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Abstract—Employing COTS components in real-time embed-
ded systems leads to timing challenges. When multiple CPU
cores and DMA peripherals run simultaneously, contention for
access to main memory can greatly increase a task’s WCET. In
this paper, we introduce an analysis methodology that computes
upper bounds to task delay due to memory contention. First, an
arrival curve is derived for each core representing the maximum
memory traffic produced by all tasks executed on it. Arrival
curves are then combined with a representation of the cache
behavior for the task under analysis to generate a delay bound.
Based on the computed delay, we show how tasks can be feasibly
scheduled according to assigned time slots on each core.

I. INTRODUCTION

Real-time embedded systems are increasingly using
Commercial-Off-The-Shelf (COTS) components in an effort
to raise performance and lower production costs. In particular,
fast multicore CPUs and high-performance DMA peripherals
are required to service demanding applications such as video
processing that are becoming more and more popular in
markets such as avionics. Unfortunately, COTS components
are not designed with timing predictability in mind, which
makes it challenging to integrate them in real-time systems. In
particular, most COTS architectures feature a single-port main
memory that is shared among all CPU cores and peripherals.
When a task suffers a cache miss, contention for access to main
memory can significantly delay cache line fetch and greatly
increase the worst case execution time (WCET) of the task.
We performed an experiment on a standard Intel dual core
platform to understand the severity of this issue (details are
provided in Section V). We engineered a task that continuously
suffers cache misses and measured its WCET while running it
in isolation. We then added to the experiment a second copy of
the task running on the other core and a PCI-E [5] peripheral
using DMA to saturate main memory with write requests, and
measured a WCET increase of 2.96 times for the task.

Solutions to this problem have been presented in the liter-
ature. Several works (see [2], [9] for example) have proposed
modifications to either memory arbitration or cache behavior
to improve predictability, typically enforcing some TDMA
scheme; however, such modifications are incompatible with
COTS reuse. A different approach has been used in other
works, such as [11], [6], [8], [10]: they focus on estimating the
maximum delay that a task can suffer in a COTS system due
to memory interference. In particular, in [6], [8] an analytical

technique was developed to compute an upper delay bound
given a representation of peripheral traffic. Unfortunately, such
technique is only applicable to monoprocessor systems with
a single peripheral bus. The analysis employed in [10] can
compute bounds for multicore systems; however, it assumes
that cache misses can occur anywhere in the task period. As
we will show in Section IV, this can lead to overestimation.

In this paper, we introduce a novel WCET analysis frame-
work that can compute memory delay bounds for systems
comprising any number of cores and any number of peripheral
buses sharing a single main memory. In particular, we provide
two main contributions: (1) we introduce the key idea of
computing a memory traffic arrival curve for each core, given
a set of executed tasks. The arrival curve provides an upper
bound to the amount of memory traffic generated by the
core in any interval of time. (2) We describe an innovative
algorithm that computes a delay bound for a task given traffic
curves for all other cores and peripheral buses in the system.
The algorithm is able to distinguish the behavior of DMA
peripherals, whose traffic is buffered, from the behavior of
CPU cores, which stall on cache misses.

II. SYSTEM MODEL

We consider a COTS system comprised of multiples pro-
cessing cores implemented on CPU dies. Each processing
core PEi can employ one or more cache levels, but caches
are private and not shared with other cores. Cache misses
in the last cache level generate requests to the shared main
memory, which must arbitrate among simultaneous requests
by different cores. We assume that a specification for the
arbitration scheme is available, which is usually the case for
COTS components used in embedded platforms (see [3] for
example). Different types of interconnection between CPU die
and the rest of the system are availables: alternatives include
direct connection through a memory controller implemented
on the CPU die, dedicated buses (Front Side Bus) implemented
as a system chip (also known as northbridge) located on
the motherboard, and switching architectures such as AMD
HyperConnect. In general, we are not interested in covering
each and every interconnection type: in almost the totality of
systems, main memory is implemented as dynamic, single-port
RAM, and it is the main data bottleneck. Hence, in this paper
we focus our attention on the arbitration for access to main



memory, ignoring the details of the system interconnection.
We shall make vary general assumptions, namely, arbitration
can follow either a Round-Robin (RR), First-Come-First-Serve
(FCFS), or Fixed Priority (FP) scheme.

Processing cores execute periodic tasks. The set of tasks
executed on each core is static and tasks are not allowed
to migrate among cores (partitioned scheduling). We do not
assume any synchronization among schedules: each core can
run asynchronously with respect to other cores. Scheduling
follows a restrictive preemption model: the control flow graph
for each task τi is divided into a series of Si sequential
superblocks {si,1, . . . , si,Si}. Each superblock can include
branches and loops, but superblocks must be executed in
sequence. Multiple tasks executed on the same processing
core are scheduled according to fixed time slots, with a given
set of superblocks assigned to each slot. This model allows
us to bound the effect of preemptions on cache content: a
preempting task could eject τi’s instructions and data from
cache, thus increasing the number of cache misses suffered
by τi. We initially assume that the set of superblocks assigned
to each time slot is known; since preemption can only happen
between time slots, we can determine the worst case number
of cache misses in each superblock by simply assuming that
the cache is invalidated before the start of each time slot. In
Section IV-A we will show how our delay analysis can be
employed to assign superblocks to slots.

Based on these assumptions, each task τi is characterized
by a cache profile cprofi =

{
execLi,j , exec

U
i,j , µ

min
i,j , µ

max
i,j

}
.

execLi,j and execUi,j are lower and upper bounds on com-
putation times for superblock si,j assuming that memory
operations take zero time, e.g. they are the times required
to execute the instructions in the superblock. µmin

i,j , µ
max
i,j are

the minimum and maximum number of access requests to
main memory in superblock si,j . The way µmin

i,j , µ
max
i,j are

computed depends on cache architecture. In a write-back
cache, whenever a dirty cache line must be replaced, the cache
controller generates two requests to main memory: a write for
the replaced cache line, and a read for the fetched cache line.
Both requests must be accounted for in µmin

i,j , µ
max
i,j . However,

many modern architectures employ a write buffer for the last
cache level: in this case, write requests are not immediately
executed, but rather temporary stored in the write buffer. The
write buffer then takes care of writing the dirty cache line to
main memory when there is time available, e.g. the write buffer
produces requests with lower priority than cache fetches. We
provide more details on write buffer modeling in Section IV-E.

In this paper, we do not detail how to derive the cache
profile for a task. In [6], it is shown that maximum and
minimum superblock time and number of memory requests
can be obtained by either experimental measures or static
analysis. Note that in both cases, multiple execution traces
could be derived: for example, one trace could have shorter
execution time but larger number of memory requests and

another one longer execution time but less requests. To reduce
all traces to a single cache profile, we consider the maximum
execution time among all traces and the maximum number
of memory requests among all traces, independently from
each other (the same holds for minima). Note that our model
implicitly assumes that if the CPU fetch unit is delayed ∆
time units in a superblock, its computation time increases
by at most ∆. Modern CPU architectures can exhibit timing
anomalies, in the sense that it is possible to produce a trace
where the worst case computation time is produced when a
specific memory access results in a cache miss rather than a
hit; this is because the state of the pipeline depends on the
time required for each memory access. Therefore, we assume
a CPU architecture where execution time and communication
time can be decoupled [13]. If that is not possible, then
the (pessimistic) bounds computed by timing analysis must
capture all effects of timing anomalies. In particular, the worst
case execution time for a trace must be computed considering
the uncertainties in the pipeline state due the fact that each
memory access can result in either a cache hit or miss. Taking
this uncertainty into consideration ensures that given a bound
execU on the execution time for a trace, if any memory access
suffers a delay ∆, then execU + ∆ is a valid (pessimistic)
bound on the computation time for the trace.

Finally, we assume that peripheral traffic can be injected
into main memory. In a typical COTS system, peripherals are
connected through a dedicated interconnection such as the Pe-
ripheral Component Interconnect (PCI) and related standards
(PCI-X and PCI Express). We assume that each peripheral in
the system is characterized by an upper arrival curve α∗(t):
for each interval of time t, α∗(t) represent the maximum
amount of time required by the peripheral in main memory
to perform DMA operations. Note that before reaching main
memory, peripheral requests are buffered in interconnection
elements such as bridges (PCI/PCI-X) and switches (PCI
Express): as such, all peripheral requests coming from the
same interconnection must be aggregated into a single buffered
flow α∗i (t) representing the cumulative requests produced by
a given interconnection on main memory. An analysis to
aggregate peripheral traffic on the PCI bus is presented in [4].

