1

i2

)

3m−5 + 2

(

m−5
∑

i1=1

i1
∑

i2=1

i2

)

3m−6

]

+

[(

m−6
∑

i2=1

i2
∑

i3=1

i3

)

3m−7 + 2

(

m−7
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

i3

)

3m−8

]

− · · ·

(25)

19

From the latter expressions, ϑ(kmax,l, l) appears to be O(3b
n
2
c). However, a tighter bound is

obtained from (23) and is given by O(ϕn), where the golden ratio ϕ ≈ 1.618 < 3
1

2 .

On a related note, Equations (24) and (25) can be considered another solution for the

Fibonacci number F (n− 2) (cf. (23)). The first few terms of these formulas can then be used

as an approximation to a Fibonacci number where floating point arithmetic is not available.

Corollary 1 kmax,l is unique among positive τNAFs of length up to l.

Proof. We will carry the proof by induction. We can see that this is true for l = 1 and 2 from

Tables 4 and 5, respectively. Now we assume that it is true up to some length l − 1.

We assume that kmax1,l = kmax,l as defined by (12) and (13). We want to find a τNAFkmax2,l 6=
kmax1,l such that ϑ(kmax2,l) = ϑ(kmax1,l). We know that kmax1,l ≡ (−1)b (mod τ) where

b ∈ {0, 1} and that
kmax1,l−(−1)b

τ2 = kmax,l−2, then kmax2,l = τ 2kmax,l−2 − (−1)b = τ 2kmax,l−2 +

(−1)b−1 = kmax1,l−2(−1)b where the first equality follows from Lemma 3 and assuming kmax,l−2

is unique, i.e., the only τNAFwith maximum number of representations among τNAFs of length

l − 2.

Let l be odd, then kmax2,l = τ 2w +
∑w−1

i=1 (−1)w−1−iτ 2i + (−1)w−2. According to Lemma 3

and Theorem 1, if α(
kmax2,l+(−1)w−2

τ
, l + 1) = ϑ(kmax,l−1, l − 1), then ϑ(kmax2,l) = ϑ(kmax1,l).

However,

kmax2,l + (−1)w−2 = τ 2w +
w−1
∑

i=1

(−1)w−1−iτ 2i + 2(−1)w−2

= τ 2w +
w−1
∑

i=2

(−1)w−1−iτ 2i + (−1)w−2τ 2 + (−τ 2 − τ)(−1)w−2

= τ 2w +
w−1
∑

i=2

(−1)w−1−iτ 2i − τ(−1)w−2,

where the second equality follows from the fact 2 = −τ 2 − τ on the curve E0. Note that
kmax2,l+(−1)w−2

τ
is actually a τNAF of length l − 1 that is not equal to kmax,l−1. The same

argument applies to the curve E1 where 2 = −τ 2 + τ .

Now let l be even, then kmax2,l =
∑w

i=1(−1)w−iτ 2i + (−1)w−1. We have (for the curve E0)

kmax2,l + (−1)w−1 =
w
∑

i=1

(−1)w−iτ 2i + 2(−1)w−1.

=
w
∑

i=2

(−1)w−iτ 2i + (−1)w−1τ 2 + (−τ 2 − τ)(−1)w−1

=
w
∑

i=2

(−1)w−iτ 2i − (−1)w−1τ,

20

which is τNAF of length l − 2. �

6 Average Hamming Density of the Representations

We assume that the τNAF k has been randomly chosen among all τNAFs of length m+a as was

suggested by Solinas [16]. Since the decision bit ri is also randomly chosen, the transition from

a state Si to the next state Si+1 does not depend on the previous states Si−1, Si−2, Thus,

this process is a finite Markov chain. Also it is irreducible, since every state is reachable from

every other state in a finite number of steps. And it is ergodic, as it has recurrent aperiodic

states1. Therefore, the limiting probabilities of all states can be calculated using (8).

