
Sampling-based Runtime Verification
Borzoo Bonakdarpour, Samaneh Navabpour and Sebastian Fischmeister

Presented by: Bo Yang

�1

Outline

❖ Background"

❖ Problem description"

❖ Solutions presented in the paper"

❖ Experimental Results"

❖ Conclusion and critiques

�2

Background

❖ Runtime Verification "
❖ differs from theorem proving, model checking!

❖ differs from testing!

❖ is to check whether a run of a system under scrutiny satisfies or violates
a given correctness property"

❖ by synthesising the property to the monitor"

❖ The monitor observes and analyses the runs

�3

Background
x = 0"
y = 0"
while (cond) {"
 if (cond’) x = 0;"
 x++;"
 y++;"
}

Property: Always (x <= 10)"
safety property and monitorable

Let p denote x<=10

Synthesised Monitor

Possible runs:"
 x = 0 -> x = 1 -> x = 2 -> … > x = 10 -> x = 11 -> x = 0 -> …"
 U U U ..U.. U F"

x = 0 -> x = 1 -> x = 2 -> … > x = 10 -> x = 0 -> x = 1 -> …"
 U U U ..U.. U U U …"

U

F

�4

Background
x = 0"
y = 0"
while (cond) {"
 if (cond’) x = 0;"
 x++;"
 y++;"
}

Property: Always (x <= 10)"
safety property and monitorable

Let p denote x<=10

Synthesised Monitor

Possible runs:"
 x = 0 -> x = 1 -> x = 2 -> … > x = 10 -> x = 11 -> x = 0 -> …"
 U U U ..U.. U F"

x = 0 -> x = 1 -> x = 2 -> … > x = 10 -> x = 0 -> x = 1 -> …"
 U U U ..U.. U U U …"

U

F

x is the variable of interest

�5

Background
Control Flow Graph

�6

Background
Control Flow Graph: an example

�7

Problem Description
❖ When to invoke the monitor?"

❖ Every time value of the variables of interest change or
every fixed interval (‘event triggered’ or ‘time triggered’)"

❖ Event triggered vs. Time triggered"

❖ ‘Event triggered’ introduces unpredictable overhead, bursts of interruptions,
possible probe effect"

❖ ‘Time triggered’ results in predictable overhead, likely longer overall executing
time"

❖ In CPS application domain, predictability is highly desired. ‘Time
triggered’ monitor is a periodic task. Easy to schedule!

�8

❖ How to decide the sampling period"
❖ The naive way is to choose the minimum time that the variables of

interest change their values"

❖ Increase the sampling period by memorising the values change history"

❖ Need auxiliary memory. Trade off between auxiliary memory and sampling
period. Find the optimality!"

❖ Increasing overhead

Problem Description

�9

Solutions
❖ First, construct the critical CFG (Control Flow Graph)

from CFG"

!

!

!

!

Step1: Each critical instruction is in a basic block that contains no other instructions.
Step2: Uncritical vertices play no role in determining the sampling period. Collapse "

 uncritical vertices.

Assume each instruction takes 1 time unit to finish execution

�10

!

❖ Minimum Sample Period (MSP) = min {w(v1,v2) | (v1, v2) ∈ A ∧ v1
is a critical vertex}"

❖ For our example, MSP = 1"

❖ Applying MSP, no property violations can be overlooked."

❖ But the overhead is increased, overall execution time is increased a
lot."

!

Solution1—Applying MSP

�11

!

❖ How to build a history of critical state changes between
two samples?"
❖ Add instruments to related blocks, like a’ <— a (a is a variable) meaning

saving a to memory location a’. !

❖ Instrumenting is a technique used in software debugging, monitoring
without affecting the program’s correctness.

Solution2—Increasing SP

�12

!

❖ Collapse critical blocks."

!

!

!

!

Solution2—Increasing SP

Original Critical CFG Collapse B3 Collapse B2

4

SP = 4 SP = ∞

<B2> = <B2>.<B3>. a’ <— a

�13

!

❖ Optimization problem: minimizing auxiliary memory and maximising
sampling period"

❖ Reduced to a decision problem: Does there exist a set U⊆ V, such that
after applying collapsing all u∈U, we obtain a critical control-flow graph
CFG’ = <V’,v0, A’, w’>, where |U| <= Y and for all arcs (u,v) ∈ A’,
w’(u,v) >= X? (NP-Complete)"

❖ Mapped to ILP (integer linear programming). Minimize the number of
instrumentations while satisfying SP requirement."

❖ ILP solvers solve such problems: minimize some term while subjected to
some constraints. (e.g. 2*x+y >= 4 ∧ x+2*y>=2, minimize x+y)

Solution2—Increasing SP

�14

Solution2—Increasing SP

�15

The corresponding ILP model

…….."
!

 The goal is to

Experimental Results

For event-triggered, overhead is subjected to bursts while the overhead for sampling-based
monitors remains consistent and bounded."
!
Increased overhead for sampling-based monitors. May or may not increase the overall
execution time."
!
Adding history causes variability in data extraction overhead, but still better than event-
triggered. �16

Experimental Results

Due to the fact that more and larger variables are stored in the history between two samples "
for Blowfish, the reduction in execution time of Blowfish is less than Dijkstra."
!
The number of variables stored in the history from one sample to another does not"
significantly change in Blowfish, thus the overhead variability in Blowfish is smaller than"
that in Dijktra.

�17

Experimental Results

To increase the sampling period, the system requires negligible extra memory.

�18

Conclusions and Critiques
❖ Sampling-based approach for runtime verification is investigated, and defined

in formal terms. "

❖ Using minimum auxiliary memory to maximize the sampling period is NP-
complete. "

❖ The problem is encoded in ILP as a practical solution."

❖ Sampling-based monitoring provides a predictive overhead."

!

!

!

!

Critiques:!
1. Some programs may not be able to transformed to CFG.!
2. MSP is pessimistic ? !
3. Adding interments may result in missing deadline, thus constrained ability to increase SP.!
4. Detection delay problem.!
5. A heuristic algorithm is desired if the problem becomes too complicate for ILP solvers.

�19

