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Abstract—We introduce ROC, a Rank-switching, Open-row
Controller for Double Data Rate Dynamic RAM (DDR DRAM).
ROC is optimized for mixed-criticality multicore systems using
modern DDR devices: compared to existing real-time memory
controllers, it provides significantly lower worst case latency
bounds for hard real-time tasks and higher average throughput
for soft real-time applications. The key to improved performance
is an innovative rank-switching mechanism which hides the
latency of write-read transitions in DRAM devices without
requiring unpredictable request reordering. We further employ
open-row policy to take advantage of the data caching mechanism
(row buffering) in each device. Finally, rank partitioning provides
complete timing isolation between hard and soft tasks and allows
for composable timing analysis over the number of cores and
memory ranks in the system. We evaluate ROC on both synthetic
tasks and a set of representative benchmarks.

I. INTRODUCTION

Timing analysis on real-time chip multiprocessor (CMP)
systems is made difficult by the presence of physical resources
shared among cores. While analysis methodologies have been
proposed to bound the contention for access to shared caches,
buses and main memory, they generally assume that the
latency for a single access is known and independent of other
cores. Unfortunately, deriving upper bounds on the latency
of operations in main memory is difficult because modern
CMPs tend to use Double Data Rate Dynamic RAM (DDR
DRAM), which employs complex and dynamic mechanisms:
first, DRAM has an internal caching mechanism (row buffer)
which makes locality of references important; second, DRAM
devices are divided into multiple ranks and banks that can
be accessed in parallel to different degrees. Existing real-time
memory controllers [1], [2], [3], [4] achieve predictable opera-
tion by using pre-computed command sequences that statically
divide memory accesses across multiple banks. However, such
solutions cannot take advantage of locality in the row buffer.
Furthermore, as data buses become wider, their ability to
statically exploit parallelism is diminished.

Therefore, in our previous work [5] we proposed an alter-
native direction: we introduced the first DDR DRAM latency
analysis that is able to account for dynamic parallelism in bank
accesses and row status. While the evaluation in [5] shows
that our analysis produces lower latency bounds for modern
DDR3 devices compared to existing real-time controllers, the
achievable memory bus utilization remains low. This is because
we were forced to disable a set of optimizations that are
normally used in commercial controllers, in particular write-
read request reordering, which greatly improves average case
performance but can increase latency in the worst case.

We argue that to support the next generation of real-
time and mixed-criticality CMPs, we need a new category
of architectural optimizations designed to improve both worst
case latency, which is important for hard real-time tasks, and
average case throughput, which is the main performance metric
for soft real-time computation. To this end, in this paper
we describe ROC, a Rank-switching, Open-row Controller
for DDR DRAM. ROC supports mixed-criticality systems,
where cores can be assigned to execute either hard or soft
real-time tasks, by employing an innovative rank switching
and partitioning mechanism. Rank switching greatly increases
memory bus utilization by avoiding the problem of write-
read transition latency without requiring unpredictable request
reordering. Rank partitioning provides strong isolation and
composability properties: the latency for a hard core depends
only on the number of other hard cores assigned to the same
rank, and is completely independent of soft core activity.
Hence, the arbitration for hard cores can be optimized for
worst case latency while the arbitration for soft cores can be
optimized for average case throughput. Our evaluation based
on a 4 ranks DDR3 memory device shows that execution time
of benchmarks using a competing real-time memory controller
[1] are up to 122% worse than ROC .

The rest of the paper is organized as follows. Section II
provides required background on DDR DRAM and Section
III discussed related work. Section IV details the operation
of ROC, Section V derives its latency bounds and Section
VI discusses implementation considerations. Finally, Section
VII evaluates the performance of ROC on both synthetic
and benchmark tasks and Section VIII provides concluding
remarks and future work.

II. DRAM BACKGROUND

Modern DRAM memory systems are composed of a mem-
ory controller and memory devices as shown in Figure 1. The
controller handles requests from requestors such as CPUs or
DMAs and memory devices store the actual data. The device
and controller are connected by a command bus and a data
bus. The controller has a front end that generates memory
commands associated with each request. The back end handles
command arbitration and issues commands to devices while
satisfying all timing constraints. Modern memory devices are
organized into ranks and each rank is divided into multiple
banks, which can be accessed in parallel provided that no
collisions occur on either buses. Each bank comprises a row-
buffer and an array of storage cells organized as rows1 and
columns. This paper considers devices with at least two ranks

1DRAM rows are also referred to as ’pages’ in the literature.



for our rank switching optimization to work. We also consider
devices with a single channel (i.e., a single command and data
bus); if more than one channel is present, we treat each channel
independently. Note that optimization of requestor assignments
to channels in real-time memory controllers has been discussed
in [6].
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Fig. 1: DDR DRAM Organization

To access the data in a DRAM row, an Activate (ACT)
command must be issued to load the data into the row buffer
before it can be read or written. Once the data is in the row
buffer, a CAS (read or write) command can be issued to retrieve
or store the data. If a second request needs to access a different
row within the same bank, the row buffer must be written back
to the data array with a Pre-charge (PRE) command before the
second row can be activated. Finally, a periodic Refresh (REF)
command must be issued to all ranks and banks to ensure data
integrity. The result of REF is that all row buffers are written
back to the data array (i.e., all row buffers are empty). Note
that each command takes one clock cycle on the command bus
to be serviced.

A row that is cached in the row buffer is considered open,
otherwise the row is considered closed. For the remainder of
the paper, we refer to requests that access open rows as Open
Requests and to requests that access closed rows as Close
Requests. To avoid confusion, we categorize requests as load or
store while using the terms read and write to refer to memory
commands. When a request reaches the front end, the correct
memory commands will be generated based on the status of the
row buffers. For open requests, only read or write command
are generated since the desired row is already cached in row
buffer. For close request, if row buffer contains a row that is
not the desired row, then a PRE command is generated to close
the current row. Then an ACT is generated to load the new
row and finally read/write is generated to access data.

The size of a row is large (several kB), so each request only
accesses a small portion of the row by selecting the appropriate
columns. Each CAS command accesses data in a burst of
length BL and the amount of data transferred is BL ·WBUS ,
where WBUS is the width of the data bus. Since DDR memory
transfers data on rising and falling edge of clock, the amount of
time for one transfer is tBUS = BL/2 memory clock cycles.
For example, with BL = 8 and WBUS of 64 bits, it will take
4 cycles to transfer 64 bytes of data.

The memory controller can employ one of two polices
regarding the management of row buffers. Under open row
policy, the memory controller leaves the row buffer open for
as long as possible. In contrast, close row policy automatically
pre-charges the row buffer after every request. Therefore, all
requests are treated as close requests. Finally, the controller
must map the incoming request to the correct rank, bank, row
and column. With interleaved bank mapping, each request can

access all banks in parallel. However since all requestors share
all banks, they can cause mutual interference by closing each
other’s rows. With private banks mapping, each requestor is
assigned its own bank or set of banks. Therefore, the state of
row buffers of one requestor cannot be influenced by other
requestors.

A. Timing Constraints

The memory device takes time to perform different oper-
ations and therefore timing constraints between various com-
mands must be satisfied by the controller’s back end logic.
The operation and timing constraints of memory devices are
defined by the JEDEC standard [7]. The standard defines
different families of devices, such as DDR2 and DDR32, as
well as different speed grades. As an example, Table I lists
all timing parameters of interest to our analysis, with typical
values for DDR3 and DDR2 devices.