Each processing core PEi is characterized by a parameter
Ci, which is the length in time (assumed to be fixed) needed to
service a memory request. Furthermore, for each buffered flow
and processing core / unbuffered flow we define an arbitration
parameter Li, which is the maximum length of an atomic
operation in main memory. Typically, Ci is a integer multiple
of Li. For example, if the size of a cache line and associated
fetch request is 128 bytes and memory arbitration is based on
32 bytes operations, then every memory request consists of 4
atomic operations.

Delay Analysis: In [7], [6], an analysis was introduced to
provide a bound on the delay due to cache interference caused
to a task by a single peripheral flow. In our model, more
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Fig. 1. Analysis Methodology.

than two agents can contend for access to main memory. Fur-
thermore, since processing cores are not strictly synchronized,
while a task τi is running on core PEj we do not know which
tasks are running on the other cores. To solve the problem, our
analysis follow two successive steps; in particular, we compute
a delay bound for each task running the analysis once for every
task under analysis on every processing core.

1) For each processing core PEi, we derive an upper
arrival curve to requests made by all tasks running on
PEi. In this way, each processing core is substituted
by an unbuffered flow with arrival curve αi(t): in any
interval of time t, αi(t) represents the maximum amount
of time required by tasks running on PEi to perform
operations in main memory.

2) The analysis of Section IV computes an upper delay
bound for the task under analysis given a set F of
interfering flows, e.g. all peripheral buffered flows and
the unbuffered flows for all processing cores except the
one where the task under analysis is running.

A clarifying example is shown in Figure 1 for a system with
two peripheral interconnections.

The rest of the paper is organized as follows. In Section
III we show how to derive arrival curves for each unbuffered
flow based on the cache profiles of the tasks running on the
corresponding processing core. In Section IV we introduce our
analysis and prove its correctness. In Section V we detail our
experiments and simulation results. Finally, in Section VI we
provide concluding remarks and future work. Notation used
throughout the paper is summarized in Figure 2.

III. COMPUTING ARRIVAL CURVES

A task τi causes interference to other tasks in the system
by accessing main memory according to the pattern defined
by cprofi . We specify this interference as an arrival curve [12]
by considering the superblocks of task τi and their respective
bounds on execution time and accesses to the shared resource.
Tasks execute periodically on a processing element PEi and
therefore we can derive an arrival curve that represents a tasks

Symbol Description
PEi i-th processing core
Ci max length of memory request in sec
Li max length of atomic operation in sec
τi i-th task
pi period of i-th task

cprofi cache profile for task τi
Si Number of superblocks of task τi
si,j j-th superblock of task τi

execUi,j , exec
L
i,j upper and lower exec. time of si,j

µmax
i,j , µmin

i,j max and min num. of memory requests
µ̃max
i,j , µ̃min

i,j max and min num of replacements
αi(t) unbuffered arrival curve for i-th flow
α∗i (t) buffered arrival curve for i-th flow
ᾱi(t) traffic delay curve for i-th flow
bi max backlog for i-th buffered flow
∗τ ′i sequence set for two instances of τi
t′m,d superblock set {si,m, . . . si,m+d}

γmax, γmin max and min accesses in time window
∆maxL ,∆minL length of time window with max, min

accesses and lower execution time
Dj,k max delay for superblocks {sj , . . . , sk}
Di
j,k max delay caused by i-th flow

Ubj,k computed upper bound on Dj,k

Ubij,k computed upper bound on Di
j,k

Ub
(i)
j,k upper bound on delay for {sj , . . . , sk}

caused by all flows except i-th flow
ui,jk delay term for sk, i-th flow

computed based on {sj , . . . , sk}
Fig. 2. Paper Notation.

behavior for any time window. We initially consider each
task in isolation, assuming that no other system component
accesses main memory; in Section III-B, we then show how to
derive an arrival curve for multiple tasks executed on the same
core. The derived arrival curves will be later used in Section
IV to compute a delay bound for the task under analysis. Note
that when computing the arrival curve for a core, we do not
consider the interference caused by other flows on it. As shown
in Section IV, this is because each atomic operation of the task
under analysis can be delayed for its worst case amount while
the interfering cores themselves suffer no delay.

Deriving arrival curves involves (1) computing all possi-
ble sequences of subsequent superblocks, (2) computing the
feasible time windows for each sequence, (3) computing the
minimal and maximal number of cache misses for each time
window and (4) constructing the arrival curves accordingly.

A. Single Task per Processing Element

In this section we introduce our approach to represent a
tasks accesses to a shared resource as arrival curve, assuming
a single periodic task per processing element.
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1) Computing sequences of super-blocks: Based on the
parameters cprofi of task τi, we can derive time windows
for which the minimal and maximal number of accesses to
a shared resource are known. The time windows can be
computed from the set of all possible sequences of sub-
sequent superblocks, i.e., the sequence set. As an exam-
ple, let τ1 = {s1,1, s1,2} then the sequence set is ∗τ1 =
{{s1,1}, {s1,2}, {s1,1, s1,2}}.

In order to account for the transition phase between succeed-
ing periods of a task, we consider two subsequent instances
of a task for the arrival curve derivation. Therefore we specify
τ ′i = {τi τi}, such that τ ′i = {si,1 . . . si,Si , si,1 . . . si,Si} and
∗τ ′i is the corresponding sequence set. Element t′m,d ∈ ∗τ ′
is described by the offset m, representing the index of its
first superblock from τ ′ and d, representing the number of
superblocks considered, such that:

t′m,d = {si,m, . . . , si,m+d} ∀d ∈ [0 . . . Si−1],∀m ∈ [1 . . . Si]. (1)

2) Computing time windows: Each element t′m,d ∈ ∗τ ′i
results in four different time windows, considering all combi-
nations of minimal and maximal execution times and accesses
to the shared resource respectively. Two of these time windows
represent the worst case, i.e., they represent the maximal
number of accesses for the shortest time windows. The time
windows ∆ and their corresponding number of accesses to the
shared resource γ are represented as tuples t̂ =< γ,∆ > and
we show how to compute them in Section III-A3. Accesses
to the shared resource can happen at any time during a
superblocks execution. In other words, for the first and last
super-block in a sequence t′m,d, the accesses to the shared
resource happen at the end and at the beginning respectively.
As a result, the first and last super-blocks’ execution times
execi,j are not considered for the representative time windows
but their accesses to the shared resource are considered.

Consider Fig. 3 for an example how to compute time
windows. In the first example, denoted 1 super-block,
the time window computes as zero, meaning that accesses
to the shared resource occur concurrently at one instant of
time. For example 2 super-blocks, the time window ∆
computes as the time required to process the first super-blocks
accesses, while the number of accesses γ computes as the
sum of both superblocks’ accesses. Execution times are not
considered for the time window, since in the worst case the
actual computation is performed before and after the first and
second superblock respectively. The first super-blocks accesses
to the shared resource need to be processed before the second
superblock can be activated, specifying the time window. In
other words, we arrange the accesses to the shared resource in
subsequent superblocks such that the resulting time window
is minimized, conclusively maximizing the interference onto
other tasks.

Computing the time window for elements t′m,d, whose
superblock sequence spans over the period, needs to consider
the gap g between the last superblock of a task and its period.

Example 4 super-blocks in Fig. 3 illustrates such a case.
Minimizing the gap, and deductively the time window, is done
by assuming the maximal execution time execUi,j and number
of accesses µmaxi,j for superblocks not included in t′m,d.

g(e, r) = pi −
X

∀si,j∈τi\(τi∩t′m,d)

execUi,j + µmaxi,j · Ci (2)

−
X

∀si,j∈τi∩t′m,d

execei,j + µri,j · Ci,

where e and r denote the actual values for execution time and
accesses to the shared resource, e.g., e = U and r = min.

e1,1 µ1,1 · C1   µ1,2 · C1 e1,2

p

s1,1 s1,2

1 super-block

2 super-blocks

4 super-blocks
relevant time-window

g

  e1,1µ1,1 · C1 µ1,2 · C1 e1,2

s1,1 s1,2    

Fig. 3. Computing time windows for sequences of 1, 2 and 4 super-blocks
including the gap between periods.

3) Computing the cache misses for each time window:
Time windows ∆ and the corresponding number of accesses
to the shared resource γ for an element t′m,d are computed
in Equations 3 and 4. Based on these values, the tuples for
element t′m,d ∈ ∗τ ′ are computed in Equations 5 to 6.

