
Multi-Robot Monitoring in Dynamic Environments
with Guaranteed Currency of Observations

Stephen L. Smith Daniela Rus

Abstract— In this paper we consider the problem of monitor-
ing a known set of stationary features (or locations of interest)
in an environment. To observe a feature, a robot must visit its
location. Each feature changes over time, and we assume that
the currency, or accuracy of an observation decays linearly with
time. Thus, robots must repeatedly visit the features to update
their observations. Each feature has a known rate of change,
and so the frequency of visits to a feature should be proportional
to its rate. The goal is to route the robots so as to minimize
the maximum change of a feature between observations. We
focus on the asymptotic regime of a large number of features
distributed according to a probability density function. In this
regime we determine a lower bound on the maximum change
of a feature between visits, and develop a robot control policy
that, with probability one, performs within a factor of two of
the optimal. We also provide a single robot lower bound which
holds outside of the asymptotic regime, and present a heuristic
algorithm motivated by our asymptotic analysis.

I. INTRODUCTION

Consider the following problem. An environment (such as
a city, or a building) contains known static features of interest
(such as intersections in the city, or rooms in the building).
A group of robots is tasked with monitoring the features
by visiting their locations. The environment is dynamic, and
thus the properties of each feature change over time (i.e.,
the amount of traffic in each intersection, or the layout and
number of people in each room). Features may change on
different time scales. Thus, the robots must repeatedly visit
the features to update their observations. The frequency of
visits to each feature should be proportional to that feature’s
rate of change. The problem is to determine routes for
the robots that allow them to guarantee the currency (or
accuracy) of their most recent observations of each feature.
That is, to determine routes that minimize the maximum
change of a feature between visits (observations). We call
this problem persistent monitoring.

In this paper we assume that we are given n robots and m
features. Each feature consists of a known location and a con-
stant rate of change (which may be different among features).
We show that the problem of computing routes to minimize
the maximum change of a feature between visits is NP-
hard. However, in the regime of many randomly distributed
features, we show that one can obtain strong performance
guarantees. In particular, for this regime we present a lower
bound on the optimal performance, and an algorithm that

This material is based upon work supported in part by ONR-MURI Award
N00014-09-1-1051.

S. L. Smith and D. Rus are with the Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
MA 02139 (slsmith@mit.edu; rus@csail.mit.edu)

Fig. 1. A scenario of three robots deployed in an environment. The yellow
disks represent features in the map that must be repeatedly visited by the
robots. The area of each disk represents its rate of change.

computes robot routes within a factor of two of this optimal.
The lower bound and algorithm utilize a discretization of
the rates of change of each feature from a number in (0, 1]
to a value in the set {1, 1/2, 1/4, . . .}. We show that this
discretization results in at most a factor of two loss in per-
formance. Thus, by developing an optimal routing algorithm
for discretized problems, we create a two-approximation for
non-discretized problems. The algorithm relies on computing
shortest paths through subsets of features. We then use the
algorithm to motivate a computationally efficient heuristic
that operates in any regime. We show through simulation
that the heuristic achieves very good performance.

Persistent monitoring is related to research in optimal
search, coverage, patrolling, and dynamic vehicle routing.
In optimal search [1], robots must move through an envi-
ronment to find stationary targets. Given imprecise sensors,
the search process may require repeatedly visiting areas that
have high probability of containing a target. Recent search
approaches include a decision-making framework [2], and a
robust method for imprecise probabilistic descriptions [3].

In sweep coverage [4], a robot must move through the
environment so as to cover the entire region with its sensor.
Variants of this problem include on-line coverage [5], where
the robot has no a priori information about the environment,
and dynamic coverage [6], where each point in the environ-
ment requires a pre-specified “amount” of coverage. In [7],
a dynamic coverage problem is considered where sensor
continually surveys regions of interest by moving according
to a Markov Chain. The problem considered in this paper
differs from sweep coverage in that the features must be
repeatedly visited, and differs from dynamic coverage in that
we seek to maximize the currency of observations.

In patrolling [8], [9], a region must be continually sur-
veyed by a group of robots. The goal is to visit each point
in space with equal frequency. A variant of patrolling is



considered in [10] for continual target surveillance. Persis-
tent monitoring generalizes patrolling by requiring that the
frequency of visits to a feature depends on its rate of change.

Finally, persistent monitoring is related to vehicle routing
and dynamic vehicle routing (DVR) problems. One example
is the period routing problem [11], where each customer must
be visited a specified number of times per week. A solution
consists of an assignment of customers to days of the week,
and a set of routes for the vehicles on each day. In DVR,
new customers arrive sequentially over time, and the goal is
to minimize the expected amount of time a customer remains
waiting for service. Recently, DVR has been addressed for
customers with different priority levels [12]. In order to
balance the load of customers among vehicles, equitable
partitioning policies have been developed [13].

The organization of this paper is as follows. In Section II
we review shortest paths and tours. In Section III we for-
malize persistent monitoring, and introduce a method for
discretizing each feature’s rate of change. In Section IV
we consider present a lower bound and a constant factor
algorithm for the asymptotic regime of of many randomly
distributed features. Finally, in Section V we provide a gen-
eral lower bound and a computationally efficient algorithm.

II. BACKGROUND MATERIAL

Consider a complete undirected, and weighted graph G =
(V,E,w) with vertex set V , edge set E ⊆ V ×V , and non-
negative edge weights w : E → R≥0. An induced subgraph
of G is a graph H = (VH , EH) and EH :=

{
{qi,qk} ∈ E :

qi,qk ∈ VH
}

.
The traveling salesman problem (TSP) on G = (V,E,w)

is to find a cycle that visits each vertex in V exactly once, and
has minimum length, denoted TSP(G) (the length of a cycle
is the sum of its edge weights). This cycle is also known as
the minimum Hamiltonian cycle. A similar problem is to find
the minimum length path (rather than closed cycle). This is
known as the minimum Hamiltonian path, and we denote its
length by MHP(G).