JEDEC Specifications (cycles)
Parameters Description DDR3-

1333H
DDR2-
800E

tRCD ACT to READ/WRITE delay 9 6
tRL READ to Data Start 9 6
tWL WRITE to Data Start 7 5
tBUS Data bus transfer 4 4
tRP PRE to ACT Delay 9 6
tWR Data End of WRITE to PRE Delay 10 6
tRTP Read to PRE Delay 5 3
tRAS ACT to PRE Delay 24 18
tRC ACT-ACT (same bank) 33 24
tRRD ACT-ACT (different bank) 4 3
tFAW Four ACT Window 20 14
tRTW READ to WRITE Delay 7 6
tWTR WRITE to READ Delay 5 3
tRTR Rank to Rank Switch Delay 2 1
tRFC Time required to refresh a row 160 ns 195 ns
tREFI Refresh period 7.8 us 7.8 us

TABLE I: JEDEC Timing Constraints

Figures 2 and 3 illustrates the various timing constraints.
Square boxes represent commands issued on command bus (A
for ACT, P for PRE and R/W for Read and Write); we also
show the data being transferred on the data bus. Horizontal ar-
rows represent timing constraints between different commands
while the vertical arrow shows when each request arrives. R
denotes rank and B denotes bank in the figures. Note that
constraints are not drawn to actual scale to make the figures
easier to understand.

Figure 2 shows timing constraints related to banks within
the same rank. All three requests are closed requests targeting
Rank1. Request 1 and 3 are accessing Bank0 while Request 2
is accessing Bank1. Notice the write command of Request 2
cannot be issued immediately once the tRCD timing constraint
has been satisfied. This is because there is another timing
constraint, tRTW , between read command of Request 1 and
write command of Request 2, and the write command can
only be issued once all applicable constraints are satisfied.
Similarly, the tWTR timing constraint between the end of
the data of Request 2 and the read command of Request 3
must be satisfied before the read command is issued. Figure 3
shows timing constraints between different ranks, which only
consist of tRTR (rank-to-rank switching time). This is the time
between end of data transfer of one rank and beginning of data

2Albeit JEDEC has finalized the specification for DDR4 devices in Septem-
ber 2012, DDR4 memory controllers are not yet commonly available.
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transfer of another rank. Notice Request 3 is an open request
and does not need PRE or ACT command. Also note that all
CAS command triggers data transmission and therefore the
data bus starts transmitting data tRL or tWL after the CAS is
issued.

We make three observations. (1) The latency for a close
request is significantly longer than an open request. There
are long timing constraints involved with PRE and ACT
commands, which are not needed for open requests. (2) There
is limited bank parallelism for a single rank. Banks can not
be activated immediately one after another due to tRRD con-
straint. Even worse, only a maximum of four ACT commands
can be issued to the same rank within a time window of tFAW

(not shown in Figure 2 due to space limitations). Furthermore,
switching between read and write commands and vice-versa
incurs a costly timing penalty tRTW and tWTR. (3) There is
more parallelism with ranks because there are essentially no
constraints between different ranks other than a rank switching
penalty of tRTR. Therefore, a read can be issued to one rank
and a write can be issued to another rank without incurring
tRTW or tWTR.

III. RELATED WORK

Several predictable memory controllers have been proposed
in the literature [1], [2], [3], [4]. The most closely related
work is that of Paolieri et al. [1] and Akesson et al. [2]. The
Analyzable Memory Controller (AMC) [1] provides an upper
bound latency for memory requests in a multi-core system
by utilizing a round-robin arbiter. Predator [2] uses credit-
controlled static-priority (CCSP) arbitration [8], which assigns
priority to requests in order to guarantee minimum bandwidth
and to provide a bounded latency. Both controllers employ
interleaved banks mapping. Since under interleaved banks,
there is no guarantee that rows opened by one requestor will
not be closed by another requestor. Both controllers also use
close row policy. This results in eminently predictable timings,
but the latency can be significantly higher than controllers
using open row policy if the row hit ratio is significant.

In contrast, our previous work in [5] first proposed to
employ private bank mapping with open row policy. By using

a private bank scheme, we eliminate row interferences from
other requestors since each requestor can only access their own
banks. Therefore, each hard real-time task can be analyzed
in isolation [9] to determine the number of open and close
requests it produces. As a possible downside, this reduces
the total memory available to each requestor compared to
interleaving, and might require increasing the DRAM size;
however, such cost is typically significantly smaller than the
cost of enlarging the channel size by adding more channels.
As proved by the worst case latency analysis introduced in
[5], this approach leads to better latency bounds compared
to AMC and Predator because of two main reasons: first the
latency of open requests is much shorter than the one of close
requests in DDR3 devices. Second, interleaved bank mapping
is only suitable for memory devices with small data bus in
order to transfer data at granularity of cache block size, which
is 64 bytes on most modern platforms. However, modern data
buses can support transfer of 64 bytes without interleaving any
banks. This limits the effectiveness of interleaving any banks.

Goossens et al. [3] have recently proposed a mix-row policy
memory controller. Their approach is based on leaving a row
open for a fixed time window to take advantage of row hits.
However, this time window is relatively small compare to
an open row policy. Reineke et al. [4] propose a memory
controller that uses private bank mapping; however, their
approach still uses the close row policy along with TDMA
scheduling. Their work is part of a larger effort to develop
PTARM [10], a precision-timed (PRET [11], [12]) architecture.
The memory controller is not compatible with a standard,
COTS, cache-based architecture.

The work in [13] proposed a rank hopping algorithm to
maximize DRAM bandwidth by scheduling a read group (or
write group) to the same rank to leverage bank parallelism
until tFAW constraint is reached. At that point, another group
of CAS commands are scheduled for another rank. This way,
they amortize the rank to rank switching time across a group
of CAS commands. However, this scheduling policy inherently
re-orders requests and it is not suitable for hard real time
systems that require guaranteed latency bounds. The work in
[14] uses rank scheduling to reduce DRAM power usage by
minimizing the number of state transitions from low power to
active state.

IV. MEMORY CONTROLLER

In this section, we detail the design of ROC. As discussed
in Section III and similarly to [5], we employ an open-row
policy and assign one or more private banks to each hard
real-time requestor. Hence, the front-end of the controller can
convert requests of each hard real-time requestor independently
and in parallel to requests of other requestors. For this reason,
in this section and the next we exclusively focus on the design
and analysis of the controller back-end, assuming that the
front-end takes a constant time to process each request. We
first intuitively provide the main idea behind ROC, and then
formalize its arbitration rules.

A. Rank-Switching Mechanism

In an ideal system, we would like to achieve a data bus
utilization of 100% when the system is backlogged. In practice,
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Fig. 4: Comparison Between Arbitration with 1, 2 and 4 Ranks
for a DDR3-1333H device

due to the many timing constraints detailed in Section II, data
bus utilization is typically much lower. This is true even if all
requests are open, since tRTW and tWTR significantly increase
the timing between successive read and write commands or
vice-versa. As an example, Figure 4(a) depicts the worst-
case situation for four successive open requests of different
requestors in a single-rank system, which is an alternation of
store and load (write and read CAS commands). Note that it
takes 52 clock cycles to complete all four requests, while the
data bus is only used for 16 cycles, resulting in an utilization
of only 31%.