γmin =

m+dX
j=m

µmini,j (3)

∆minL =

m+d−1X
j=m+1

execLi,j +

m+d−1X
j=m

µmini,j · Ci (4)

t̂min
L

m,d =< γmin ; ∆minL + g(L,min) > (5)

t̂max
L

m,d =< γmax ; ∆maxL + g(L,max) > (6)

Equation 5 can be transformed into the tuple computed
with Equation 6 by simply increasing µmini,j to µmaxi,j . In other
words, they show a linear relation, since the time required
to process an access is constant and intermediate tuples can
be computed by linear approximation. For any number of
accesses to the shared resource within the range of the tuples
computed in Equations 5 and 6, we can therefore compute
a safe upper bound to the number of accesses performed in
the corresponding time window by linear approximation, see
Fig. 4.

t

∆maxL

= execL
i,j + µmax

1,1 · C1

∆minL

= execL
i,j + µmin

1,1 · C1

γmax = µmax
1,1 + µmax

1,2

γmin = µmin
1,1 + µmin

1,2

∆minL

∆maxL

γmin

γmax

Fig. 4. Linear approximation between minimum and maximum number of
accesses to the shared resource for a single super-block
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4) Deriving arrival curves: Retrieving the minimal and
maximal number of accesses to the shared resource for every
time interval ∆ = {0 . . . 2pi} from the computed tuples and
linear approximations allows to compute the arrival curve.
Consider the function δ(t̂) to return the length of the time
window and ν(t̂) to return the number of cache misses for
each tuple, then the upper arrival curve α̃i can be obtained as:

α̃i(∆) = argmax
∀t̂m,d;δ(t̂m,d)=∆

ν(t̂m,d). (7)

We construct the infinite curves α̂i as an initial aperiodic
part, that is represented by α̃i and a periodic part which is
repeated k-times for k ∈ N.

α̂i(∆) =

8>>>><>>>>:
α̃i(∆) 0 ≤ ∆ ≤ p

max

(eαi(∆), α̃i(∆− pi) +
P
∀j

(µmaxi,j )

)
pi ≤ ∆ ≤ 2p

eαi(∆− k · pi) + k
P
∀j

(µmaxi,j ) otherwise

(8)

The computational complexity to obtain the overall arrival
curves is O(S2

i ). Following the previous computation we
derive Lemma 1.

Lemma 1: Deriving alpha curve α̂i(∆) by Equation 8 is the
upper bound of accesses to a shared resource by task τi for
any time window ∆.
Arrival curve αi(t) represents the maximum amount of time a
task τi requires to perform its accesses to the shared resource
in a time window of length t and is obtained as αi(t) =
α̂i(t) · Ci.
B. Multiple Tasks per Processing Element

In this section we show how to extend the previously
shown approach to multiple tasks executing on each processing
element. Consider a set of periodic tasks T = {τ1 . . . τN}

e1,1 µ1,1 · C1   µ1,2 · C1 e1,2

s2,1 s2,2

τ1 τ2 τ3 τ1 τ2 τ3

Slot 1 Slot 2 Slot 3 Slot 1 Slot 2 Slot 3
time wheel

g

Fig. 5. Example of 3 periodic tasks executing in a static time wheel

scheduled statically, e.g., a static time slot assignment as in
Fig. 5. Then we can compute a sequence of all superblocks
that constitute tasks in T as:

σ = {s1,1 . . . s1,S1 , s2,1 . . . s2,S2 . . . sN,1 . . . sN,SN } (9)

Based on σ the sequence set ∗σ is derived, as shown in
Section III-A1. We define σ′ = {σ σ} and compute the
sequence set ∗σ′ such that t′m,d ∈ ∗σ′, resulting in two periods
of the static time wheel being considered.

Time windows are computed from the sequence set ∗σ′
following the concept presented for a single task per pro-
cessing element. We compute the maximal and minimal time
windows for any possible sequence of subsequent superblocks

in ∗σ′ and count the corresponding minimal and maximal
number of accesses to the shared resource respectively. Ele-
ments t′m,d ∈ ∗σ′ contain superblocks from different statically
scheduled tasks and therefore the gap between each tasks’ last
superblock and its period has to be considered. Similarly to
the gap g for the single task approach, minimizing the gap
results in the worst case.

Equation 2 can be rewritten to compute the gap for a
sequence of superblocks, by maximizing all the superblocks
that are not considered by element t′m,d:

g(e, r) =
X

∀τi∈t′m,d

pi −
X

∀si,j∈σ\(σ∩t′m,d)

exec
U
i,j + µ

max
i,j · Ci (10)

−
X

∀si,j∈σ∩t′m,d

exec
e
i,j + µ

r
i,j · Ci.

The tuples can now be computed as shown in Equations 5
to 6 and based on them the arrival curve can be derived as
shown in Sections III-A3 and III-A4

IV. DELAY ANALYSIS

The goal of the analysis is the derivation of worst case
delay that the task under analysis can suffer due to memory
contention given a set F of interfering flows. In this section,
we assume that the task under analysis runs in isolation on its
assigned processing core. In Section IV-A, we will cover how
superblocks can be assigned to fixed timeslices. To simplify
notation, we drop the subscript denoting the number of the task
under analysis and use cprof as its cache profile, {s1, . . . , sS}
as its superblocks and C,L as the parameters for its core. We
also use i ∈ F in place of αi ∈ F or α∗i ∈ F . Let Dj,k

be the maximum delay suffered by the task in superblocks
{sj , . . . , sk}; the overall task delay is equal to D1,S . The
analysis is based on the following main idea: we first compute
an upper bound Ubj,k to the maximum delay Dj,k for all
j, k : 1 ≤ j ≤ k ≤ S, meaning Dj,k ≤ Ubj,k. We then
progressively decrease the bound by taking the intersection of
multiple such constraints.

Since multiple flows contend with the task under analysis
for access to main memory, we divide the delay contribution
among all interfering flows. To be more precise, assume that
an atomic memory operation by the task under analysis is
requested at time t′ and first serviced at time t′′. Since we
only consider work-conserving memory arbitration schemes,
it follows that one or more interfering flows must be serviced
in interval [t′, t′′]. Suppose that a flow αi is serviced for ∆ time
units in [t′, t′′]; then we say that αi has delayed the task under
analysis ∆ time units for that memory operation. Based on this
definition, we use Di

j,k to denote the maximum total delay
caused by flow αi (or α∗i ) on all operations in superblocks
{sj , . . . , sk} and Ubij,k for its upper bound. We can then obtain
Ubj,k as follows:

Ubj,k =
∑
i∈F

Ubij,k. (11)
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Delay bound derivation depends on the memory arbitration
scheme. In details, we assume that arbitration among the task
under analysis and other unbuffered flows follows either a RR
or FCFS policy, while arbitration among those and buffered
flows follows either RR, FCFS or FP with buffered flows being
assigned lowest priority1. Arbitration effects are captured by
the following lemma.

Lemma 2: Under RR arbitration (or FP for unbuffered flows
with lowest priority), each atomic memory operation of the
task under analysis can be delayed by flow αi (or α∗i ) for
at most Li. Under FCFS arbitration, an unbuffered flow can
delay each atomic operation for at most Ci, while a buffered
flow can delay it for at most bi, where bi is the maximum time
required to service the backlog (buffered data) of the flow.

Proof: Let t′ be the time at which an atomic operation
of the task under analysis is requested, and t′′ be the time at
which it is first serviced. Under RR arbitration, the worst case
interference is produced when an atomic operation of αi (α∗i )
is serviced in [t′, t′′], resulting in a delay of Li time units.
Note that no more than one atomic operation of αi (α∗i ) can
finish in [t′, t′′], since the priority of the flow immediately
becomes lower than the priority of the task under analysis
upon finishing an atomic operation.

Consider FP arbitration, with buffered flow α∗i having
lower priority than the task under analysis. The worst case
interference is caused when an atomic operation of α∗i is first
serviced at t′ − ε, with ε > 0, resulting in a delay of Li − ε.
Note that no operation of α∗i can be first serviced in [t′, t′′],
since the flow has lower priority.

Now consider first-come-first-served arbitration for an un-
buffered flow αi. The worst case interference is produced
when the task/tasks generating αi perform a memory request,
consisting of Ci/Li atomic operations, before t′ and all
Ci/Li operations are serviced in [t′, t′′] in Ci time units.
Note that since the task/tasks stall while waiting for the last
atomic operation to complete, no more than Ci/Li outstanding
operations can be serviced in [t′, t′′]. Finally, for a buffered
flow α∗i the worst case interference is generated when the
entire backlog is requested before t′ and serviced in [t′, t′′];
since by definition bi is an upper bound to the time required
to service the backlog, the lemma follows.