A. The Euclidean Traveling Salesperson Problem

A graph is Euclidean if the vertices are embedded in Rd

and the edge weights are given by Euclidean distancesThe
following result characterizes the asymptotic length of the
TSP tour on a random Euclidean graph. For simplicity of
notation, we write the tour length on a Euclidean graph as
TSP(V ), rather than TSP(G).

Theorem II.1 (TSP Tour Length, [14]) Consider a Eu-
clidean graph G = (V,E,w), where the m vertices in V
are independently and identically distributed in a compact set
E according to the probability distribution f : R2 → R≥0.
Then, there exists a constant βTSP such that with probability
one

lim
m→+∞

TSP(V )√
m

= βTSP

∫
E

√
f̄(q)dq, (1)

where f̄ is the absolutely continuous part of f .

The constant βTSP has been estimated numerically as
βTSP ≈ 0.7120 ± 0.0002, [15]. In [16], the authors note
that if E is “fairly compact [square] and fairly convex”, then
equation (1) provides an adequate estimate of the optimal
TSP tour length for values of m as low as 15. Defining

Ψf (E) := βTSP

∫
E

√
f̄(q)dq, (2)

we can state the following result, whose proof is contained
in the Appendix.

Lemma II.2 (TSP Length in Cell) Consider a Euclidean
graph where the m vertices in V are independently and
identically distributed in a compact set E ⊂ R2 according
to a density f . For any set C ⊂ E , with probability one,
limm→+∞ TSP(C ∩ V )/

√
m = Φf (C).

B. The Minimum Hamiltonian Path

It is straightforward to use Theorem II.1 to verify that the
asymptotic length of the Minimum Hamiltonian Path (MHP)
is equal to that of the TSP tour, and thus with probability
one, limm→+∞MHP(V )/

√
m = Ψf (E).

A variation on the MHP is the min-max n-MHP problem,
where the goal is to find a partition of V into n sets
V1 . . . , Vn such that MHPn(V1, . . . , Vn) := maxi MHP(Vi)
is minimized. Given m i.i.d. vertices with probability distri-
bution f , Theorem II.1 can be used to show that

lim
m→+∞

MHPn(V1, . . . , Vn)√
m

=
Ψf (E)

n
. (3)

C. Methods for Solving the TSP

The TSP and MHP problems are NP-hard [17]. However,
for metric problem instances (i.e., when the edge weights
satisfy the triangle inequality) there exist many good approx-
imation algorithms. One example is Christofides’ Algorithm
which finds a tour no longer than 3/2 times the optimal in
O(m3) computation time [17]. In addition, there are very
good heuristic solvers, such as the Lin-Kernighan heuristic,
which typically finds tours within 5% of the optimal in
O(m2.2) computation time [17].

III. PROBLEM STATEMENT AND APPROACH

Consider m features (i.e., points of interest) in a compact
environment E ⊂ R2. The environment, and its features
can be represented as a complete, undirected, edge and
vertex weighted graph G = (V,E,w, φ). The vertices V =
{q1, . . . ,qm} ⊂ E are the m distinct feature locations. The
edges E =

{
{qi,qj} : qi,qj ∈ V } connect all vertex pairs.

The edge weights w : E → R>0 give the travel time of each
edge. We assume that w satisfies the triangle inequality. The
vertex weights φ : V → (0, 1] give the rate of change of each
feature. For simplicity of notation we write φi := φ(qi).

We consider n robots on the graph G. The infinite trajecto-
ries of the robots, denoted t 7→

(
p1(t), . . . ,pn(t)

)
=: p(t),

are paths on the graph. If a robot is located at vertex qi at
time t1, then it can reach vertex qj at time t1 +w({qi,qj}).
We write the initial robot positions as p(0) ⊆ V . With this
notation we can define a problem instance.



Ui(t)

t

φi

visit visit

Fig. 2. A possible time evolution of the urgency of vertex qi.

Definition III.1 (Problem Instance) A problem instance is
a tuple I := (G,p(0)), where G = (V,E,w, φ) is a graph
representing the features in the environment, and p(0) ⊂ V
gives the initial robot positions.

A. The Maximum Urgency Performance Metric

A robot control policy is a map P that takes as an input
a problem instance I = (G,p(0)) and returns an n-tuple of
robot trajectories P : I 7→ p. Given robot trajectories, we let
ri(t) denote the most recent time τ ≤ t at which vertex qi

was visited (observed) by a robot. That is,

ri(t) = max
{
τ ∈ [0, t] : ∃ j with pj(τ) = qi

}
, (4)

where we define the maximum of the empty set to be zero.
The urgency of a vertex qi at time t ≥ 0 represents how out
of date its most recent observation is (see Figure 2), and is
defined as Ui(t) := φi

(
t− ri(t)

)
.

We seek to minimize the maximum urgency of each vertex
over time. For a policy P and problem instance I we define
the infinite-horizon maximum urgency of vertex qi to be

Mi(P (I), I) := sup
t∈R≥0

φi
(
t− ri(t)

)
,

where P (I) are the robot trajectories generated by policy P .
The corresponding cost function for the n-robots is

C(P (I), I) := max
i∈{1,...,m}

Mi(P (I), I). (5)

We are now ready to state the problem.
Problem Statement: Determine the policy P ∗

such that such that for every problem instance I
and policy P , we have C(P ∗(I), I) ≤ C(P (I), I).