Our key idea is that we can improve the worst-case latency
by noticing that tRTW and tWTR do not apply between
requests that target banks in different ranks. Figure 4(b) shows
the schedule derived by assigning the four requestors to two
different ranks and alternating servicing requests to the two
ranks. Since the only constraint between requests to different
ranks is the shorter tRTR, the schedule now takes 35 cycles to
complete, a 33% improvement. Similarly, Figure 4(c) shows
the effect of assigning each requestor to a different rank. Note
that in this case, after data is started at cycle 7, we use the
data bus for 4 cycles every 6, resulting in an utilization of 2/3.
Finally, notice that alternating ranks also helps reducing the
latency of ACT commands of close requests, since the tRRD

and tFAW constraints do not apply between different ranks.

Our illustrative example shows that a rank-switching mech-
anism in the back-end can both significantly decrease the la-
tency of memory requests and increase bus utilization without
requiring us to reorder requests in the front-end, which is
unsuitable for hard real-time requestors needing guaranteed
latency bounds. The challenge is how to implement such
mechanism in a predictable way. In particular, a simple static
TDMA schedule is not suitable since requestors can dynami-
cally submit different types of requests at run-time. Instead, a
set of dynamic arbitration rules is proposed next.

B. Arbitration Rules

We consider a device with R ≥ 2 ranks. The memory
controller can support both hard and soft real-time requestors.
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Fig. 5: Back End Command Arbitration Logic

Our design goal is to minimize the latency bound of requests of
hard requestors, while simultaneously attempting to maintain
high data bus utilization and thus provided memory bandwidth
to all requestors. To this end, each rank is assigned either
to hard or to soft requestors (hard or soft rank), and each
requestor uses only one rank; let Mr, 1 ≤ r ≤ R, be the
number of requestors that use rank r. The banks in hard rank
r are statically partitioned among the Mr requestors in r,
according to the private bank principle.

Figure 5 shows an example block diagram of the command
arbitration logic in the back end, where Rank 1 is a hard rank,
Rank R is a soft rank, and M1 = 4. Arbitration is performed in
three levels. For hard ranks, commands generated by the front-
end are enqueued in the per-requestor command queues. Level
3 (L3), or Requestor Arbitration, arbitrates among requestors
within the same rank. The command at the front of the
selected requestor queue is propagated to Level 2 (L2), or Rank
Arbitration, which arbitrates among the R ranks. Note that
Level 3 and Level 2 arbitrations are split between a PA Arbiter
that handles PRE and ACT commands, which are needed
only for close requests, and a C Arbiter that handles CAS
commands, which are needed by all requests. Finally, Level 1
(L1), or Command Arbitration, simply assigns higher priority
to CAS than PRE or ACT command; i.e., if during the current
clock cycle the L2 C Arbiter propagates a CAS command
to Level 1, the Command Arbiter will issue it to the device,
otherwise, if the L2 PA Arbiter propagates a PRE/ACT the L1
Arbiter will issue it. This is done to ensure that the critical
timings of CAS commands in the rank-switching mechanism
are not disrupted by command bus contention with PRE/ACT
commands. The following rules capture the behavior of the
Level 2 arbiters and of the Level 3 arbiters for a hard rank r.

1) The command at the head of each per-requestor queue is
said to be active if all timing constraints that are caused by
previous commands of the same requestor are satisfied; in
addition, a CAS command does not become active until the
data of the previous CAS command of the same requestor
has been transmitted. In other words, an active command can
be issued immediately if there are no other requestors in the
system.

2) The L3 PA Arbiter uses a modified First-Come-First-Serve
(FCFS) arbitration; a requestor is enqueued at the back of a
FIFO queue as soon as it has an active PRE or ACT command,
and it is removed from the queue once the command is finally
issued by L1. Every clock cycle, the arbiter scans the FIFO
queue and propagates to Level 2 the first command that can



be issued (without violating timing constraints), if any. Note
that an active PRE command can always be issued; an active
ACT command could instead by blocked by tRRD or tFAW

constraints caused by other requestors.

3) The L3 C Arbiter uses standard FCFS arbitration, with a
requestor being enqueued once it has an active CAS command
and removed once the CAS command is issued by L1. The L3
C Arbiter propagates to L2 the CAS command of the first
requestor in FCFS order (if any) together with the earliest
time tSDr at which the data transmission associated with the
CAS command could be started. tSDr

is calculated based on
previous CAS commands already issued either from the same
or a different rank. Note that contrary to L3 PA Arbitration, it
is allowed to propagate a CAS command that can not yet be
issued; this is required to properly alternate among ranks.

4) The L2 PA Arbiter can use either FCFS or Round-Robin
(RR) arbitration; we adopt RR in our prototype since it is
easier to implement in hardware than FCFS.

5) The L2 C Arbiter uses a different, modified FCFS arbitra-
tion; a rank is enqueued at the back of a FIFO queue once a
new CAS command is propagated from L3, and it is removed
from the FIFO once the command is issued by L1. Let tED be
the time at which the data transmission of the last issued CAS
command will end, or has ended. Then at every clock cycle,
if for any queued rank it holds tSDr

≤ tED + tRTR, the first
such rank in FCFS order is selected. Otherwise, the first rank
in FCFS order with the smallest value of tSDr is selected. In
either case, the corresponding CAS command is propagated to
L1 only if it can be issued in the current clock cycle (without
violating timing constraints).

Note that since each requestor has at most one active
command and each L3 PA or C Arbiter only propagates one
command at a time, it follows that only one instance of each
requestor or rank can be present in a given FCFS queue; after a
command of that requestor/rank is issued by L1, the requestor
or rank can be re-enqueued at the back of the queue. Hence,
while the system is backlogged the scheme approximates a fair
arbitration where each rank is allowed to transmit once every
R times, and thus each requestor within that rank transmits
once every R ·Mr times.

Exceptions are made in Rules 2 and 5. The modified FCFS
arbitration of Rule 2 ensures that PRE commands do not have
to suffer from tRRD or tFAW constraints; if the first requestor
has an active ACT command that cannot be issued right away,
we still allow the rank to propagate a PRE command of a later
requestor, since issuing the PRE command cannot delay the
ACT command of the first requestor in any case. The modified
FCFS arbitration of Rule 5 implements the rank-switching
mechanism for CAS commands, and essentially enforces the
behavior demonstrated in Figure 5(c): as long as the “gap”
between successive data transmission is at most tRTR, ranks
are scheduled in FCFS order. However, if scheduling the first
rank would result in a longer gap (in particular, because of a
tWTR constraint), then we reorder ranks to avoid stalling the
data bus. As we show in Lemma 4, this reordering mechanism
still leads to predictable latency bounds, and in fact for many
devices, it does not increase the worst-case latency of the
postponed requestor.

We make no assumption on arbitration for soft ranks,

outside of the fact that the Level 3 arbiter will propagate at
most one issuable PRE/ACT command and one CAS command
with associated time tSDr to Level 2 every clock cycle; rank-
level arbitration ensures that the worst-case latency for a
request of a hard requestor depends only on the total number
of ranks R and the number of requestors Mr within the same
rank. Arbitration for soft requestors can be optimized for aver-
age case latency and throughput, for example using per-bank
queues rather than private banks, and employing reordering
favoring load over store and open over close requests.