Note that in a superblock sj , the number of atomic memory
operations performed by the task under analysis is at most
µmax
j

C
L . We can capture the arbitration property expressed by

Lemma 2 introducing a blocking function2 Bij .

Bij ≡


µmax
j

C
LLi for RR and FP

µmax
j

C
LCi for FCFS, unbuffered flow

µmax
j

C
L bi for FCFS, buffered flow

(12)

1This is a common optimization in system controllers for embedded
systems, see [3].

2Note that the blocking term is much larger for FCFS arbitration than
RR. This shows that the fairness added by FCFS is counterproductive in the
determination of worst-case guarantees.

We can then express a first upper delay bound as follows:
Lemma 3: Blocking Delay Bound: For each flow and su-

perblocks {sj , . . . , sk}:

Di
j,k ≤

k∑
p=j

Bip (13)

Proof: Consider RR arbitration. According to Lemma 2,
the maximum delay caused by flow αi (α∗i ) on an atomic
operation of the task under analysis is Li. The maximum
number of atomic operations in superblocks {sj , . . . , sk} is∑k
p=j µ

max
p

C
L . Therefore, the maximum delay Di

j,k caused by
αi (α∗i ) in superblocks {sj , . . . , sk} can not be greater than
(
∑k
p=j µ

max
p

C
L )Li =

∑k
p=j B

i
p.

The proof for the other arbitration cases is similar.
The bound expressed by Lemma 3 is not tight, because

each flow might not present enough traffic to cause maximum
delay to the task under analysis. We can refine the bound by
expressing a condition on the amount of service time required
by each flow in superblocks {sj , . . . , sk}. For simplicity,
let ∆maxU

j,k ≡ ∑k
p=j(exec

U
p + µmax

p C), e.g. ∆maxU

j,k is the
maximum time required to executed superblocks {sj , . . . , sk}
with no flow interference.

Lemma 4: Consider a flow αi, and let Ubj,k be an upper
bound to the total delay suffered by the task under analysis in
superblocks {sj , . . . , sk}. Then:

Di
j,k ≤ αi

(
∆maxU

j,k − C + Ubj,k
)

(14)

Proof: Let tj be the start time of superblock sj and tk+1

be the end time of superblock sk, modified by contention for
access to main memory. Furthermore, let t′ be the time the
first memory operation is requested and t′′ be the time the
last memory request is serviced in superblocks {sj , . . . , sk}.
Since Ubj,k is an upper bound to the delay suffered by the
task in {sj , . . . , sk}, it holds: tk+1 − tj ≤ ∆maxU

j,k + Ubj,k.
Furthermore, note that t′ ≥ tj and t′′ ≤ tk+1−C since the last
request takes C time to complete and must be finished before
the end of sk. It follows: t′′ − t′ ≤ ∆maxU

j,k − C + Ubj,k. By
definition, Di

j,k can not be greater than the total amount of
traffic generated by αi in interval [t′, t′′], hence the lemma
follows.

Lemma 4 holds for unbuffered flows because αi(t′′ − t′)
represents the maximum amount of service received in interval
[t′, t′′]. However, the same assumption is not true for a buffered
flow, since at time t′ there can be additional buffered data,
hence the total amount of service time required in [t′, t′′]
can be greater than αi(t′′ − t′). In [8], it is shown that the
problem can be solved by replacing each buffered flow arrival
curve α∗i (t) with a new arrival curve αi(t) = α∗i (t) + bi,
where bi is the maximum time required to service the backlog
as previously defined. Lemma 4, as well as the remaining
theorems in this section, can then be applied to both unbuffered
and buffered flows using arrival curve αi. The computation of
bi is discussed in Section IV-D.
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Fig. 6. Delay Curve ᾱi derivation.

There is a remaining issue. Based on Equation 11, the Ubj,k
term in Lemma 4 depends on the delay bound Ubij,k for flow
αi, but in turn we would like to compute Ubij,k based on the
delay bound for Di

j,k provided by Lemma 4. To solve this
mutual dependency problem, we introduce a new traffic delay
curve ᾱi(t):

ᾱi(t) ≡ max{∆|∆ = αi(t+ ∆)}. (15)

A graphical representation of the traffic delay curve is shown
in Figure 6 for a simple arrival curve αi. Intuitively, ᾱi(t) is
the ordinate of the intersection of αi(x) with the line x − t
(where t is fixed and x varies). We can then obtain Ubij,k
according to the following lemma.

Lemma 5: Traffic Delay Bound: Consider flow αi, and let
Ub

(i)
j,k ≡

∑
p∈F,p6=i Ub

p
j,k be an upper bound to the total delay

in superblocks {sj , . . . , sk} caused to the task under analysis
by all flows except flow αi. Then:

Ubij,k = ᾱi
(
∆maxU

j,k − C + Ub
(i)
j,k

)
(16)

is a valid upper bound to Di
j,k.

Proof: Let Ubij,k be an upper bound to Di
j,k. Then since

Ub
(i)
j,k + Ubij,k is a valid upper bound to Dj,k, from Lemma

4 it immediately follows that sup{∆|∆ ≤ αi(∆maxU

j,k − C +
Ubj,k + ∆)} is a valid value for Ubij,k.

To prove the lemma it is then sufficient to show that
∀t, sup{∆|∆ = αi(t + ∆)} = max{∆|∆ = αi(t + ∆)},
which is trivially true if the maximum exists for all t. Note
that this is the case because of the following properties for any
valid arrival curve αi(t): 1) limt→∞ αi(t)/t < 1 (otherwise
the generating task/tasks would not execute any instruction, or
the generating peripheral would continuously occupy the bus);
2) αi(t) is non-decreasing; 3) αi(t) is right-continous and has
a finite number of discontinuities in any finite time interval.

A better bound Ubj,k can be obtained by combining Lem-
mas 3, 5. In particular, the following theorem trivially holds.

Theorem 6: Ubij,k is a valid upper bound to Di
j,k, where:

Ubij,k = min
( k∑
p=j

Bip, ᾱi
(
∆maxU

j,k − C + Ub
(i)
j,k

))
(17)

While the Ubj,k bound computed according Theorem 6 is
a valid upper bound, it is fairly pessimistic. Note that since
Dj,k is the maximum delay for superblocks {sj , . . . , sk}, it
must hold: Dj,k ≤ Dj,q + Dq+1,k for all q : j ≤ q < k.
We can therefore refine the bound on Dj,k by considering
the minimum between Ubj,k and Ubj,q + Ubq+1,k. As an
example, consider a task with three superblocks, execU1 =
11, execU2 = 29, execU3 = 11, L = C = 1, and a single flow
with ᾱ1(t) = 2

5 t, B
1
1 = 9, B1

2 = 2, B1
3 = 9; superblocks 1

and 3 are short and have many cache misses (example: cold
misses due to calling new functions) while superblock 2 is
longer and experiences few cache misses (example: a cycle).
Then by computing Ub1,1 +Ub2,2 +Ub3,3 we obtain a delay
bound of ᾱ1(10)+B1

2 + ᾱ1(10) = 10, while computing Ub1,3
yields a bound of B1

1 +B1
2 +B1

3 = ᾱ1(11+29+11−1) = 20.
The example shows that to obtain a better bound on Dj,k,

multiple subintervals might need to be analyzed, but the
number of possible sets of subintervals is exponential in k−j.
Luckily, as it was shown in [6] for a single flow αi, there is no
need to analyze an exponential number of subinterval: rather,
it is possible to use an algorithm that only analyzes a quadratic
number of subintervals. The main idea is to compute a delay
term ui,jk for each superblock sk by iteratively checking all
superblocks in {sj , . . . , sk}. The algorithm iterates over j, k,
obtaining at each iteration a bound Ubij,k =

∑k
p=j u

i,j
p , which

uses the newly computed ui,jk term. More in details, ui,jk is
computed based on the blocking term Bik, the delay terms
ui,jj , . . . , u

i,j
k−1 and the traffic delay bound of Lemma 5 for

each subinterval {sq, . . . , sk} with j ≤ q ≤ k. By computing
a delay term ui,jk for each interfering flow i, the described main
idea allows us to produce a tighter bound than Lemmas 3, 5.
However, handling multiple flows has an added complexity:
when at iteration j, k we compute the traffic delay bound for
flow αi in any subinterval {sq, . . . , sk} according to Lemma
5, we must know the maximum delay Ub(i)q,k caused by other
flows in that subinterval. The problem can be solved using a
dynamic programming approach: instead of iterating over j, k,
we first compute delay bounds Ubj,j =

∑
i∈F Ub

i
j,j for all

j : 1 ≤ j ≤ S, then we compute a delay bound Ubj,j+1 for all
j : 1 ≤ j < S, then Ubj,j+2 and so on and so forth. As shown
in Algorithm 1, this is done by iterating over variables d, j,
obtaining at each step delay bounds Ubij,j+d, with k = j + d.