We can write the transition matrix for the states of Table 2 as follows

T =































































































0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 1

2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
2 0 1

2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 1

2 0 0 0 0 0 0 0 0
1
4 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 1
4 0 0 0 0 0 0

0 0 1
4 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 1
4 0 0 0 0

1
8 0 1

8 0 0 0 0 0 1
4 0 1

4 0 0 0 0 0 1
8 0 1

8 0 0 0 0

0 0 0 1
8 0 1

8 0 0 0 0 0 1
4 0 1

4 0 0 0 0 0 1
8 0 1

8 0

0 0 0 1
4 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 1
4 0 0 0

0 1
8 0 1

8 0 0 0 0 0 1
4 0 1

4 0 0 0 0 0 1
8 0 1

8 0 0 0

0 0 0 0 1
8 0 1

8 0 0 0 0 0 1
4 0 1

4 0 0 0 0 0 1
8 0 1

8

0 0 0 0 1
4 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 1
4 0 0

0 0 0 0 0 0 1
4 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 1
4

0 0 0 0 0 0 0 0 1
2 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
2 0 1

2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0































































































.

1A state is said to be recurrent if it will be revisited an infinite number of times in an infinite run of the

process. A state is said to be aperiodic if it has a period 1, where the period of a state is the greatest common

divisor of the number of times a chain, starting from that state, has a nonzero probability of returning to it.

21

Let η = (η0 . . . η22) be the vector of limiting probabilities of the states of Table 2. We can

calculate the values in that vector by solving the following equations for Markov chains

ηT = η,

22
∑

j=0

ηj = 1.
(26)

This yields the following

η = (
13

1152
,

1

144
,

43

2304
,

107

1152
,

43

2304
,

1

144
,

13

1152
,

13

2304
,

9

256
,

91

1152
,

1

18
,

91

288
,

1

18
,

91

1152
,

9

256
,

13

2304
,

13

1152
,

1

144
,

43

2304
,

107

1152
,

43

2304
,

1

144
,

13

1152
).

The average Hamming density of the randomized representation can be obtained by sum-

ming the limiting probabilities of the states that have as output di = 1 or 1.

Pr(di = 1 or di = 1) = η0 + η3 + η6 + η9 + η10 + η12 + η13 + η16 + η19 + η22

= 0.5

Similarly, the transition matrix for the states of Table 3, which is for curve E0, can be

formed. By solving (26) for the matrix obtained, the vector of limiting probabilities is found

to be

η = (
1

144
,

13

1152
,

43

2304
,

107

1152
,

43

2304
,

13

1152
,

1

144
,

13

2304
,

91

1152
,

9

256
,

1

18
,

91

288
,

1

18
,

9

256
,

91

1152
,

13

2304
,

1

144
,

13

1152
,

43

2304
,

107

1152
,

43

2304
,

13

1152
,

1

144

Hence, we have

Pr(di = 1 or di = 1) = η1 + η3 + η5 + η8 + η10 + η12 + η14 + η17 + η19 + η21

= 0.5

We can see that for both curves the average Hamming density for the randomized represen-

tation is 0.5.

7 Average and Exact Number of Representations

In this section, we first show how to obtain the average number of representations for a τNAF

of length l by finding the total number of representations for all τNAFs of length l and dividing

it by the number of those τNAFs. Then, we show how the exact number of representations for

a τNAF can also be found.

22

7.1 Number of τNAFs of Length l

We first prove that the number of τNAFs of length l is the integer closest to 2l+2/3 as was

stated by Solinas [16]. That is, this number is

2l+2 − 1

3
=

l
2
∑

i=0

22i, for l even, (27)

and

2l+2 + 1

3
=

l+1

2
∑

i=0

22i+1 + 1, for l odd. (28)

The number of non adjacent sequences of length l is the number of ways of placing i non-zero

symbols in l + 1− i possible positions, such that no two non-zero symbols are adjacent, where

0 ≤ i ≤ d l
2
e. Each of the i nonzero symbols can be 1 or -1, yielding 2i choices for their values.