C. Data Sharing

A final but important discussion is relative to data sharing.
Note that soft requestors can normally share data among each
other since we do not enforce bank partitioning for them. In the
case of hard requestors, we distinguish between two different
cases: 1) a task executed on a hard core communicates via
shared memory with other tasks executed on either different
hard cores or soft cores; 2) I/O communication where a hard
core must share I/O data with a DMA requestor.

In the first case, all communicating cores must be able to
access a shared bank partition. We support this mechanism in
the back-end by creating an additional “virtual” hard requestor
to which the shared bank partition is allocated. We then modify
the front-end to allow each communicating requestor to issue
a request to either its own bank partition, or to the shared
bank partition through the command queue of the virtual re-
questor; to guarantee predictable timing, we use RR arbitration
among the communicating cores for access to the shared bank
partition. Hence, if there are Ms cores accessing the shared
partition, the worst case delay suffered by any core is simply
Ms times the delay we compute for the virtual requestor.
However, note that since communicating requestors can close
each others’ rows, we have to assume that all requests issued
by the virtual requestor are close requests. This mechanism
works well for a significant number of existing and envisioned
real-time systems (for example, integrated modular avionics
systems), which are composed of a set of software partitions,
one for each application, and each partition is allocated on a
single core. In this case, the amount of data shared among
partitions is typically either small or zero. Note that either an
OS or a hypervisor still needs to run on all cores, hence a
shared kernel partition is always needed.

Even when the system is structured as a set of software
partitions, high-speed I/O still requires data to be shared among
cores and DMA requestors. In this case, we follow the same
approach as in [15]: we assume that a global schedule is
computed, where the execution of a software partition and each
DMA requestor that performs input/output for that partition is
not overlapped in time. As in [15], we argue that this static
I/O scheduling approach is in fact common for safety-critical
applications. We thus support I/O communication in the back-
end by treating each DMA as a separate requestor. We then
modify the front-end to allow each hard core to access either
its own private bank partition, or the partition of any DMA
requestor used by that core; the global schedule ensures that
there is no contention for access to the DMA bank partition.
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V. WORST CASE PER-REQUEST LATENCY

Based on the arbitration rules detailed in Section IV, we
now show how to derive a safe upper bound on the latency
of each memory request of a hard requestor assigned to rank
r. In particular, we consider the back end worst case latency
tReq measured from the time when a request arrives at the
front of the per-requestor command queue until its data is
transmitted. As shown in [5], such latency can then be used
to derive the overall delay suffered by a task due to main
memory contention; for example, we can use the static analysis
method described in [9] to obtain the worst-case numbers of
open/close and load/store requests, which let us derive a worst-
case request pattern for the task. Since the same strategy as in
[5] can be used to account for refresh operations, we do not
cover them here.

We adopt the DRAM latency analysis framework intro-
duced in [5]. The worst case latency tReq is decomposed into
two parts, tAC and tCD as shown in Figure 6. tAC (Arrival-to-
CAS) is the worst case interval between the arrival of a request
at the front of the per-requestor command queue and when the
corresponding CAS command becomes active. tCD (CAS-to-
Data) is the worst case interval between the CAS becoming
active and the end of data transfer. In all figures in this section,
we use a solid arrow to indicate when a request arrives at the
front of the per-requestor command queue; we use a dashed
arrow to indicate the time instant at which a command becomes
active; solid square boxes denote when commands are issued
on command bus; dashed square boxes denote commands that
are ready to be issued but cannot be issued right away due to
contention with other requestors.

For a close request, tAC includes the latency required to
process a PRE and ACT command; we thus further decompose
tAC into smaller parts as shown in Figure 7. Each part is
either a JEDEC timing constraint shown in Table I or a
parameter that we compute, as shown in Table II. tDP and
tDA determine the time at which a PRE and ACT command
becomes active, respectively. tIP and tIA represent the worst
case delay between a command becoming active and when
that command is issued, and thus capture interference caused
by other requestors. tDP , tDA as well as tAC for an open
request are computed based only on timing constraints caused
by the previous request of the requestor under analysis, and
are independent of the specific arbitration used by the memory
controller; hence, we can reuse the expressions provided in
[5]. Instead, in the following sections we will detail how to
compute tIP , tIA and tCD.

Once all timing components have been computed, the value
of tAC for a close request is obtained as:

tAC = max(tDA, tDP + tIP + tRP ) + tIA + tRCD, (1)

and for both open and close requests we simply compute the
overall latency as tReq = tAC + tCD.
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Fig. 7: Arrival-to-CAS Decomposition for Close Request

Timing Parameter Definitions
tDP End of previous DATA to PRE Active
tIP Interference Delay for PRE
tDA End of previous DATA to ACT Active
tIA Interference Delay for ACT

TABLE II: Timing Parameter Definition

A. Interference Delay for PRE and ACT Commands

Since Level 1 arbitration gives higher priority to CAS
commands, we begin by determining the maximum delay
suffered by PRE and ACT commands due to L1 arbitration. We
do so by computing a bound αC(t) on the maximum amount
of CAS commands that can be issued by L1.

Lemma 1: The worst case number of CAS commands that
can be issued by the L1 arbiter in a window of t clock cycles,
with t > 0, is:

αC(t) = 1 +
⌈ t−∆C

tBUS

⌉
, (2)

where ∆C = max(tWL + tBUS + tRTR − tRL, tBUS).

Proof: We consider the minimum distance between suc-
cessive CAS commands. Successive CAS of the same type
(read followed by read or write followed by write) are
separated by either tBUS (if targeting the same rank) or
tBUS+tRTR (if different ranks) due to data bus contention and
possibly rank to rank switch delay. Since tRL ≥ tWL for all
devices, the separation between a read and a successive write
similarly cannot be smaller than tBUS . It remains to consider
the case of a write followed by a read. If the two commands
target the same rank, then they suffer from the tWTR timing
constraints; however, if the commands target different ranks,
the minimum separation is tWL + tBUS + tRTR − tRL (see
the write command of Request 2 and the read command of
Request 3 in Figure 3), which can be shorter than tBUS .

In the worst case, one CAS command can be issued in the
first clock of the window of length t. If tWL + tBUS + tRTR−
tRL < tBUS , then the second CAS can be issued at clock cycle
1+tWL+tBUS+tRTR−tRL; if instead tWL+tBUS+tRTR−
tRL ≥ tBUS , the second CAS is issued at 1 + tBUS . Thus,
in either case ∆C is the minimum distance between the first
and second issued CAS. To conclude the proof, it suffices to
notice that after the second CAS, further CAS commands can
only be issued every tBUS clock cycles (even in the first case,
we cannot have another write to read transition immediately
after the first one, since the second command must be a read);
hence,

⌈
(t−∆C)/tBUS

⌉
correctly bounds the number of CAS

commands that can be issued after the first one.