Delay term ui,jk is computed in Equation 18 as the minimum
of three delay terms: (1) term Bik for the blocking delay
bound of Lemma 3; (2) the minimum over all subinterval
{sq, . . . , sk}, with j + 1 ≤ q ≤ k, for the traffic delay bound
of Lemma 5 (the case of q = j is covered in the third term).
Assume that this term becomes minimum among all three
terms for a specific choice of q. Then Equation 18 can be
rewritten as:

k−1∑
p=q

ui,jp + ui,jk =
k∑
p=q

ui,jp = ᾱi(∆maxU

q,k − C + Ub
(i)
q,k), (19)

7



Algorithm 1 Compute {Ubj,k}
1: ∀i ∈ F,∀j, 1 ≤ j ≤ S : Ubij,j−1 := 0
2: ∀i ∈ F,∀j, 1 ≤ j ≤ S : Ub(i)j,j−1 := 0
3: for d = 0 . . . S − 1 do
4: for j = 1 . . . S − c do
5: k := j + d
6: solve the following system of equations ∀i ∈ F :

ui,jk = min
(
Bik, (18)

min
q:j+1≤q≤k

{
ᾱi
(
∆maxU

q,k − C + Ub
(i)
q,k

)
−
k−1∑
p=q

ui,jp
}
,

ᾱi
(
∆maxU

j,k − C + Ub
(i)
j,k−1 +

∑
p∈F,p6=i

up,jk
)
−
k−1∑
p=j

ui,jp

)
7: ujk :=

∑
i∈F u

i,j
k

8: ∀i ∈ F : Ubij,k := Ubij,k−1 + ui,jk
9: ∀i ∈ F : Ub(i)j,k := Ub

(i)
j,k−1 + ujk − u

i,j
k

10: Ubj,k :=
∑
i∈F Ub

i
j,k

11: end for
12: end for
13: return {Ubj,k}

where following Lemma 5, the rightmost part is an upper
bound to Di

q,k. Note that since q ≥ j + 1, it holds k− q < d,
thus the Ub

(i)
q,k values have already been computed by the

algorithm. Also note that for d = 0, j = k and there is
no valid value for q, so the term is ignored altogether. (3)
The traffic delay bound for superblocks {sj , . . . , sk}. This is
a special case of the second term for q = j: in the equation,
Ub

(i)
j,k−1 +

∑
p∈F,p6=i u

p,j
k = Ub

(i)
j,k, but we can not directly use

Ub
(i)
j,k because the up,jk values need to be computed together

with ui,jk . Hence, we actually need to solve a system of
equations computing values ui,jk for all i ∈ F simultaneously.

Finally, Lines 7-10 are used to compute all delay bounds
in O(]F ) at each step, where ]F is the number of interfering
flows. Note that the definitions in Lines 1-2 are required to
make sure that the value of Ubij,k−1, Ub

(i)
j,k−1 in Equation 18

and Lines 8-9 are zero when d = 0. Since updating all delay
variables takes linear time in the number of interfering flows,
the algorithm complexity is dominated by the complexity of
solving the system of Equation 18, which must be done O(S2)
times. A discussion of how the system can be solved and its
complexity is provided in Section IV-B. We can now show
that Algorithm 1 computes a valid upper bound Ubj,k to the
delay Dj,k in any superblock interval {sj , . . . , sk}.

Theorem 7: Assume that the system of Equations 18 al-
ways admits solution. Then for each superblock interval
{sj , . . . , sk}, Algorithm 1 computes a valid upper bound Ubj,k
to Dj,k.

Proof sketch.
We prove the theorem by induction on d. In particular, we
show that ∀i, ∀j, 1 ≤ j ≤ S − d : Ubij,j+d is a valid
upper bound to Di

j,j+d, from which it follows that Ubj,j+d =∑
p∈F Ub

p
j,j+d is an upper bound to Dj,j+d. The induction

step is split into three cases, based on which term in Equation
18 is minimal. The correctness of term (1) is proven based on
Lemma 3 and the correctness of terms (2) and (3) is based on
Lemma 5. The complete proof is reported in Appendix. 2

A. Multitasking

The analysis of Section IV can be easily extended to
a multitasking scenario where tasks are assigned to fixed
timeslices. In [7], an algorithm is introduced to compute the
minimum number of time slots of fixed length T that must
be assigned to the task under analysis. The algorithm works
by iterating over superblock sk, 1 ≤ k ≤ S: at each step, the
algorithm tries to fit sk in the current time slot. If there is not
enough time left, sk is assigned to a new time slot and the
cache profile for sk and subsequent superblocks is modified
assuming that the cache is invalid at the start of sk. The
algorithm can be reused in our model by simply substituting
the delay analysis used in [7] with our new delay analysis for
multiple flows.

B. Solving the Delay System

In this section, we detail how to solve the system of Equa-
tion 18. Due to the third term in Equation 18, each ui,jk value
depends on all other up,jk values, which must thus be computed
at the same step. We can obtain a solution for all ui,jk terms
using a recurrence: the idea is to start from a vector of values
~ujk(0) = (u1,j

k (0), . . . , ui,jk (0), . . .), where ∀i ∈ F, ui,jk (0) ≥
ui,jk . At each step of the recurrence we then compute a new
vector ~ujk(c+ 1) = (u1,j

k (c+ 1), . . . , ui,jk (c+ 1), . . .) based on
the previous vector ~ujk(c) = (u1,j

k (c), . . . , ui,jk (c), . . .) and we
show that the series converges to a fixed point that is equal
to ~ujk = (u1,j

k , . . . , ui,jk , . . .), e.g. it is the only solution to
Equation 18.

The initial element of the series is obtained as follows:

ui,jk (0) = min
(
Bik, (20)

min
q:j+1≤q≤k

{
ᾱi
(
∆maxU

q,k − C + Ub
(i)
q,k

)
−
k−1∑
p=q

ui,jp
})

;

intuitively, we compute the minimum of terms (1) and (2)
in Equation 18. Each successive element of the series is
computed based on term (3):

ui,jk (c+ 1) = min
(
ui,jk (c), (21)

ᾱi
(
∆maxU

j,k − C + Ub
(i)
j,k−1 +

∑
p∈F,p6=i

up,jk (c)
)
−
k−1∑
p=j

ui,jp

)
.
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Note that the Ub(i)j,k−1 and ui,jp values are not part of the recur-
rence because they have already been computed in Algorithm
1 at a previous step. The following theorem shows that the
iteration is correct.

Theorem 8: The series ~ujk(c) defined by Equations 20, 21
converges to ~ujk = (u1,j

k , . . . , ui,jk , . . .), which is the unique
solution to Equation 18.

Proof sketch.
In what follows, given any two delay vectors ~u′jk =
(u′1,jk , . . . , u′i,jk , . . .), ~u′′jk = (u′′1,jk , . . . , u′′i,jk , . . .), we shall
write ~u′jk ≥ ~u

′′j
k iff ∀i ∈ F, u′i,jk ≥ u′i,jk (the other comparison

operators are similarly defined, in particular, ~u′jk > ~u′′jk iff
~u′jk ≥ ~u

′′j
k ∧~u

′j
k 6= ~u′′jk ). In Appendix we obtain four results that

are used to derive the theorem: (1) ∀c ≥ 0, ~ujk(c) ≥ ~ujk(c+ 1)
(Lemma 9); (2) the ~ujk(c) series can not diverge for c → ∞
(Lemma 10). Results (1) and (2) imply that the series must
converge; let ~ujk be its fixed point. We then show that: (3) if the
series converges to a fixed point ~ujk, then ~ujk satisfies Equation
18 (Lemma 11). This implies that Equation 18 admits at least
one solution. Finally, we conclude the proof by showing that:
(4) the system of Equation 18 can not admit more than one
solution (Lemma 12). 2

A final note is relative to computational complexity. Let K
be the maximum number of iterations required by the series for
convergence. Computing the value of any traffic delay curve
ᾱi(t) for a specific t has a maximum complexity of O(S2),
the same as computing the curve. Computing the initial vec-
tor (u1,j

k (0), . . . , ui,jk (0), . . .) according to Equation 20 takes
O(]FS3); the traffic delay curve must be computed at most
O(]FS) times, while ∆maxU

q,k ,
∑k−1
p=q u

i,j
p can be computed in

constant time for each i, q by starting with q = k and accu-
mulating the values. Similarly, the whole iteration according
to Equation 21 can be computed in O(]FKS2); ∆maxU

j,k and∑k−1
p=j u

i,j
p can be obtained from the corresponding terms com-

puted in Equation 20 in constant time, and
∑
p∈F,p6=i u

p,j
k (c)

can be computed in O(]F ) at each step of the iteration using
the same strategy as in Lines 7-10 of Algorithm 1. Since
Algorithm 1 must solve Equation 18 O(S2) times, its overall
computation complexity is O

(
]FS4 max(S,K)

)
. Note that for

general traffic delay curves, the series might converge in an
infinite number of steps. In practice, as we show in Section V,
the iteration typically converges quickly in a limited number
of steps. Furthermore, following the proof of Theorem 8, it can
be shown that ∀c, i : ui,jk (c) ≥ ui,jk . Therefore, it is possible
to halt the recurrence after a fixed number of steps and still
obtain a valid upper delay bound.