At times we will write C∗(I) in place of C(P ∗(I), I).
Note that the problem of determining P ∗ is NP-hard. This
can be seen by noting that in simplest case where n = 1 and
φi = 1 for all i ∈ {1, . . . ,m}, the problem reduces to the
TSP. Because of this, we seek policies that perform within
a constant factor of C∗.

B. Discretized Rates of Change

Given a problem instance I with non-discretized rates φ,
we can create a problem instance Ī with discretized rates
φ̄. For each vertex i, the discretized rate φ̄i is defined as
φ̄i := 1

2k−1 , where k is the largest integer such that φ̄i ≥ φi.
A discretization has ` levels, 1, 1/2, 1/4, ....(1/2)`−1, where
level k has rate (1/2)k−1. We let Vk denote the set of vertices
in level k and mk = |Vk| denote the number of vertices in
the level. By construction, we have

∑`
k=1mk = m, and

V = ∪`k=1Vk with Vk ∩ Vj = ∅ for all j 6= k.

The discretization is useful because each vertex in Vk
must be visited twice as often as each vertex in Vk+1.
Thus, we will seek policies P which minimize C(P (Ī), Ī)
for discretized problem instances Ī . But, how well do the
trajectories P (Ī), perform on the non-discretized problem
I? The next lemma shows that C(P (Ī), I) is within a factor
of two of C(P (Ī), Ī), and the performance of an optimal
policy on I is upper bounded by its performance on Ī .

Lemma III.2 (Discretized Approximation) Consider a
policy P , a problem instance I , and the corresponding
discretized problem instance Ī . Then,

1

2
C
(
P (Ī), Ī

)
≤ C

(
P (Ī), I

)
≤ C

(
P (Ī), Ī

)
.

Moreover, for the optimal policy P ∗ we have C∗(Ī)/2 ≤
C∗(I) ≤ C∗(Ī).

Proof: We begin by proving the first expression of the
lemma. For the discretized problem Ī , the policy P generates
trajectories P (Ī), and the maximum urgency on problem
Ī is C(P (Ī), Ī). Therefore, for every vertex i, we have
Mi(P (Ī), Ī) ≤ C(P (Ī), Ī), with equality for some vertex j.
If we use the trajectories P (Ī) on problem instance I , then
for each vertex i Mi(P (Ī), I) = (φi/φ̄i)Mi(P (Ī), Ī) ≤
C(P (Ī), Ī), where we applied the fact that φ̄i ≥ φi. Thus,
C(P (Ī), I) ≤ C(P (Ī), Ī), and we have the RHS of the
expression. In addition, for vertex j, we have φ̄j ≤ 2φj ,
and thus C(P (Ī), Ī) ≥ C(P (Ī), I)/2, giving us the LHS.

To prove the “Moreover” part of the lemma, consider the
trajectories P (I) on problem instance I , and the maximum
urgency C(P (I), I). Using the trajectories P (I) on the
discretized instance Ī , we obtain that for every vertex i,
Mi(P (I), Ī) ≤ (φ̄i/φi)C(P (I), I) ≤ 2C(P (I), I), where
we have used φ̄i ≤ 2φi. Therefore,

C(P (I), Ī) ≤ 2C(P (I), I). (6)

Finally, consider the optimal policy P ∗. Since the policy is
optimal it follows directly that

C(P ∗(I), I) ≤ C(P ∗(Ī), I), and (7)
C(P ∗(Ī), Ī) ≤ C(P ∗(I), Ī). (8)

Combining (6), (7), and (8) with the RHS of the first
expression in the lemma, we obtain the desired result.

C. Discretized Optimization Formulation

In this section we illustrate the advantages of dealing with
discretized problem instances. Consider a policy P , a dis-
cretized problem instance Ī , and suppose that C(P (Ī), Ī) <
B for some B ∈ R>0. Let the initial time be t = 0. Since the
rate of change of all vertices in Vk is (1/2)k−1, every vertex
in Vk must be visited in the time interval [0, 2k−1B). If this
does not hold, then there exists a vertex in Vk such that the
time between successive visits is no smaller than 2k−1B,
implying that the urgency is no smaller than B. Consider
the time intervals [(s − 1)B, sB) for s ∈ {1, . . . , 2`−1}.
(Recall that ` is the number of levels in the discretization.)



0 B 2B 3B 4B

V1,1

V2,1

V3,1

V1,2

V2,2

V3,2

V1,3

V2,3

V3,3

V1,4

V2,4

V3,4

Constraints:

V1,1 = V1,2 = V1,3 = V1,4 = V1

V2,1 ∪ V2,2 = V2, V2,3 ∪ V2,4 = V2

V3,1 ∪ V3,2 ∪ V3,3 ∪ V3,4 = V3

Fig. 3. Discretization of the rates of change into ` = 3 levels, 1, 1/2, 1/4.
The subsets of vertices visited in each time interval are shown. The
constraints (9) results in 4 constraints, listed on the right.