Lemma 2: Assume that the L2 PA arbiter is backlogged.
Then the worst case time required to issue K > 0 PRE/ACT
commands by L1 is:

ᾱPA(K) = K + 1 +
⌈K + 1−∆C

tBUS − 1

⌉
. (3)



Proof: Let t̄ be the time required to issue the K com-
mands. Since the L2 PA arbiter is backlogged, it follows that
in the worst case, out of t̄ clock cycles, αC(t̄) are used to
issue CAS commands and the remaining t̄−αC(t̄) are used to
send the K PRE/ACT commands. We now show that it holds:
ᾱPA(K) = K + αC

(
ᾱPA(K)

)
, hence proving that ᾱPA(K)

is a valid bound on t̄:

K + αC

(
ᾱPA(K)

)
= K + 1 +

⌈ ᾱPA(K)−∆C

tBUS

⌉
=

K + 1 +

⌈
K + 1 +

⌈
K+1−∆C

tBUS−1

⌉
−∆C

tBUS

⌉
=

K + 1 +

⌈⌈ (K+1−∆C)(tBUS−1)+K+1−∆C

tBUS−1

⌉
tBUS

⌉
=

K + 1 +

⌈⌈ (K+1−∆C)tBUS

tBUS−1

⌉
tBUS

⌉
=

K + 1 +
⌈K + 1−∆C

tBUS − 1

⌉
= ᾱPA(K).

Note that if ∆C = tBUS , the computation of ᾱPA(K) can
be simplified: ᾱPA(K) = K +

⌈
K/(tBUS − 1)

⌉
; intuitively,

every tBUS clock cycles, one CAS command and tBUS − 1
PRE/ACT commands are issued, hence the delay is composed
of K PRE/ACT commands plus

⌈
K/(tBUS − 1)

⌉
CAS.

Using the computed formula for ᾱPA(K), we can now
express a bound on tIP , as shown by the following theorem.

Theorem 1: The worst case value for tIP is:

tIP = ᾱPA(RMr)− 1. (4)

Proof: Note that there are no interfering constraints
between the PRE under analysis and commands by other
requestors, since they must target different banks. Since fur-
thermore arbitration Rule 2 ensures that commands blocked
by timing constraints are not considered for arbitration, it
follows that the PRE under analysis can only be delayed
due to contention on the command bus, i.e., the command
bus must be continuously in use between the enqueueing of
the requestor under analysis and when its PRE command is
issued. In the worst case, when the requestor under analysis is
enqueued into the L3 PA Arbiter FCFS queue, there can be a
maximum of Mr − 1 preceding requestors in the queue. Note
that requestors enqueued after the requestor under analysis
cannot delay it; and after a PRE/ACT command is issued, the
corresponding requestor can only be re-enqueued at the end of
the queue. Hence, each other requestor in rank r can only issue
one PRE/ACT command before the requestor under analysis,
leading to a total of Mr PRE/ACT commands from rank r,
including the PRE under analysis. Furthermore, since the L2
PA Arbiter uses either FCFS or round robin arbitration, in the
worst case R−1 PRE/ACT commands of other ranks must be
issued before any command of rank r. Hence, the worst case
number of issued PRE/ACT commands is (R − 1)Mr + Mr

= RMr, and the L2 PA Arbiter is backlogged while issuing
them.

Based on Lemma 2, the worst case time required to issue all
RMr commands is then ᾱPA(RMr). To conclude the proof, it
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Fig. 8: Interference Delay for ACT command, R = 2, r = 1
and Mr = 5

suffices to notice that tIP does not include the extra clock cycle
required to transmit the PRE under analysis; hence, tIP =
ᾱC(RMr)− 1.

Note that tIP depends on the number of requestors Mr

in rank r but it is independent from the number of requestors
assigned to other ranks; this is because L2 arbitration isolates
rank r from requestors in other ranks. We will show that the
same is true for the derived tIA and tCD, hence making our
analysis composable.

We next analyze tIA. We prove that the ACT command
under analysis suffers maximal delay in the scenario shown
in Figure 8, where R = 2 and the rank under analysis is
r = 1 with Mr = 5. The worst case is produced when all
Mr − 1 other requestors of rank r enqueue an ACT command
at the same time t0 as the core under analysis, which is placed
last in the L3 PA Arbiter FCFS order. Furthermore, four ACT
commands have been completed as late as possible before t0;
this forces the first ACT after t0 to wait for tFAW − 4tRRD

before being propagated to Level 2. Once an ACT has been
propagated to L2, in the worst case it will have to wait for
R− 1 PRE/ACT commands of other ranks and for interfering
CAS commands, similarly to the case of PRE commands
in Theorem 1; we call this delay ∆IA. Finally, we need to
consider the effect of tFAW on successive ACT commands
after t0. As shown in Figure 8, since the tFAW applies from
the time when an ACT is issued to the time when the fourth
following ACT can be propagated to L2, we have to take the
maximum of either tFAW or 4tRRD + 3∆IA for every 4 ACT
of rank r issued before the one under analysis.

Theorem 2: The worst case value for tIA is:

tIA =tFAW − 4tRRD + max
(
(Mr − 1)tRRD +Mr∆IA,

KtFAW + (Mr − 1− 4K)tRRD + (Mr − 3K)∆IA

)
,

(5)
where ∆IA = ᾱPA(R)− 1 and K = b(Mr − 1)/4c.

Proof: Let t0 be the time at which the requestor with
the ACT under analysis is enqueued in the L3 PA Arbiter
FCFS queue. We show that the worst case latency for the ACT
under analysis is produced when at time t0 there are Mr − 1
other requestors enqueued before the requestor under analysis,
all with ACT commands. First note that requestors enqueued
after the ACT under analysis cannot delay it: if the ACT under
analysis is blocked by the tRRD or tFAW timing constraint,
then any subsequent requestor with an ACT command in the
L3 PA Arbiter FCFS queue would also be blocked by the
same constraint. Requestors with PRE commands enqueued
after the requestor under analysis can be issued before it
according to arbitration Rule 2 if the ACT under analysis is
blocked, but they cannot delay it because those requestors
access different banks, and there are no timing constraints



between ACT and PRE of a different bank. Furthermore, after
a PRE/ACT command is issued, the corresponding requestor
can only be re-enqueued at the end of the queue. Hence, each
of the other Mr − 1 requestors on rank r can only delay
the requestor under analysis by one command, either ACT or
PRE. A PRE command can only interfere with the ACT under
analysis due to command bus contention, i.e., one bus cycle.
On the other hand, each ACT of another requestor enqueued
before the requestor under analysis can contribute to its latency
for at least a factor tRRD, which is larger than one clock cycle
on all devices. This shows that the worst case is produced when
all other requestors on rank r have ACT commands.

Second, we show that all requestors of rank r enqueueing
their ACT command at the same time t0 is the worst case
pattern. Requestors enqueueing an ACT after t0 do not cause
interference as already shown. If a requestor enqueues an ACT
at time t0−∆ with ∆ < tRRD, the overall latency is reduced
by ∆ since the requestor cannot enqueue another ACT before
t0 due to arbitration Rule 1 (the next ACT would not be active
due to tRRD).

Third, we consider the latency of ACT commands issued
after t0 due to tRRD and L2/L1 arbitration; similarly to the
proof of Theorem 1, each ACT command of rank r can suffer
command bus contention delay of ∆IA = ᾱPA(R) − 1 (as
an example, ∆IA = 2 in Figure 8). Furthermore, once an
ACT command of rank r is issued, notice that the next ACT
command of the same rank r cannot be propagated from L3
to L2 until after the tRRD constraint has elapsed; hence, each
ACT command can take ∆IA + tRRD before being issued.