C. Bound Tightness

It remains to discuss whether the {Ubj,k} bounds returned
by Algorithm 1 are tight or not, e.g. if Ubj,k = Dj,k holds for
all possible cache profiles and flows. For a system with a single
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Fig. 7. Example of non-tight bound.

flow αi, in [6] we show that the obtained Ubij,k bounds are
tight if αi(t) is a concave function. Unfortunately, in a system
with multiple flows, the bounds are not tight anymore. This is
because each Ubij,k value is maximized independently of the
delay bound Ub(i)q,k for all other flows that is used in the second
term of Equation 18. Assume that ui,jk is equal to the second
term of Equation 18 for a specific value of q. Then Ubij,k is
computed based on the assumption that traffic from all other
flows cause maximum interference in subinterval {sq, . . . , sk}.
However, in the pattern of cache interference that results in the
actual worst case delay Dj,k, the interference of flows other
than αi on {sq, . . . , sk} could be less than Ub(i)q,k, in particular
because they could cause more interference on {sj , . . . , sq−1}.
Therefore, the computed Ubij,k would be larger than the real
worse case.

A clarifying example is shown in Figure 7 for a system
with two flows α1, α2 and RR arbitration with Li = Ci =
1. The task under analysis has three superblocks {s1, s2, s3}
with execU1 = execU3 = 2, µmax

1 = µmax
3 = 2 and execU2 =

3,mumax
2 = 0. Figure 7 shows the pattern of memory requests

that results in the maximum delay D1,3 = 6 for the task under
analysis. Note that in the figure, flow α2 can not delay the task
under analysis in [12, 13] because α2(13−9) = 1, e.g. the flow
does not have enough traffic to cause a delay of 2 time units in
s3. However, running Algorithm 1 returns a bound Ub1,3 = 7.
This is because when computing u2,j

k = u2,1
3 in Equation 18

at step j = 1, k = 3, for q = 3 the algorithm uses a value
Ub

(2)
q,k = Ub13,3 = 2, while in Figure 7 flow α1 delays the task

under analysis for one time unit (Ub13,3 is a bound on the delay
for superblock s3 only, hence flow α1 has enough traffic to
delay both memory requests of the task under analysis). As a
consequence, in the algorithm superblock s3 is delayed more
than in the real worst case, allowing an additional request of
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flow α2 to delay the task under analysis.
Whether it is possible to obtain tight bounds, at least for

concave arrival curves, in polynomial time in the number
of superblocks of the task under analysis is left as an open
question. Consider the scenario in Figure 8, where we use the
same α1 function as in Figure 7 but different α2 and cache
profile, with execU1 = 0, µmax

1 = 2, execU2 = 1, µmax
2 = 0,

execU3 = 0, µmax
3 = 3. It is easy to see that to obtain the

maximum delay D1,3, flow α1 must now delay superblock s1

for one and s3 for two time units; otherwise, flow α2 could not
generate the required three units of traffic in s3. This example
shows that it can be difficult to predict which subinterval
should suffer maximum interference for each flow. In fact, we
strongly suspect that if a tight bound can be obtained, then an
exponential number of superblock intervals would need to be
examined. We plan to study this case in more details as part
of our future work.

D. Backlog computation for buffered flows

An upper bound on the backlog bi for each buffered flow α∗i
can be easily obtained using the theory of Network Calculus
[1]. Let βi be a strict service curve for α∗i , e.g. in any interval
of length t in which the flow is backlogged, βi(t) is a lower
bound to the amount of service provided by main memory to
the flow. Then:

bi ≤ sup
t≥0
{α∗i (t)− βi(t)}. (22)

It remains to compute βi. Given our assumptions, it can be
shown that βi is minimized when flow α∗i has lowest static
priority. Let α(t) be the arrival curve for the processing core
where the task under analysis is executed. It follows:

β(t) ≥ t−
∑
αi∈F

αi(t)−
∑
α∗i∈F

α∗i (t)− α(t). (23)
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Fig. 9. Measured computation time increase with two cores.

E. Handling Write Buffers

Write buffers can be included in the analysis by modeling
them as additional buffered flows. Since replacements of dirty
cache lines do not generate immediate write-back, they should
not be accounted for in µmax

i,j , µmin
i,j . Instead, we define new

values µ̃max
i,j , µ̃min

i,j to be the maximum and minimum number
of replaced cache lines in superblock si,j or equivalently, the
number of cache lines pushed to the write buffer. A buffered
arrival curve α̃∗i can then be computed for the write buffer
of processing core PEi using the methodology described in
Section III with the µ̃max

i,j , µ̃min
i,j values. The analysis of Section

IV is applied including buffered flows for all write buffers and
assigning them lowest static priority. Note that the analysis
must include a flow for the write buffer of the processing
core where the task under analysis is executed, since it can
interfere with cache fetches; however, since we know that the
task under analysis is running, the arrival curve for the write
buffer can be obtained assuming that no other task runs on the
processing core.

V. EXPERIMENTAL RESULTS AND SIMULATIONS

We performed experiments on an Intel Core microarchi-
tecture platform to understand the severity of the memory
interference problem. Using a PC COTS platform allowed us
to access PCI-E slots and easily measure task performance
using Intel performance counters; however, to obtain meaning-
ful measures we slowed down the Front Side Bus obtaining a
speed of 1Ghz for each core and a theoretical bandwidth of
2.4GB/s, which is in line with typical speeds for embedded
systems and closely mirrors the parameters used in [6].

We selected a CoreQuad CPU implementing four cores on
two joined CPU dies. The two cores on each die share level
2 cache; hence, to mirror the model described in the paper
we disabled cores PE2 and PE4 and used only one core on
each CPU die. We engineered a software task that continuously
suffers cache misses in order to measure an upper bound to the
delay suffered due to memory interference. The task allocates
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a buffer with size double its level 2 cache, and then cyclically
reads one word at a time from each cache line. This forces
the task to suffer a cache miss for every read operation; we
measured both the total duration of each task instance and the
number of cache misses, and found a cache stall time (defined
as the ratio

µmax
i,j C

execUi,j+µ
max
i,j C

, e.g. the percentage of time spent
by the time stalling with no external interference) of 92%. We
then modified the task by inserting a variable number of nop
instructions between successive reads. In this way, we obtained
versions of the task with stall time of around 15%, 30%, 45%,
60% and 75%. We ran one copy of the task with 92% stall
time on core PE1 and one copy of the task with variable stall
time on PE3, and measured the increase in computation time.

Results are reported in Figure 9 as the ratio between the
maximum measured delay and the computation time of the
task when run in isolation, obtained over 4 runs. Note that the
delay ratio for the first task increases almost linearly with
the cache stall time of the second task, peaking at a 1.1
when both tasks saturate memory with cache fetch requests.
We believe that the increase in computation time is over two
times due to additional arbitration overhead; in particular, our
platform uses DDRAM for main memory, whose response
time is highly dependent on data location. To build a safe upper
bound, a safe estimate for the time C required to service each
memory request must be used, but in practice, when the task
is run in isolation each subsequent cache fetch can often be
completed in less time, leading to a decreased computation
time. In this sense, it is important to note that the results
reported in Figure 9 are average case delays, since exactly
synchronizing the tasks to obtain the worst case interference
as described in Lemma 2 is impossible. Finally, we repeated
the experiment after adding to our testbed a custom-designed
PCI-E peripheral that continuously sends write requests to
main memory. Our developed 8-lanes PCI-E peripheral has
a theoretical throughput of 2GB/s and can therefore almost
saturate the available memory bandwidth. When running both
tasks at 92% stall time, we measured a delay ratio of 1.96,
e.g. the computation time of the measured task increased 2.96
times.