In each of the 2`−1 time intervals, some (possibly empty)
subset of the vertices in Vk will be visited. Let us denote the
vertices in Vk visited in time slot [(s − 1)B, sB) by Vk,s.
Since C(P (Ī), Ī) < B, the sets Vk,s must satisfy

j2k−1⋃
s=(j−1)2k−1+1

Vk,s = Vk for each k ∈ {1, . . . , `}
j ∈ {1, . . . , 2`−k}. (9)

The constraints in (9) capture the fact that all vertices in
Vk must be visited in each of the time intervals [0, 2k−1B),
[2k−1B, 2kB), and so on, to

[
(2`−1 − 2k−1)B, 2`−1B

)
. An

example is shown in Figure 3. Thus, the problem consists of
(i) an assignment, satisfying (9), of the vertices in Vk to

the sets Vk,1, . . . , Vk,2`−1 , and
(ii) robot trajectories to visit the vertices ∪`k=1Vk,s, for

each time slot s ∈ {1, . . . , 2`−1}.
This problem can be written as an integer linear program

(ILP) and is related to the period routing problem. However,
the ILP can be solved only for small problem instances, and
thus most research focuses on heuristics [11].

IV. ASYMPTOTIC LOWER BOUND AND POLICY

In this section we characterize scaling of cost function (5)
with the number of features. To do this we consider a subset
of the discretized problem instances Ī , called geometric
discretized problem instances. In these problem instances,
the m vertices in V are embedded in the environment E ,
and the weight on each edge {qi,qj} ∈ E is equal to the
length of the shortest path in E from qi to qj . Note that if
E is convex, then w({qi,qj}) = ‖qi − qj‖2.

A. Asymptotic Lower Bound

Recall that for a discretized problem instance, the m ver-
tices in V are discretized into the sets V1, . . . , V`, which con-
tain m1, . . . ,m` vertices, with m =

∑`
k=1mk. Lemma III.2

showed that C∗(I) ≥ C∗(Ī)/2, and thus the following
theorem also provides a lower bound on C∗(I).

Theorem IV.1 (Asymptotic Lower Bound) Consider a
geometric discretized problem instance Ī , where the m
vertices in V are independently and identically distributed
in E according to the density f . Then,

C∗(Ī) ≥ Ψf (E)

n

∑̀
k=1

max{2−k, 21−`}
(

k∑
j=1

mj

)1/2

,

with probability one as minkmk → +∞, where Ψf (E) is
defined in equation (2).

Proof: Consider the problem instance Ī and let us lower
bound the shortest path distance w by the Euclidean distance
wE . Now, suppose that for a policy P , the maximum urgency
C(P (Ī), Ī) < B. Then, using the notation introduced in
Section III-C, we see that for each s ∈ {1, . . . , 2`−1}, all
vertices in ∪`k=1Vk,s must be visited in the time interval [(s−
1)B, sB). From Section II-B, the time to visit all vertices in
∪`k=1Vk,s is given by the min-max n-MHP, and thus

MHPn

(
∪`k=1Vk,s

)
< B for each s ∈ {1, . . . , 2`−1}.

We can restate the above conditions as
maxs∈{1,...,2`−1}MHPn

(
∪`k=1Vk,s

)
< B Let mk,s denote

the number of vertices in Vk,s. Then, letting minkmk

become very large, we see that
∑2`−1

k=1 mk,s is very large
for each s, and we can apply the result on the asymptotic
length of MHPn in equation (3) to obtain

max
s∈{1,...,2`−1}

Ψf (E)

n

√√√√∑̀
k=1

mk,s < B. (10)

Now, given a set of positive numbers, the average is nec-
essarily a lower bound on the maximum. Thus, a necessary
condition for equation (10) to be satisfied is that

Ψf (E)

n2`−1

2`−1∑
s=1

√√√√∑̀
k=1

mk,s < B. (11)

The minimizer of the following optimization problem pro-
vides a lower bound on the maximum urgency C(P (Ī), Ī)
for every policy P :

minimize
2`−1∑
s=1

√√√√∑̀
k=1

mk,s,

subject to
j2k−1∑

s=(j−1)2k−1+1

mk,s = mk

for each k ∈ {1, . . . , `}, j ∈ {1, . . . , 2`−k}.
The cost function is monotonically increasing, concave, and
sub-additive on the non-negative real numbers. The mini-
mization is subject to a set of linear equality constraints.
To determine a minimizer, begin by looking at the problem
when ` = 2: minimize

√
m1 +m2,1 +

√
m1 +m2,2, subject

to m2,1 +m2,2 = m2. Since the square root is sub-additive,
the minimum value is given by

√
m1 +m2 +

√
m1 and the

corresponding solutions are m2,1 = 0 and m2,2 = m1 or
m2,1 = m1 and m2,2 = 0. This argument can easily be
extended to k variables, from which we see that a minimizer
of the original optimization problem is to set mk,s = mk if
s (mod k) ≡ 1 and mk,s = 0 otherwise (for each s and k).
where the modulo notation denotes arithmetic modulo k, i.e.
k + 1 (mod k) ≡ 1. Upon simplifying, the corresponding
value of the cost function is given by

`−1∑
k=1

2`−1−k
√
m1 + · · ·+mk +

√
m1 + · · ·+m`.



Combining the cost function value with the lower bound
from equation (11), we obtain the desired result.

Remark IV.2 (Comparison to a simple policy) To get a
better feel for the lower bound in Theorem IV.1, consider
a discretized problem Ī , with one robot, and with φ̄ taking
values in 1, 1/2, 1/4. The asymptotic lower bound yields

C∗(Ī) ≥ Ψf (E)

4

(√
m1 +m2 +m3 +

√
m1 +m2 + 2

√
m1

)
.

If one were to use a simple policy (SP) of performing cycles
of a single TSP tour computed through all vertices, we would
have C(SP(Ī), Ī) = Ψf (E)

√
m1 +m2 +m3. Comparing

these bounds we get

C∗(Ī)

C(SP(Ī), Ī)
≥ 1

4

(
1 +

√
m1 +m2 + 2

√
m1√

m1 +m2 +m3

)
.