Finally, we consider the effect of the tFAW timing con-
straint. Note that a requestor could issue an ACT at or before
t0−tRRD and then enqueue another ACT at t0 before the ACT
under analysis. Due to the tFAW constraint, ACT commands
after t0 could then suffer additional delay. Since the tFAW

constraint is activated by four consecutive ACT commands, the
worst case is produced when four ACT commands are issued as
late as possible before t0, as shown in Figure 8. The first ACT
after t0 is then blocked until time t1 = t0 + tFAW − 4tRRD.
Note that similarly, the second ACT after t0 cannot be propa-
gated from L3 to L2 before t0 + tFAW − 3tRRD = t1 + tRRD

due to the same constraint; however, this constraint does not
affect the worst case pattern since the second ACT after t0
is blocked until t1 + ∆IA + tRRD anyway due to the tRRD

constraint generated by the first ACT and L2/L1 arbitration.
It remains to consider the case when tFAW is activated by
ACT commands of rank r issued after t0. Since tFAW applies
from the time when an ACT of rank r is issued to the
time when the fourth next ACT of rank r can be propagated
from L3 to L2, if the constraint is activated it effectively
replaces the delay of four tRRD constraints (generated by the
CAS that starts tFAW and the next three CAS commands
of rank r) and three ∆IA times (for each of the next three
CAS; see also the example in Figure 8). Furthermore, the
total number of tFAW constraints that can be activated for
CAS commands of rank r after t1 is K = b(Mr − 1)/4c,
since we need at least four CAS commands to block the fifth
one. In summary, if tFAW ≤ 4tRRD − 3∆IA, then tFAW

is not activated after t0 and the final bound on tIA is then
obtained by summing the delay t1 − t0, Mr − 1 times the
delay tRRD (once for each other requestor on rank r), and
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Fig. 9: Read to Read Latency, R = 2 and r = 1

Mr times the delay ∆IA (once for each other requestor on
rank r plus once for the requestor under analysis), yielding a
bound: tFAW −4tRRD + (Mr−1)tRRD +Mr∆IA. If instead
tFAW ≥ 4tRRD − 3∆IA, the bound on tIA can be obtained
as: tFAW −4tRRD +KtFAW +(Mr−1−4K)tRRD +(Mr−
3K)∆IA, where for each of the K times the tFAW constraint
is activated we replace a term 4tRRD + 3∆IA with a term
tFAW . To end the proof, it suffices to notice that in Eq.(5) we
consider the maximum of the two bounds.

B. CAS-to-Data

We now focus on computing a bound on tCD for a request
using rank r. Similarly to the case of tIA, we prove that the
current request suffers worst case interference when all Mr−1
other requestors have an active CAS command arriving at
the same time t0 as the requestor under analysis, which is
then serviced last according to FCFS arbitration. Our proof
scheme proceeds as follows. We first compute the delay for
successive CAS commands of rank r. Specifically, Lemma
3 covers the case of a read followed by a read and a write
followed by a write, while Lemma 4 covers the cases of write-
to-read transition and read-to-write transition, which are more
complex due to the tWTR and tRTW constraints. Then, Lemma
5 computes the delay for the first CAS of rank r issued after
t0. Finally, Theorem 3 uses the computed delays to derive the
final value of tCD. For figures in this subsection, the timing
constraints that contribute to the worst case latency are shown
as solid black horizontal arrows.

Lemma 3: Assume that the L3 C Arbiter for rank r prop-
agates a read command to L2 immediately after a previous
read command of rank r is issued (i.e., the L3 C Arbiter
is backlogged). Then the worst case latency between the
completion of data transmissions for the first read command
and for the second read command is:

tRRD = R(tBUS + tRTR). (6)

Similarly, for the case of a write followed by a write, the worst
case latency if tWWD = tRRD.

Proof: We prove the lemma for tRRD; the proof for
tWWD is equivalent, by exchanging read with write commands
and tRL with tWL.

Let t0 be the time at which the first read command of rank
r is issued; then by definition after t0, tED = t0 + tRL + tBUS

(see Figure 9). Since there are no timing constraints between
consecutive read commands of the same rank, the second read
command of rank r (dashed boxes in Figure 9) could start
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data transmission at time tSDr
= tED if other ranks were not

serviced before it.

After the first read command is issued at time t0, rank r will
be re-enqueued at the back of the L3 C Arbiter FIFO at time
t0 + 1; in the worst-case, R− 1 ranks can be enqueued before
the rank under analysis. Note that whenever another rank issues
a CAS command after t0, the value of tED will be updated;
due to the tRTR timing constraint between different ranks, the
value of tSDr will instead be updated to tED + tRTR (see the
example in Figure 9 after a CAS of rank 2 is issued at time t1).
In any case, the condition tSDr ≤ tED + tRTR always holds.
Due to this reason and based on Arbitration Rule 5, each of the
other R−1 ranks can issue at most one CAS command before
the second read of rank r. Furthermore, each such R− 1 data
transmissions (let us say, of rank j) must begin at most tRTR

time units after the previous data transmission has finished;
otherwise, the condition tSDj

≤ tED+tRTR would be violated
and rank j could not issue a CAS before rank r according
to Rule 5. In summary, at most R CAS commands must be
issued, including the second read of rank r, and each data
transmission incurs a delay of at most tRTR + tBUS . Hence,
the lemma follows.

Lemma 4: Assume that the L3 C Arbiter for rank r prop-
agates a read command immediately after a write command
of rank r is issued. Then the worst case latency between the
completion of data transmissions for the write command and
for the read command is:

tWRD = max(R(tBUS + tRTR),

tWTR + tRL + 2tBUS + tRTR − 1).
(7)

Similarly, for the case of a read followed by a write, the worst
case latency is:

tRWD = max(R(tBUS + tRTR),

tRTW + tWL − tRL + tBUS + tRTR − 1).
(8)

Proof: We first compute tWRD. Let t0 be the time
at which the write command of rank r is issued; then by
definition, the C Arbiters set tED = t0 + tWL + tBUS (see
Figure 10). Due to the tWTR constraint, the L3 C Arbiter of
rank r will also set a time tSDr

= tED +∆ for the start of the
successive read command, with ∆ = tWTR+tRL. Since tWTR

and tRL are larger than tRTR and differently from Lemma 3,
we have tSDr > tED +tRTR. We consider two possible cases.

Case a): in this case, the read command of rank r is de-
layed by a CAS command of another rank j enqueued after r in
the L2 C Arbiter FCFS order. This is possible if tSDj

< tSDr
;

in the worst case shown in Figure 10, tSDj
= tSDr

− 1,
resulting in a latency tWRD = ∆− 1 + tBUS + tRTR + tBUS .
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Note that after the rank under analysis is delayed by a
command of j, it will hold tSDr

= tED + tRTR and thus
rank r cannot be delayed by another rank enqueued after it.