Unfortunately, the obtained experimental results can not be
directly compared to our analysis bounds because we do not
know the exact Li values nor the arbitration scheme for the
employed platform. This is typical in the PC market, where
vendors are wary of revealing full implementation details.
However, as we discussed in Section II such information is
usually available for embedded system platforms.

We also performed extensive simulations to understand how
the delay bound varies as a function of task parameters and
how fast the delay iteration of Section IV-B converges. In
particular, we decided to simulate a N-core system with RR
arbitration, C = L and one task for each core with S = 10
superblocks. Tasks are synthetically generated according to
three parameters σ, β and α. For each task and superblock,
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Fig. 10. Computed arrival curves for different α values.

we first generate execUi,j according to a uniform distribution
with mean 100C and coefficient of variation σ. We then
generate a cache stall ratio for the superblock according
to a uniform distribution with mean β and coefficient of
variation σ and compute µmax

i,j accordingly. Finally, we set
execLi,j = α execUi,j , µ

min
i,j = α µmax

i,j and we set the period to
pi = ∆maxU

1,Si
.

Figure 10 shows computed αi(t) functions for a synthetic
task τi with σ = 0.2, β = 0.1 over the interval [0, 3pi]. Three
different αi(t) functions are obtained by setting α equal to
0.4, 0.7 and 1.0 for the task. Note that for smaller values
of α, the arrival curve becomes larger. This is because the
time window computation in Section III assumes that the
maximum amount of memory requests can happen together
with the lowest execution time for each superblock; hence,
the same amount of requests can arrive in a smaller window
since execLi,j decreases with α. However, all arrival curves
eventually assume the same value at the end of each period
since the time window is constrained by the gap g between
the last superblock and the next period.

Figure 11 shows simulation results in terms of the delay
ratio between the computed upper delay bound Ub1,Si and
the WCET ∆maxU

1,Si
for the task executed on the first core in a

system with N = 4 cores. In the figure, we fix α = 0.8, σ =
0.2 and vary the cache stall parameter β in [0, 0.4] for the task
under analysis and in [0, 0.2] for the other three interfering
tasks. Each point in the graph is computed as the average
over 100 runs; each run, which involves generating the tasks,
computing arrival curves and applying Algorithm 1 took less
than a second on a modern PC.

Note that the delay ratio increases almost linearly with the
stall ratio for the interfering tasks, until it saturates at roughly
three times the stall ratio for the task under analysis (for
example, for β = 0.4 the graph saturates at a value slightly
higher than 1.2). This is expected: at a certain point, the
memory traffic generated by each interfering core becomes so
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Fig. 12. Delay ratio, σ = 0.2, α = 0.8, 8 cores.

high that the delay computed by Algorithm 1 is dominated by
the blocking factor Bij , which does not depend on flow traffic.
Also note that a stall ratio of 0.2 for the interfering tasks is
enough to cause delay saturation for a task under analysis
with stall ratio of 0.4. This is mainly because Algorithm 1
must take into account the mutual effect of multiple flows; the
delay caused by one flow can ”stretch” a superblock allowing
more interfering traffic from other flows.

Figure 12 shows a similar simulation for a system with
N = 8 cores and the same α = 0.8, σ = 0.2 parameters. Note
that the graph is very similar to the one in Figure 11, except
that it saturates at roughly seven times the stall ratio for the
task under analysis, and saturation is reached for a stall ratio
of 0.1 for the intefering tasks. Finally, while we performed
additional simulations by varying the values of α and σ, their
results are very similar to the one showed in Figures 11, 12.
This is mainly because as shown in Figure 10, independently
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Fig. 13. Max number of iterations, σ = 0.2, α = 0.8, 4 cores.

of the value of β all arrival curves reach the same value at
the end of a period. As a consequence, the graphs saturates at
roughly the same stall ratio for the interfering tasks.

Finally, in Figure 13 we plot the maximum number of steps
required for convergence by the series defined by Equations
20, 21, given the same scenario as in Figure 11. Note that
the series converged in at most 7 steps in all simulations.
This is because the delay functions ᾱi(t) obtained from the
arrival curves computed in Section III resemble step functions;
when step functions are used in the series, at least one element
ui,jk (c+1) decreases by the size of one ”step” at each iteration;
this in turn causes quick convergence. As expected, the number
of required steps is larger when the difference between the
cache stall ratio for the task under analysis and the cache stall
ratio for the interfering tasks is large, since in this case the
computed delay bound tends to be dominated by traffic delay
curves ᾱi(t).

VI. CONCLUSIONS AND FUTURE WORK

In a COTS system comprising multiple CPU cores and
DMA peripherals, contention for access to main memory
can significantly increase a task’s WCET. In this paper, we
have introduced a new analysis methodology that computes
upper bounds to the contention delay suffered by each task.
In particular, our analysis is able to abstract each interfering
core into an arrival curve which can then be combined with
peripheral traffic to yield a delay bound for the task under
analysis. The methodology is applicable to a variety of COTS
arbitration schemes and cache parameters.

As future work, we plan to extend the analysis to cover more
general cache architectures, in particular cache levels shared
among a subset of cores. Furthermore, we will investigate how
to apply the analysis to dynamic real-time schedulers such as
rate-monotonic and earliest-deadline-first.
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APPENDIX

Theorem 7: Assume that the system of Equations 18
always admits solution. Then for each superblock interval
{sj , . . . , sk}, Algorithm 1 computes a valid upper bound Ubj,k
to Dj,k.

Proof: We prove the theorem by induction on d. In
particular, we show that ∀i,∀j, 1 ≤ j ≤ S − d : Ubij,j+d
is a valid upper bound to Di

j,j+d, from which it follows that
Ubj,j+d =

∑
p∈F Ub

p
j,j+d is an upper bound to Dj,j+d.

Induction Step: Assume that ∀q, 0 ≤ q < d, ∀i,∀j, 1 ≤
j ≤ S − q : Ubij,j+q is a valid upper bound to Di

j,j+q . We
have to prove that ∀i, j : Ubij,k, with k = j + d, is an upper
bound to Di

j,k. By contradiction, assume that ∃i, j : Ubij,k is
not an upper bound to Di

j,k. Then since according to Line 8
Ubij,k = Ubij,k−1 + ui,jk , it follows that at least one of the
following two assertions is true for any pattern of memory
operations and flow traffic that produces a delay greater than
Ubij,k: the delay suffered by superblocks {sj , . . . , sk−1} due to
interference caused by flow αi is strictly greater than Ubij,k−1;
or the delay suffered by sk due to interference of αi is strictly
greater than ui,jk . However, since k − 1 − j < d, the first
assertion is impossible due to the induction hypothesis. Hence,
let the delay suffered by sk due to interference of αi be ui,jk +

∆, with ∆ > 0. We consider three cases, based on which of
the three terms in Equation 18 is minimum for ui,jk .

1) ui,jk = Bik: then applying Lemma 3 to Di
k,k it follows

∆ = 0, a contradiction.
2) Let the second term of Equation 18 be minimal for q, e.g.

ui,jk = ᾱi
(
∆maxU

q,k −C +Ub
(i)
q,k

)
−∑k−1

p=q u
i,j
p . Note that

the computation of Ub(i)j,k in Lines 7, 9 of the algorithm
is equivalent to computing Ub

(i)
j,k =

∑
p∈F,p6=i Ub

p
j,k.