Hence, the number of sequences can be expressed as

dl/2e
∑

i=0

(

l + 1− i

i

)

2i. (29)

Now we will prove by induction that (29) is equivalent to (27) and (28). It can be easily

verified that this is the case for l = 0 and 1. Now assume that it is true up to some l = t − 1

where t is even. We will use the following identity [8]

(

a + 1

e

)

=

(

a

e− 1

)

+

(

a

e

)

, (30)

for any real number a and integer e, where by definition
(

a

e

)

= 0 for e < 0. (31)

If a is an integer,
(

a

e

)

= 0 for e > a. (32)

We have

t/2
∑

i=0

(

t + 1− i

i

)

2i =

t/2
∑

i=0

(

t− i

i− 1

)

2i +

t/2
∑

i=0

(

t− i

i

)

2i. (33)

The second term of (33) evaluates to

d t−1

2
e

∑

i=0

(

(t− 1) + 1− i

i

)

2i =
2t+1 + 1

3
(34)

23

by using (28).

As for the first term of (33), let j = i − 1. Note that the first term of the summation is 0

from (31). Hence, the summation becomes

t/2
∑

j=0

(

t− j − 1

j

)

2j+1 = 2

t−2

2
+1

∑

j=0

(

(t− 2) + 1− j

j

)

2j

= 2





t−2

2
∑

j=0

(

(t− 2) + 1− j

j

)

2j +

(t
2
− 1
t
2

)

2
t
2





= 2 [
2t − 1

3
+ 0]

=
2t+1 − 2

3
, (35)

using (27) and (32).

The sum of (35) and (34) yields

t/2
∑

i=0

(

t + 1− i

i

)

2i =
2t+2 − 1

3
. (36)

The proof can be similarly carried for t odd. �

One of the reviewers has suggested the following alternative and simpler proof. Let Nl be

the number of τNAFs of length l. Then N1 = 3 and N2 = 5. Now, suppose l ≥ 3. Every length

l τNAF can be obtained uniquely as (u)0, where (u) is a length l − 1 τNAF, or as (u)01 or

(u)01, where (u) is a length l− 2 τNAF. Hence, Nl = 2Nl−2 + Nl−1 from which the formula for

Nl follows immediately.

7.2 Number of Possible Representations for All τNAFs of Length l

In the following, we will consider the representations of τNAFs on the curve E1, though the

procedure we followed applies to those on the curve E0. The states of the algorithm in Ta-

ble 2, together with an initial state s0 form a nondeterministic finite automaton (NFA) Γ with

alphabet {1, 0, 1} as illustrated in Figure 1. Three directed edges labeled 1, 0 and 1 begin at

s0 and end at s4, s12 and s20, respectively. The final state of Γ is s12. Γ accepts the language

described by the regular expression (ε|1|1)(0|01|01)∗(000). This regular expression represents

non-adjacent forms when scanned from the least significant end. Three zeros are prepended in

order to ensure that the final state s12 is reached for any input NAF string as was explained in

Section 4.

24

1
/0

0/0

1/1

1/
1

0
/1

1/1

1/1

0
/1

1/1

0
/1 1

/
1

0/
0

1
/
−

0
/1

0
/1

0/−

1
/1

0
/
0

0
/1

0/0

0/0

0/1

0/1

0
/1

0/1
0/1
1/

1

0
/0

0
/0

1
/
0

1
/
0

1
/
−

0
/0

0
/1 1/0

1
/0

0
/1

1
/
0

1
/1

0
/1

0/
1

0
/1

1
/0

1
/0

0
/
0

0
/0

0
/0

0/0 1/0
1
/
0

1/1

1/
10

/1

1/1

1/1

0
/1

1/1

1/
1

0
/1

1
/
1

0/
1

0/
0

s 0

s 2
3

s 2
2

s 2

s 5

s 8

s 7

s 2
1

s 1
5

s 1
4

s 1
3

s 1
8

s 2
0

s 4

s 1
2

s 1
1

s 1
0

s 1
7

s 3

s 1

s 1
6

s 1
9

s 9

s 6

F
ig

u
re

1:
N

F
A

co
rr

es
p
on

d
in

g
to

T
ab

le
2

25

Since an NFA is a directed graph, it can be described by an adjacency matrix M = (mij)