Case b): the read command of rank r is delayed by CAS
commands of ranks enqueued before r in the L2 C Arbiter
FIFO, similarly to the case in Lemma 3. Note that for a rank
j to be enqueued before r in the FIFO, the CAS command of
rank j must have been propagated to Level 2 before or at time
t0 + 1 (dashed arrow for Rank 1 in Figure 11). We distinguish
two subcases: 1) the CAS command of rank j is not delayed by
a tWTR timing constraint. In this case, the data transmissions
of rank j can start at tED + tRTR. For example, see Rank 3 in
Figure 11. 2) A previous write command of rank j has been
issued before t0, and the successive read command is thus
delayed by the tWTR constraint (Rank 2 in Figure 11). In this
case, the read command of rank j could be associated with a
value tSDj

> tED+tRTR. However, since the preceding write
command of rank j must have completed its data transmission
at least tBUS + tRTR before the write command of rank r
completes its data transmission, it must also hold that the
difference between tSDj and tSDr is at least tBUS+tRTR (see
the dotted boxes in Figure 11). Hence, rank j alone cannot
delay the read command of rank r, unless there are other
ranks that can start data transmission at tED + tRTR. In either
subcase, it follows that the read of rank r can only be delayed
if other ranks continuously transmit data every tBUS + tRTR

time units starting at tED + tRTR. Furthermore, following the
same reasoning as in Lemma 3, in this case no rank enqueued
after rank r can cause delay on r. Hence, we obtain the same
expression as for tRRD, i.e., tWRD = R(tBUS + tRTR).
Finally, taking the maximum of Case a) and b) yields Eq.(7).

For tRWD, it suffices to note that the distance ∆ between
the end of data transmission for the read and the start of data
for the successive write is ∆ = tRTW + tWL − tRL − tBUS

(see Request 1 and Request 2 in Figure 2). Again, taking the
maximum of Case a) and b) yields Eq.(8).

It is interesting to note that for the DDR3-1333H device in
Table I and for R = 4, the term R(tBUS + tRTR) in Eq.(7),
(8) is maximal, meaning tWRD = tRWD = tRRD = tWWD;
hence, in this condition ROC guarantees a data bus utilization
of tBUS/(tBUS + tRTR) = 2/3 to a backlogged system, and
furthermore the worst-case latency is completely unaffected by
the tWTR and tRTW timing constraints.

Lemma 5: Assume that a CAS of the requestor under
analysis in rank r becomes active at time t0, and that at t0
there are other Mr− 1 requestors with active CAS commands
before it in the L3 C Arbiter FCFS order. Then if the first
CAS of rank r issued after t0 is a read, the worst case latency
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between t0 and the completion of data transmission for the
first read command is:

tRD = max(tRL + tBUS − 1 +R(tBUS + tRTR),

tWTR + tRL + 2tBUS + tRTR − 1);
(9)

otherwise if the first CAS is a write, the worst case latency is:

tWD = tRL + tBUS − 1 +R(tBUS + tRTR). (10)

Proof: Assume that the first CAS of rank r issued after
t0 is a read. Similarly to Lemma 2, in the worst case a
requestor of rank r can complete its previous data transmission
at time t0 and still be enqueued at t0 before the requestor
under analysis in the FCFS order of the L3 C Arbiter. If that
previous transmission is a write, then the first read of rank r
after t0 is delayed by the tWTR constraint and cannot start
transmitting data until t0 + ∆ with ∆ = tWTR + tRL (refer to
the dotted read in Figure 12). We again consider two cases
as in Lemma 4. In Case b), the read is delayed by ranks
enqueued before r. The worst case situation is represented
in Figure 12: a rank j could issue a CAS at time t0 − 1
(in particular, a read since tRL ≥ tWL), and then again
be enqueued in the L2 C Arbiter at time t0 before rank r.
In this situation, the read under analysis suffers a delay of
tRL − 1 + tBUS from the CAS issued at time t0 − 1, plus
a delay tBUS + tRTR to issue R CAS commands after t0,
yielding a latency tRL + tBUS − 1 +R(tBUS + tRTR). Case
a) is equivalent to to the one in Lemma 4: the read is delayed
by a CAS of a rank enqueued after rank r in the FCFS order
of the L2 C Arbiter, which starts transmitting at t0 + ∆ − 1,
resulting in a total latency ∆ + 2tBUS + tRTR− 1 (notice this
case is not represented in the figure). It now suffices to notice
that Eq. (9) takes the maximum of the latency terms for the
two cases.

Next, assume that the first CAS of rank r issued after t0
is a write; this situation is shown in Figure 13. Since it holds
tRTW ≤ tRL + tBUS for all devices, the data transmission of
the first write could start at t0 +tWL. Since again tRL ≥ tWL,
it is easy to see that here Case b) always dominates Case a)

(the read of Rank 2 issued at time t0 − 1 starts transmitting
at t0 + tRL − 1, which is the same time or later than the
time t0 + tWL − 1 at which the interfering rank would start
transmitting in Case a) ), yielding Eq.(10).

Theorem 3: The worst case CAS-to-Data latency for a
write or read command, respectively, is:

tWrite
CD =

⌈Mr − 1

2

⌉
tRWD +

⌊Mr − 1

2

⌋
tWRD+

{tRD if Mr is even or tWD if Mr is odd};
(11)

tRead
CD =

⌈Mr − 1

2

⌉
tWRD +

⌊Mr − 1

2

⌋
tRWD+

{tWD if Mr is even or tRD if Mr is odd}.
(12)

Proof: Let t0 be the time at which the CAS of the
requestor under analysis becomes active. We will prove that
the pattern of Lemma 5 is the worst case, and furthermore, that
the latency is maximized by an alternation of read and write
commands by the Mr requestors of rank r (including the one
under analysis). Note that if the requestor under analysis issues
a read, then in an alternating sequence of Mr commands there
are
⌈
(Mr − 1)/2

⌉
write-to-read transitions and

⌊
(Mr − 1)/2

⌋
read-to-write transitions, vice-versa for a write; furthermore,
the L3 C Arbiter must be backlogged from t0 until issuing
the CAS under analysis, hence we can compute the overall
latency by adding the corresponding delay terms computed in
Lemmas 3, 4, 5. This yields Eq. (11), (12).

We start by considering the worst case initial pattern for
rank r, as described in Lemma 5. Clearly, tCD increases
with the number of requestors of rank r enqueued before the
requestor under analysis at time t0, which is at most Mr − 1.
Let t0−∆ be the time at which the last CAS of rank r is issued
before t0 (∆ = tWL+tBUS in Figure 12, and ∆ = tRL+tBUS

in Figure 13). Issuing such CAS at a time t̄ < t0 −∆ rather
than at t0 − ∆ clearly cannot increase the latency of further
CAS of rank r. Issuing the CAS at t̄ > t0−∆ could cause the
first CAS after t0 to be further delayed, but in this case the
requestor that issues the CAS at time t̄ could not be enqueued
before the requestor under analysis at time t0, since its data
transmission would not be completed at t0 and thus based on
Arbitration Rule 1 another CAS of that same requestor cannot
be active at t0. Therefore, this case cannot increase the tCD

latency compared to the case when a CAS of such requestor
becomes active at t0 and is enqueued before the requestor
under analysis.