Thus, if m1 � max{m2,m3}, the simple policy performs
nearly optimally. However, when m3 � max{m1,m2}, the
lower bound is approximately 1/4 of the simple policy. •

B. An Asymptotically Optimal Policy

We now introduce the PARTITION-TOUR policy which,
in the limit as the number of features becomes very large,
attains the lower bound in Theorem IV.1. The policy operates
as follows. The region is partitioned into n regions, one for
each robot. Within each region, 2`−1 tours are computed
through its vertices. Each tour visits all vertices in V1, 1/2
of the vertices in V2, 1/4 of the vertices in V3, and so on,
visiting (1/2)`−1 of the vertices in V`. Each tour uses the
same “large-scale” structure, defined by a macro-TSP, but
utilizes local re-optimizations to shorten tour lengths. An
example of the policy is illustrated in Figure 4.

The PARTITION-TOUR (PT) policy
Input: A discretized problem instance Ī with m features

distributed in the environment E according to density
f and a positive integer α.

Output: n robot trajectories.
Partition E into n regions R1, . . . , Rn such that1:
Φf (Rp) = Φf (E)/n for each p ∈ {1, . . . , n}.
Assign one robot to each region.2:
for p = 1 to n do3:

Partition Rp into M = α2`−1 cells C1, . . . , CM , such4:
that Φf (Ci) = Φf (Rp)/M , for each i ∈ {1, . . . ,M}.
Compute a macro-TSP tour to visit each cell Ci. Relabel5:
cells according to their order on this tour.
for T = 1 to 2`−1 do /* creating tours */6:

Include the vertices Vj ∩ Ci in tour T if and only if7:

i+ T − 1 (mod 2j−1) ≡ 1.
In each cell Ci, compute a TSP tour through all8:
included vertices.
Stitch the cell tours together using the macro-TSP to9:
create tour T .

Robot p’s trajectory is a shortest path from pp(0) to a10:
vertex on tour 1 followed by the sequence tour 1,
tour 2, . . . ,tour 2`−1, tour 1, . . .

Note that by partitioning E such that each Φf (Rp) is
equal (and partitioning Rp such that each Φf (Ci) is equal),

(a) The left figure shows a partitioning into 16 cells. The right figure
shows the macro-TSP which orders the cells.

(b) Construction of Tour 1. On the left are the tours in each cell, and
the right shows the complete tour. The tour includes all vertices in V1

and the vertices of V2 in every other cell.

(c) Construction of Tour 2. On the left are the tours in each cell, and
the right shows the complete tour. The tour includes all vertices in
V1 and the vertices of V2 which were not included in Tour 1.

Fig. 4. The PARTITION-TOUR policy for ` = 2. Yellow disks have rate
of change 1 and blue disks have a rate of change 1/2.

we are creating an equitable partition [13]. The partitions
are equitable in the sense that the tour lengths through the
vertices in each region are equal, see Lemma II.2.

We now characterize the asymptotic performance of the
PT policy. The proof is contained in the Appendix.

Theorem IV.3 (PARTITION-TOUR Upper Bound)
Consider a discretized problem instance Ī , where the m
vertices in V are independently and identically distributed
in a convex region E according to the density f . Then, with
probability one,

C(PT(̄I), Ī)

C∗(Ī)
→ 1+, as min

k
mk → +∞. (12)

We can extend Theorem IV.3 to non-convex regions that
can be written as the union of a finite number of convex sets.



Corollary IV.4 (Non-convex region) Consider a problem
instance I , where the m vertices in V are independently and
identically distributed according to f , in a region E that is
the union of a finite number of convex sets. Then, limit (12)
still holds with probability one.

Finally, combining Theorem IV.3 with Lemma IV.3, we
can extend our result to non-discretized problem instances.

Corollary IV.5 (Non-Discretized Performance) Consider
a problem instance I , where the m vertices in V are
independently and identically distributed in E according to
the density f . Then, with probability one,

C(PT(̄I), I)

C∗(I)
≤ 2, as min

k
mk → +∞.

V. GENERAL LOWER BOUND AND POLICY

In this section we provide a general lower bound, a
computationally efficient policy, and simulation results.

A. Lower Bound for a Single Robot

Here we provide a single robot lower bound that holds
outside of the asymptotic regime. In a multiset S, the second
smallest value is defined as the minimum in S \ {minS}.

Proposition V.1 (Single robot lower bound) Consider a
single robot problem instance I . Then, for every V̄ ⊆ V ,

C∗ ≥ Φ2(V̄ )TSP(V̄ ),

where Φ2(V̄ ) is the second smallest value in the multi-set
{φ(q) : q ∈ V̄ }.

Proof: Let C∗ be the optimal value, and consider the
corresponding policy P ∗. Take any vertex set V̄ ⊆ V , and
consider the induced subgraph of G, denoted H = (V̄ , Ē).
Select a vertex q ∈ V̄ that has minimum weight, i.e.,
φ(q) ≤ φ(v) for all v ∈ V̄ . Now, consider a time t̄ during
the evolution of policy P ∗ when the robot is located at q.
Since the maximum urgency is C∗, the robot must return to
q by T := t̄+ C∗/φ(q).

For each vertex v ∈ V̄ \ q, the time of the most recent
visit prior to t̄ is tlast(v) ≤ t̄−w({v,q}). The time between
visits for vertex v can be no more than C∗/φ(v). Therefore,
every vertex in V̄ must be visited by time T .