for 0 ≤ i, j ≤ 23, such that mij = 1 if there is a directed edge from vertex i to vertex j in Γ

and 0 otherwise. The number of directed paths of length l from vertex i to vertex j is the ij-th

entry of the matrix M l.

We can also define an adjacency matrix for each input symbol. For example, M0 has a 1 in

the ij-th entry if there is a directed edge labeled 0 from vertex i to vertex j. Note that since in

the automaton considered, starting at some vertex i, there is only one edge labeled with just

one of the input symbols that ends at state j, for 0 ≤ i, j ≤ 23, and there are no edges labeled

with the empty string ε, we have

M = M1 + M0 + M1.

Therefore, in order to find all possible paths in Γ for input NAF strings of length l with

three prepended 0s, we compute

M lM3
0 (37)

and retrieve its (0,12)th entry. By computing this entry for the different values of l recom-

mended by NIST [12] (163, 233, 283, 409, 571) using MAPLE, we have deduced that it is the

integer closest to 1.304812 · 3l. The latter along with (27) and (28) gives the average number

of representations of a τNAF of length l ∈ {163, 233, 283, 409, 571} as the integer closest to

0.9786
(

3
2

)l
.

The matrix multiplication in (37) can be performed by MAPLE in 0.41 seconds for l = 163

and in 0.83 seconds for l = 571.

7.3 Exact Number of Representations for a τNAF

The use of adjacency matrices can also be extended to find the number of paths corresponding

to a specific input string. That is for a τNAF k = (κl−1, . . . , κ1, κ0)τ , the number of possible

representations is

Mκ0
Mκ1
· · ·Mκl−1

M3
0 (38)

We have included the adjacency matrices for the automaton in Figure 1 in Appendix B.

8 Conclusion

In this article, we have introduced a new method of randomizing the τ -adic representation of

a key in ECCs using Koblitz curves. The input to the randomization algorithm is a τNAF of

26

length l. The output of the algorithm is a random τ -adic sequence of the same value as the

input. The sbits of the resulting sequence are output one at a time from the least significant

to the most significant which allows the simultaneous execution of the scalar multiplication

operations. The length of the random representation is at most l + 2. We have proved that the

average Hamming density of all representations for all τNAFs of the same length is 0.5.

We have also presented the pattern of τNAFs with maximum number of representations

and the recurrence that governs the number of representations of such τNAFs and have, hence,

proved that it is a Fibonacci number and is O(ϕn), where ϕ ≈ 1.618 is the golden ratio [11].

By modeling our algorithm as a nondeterministic finite automaton and by using adjacency

matrices, we have presented a deterministic method to determine the average and the exact

number of representations of a τNAF, where the average number is very close to
(

3
2

)l
for

l ∈ {163, 233, 283, 409, 571}. It is interesting to note the similarity of the results obtained here

to those obtained for the BSD representation of integers [3].

Also of interest is to investigate how this randomization method and the associated prop-

erties of the representation can be carried to any complex radix with norm 2 or any arbitrary

norm. Note that this complex number should satisfy an equation such as (3), in order to be

able to recursively replace digits with a larger absolute value than those in the digit set with

the latter ones during the randomization procedure.

References

[1] N. Biggs. Algebraic graph theory. Cambridge University Press, 1993. 31

[2] N. Ebeid and A. Hasan. Analysis of DPA countermeasures based on randomizing the

binary algorithm. CACR Technical Reports CORR 2003-14, University of Waterloo, 2003.