Since q ≥ j + 1, it holds k − q < d, hence by the
induction hypothesis Ub(i)q,k is a valid upper bound to
the delay caused by all flows except αi on superblocks
{sq, . . . , sk}. Therefore, according to Lemma 5, the
delay caused by αi in superblocks {sq, . . . , sk} can
not be greater than ᾱi

(
∆maxU

q,k − C + Ub
(i)
q,k

)
. Now

note that we can rewrite the second term of Equation
18 as ui,jk +

∑k−1
p=q u

i,j
p = ᾱi

(
∆maxU

q,k − C + Ub
(i)
q,k

)
:

since we assumed that the delay in sk is ui,jk + ∆,
it follows that the delay in {sq, . . . , sk−1} is at most∑k−1
p=q u

i,j
p − ∆. Following Line 8 in the algorithm,

Ubij,k−1 = Ubij,q−1 +
∑k−1
p=q u

i,j
p ; due to the induction

hypothesis, Ubij,q−1 is an upper bound to the delay
caused by αi in {sj , . . . , sq−1}, hence the total delay
suffered in {sj , . . . , sk−1} is at most Ubij,k−1−∆. This
contradicts the hypothesis that Ubij,k−1 + ui,jk is not an
upper bound to Di

j,k.
3) Finally, assume that ui,jk +

∑k−1
p=j u

i,j
p = ᾱi

(
∆maxU

j,k −C+
Ub

(i)
j,k−1 +

∑
p∈F,p6=i u

p,j
k

)
. We prove that ᾱi

(
∆maxU

j,k −
C+Ub

(i)
j,k−1 +

∑
p∈F,p6=i u

p,j
k

)
is an upper bound to the

delay caused by αi in superblocks {sj , . . . , sk}, which
contradicts the hypothesis that Ubij,k = ui,jk +

∑k−1
p=j u

i,j
p

is not an upper bound to Di
j,k. This is possible ap-

plying Lemma 5 if we can show that Ub
(i)
j,k−1 +∑

p∈F,p6=i u
p,j
k =

∑
p∈F,p6=i(Ub

p
j,k−1 +up,jk ) is an upper

bound to the delay caused by all flows except αi in
{sj , . . . , sk}.
Consider flow αp, p 6= i. There are two possible cases:
a) up,jk is computed based on either term (1) or (2) in
Equation 18; b) up,jk is computed based on the third
term. For case a), we can apply the same reasoning as
in the previous two points to show that Ubpj,k is an upper
bound to the delay Dp

j,k. For case b), let F be the set of
all flows (including αi) that are computed according to
the third term. We note the following: 1) according to
Equation 18, each delay term up,jk , p ∈ F is monotone
non-decreasing in each other delay term in F; 2) due to
the definition of ᾱi(t), each up,jk term is computed as
the maximum value for which the system of equations
hold; 3) the system admits solution by hypothesis. This
implies that ∀p ∈ F : Ubpj,k = Ubpj,k−1 + up,jk is an
upper bound to the delay caused by αp in {sj , . . . , sk},
which concludes the induction step.
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Base Case: For d = 0, we have to prove that ∀i,∀j, 1 ≤ j ≤
S : Ubij,j is a valid upper bound to Di

j,j . Note that according to
the algorithm, the delay term for αi at iteration j is computed
as ui,jj = min

(
Bij , ᾱi

(
∆maxU

j,j − C +
∑
p∈F,p6=i u

p,j
j

))
. The

same arguments as in the induction step for terms (1) and (3)
in Equation 18 can be used to prove that Ubij,j = uij,j is a
valid upper bound.

Lemma 9: In the iteration defined by Equations 20, 21,
∀c ≥ 0 : ~ujk(c) ≥ ~ujk(c+ 1).

Proof: The proof trivially follows from Equation 21 since
ui,jk (c+1) is computed as the minimum of ui,jk (c) and another
term.

Lemma 10: Assume that in Algorithm 1: ∀q, 0 ≤ q <

d, ∀i, ∀j, 1 ≤ j ≤ S − q : Ubij,j+q is a valid upper
bound to Di

j,j+q . Then at step j, k of the algorithm, with
k = j + d, in the iteration defined by Equations 20, 21 it
holds: ∀c ≥ 0,∀i : ui,jk (c) ≥ 0.

Proof: We prove the lemma by induction on c. The base
case follows directly from the proof of Theorem 7, since the
first two terms of Equation 18 are computed independently
from the result of the iteration defined by Equations 20, 21.

For the induction step, assume that ∀i : ui,jk (c) ≥ 0. We
prove that ∀i : ui,jk (c + 1) ≥ 0. If according to Equation
21 , ui,jk (c + 1) = ui,jk (c), this is trivially true. Therefore,
assume that ui,jj (c + 1) +

∑k−1
p=j u

i,j
p = ᾱi

(
∆maxU

j,k − C +
Ub

(i)
j,k−1 +

∑
p∈F,p6=i u

p,j
k (c)

)
. Note that by the assumption

on the correctness of Algorithm 1 up to step q and from
Lemma 5 it follows:

∑k−1
p=j u

i,j
p ≤ ᾱi

(
∆maxU

j,k −C+Ub(i)j,k−1

)
.

Note that since αi(t) is an arrival curve, both αi(t) and
ᾱi(t) are monotonically non-decreasing. Since furthermore
by the induction hypothesis

∑
p∈F,p6=i u

p,j
k (c) ≥ 0, it holds:

ui,jj (c + 1) +
∑k−1
p=j u

i,j
p ≥

∑k−1
p=j u

i,j
p , which concludes the

proof.

Lemma 11: Assume that the series defined by Equations
20, 21 converges to a fixed point ~ujk. Then each ui,jk value
satisfies Equation 18.

Proof: Since ᾱi(t) is monotonically non-decreasing and
ui,jk (c + 1) ≤ ui,jk (c) by Lemma 9, from Equation 21 it
follows: ᾱi

(
∆maxU

j,k −C+Ub
(i)
j,k−1 +

∑
p∈F,p6=i u

p,j
k (c+1)

)
−∑k−1

p=j u
i,j
p ≤ ᾱi

(
∆maxU

j,k −C+Ub(i)j,k−1+
∑
p∈F,p6=i u

p,j
k (c)

)
−∑k−1

p=j u
i,j
p . Therefore, each ui,jk (c + 1) term can also be

computed as:

ui,jk (c+ 1) = min
(
ui,jk (0), (24)

ᾱi
(
∆maxU

j,k − C + Ub
(i)
j,k−1 +

∑
p∈F,p6=i

up,jk (c)
)
−
k−1∑
p=j

ui,jp

)
.

Since ~ujk is a fixed point, it then follows:

ui,jk = min
(
ui,jk (0), (25)

ᾱi
(
∆maxU

j,k − C + Ub
(i)
j,k−1 +

∑
p∈F,p6=i

up,jk
)
−
k−1∑
p=j

ui,jp

)
= min

(
Bik,

min
q:j+1≤q≤k

{
ᾱi
(
∆maxU

q,k − C + Ub
(i)
q,k

)
−
k−1∑
p=q

ui,jp
}
,

ᾱi
(
∆maxU

j,k − C + Ub
(i)
j,k−1 +

∑
p∈F,p6=i

up,jk
)
−
k−1∑
p=j

ui,jp

)
which is equivalent to Equation 18.

Lemma 12: The system of Equation 18 admits at most one
solution.

Proof: By contradiction, assume that both ~u′jk and ~u′′jk
are different solutions to the system of Equation 18. Let F be
the set of delay terms that have different values in ~u′jk , ~u

′′j
k ,

e.g. i ∈ F iff u′i,jk 6= u′′i,jk . Each delay term in F must be
computed according to the third term in Equation 18, since
in terms (1) and (2) ui,jk is computed independently from all
others up,jk , p 6= i.

There are two possibilities: a) ~u′jk > ~u′′jk (or ~u′′jk > ~u′jk ); b)
neither ~u′jk > ~u′′jk nor ~u′jk < ~u′′jk holds. In case a), since by
definition of ᾱi(t), each ui,jk term must be maximal, it follows
that ~u′′jk (respectively, ~u′jk ) is not a solution to Equation 18.

In case b), without loss of generality assume that∑
p∈F u

′p,j
k ≥∑p∈F u

′′p,j
k . Since ~u′jk > ~u′′jk does not hold and

the two solutions are different, then it must exist an element
i ∈ F such that u′i,jk < u′′i,jk . By definition of ᾱi(t) and since
both ~u′jk and ~u′′jk are valid solutions it follows:

u′i,jk = αi
(
∆maxU

j,k − C + Ub
(i)
j,k−1 +

k−1∑
p=j

ui,jp + (26)

+
∑

p∈F,p6=i
u′p,jk + u′i,jk

)
−
k−1∑
p=j

ui,jp

and

u′′i,jk = αi
(
∆maxU

j,k − C + Ub
(i)
j,k−1 +

k−1∑
p=j

ui,jp + (27)

+
∑

p∈F,p6=i
u′′p,jk + u′′i,jk

)
−
k−1∑
p=j

ui,jp .

Note that αi(t) is monotonically non-decreasing and further-
more the argument of αi(t) in Equation 26 is not smaller than
the argument of αi(t) in Equation 27 since by assumption∑
p∈F,p6=i u

′p,j
k + u′i,jk ≥ ∑p∈F,p6=i u

′′p,j
k + u′′i,jk . Hence, it

follows u′i,jk ≥ u′′i,jk , a contradiction.
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