Let us choose the last vertex in V̄ \ q to be visited in
[t̄, t̄ + T ), call it vertex v, and denote the time of its first
visit after time t̄ as tnext(v). Every vertex in V̄ \ {q,v} is
visited between time t̄ and the visit to v. Thus, the earliest
time at which v could be visited is tnext(v) ≥ MHP

(
q, V̄ \

{q,v},v
)
+ t̄, where MHP

(
q, V̄ \{q,v},v

)
is the length of

the shortest path that starts at q, passes through all vertices
in V \ {q,v}, and terminates at v. For vertex v, the time
between successive visits is

tnext(v)− tprev(v) ≥ MHP
(
q, V̄ \ {q,v},v

)
+ w({v,q})

≥ TSP(V̄ ).

Since the maximum urgency is C∗, we must have that
TSP(V̄ ) ≤ C∗/φ(v). However, the vertex q has the smallest

value of φ(q), and thus φ(v) ≥ Φ2(V̄ ), where Φ2(V̄ ) is the
second smallest value in {φ(q) : q ∈ V̄ }. Combining the
previous two inequalities we obtain the desired result.

Proposition V.1 provides 2m −m − 1 lower bounds, one
for every subset V̄ ⊆ V that has at least two elements (for a
set V̄ with one or zero elements, the bound trivially returns
zero). However, in the following lemma we show that only a
small subset of these constraints need actually be computed.

Lemma V.2 (Computing constraints) Assume, without
loss of generality, that φ1 ≥ φ2 ≥ · · · ≥ φm. Then, the
largest lower bound in Theorem V.1 can be computed
by searching over the m(m − 1)/2 sets of the form
V̄ = {q1, . . . ,qi,qj} where j > i.

Proof: Assume that φ1 ≥ φ2 ≥ · · · ≥ φm and consider
an arbitrary set V̂ ⊆ V whose vertices have indices Ĵ ⊆
{1, . . . ,m}. Let us construct a set V̄ := {q1, . . . ,qi,qj}
(j > i) with index set J̄ ⊇ Ĵ that does not decrease
the lower bound. To do this, let j := max{Ĵ}, let i :=
max{Ĵ \ {i}}, and let V̄ = {q1, . . . ,qi,qj}. Notice that
Φ2(V̄ ) = Φ2(V̂ ) = φi. In addition, V̂ ⊆ V̄ which implies
that TSP(V̂ ) ≤ TSP(V̄ ) and completes the proof.

Note that if we use a method for computing approximate
TSP tours that runs in O(mp) time, then the lower bound
can be computed in O(m2p).

B. A Computationally Efficient Heuristic

The PARTITION-TOUR policy is asymptotically optimal
for randomly distributed vertices, and it gives us insight into
the structure of routing for persistent monitoring. However,
it requires knowledge of the distribution f , and it requires a
large number of features. It also requires that 2`−1 separate
tours be computed, which is expensive when ` is large. Here
we present a simple method for computing the 2`−1 tours that
is computationally efficient and does not require information
on the feature distribution. It uses a single tour, and then
visits subsets of vertices on this tour. The method is inspired
by insertion/deletion heuristics for the TSP [17]. Due to page
constraints we provide only a brief outline.

Consider a discretized problem instance with vertices V =
∪kVk. Here, we describe the policy for one robot. For n
robots we can use a clustering method (such as k-medians)
to partition the vertices in V into n sets.
Computationally Efficient Tour Construction

Input: A single robot problem instance Ī .
Output: 2`−1 robot tours.
Compute a single TSP tour through all points in V .1:
For each k, move along TSP(V ), and alternately assign2:
vertices in Vk to Vk,1, . . . , Vk,k.
Tour T contains V1 ∪ V2,2 (mod T ) ∪ · · · ∪ V`,` (mod T ), and3:
visits each vertex using the order from TSP(V ).

As in the PARTITION-TOUR policy, each tour visits all
vertices in V1, half of the vertices in V2, and so on, visiting
1/2`−1 of the vertices in V`. The computation for this policy
is bounded by the computation of a single TSP tour, which
from Section II-C, can be performed efficiently.



C. Simulations Results

We evaluate in simulation the performance of the heuristic
algorithm relative to the lower bounds. Since our overall
approach is to partition the environment, with each robot
operating independently in its own partition, we show Monte
Carlo simulations only for a single robot. This allows us to
evaluate the lower bound in Prop. V.1. For the simulations we
uniformly distributed m features in a convex environment.
The rate of change of each feature is a uniform random
variable in (0, 1]. For each value of m we performed 50 trials,
and for each trial we made the following comparisons: 1)
the heuristic policy (HP) to the general lower bound (Gen-
LB) in Prop. V.1; and 2) the HP to the asymptotic lower
bound (Asym-LB) in Theorem IV.1 (i.e., C∗(Ī)/2); 3) the
HP on the discretized problem to the discretized asymptotic
lower bound in Theorem IV.1; and 4) the PARTITION-TOUR
(PT) policy on the discretized problem to the discretized
asymptotic lower bound. The results are shown in Table I.
Each entry records the mean over the 50 trials. The value in
parentheses gives the standard deviation.

Non-discretized Discretized
m HP/Gen-LB HP/Asym-LB HP/Asym-LB PT/Asym-LB
10 1.42 (0.22) 2.64 (0.34) 1.45 (0.18) 1.52 (0.23)
20 1.54 (0.17) 2.69 (0.24) 1.44 (0.13) 1.47 (0.14)
40 1.73 (0.17) 2.58 (0.19) 1.35 (0.09) 1.37 (0.10)
60 1.90 (0.14) 2.59 (0.15) 1.35 (0.07) 1.31 (0.08)
80 1.95 (0.16) 2.57 (0.09) 1.32 (0.05) 1.27 (0.06)

TABLE I
COMPARISON OF THE HEURISTIC POLICY (HP), TO THE TWO LOWER

BOUNDS: GENERAL (GEN-LB) AND ASYMPTOTIC (ASYMP-LB).