5

[3] N. Ebeid and M. A. Hasan. On binary signed digit representations of integers. Designs,

Codes and Cryptography, 42:43–65, 2007. 19, 27

[4] P.-A. Fouque, F. Muller, G. Poupard, and F. Valette. Defeating countermeasures based

on randomized BSD representations. In Cryptographic Hardware and Embedded Systems

– CHES ’04, volume 3156 of LNCS, pages 312–327. Springer-Verlag, 2004. 12, 13

[5] D. M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms, 27(1):129–

146, 1998. 14

27

[6] J. Ha and S. Moon. Randomized signed-scalar multiplication of ECC to resist power

attacks. In Cryptographic Hardware and Embedded Systems – CHES ’02, volume 2523 of

LNCS, pages 551–563. Springer-Verlag, 2002. 5, 12

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, second edition, 2001. 31

[8] J. G. Kalbfleisch. Probability and Statistical Inference. Volume 1: Probability. Springer-

Verlag, 1985. 23

[9] D. E. Knuth. The Art of Computer Programming/Seminumerical Algorithms, volume 2.

Addison-Wesley, second edition, 1973. 2, 12

[10] N. Koblitz. CM curves with good cryptographic properties. In Advances in Cryptology –

CRYPTO ’91, volume 576 of LNCS, pages 279–287. Springer-Verlag, 1992. 2

[11] T. Koshy. Fibonacci and Lucas numbers with Applications. New York: Wiley, 2001. 18, 27

[12] National Institute of Standards and Technology. FIPS-186-2: Digital Signature Standard

(DSS), Jan. 2000. 26

[13] P. J. L. Sang Gyoo Sim, Dong Jin Park. New power analysis on the Ha-Moon algorithm

and the MIST algorithm. In Information and Communications Security – ICICS ’04,

volume 3269 of LNCS, pages 291–304. Springer-Verlag, 2004. 12

[14] J. Shallit. Personal communication. May, 2006. 31

[15] M. Sipser. Introduction to the theory of computation. Boston : PWS Pub. Co, 1997. 31

[16] J. A. Solinas. Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography,

19:195–249, 2000. 2, 3, 4, 5, 7, 21, 23

[17] W. M. O. Staffelbach. Efficient multiplication on certain nonsupersingular elliptic curves.

In Advances in Cryptology – CRYPTO ’92, volume 740 of LNCS, pages 333–344. Springer-

Verlag, 1993. 13

28

Appendix

A Examples

Examples of Representations

The following tables present the different representations of the “positive” τNAFs on the curve

E0 and their number.

Table 4: Representations of “positive” τNAFs of length 1.

τNAF k Representations ϑ(k, 1)

0 0 1

1 1, 111 2

Table 5: Representations of “positive” τNAFs of length 2.

τNAF k Representations ϑ(k, 2)

0 0 1

1 1, 111, 1011 3

10 10, 1110 2

Table 6: Representations of “positive” τNAFs of length 3.

τNAF k Representations ϑ(k, 3)

0 0 1

1 1, 111, 11111, 1011 4

10 10, 1110, 10110 3

101 101, 11101, 11011, 1111 4

100 100, 11100 2

101 101, 11101, 11, 1111, 10111 5

29

Table 7: Representations of “positive” τNAFs of length 4.

τNAF k Representations ϑ(k, 4)

0 0 1

1 1, 111, 11111, 101111, 1011, 111011 6

10 10, 1110, 111110, 10110 4

101 101, 11101, 101101, 11011, 101011, 1111, 111111, 100111 8

100 100, 11100, 101100 3

101 101, 11101, 101101, 11, 1111, 111111, 10111 7

1010 1010, 111010, 110110, 11110 4

1001 1001, 111001, 1111, 111111, 10111, 11 6

1000 1000, 111000 2

1001 1001, 111001, 1111, 111111, 100111, 110011 6

1010 1010, 111010, 110, 11110, 101110 5

Examples of kmax,l

Table 8 presents kmax,l and ϑ(kmax,l, l) for 1 ≤ l ≤ 13.