We next prove that an alternating pattern of read and write
commands is the worst case. Note that tWRD ≥ tRRD =
tWWD and tRDD ≥ tRRD = tWWD, hence alternating read
and writes has larger delay than a sequence of all read or
all write commands. However, since tRD ≥ tWD, the worst
case might be found in the situation where the first CAS of
rank r issued after t0 is a read, even if this does not lead to
a complete alternation. Note that if we replace the first write
with a read in an alternating pattern, then we are substituting a
write-to-read transition with a read-to-read transition. Hence,
we can determine the worst case by comparing tWD + tWRD

with tRD + tRRD. Note: tWD + tWRD ≥ tRD + tRRD iff



tWRD − tRRD ≥ tRD − tWD, and:

tWRD−tRRD=

max(tWTR+tRL+2tBUS+tRTR−1−R(tBUS+tRTR),0)≥

max(tWTR+tBUS+tRTR−R(tBUS+tRTR),0)=

max(tWTR+tRL+2tBUS+tRTR−1−

(tRL+tBUS−1+R(tBUS+tRTR)),0)=

tRD−tWD.

This shows that a full alternation of read and write commands
never leads to lower latency than starting with a read, conclud-
ing the proof.

VI. IMPLEMENTATION CONSIDERATIONS

For the sake of clarity, we decided to express the arbitration
rules in Section IV in a form that simplifies the corresponding
latency analysis. In this section, we provide other important
considerations towards a full hw implementation of ROC.
First, note that Rules 3, 5 are expressed in terms of absolute
times tED and tSDr . Our envisioned implementation would
use timers to keep track of the value tED − t and tSDr − t,
where t is the current time. In fact, multiple timers can be used
to keep track of all timing constraints and updated in parallel.

Second, Rules 2, 5 involve scanning a FIFO to find the first
requestor that satisfies a given condition. In the implementa-
tion, since the size of the FIFO is bounded, all conditions can
be checked in parallel and the propagated requestor can be
picked using a priority encoder. In fact, the critical path for
the circuit implementing the rank selection scheme in Rule
5 consists only of a 5 bits comparator, a R-inputs priority
encoder, an and gate, and two multiplexers.

Third, the rules assume that a command can be issued in the
same cycle during which it becomes active. In practice, it might
require multiple clock cycles to propagate through the three
arbitration levels, based on the achievable hw speed. To address
this issue, we are currently in the process of creating a fully
pipelined implementation of ROC. Note that while issuing a
command might impact the timing constraints for following
commands, in practice as previously discussed no more than
one CAS every tBUS cycles and one ACT every tACT cycles
can be issued, while PRE commands have no constraints with
other banks. Therefore, a pipeline with K ≤ min(tBUS , tACT )
stages would simply add a constant delay of K cycles to the
latency of every command.

VII. EVALUATION

In this section, we compare ROC against the Analyzable
Memory Controller (AMC) [1] and our previous work [5]
since AMC employs a fair round robin arbitration that does
not prioritize the requestors, similarly to our system. We do
not compare against [2], [3] because they use a non-fair
arbitration that requires knowledge about the characteristics
of all requestors. We perform experiments with both synthetic
and real benchmarks; the former are used to show how the
latency bound varies as task parameters are changed. Since
AMC and previous work are only suitable for hard requestors,
we compare results using hard requestors only.

A. Synthetic Benchmark

In Figures 14 to 17, we plot the average per-request worst
case latency in nano-seconds (y-axis) as we vary the row hit
ratio (x-axis) for 8 and 16 total requestors in the system.
The latency is obtained by dividing the total memory access
time by total number of requests. We show results for ROC
with 2 ranks and 4 ranks, which are the typical numbers
in commercial devices. Note that the requestors are divided
evenly amongst the ranks. The memory device is DDR3-
1333H, with data bus widths of 64 bits and 32 bits. From the
figure, we can see that AMC’s plot is constant in the graph
since it uses close row policy, therefore the latency does not
depend on row hit ratio. For ROC, the latency decreases as row
hit ratio increases. In addition, as the number of requestors and
ranks increase, our approach performs comparatively better.
For 8 requestors with 32 bits bus (which favors AMC) and
0% row hit, AMC still has 50% higher latency compared to
ROC.
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Fig. 14: Synthetic 8 Requestors 64 bits data bus result
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Fig. 15: Synthetic 8 Requestors 32 bits data bus result

B. Benchmark Results

The CHStone benchmark suite [16] was used for eval-
uation. All twelve benchmarks were ran on the Gem5 [17]
simulator to obtain memory traces, which are used as inputs
to our analysis. The CPU was clocked at 1 GHz with private
LVL1 and LVL2 cache. LVL1 cache is split 32 kB instruction
and 64 kB data. LVL2 is unified cache of 2 MB and cache
block size is 64 bytes. Each trace contains the amount of
execution time between each memory requests. Our analysis
adds the worst case memory latency for each request and
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Fig. 16: Synthetic 16 Requestors 64 bits data bus result
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Fig. 17: Synthetic 16 Requestors 32 bits data bus result

produces the final execution time of the benchmark including
both computation and memory access time.

The results are shown in Figure 18 to Figure 21 for 8 and 16
requestors with 32 bits and 64 bits data bus. The y-axis is the
worst case execution time in nano-seconds, normalized against
ROC using 4 ranks, which is thus not shown. For 8 requestors
with 64 bits bus, AMC is up to 122% worse than ROC for 4
ranks and our previous work is up to 37.5% worse. The highest
improvement is shown by gsm and motion while the lowest
improvement is shown by jpeg. The amount of improvement
depends on the benchmark’s row hit ratio as well as the stall
ratio, i.e., the percentage of time that the core would be stalled
waiting for memory access when the benchmark is executed in
isolation without other memory requestors. The row hit ratio
ranges from 29% (jpeg) to 52% (sha) and stall ratio ranges
from 3% (jpeg) to 36% (motion) over all benchmarks.

VIII. CONCLUSIONS

We introduced ROC, a new predictable memory controller
for DDR DRAM. Rather than relying on static command
schedules as existing real-time controllers [1], [2], [3], [4],
ROC embraces the dynamic operation of DRAM devices. Our
rank-switching mechanism essentially improves the utilization
of the data bus by guaranteeing that consecutive data transfers
are spaced by at most one rank-to-rank transition delay, which
is much shorter than the write-to-read and read-to-write delays
that apply to data transfers of the same rank. As a result, ROC
significantly improves not only the backlogged throughput of
the memory device, but also the worst case latency of memory
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Fig. 18: CHStone 8 Requestors 64 bits data bus result
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Fig. 19: CHStone 8 Requestors 32 bits data bus result
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Fig. 20: CHStone 16 Requestors 64 bits data bus result
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Fig. 21: CHStone 16 Requestors 32 bits data bus result



requests. Furthermore, it does so while guaranteeing complete
isolation between hard and soft real-time requestors.

Our future work is focused on completing a prototype
implementation of ROC. As discussed in Section VI, we
anticipate that a pipelined design will be required to achieve
competitive speed. Furthermore, we plan to aggressively opti-
mize the Level 3 arbiter for soft ranks to support requestors
requiring high average memory bandwidth. Since existing
predictable memory controllers do not perform well in terms
of average performance (in particular, they do not support open
row policy), we expect that the improvements in terms of
bandwidth for soft requestors should be even higher compared
to the demonstrated reduction in latency for hard requestors.
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