The results reveal several properties. First, for the val-
ues considered, the performance of the heuristic policy is
typically within a factor of two of optimal. For discretized
problem instances its performance is within approximately
4/3 of optimal. Second, for lower values of m, the general
lower bound is tighter than the asymptotic lower bound.
Finally, for low values of m (i.e., m < 40), the heuristic
policy actually outperforms the PT policy.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We considered a problem in routing robots to persistently
monitor a set of dynamically changing features. We focused
on the asymptotic regime of a large number of randomly
distributed features. In this regime, we provided a lower
bound and policy which performs within a factor two of
the optimal. We also provided a general lower bound which
holds outside of the asymptotic regime, and a heuristic
algorithm motivated by our asymptotic analysis.

There are many areas for future research. We are working
on extending the general lower bound to n robots, and on
rigorously characterizing the performance of the heuristic
algorithm. We would also like to consider a distributed
version of the problem. Finally, we are interested in relating
our model for the rates of change to a Kalman filter setup,
where each feature evolves according to a linear system.

APPENDIX

Proof: [Proof of Lemma II.2] The probability that vertex
i lies in C is given by

∫
C
f(q)dq. Thus, the number of

vertices in C is a binomially distributed random variable
mC , with mean m

∫
C
f(q)dq. By the strong law of large

numbers, with probability one,

lim
m→+∞

mC

m
=

∫
C

f(q)dq. (13)

Now, the conditional density of vertices in C is given by
f(q)/(

∫
C
f(q)dq). From equation (1) we know that

TSP(C ∩ V ) ∼ √mi

∫
C

√
f̄(q)∫

C
f(q)dq

dq.

Dividing through by
√
m, and applying (13), we obtain the

desired result.
We are now ready to prove Theorem IV.3.

Proof: [Proof of Theorem IV.3] Let us consider a vertex
k in Vj∩Ci that is visited in tour T of region Rp. This vertex
will be visited once in every 2j−1 tours. The time between
successive visits to this vertex can be written as the sum of
five components:

(i) travel in cell Ci from vertex k to the last vertex in cell
Ci using tour T ;

(ii) travel through cells Ci+1, . . . , CM using tour T ;
(iii) travel for tours T + 1, . . . , T + 2j−1 − 1;
(iv) travel through cells C1, . . . , Ci−1 on tour T + 2j−1;
(v) travel in cell Ci from vertex 1 to k using tour T+2j−1.

We now bound the time for each of these five components,
∆t(i), . . . ,∆t(v). Components (i) and (v) will turn out to be
negligible and we can use the conservative upper bound of

∆t(i),∆t(v) ≤ TSP
(
∪`j=1Vj ∩ Ci

)
. (14)

Now, recall that the partition in region Rp was con-
structed such that for each cell Ci we have Φf (Ci) =
Φf (Rp)/M . Moreover, the partition of E into regions satis-
fies Φf (Rp) = Φf (E)/n, and thus Φf (Ci) = Φf (E)/(nM).
As minkmk → +∞, by applying Lemma II.2, we see that
the tour through ∪kj=1Vj in cell Ci is given by

TSP(∪kj=1Vj ∩ Ci) = Φf (Ci)
√
m1 + · · ·+mk

=
Φf (E)

nM

√
m1 + · · ·+mk, (15)

with probability one. Thus, by the construction of the
partition, the tour length is independent of the cell. From
equation (15) we can write equation (14) as

∆t(i),∆t(v) ≤
Φf (E)

nM

√
m1 + · · ·+m`

For component (iii) we need to bound the length of each
tour T + 1, . . . , T + 2j−1− 1. First, note that the worst-case
length of a tour through M points in an environment E is
const

√
M |E|, see [18]. Therefore, the length of each tour T

is upper bounded by

M∑
i=1

TSP

 ⋃
{j | i+T−1 (mod 2j−1)≡1}

Vj ∩ Ci

+ const
√
M |E|,



where the first term gives the sum of the length of the tours
in each cell, and the second term gives the length of stitching
together each cell. Recall that there are M = α2`−1 cells,
where α ∈ N is a positive integer. Looking at the condition
i + T − 1 (mod 2j−1) ≡ 1 we see that for each tour T ∈
{1, . . . , 2`−1}, exactly 2`−2α cells include only the vertices
from V1, exactly 2`−3α cells include only the vertices from
V1∪V2, and so on, with exactly α cells including the vertices
from ∪`−1j=1Vj , and exactly α cells including the vertices from
∪`j=1Vj . Combining this with equation (15), we see that the
time for each tour in component (iii) is given by

∆tT =
αΦf (E)

nM

(
`−1∑
k=1

2`−k−1
√
m1 + · · ·+mk

+
√
m1 + · · ·+m`

)
+ const

√
M |E|

Since α = M/2`−1, the above equation simplifies to

∆tT =
Φf (E)

n

∑̀
k=1

max{2−k, 21−`}

 k∑
j=1

mj

1/2

+ const
√
M |E|.