Table 8: “Positive” τNAFs with maximum number of representations

l kmax,l ϑ(kmax,l, l)
1 1 2
2 1 3
3 101 5
4 101 8
5 10101 13
6 10101 21
7 1010101 34
8 1010101 55
9 101010101 89
10 101010101 144
11 10101010101 233
12 10101010101 377
13 1010101010101 610

30

B Nondeterministic Finite Automata, Directed Graphs

and Adjacency Matrices

A nondeterministic finite automaton (NFA) Γ is a quintuple (Q, Σ, s0, F, δ) [7], where

• Q is a set of states,

• Σ is the alphabet (set) of input symbols,

• s0 ∈ Q is the initial state,

• F ⊂ Q is the set of final (or accepting) states,

• δ : Q × Σ → P(Q) is the transition function, where P(Q) is the powerset of Q, that is,

the set of all subsets of Q (including the empty set).

Let X be a string over the alphabet Σ, and ε be the empty string. Γ accepts the string X

if there exist both a representation of X of the form x1x2 . . . xl, xi ∈ (Σ∪ {ε}), and a sequence

of states s0, s1, . . . , sl, si ∈ Q, meeting the following conditions:

• s0 is the initial state,

• si ∈ δ(si−1, xi), for 1 ≤ i ≤ l and

• sl ∈ F . [15, Section 1.2, pp.47-63]

An NFA can be represented by a directed graph where the vertices are the states of the set

Q, and the directed edges are determined by the function δ. That is, a directed edge exists

starting at vertex si and ending at vertex sj iff sj ∈ δ(si, x), for any x ∈ Σ, and this edge will be

labeled as x. The concatenation of directed edges encountered when Γ is reading an accepted

string form a directed path.

To each directed graph, we can associate the adjacency matrix, M = (mij) for 0 ≤ i, j ≤ |Q|,
such that mij = 1 if there is a directed edge from vertex si to vertex sj in Γ and 0 otherwise.

From the definition of matrix multiplication and the concatenation of paths, the lth power of

M , i.e., M l has the number of paths of length l from vertex si to vertex sj as its ijth entry.

This is obviously true for l = 1. Next observe that any path of length l from vertex si to vertex

sj decomposes into the initial path of length l − 1 starting at si (to some intermediate vertex)

followed by a path of length 1 ending at sj, these paths are counted for all possible intermediate

vertices by the sum of the vector product of the ith row of M l−1 with the jth column of M [1,

Lemma 2.5].

Moreover, to an NFA Γ, we can associate an adjacency matrix, Mxi
, for each input symbol

xi ∈ Σ, 1 ≤ i ≤ |Σ|. Hence the number of directed paths possibly traversed when Γ reads an

accepted string X = x1x2 . . . xl can be found as the (0, f)th entry of the product [14]

Mx1
Mx2
· · ·Mxl

,

31

for each f ∈ F possibly reached when xl was read.

The following are the adjacency matrices corresponding to the automaton in Figure 1.

M =

































































0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

































































M1 =

































































0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 1 0

0 0 0 1 0

0 1 0 1 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

































































32

M0 =

































































0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

































































M1 =

































































0 1 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 1 0 1 0

0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 1 0 1

0 1 0 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

































































33

	Introduction
	Koblitz Curves and the -adic Representation
	NAFs of Length m+a and their Distribution
	Randomizing the -adic Representation of an Integer
	NAF with the Maximum Number of Representations
	Average Hamming Density of the Representations
	Average and Exact Number of Representations
	Number of NAFs of Length l
	Number of Possible Representations for All NAFs of Length l
	Exact Number of Representations for a NAF

	Conclusion
	Examples
	Nondeterministic Finite Automata, Directed Graphs and Adjacency Matrices