The time for component (iii) is then given by ∆t(iii) =
(2j−1−1)∆tT . Finally, we need to bound the time for com-
ponents (ii) and (iv). As shown above, we need only count
the number of cells in tour T that include a particular combi-
nation of V1, . . . , V`. First, consider cells C1, . . . , Ci−1. For
any tour T , the combination ∪`−1j=1Vj can be visited in at most
diα/Me cells. Similarly, ∪`−1−kj=1 Vj can be visited in at most
d2k−1iα/Me = d2k−`ie cells. Thus, applying equation (15),
the asymptotic length of the path in step (ii) is

∆t(ii) ≤
Φf (E)

nM

(
`−1∑
k=1

d2−kie√m1 + · · ·+mk

+ d21−`ie√m1 + · · ·+m`

)
+ const

√
M |E|.

Similarly, the tour in step (iv) can be upper bounded by

∆t(iv) ≤
Φf (E)

nM

(
`−1∑
k=1

d2−k(M − i)e√m1 + · · ·+mk

+ d21−`(M − i)e√m1 + · · ·+m`

)
+ const

√
M |E|,

where we simply replaced i by M − i. Thus, we can upper
bound the sum of steps (ii) and (iv) by (M + 2)∆tT /M .

Now, we have bounded all five components in the limit
as m1, . . . ,m` → +∞. The time between visits to the
vertex in Vj ∩ Ci is upper bounded by ∆t(i) + ∆t(ii) +
∆t(iii) + ∆t(iv) + ∆t(v). (The time for a robot to travel
from pp(0) onto the tour is negligible.) Let M → +∞
such that min{m1, . . . ,m`}2M → const ∈ R>0. That is,
M → +∞ (i.e., α→ +∞) but more slowly than each mk.
In this case the terms const

√
M |E| become negligible, as

do the contributions of components (i) and (v). In addition,

(M+2)/M → 1+, and the time between visits to the vertex
in Vj is upper bounded by

2j−1
Φf (E)

n

∑̀
k=1

max{2−k, 21−`}

 k∑
j=1

mj

1/2

.

The rate of change of each vertex in Vj is (1/2)j−1.
Therefore, the maximum urgency of the vertex in Vj ∩Ci is
upper bounded by

Φf (E)

n

∑̀
k=1

max{2−k, 21−`}

 k∑
j=1

mj

1/2

.

Since Vj , Ci, and Rp were arbitrary, the result holds for
all vertices in V . Combining the above expression with
Theorem IV.1 we obtain the desired result.

REFERENCES

[1] L. D. Stone, Theory of Optimal Search. Operations Research Society
of America, 1975.

[2] T. H. Chung and J. W. Burdick, “A decision-making framework for
control strategies in probabilistic search,” in Proc ICRA, Roma, Italy,
Apr. 2007, pp. 4386–4393.

[3] L. F. Bertuccelli and J. P. How, “Robust UAV search for environments
with imprecise probability maps,” in Proc CDC-ECC, Seville, Spain,
Dec. 2005, pp. 5680–5685.

[4] H. Choset, “Coverage for robotics – A survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, no. 1-4, pp. 113–
126, 2001.

[5] Y. Gabriely and E. Rimon, “Competitive on-line coverage of grid
environments by a mobile robot,” Computational Geom.: Theory and
App., vol. 24, no. 3, pp. 197–224, 2003.

[6] I. I. Hussein and D. M. Stipanovic̀, “Effective coverage control for
mobile sensor networks with guaranteed collision avoidance,” IEEE
Trans Control Systems Technology, vol. 15, no. 4, pp. 642–657, 2007.

[7] A. Tiwari, M. Jun, D. E. Jeffcoat, and R. M. Murray, “Analysis of
dynamic sensor coverage problem using Kalman filters for estimation,”
in Proc IFAC World C, Prague, Czech Republic, Jul. 2005.

[8] Y. Chevaleyre, “Theoretical analysis of the multi-agent patrolling
problem,” in IEEE/WIC/ACM Int. Conf. Intelligent Agent Technology,
Beijing, China, Sep. 2004, pp. 302–308.

[9] Y. Elmaliach, N. Agmon, and G. A. Kaminka, “Multi-robot area patrol
under frequency constraints,” in Proc ICRA, Roma, Italy, Apr. 2007,
pp. 385–390.

[10] L. Caffarelli, V. Crespi, G. Cybenko, I. Gamba, and D. Rus, “Stochas-
tic distributed algorithms for target surveillance,” in Intelligent Systems
and Design Applications, Tulsa, OK, Aug. 2003, pp. 137–148.

[11] N. Christofides and J. E. Beasley, “The period routing problem,”
Networks, vol. 14, no. 2, pp. 237–256, 1984.

[12] S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli, “Dynamic vehicle
routing with priority classes of stochastic demands,” SIAM JCO,
vol. 48, no. 5, pp. 3224–3245, 2010.

[13] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, “Equitable partitioning
policies for mobile robotic networks,” IEEE Trans Automatic Ctrl,
2010, (Submitted Dec 2008 and Aug 2009) to appear.

[14] J. Beardwood, J. Halton, and J. Hammersly, “The shortest path through
many points,” in Proceedings of the Cambridge Philosophy Society,
vol. 55, 1959, pp. 299–327.

[15] A. G. Percus and O. C. Martin, “Finite size and dimensional depen-
dence of the Euclidean traveling salesman problem,” Physical Review
Letters, vol. 76, no. 8, pp. 1188–1191, 1996.

[16] R. C. Larson and A. R. Odoni, Urban Operations Research. Prentice
Hall, 1981.

[17] B. Korte and J. Vygen, Combinatorial Optimization: Theory and
Algorithms, 4th ed., ser. Algorithmics and Combinatorics. Springer
Verlag, 2007, vol. 21.

[18] L. Few, “The shortest path and the shortest road through n points in
a region,” Mathematika, vol. 2, pp. 141–144, 1955.


