
Collision Avoidance for Persistent Monitoring
in Multi-Robot Systems with Intersecting Trajectories

Daniel E. Soltero Stephen L. Smith Daniela Rus

Abstract— Persistent robot tasks such as monitoring and
cleaning are concerned with controlling mobile robots to act
in a changing environment in a way that guarantees that
the uncertainty in the system (due to change and to the
actions of the robot) remains bounded for all time. Prior work
in persistent robot tasks considered only robot systems with
collision-free paths that move following speed controllers. In
this paper we describe a solution to multi-robot persistent
monitoring, where robots have intersecting trajectories. We
develop collision and deadlock avoidance algorithms that are
based on stopping policies, and quantify the impact of the
stopping times on the overall stability of the speed controllers.

I. INTRODUCTION

In this paper we consider the problem of persistently mon-
itoring or sweeping a changing environment using a group
of robots equipped with sensors with finite footprints. In
our prior work, we developed methods for computing closed
monitoring paths for robots [1], and for computing the speed
with which each robot should follow its path [2]. This prior
work assumes the paths are non-intersecting. However, most
efficient monitoring paths may intersect. Thus, a collision
avoidance procedure is needed. In this paper we develop a
collision avoidance procedure for persistent monitoring, and
analyze the effect of this procedure on the stability of the
persistent controller.

Building on our prior work [2], we assume a changing
environment modeled as a scalar valued function, called the
accumulation function. The function captures the uncertainty
at each point in the environment for a sensing task, or the
quantity of material at each point for a cleaning task. The
accumulation function grows at a constant rate at points
outside the range of a robot, and decreases at a constant rate
at points within its range. The rate of growth and decrease
can be different at different points in the environment. The
model captures the accumulation of material in a sweeping
or cleaning task, and provides an approximation for the
uncertainty in a monitoring task.

In [2] we assume that paths are given for each robot, and
describe how to control the speed along the path to keep the
accumulation function bounded. We developed a method for
computing a speed controller for each robot that maximizes

This material is based upon work supported in part by ONR-MURI Award
N00014-09-1-1051, the NSF Graduate Research Fellowship Award 0645960
& The Boeing Company.

D. E. Soltero and D. Rus are with the Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge
MA 02139 (soltero@mit.edu, rus@csail.mit.edu). S. L. Smith
is with the Department of Electrical and Computer Engineering, Univer-
sity of Waterloo, Waterloo ON, N2L 3G1, Canada (stephen.smith@
uwaterloo.edu)

the stability margin of the system: The larger the stability
margin, the more tolerance the robots will have to unmodeled
changes in the accumulation function.

We assume we are given a group of robots, a closed
path for each robot, and a speed controller for each robot
along its path. We would like for each robot to continually
follow its path using its prescribed speed profile, while
avoiding collisions with the other robots. The collisions
should be avoided in such a way that we can still guarantee
boundedness of the accumulation function.

Persistent monitoring is related to sweep coverage [3],
and patrolling problems [4], [5], [6] where robots with
finite sensor footprints must sweep their sensor over every
point in the environment. The problem is also related to
environmental monitoring research such as [7], [8], [9], [10],
[11]. In this prior work, the authors often use a probabilistic
model of the environment, and estimate the state of that
model using a Kalman-like filter. Then robots are controlled
so as to maximize a metric on the quality of the state
estimate. The collision avoidance problem is not addressed
in these works. In addition, due to the complexity of the
models used, performance guarantees are difficult to obtain.
This makes it difficult to characterize the effect of collision
avoidance on the system performance. In this paper, we use
a more tractable model, and in doing so we can provide
guarantees on the boundedness of the accumulation function.

There is a wealth of literature on collision avoidance.
A common method is to use artificial potential fields [12],
which repel robots from each other and from obstacles. A
recently proposed method relies on velocity obstacles [13].
Such methods result in the robots deviating from their
prescribed paths and from their desired speed profiles. For
the persistent application, the effect of such deviations on
the accumulation function is difficult to characterize. A more
tractable approach is to constrain each robot to remain on its
path. In this context the most closely related work is on path
traversal problems where each robot is given a path. The goal
is to minimize the time until the robots reach their destination
points on their paths, while avoiding collisions [14]. In [15],
the authors consider a variation in which the full trajectory
(path and speed along the path) is specified for each robot.
Collisions can be avoided only by changing the start times
of each robot along its path. Our approach to collision
avoidance is closely related [15]. However, since our paths
are closed, and are repeatedly traversed by the robots, we
avoid collisions by repeatedly stopping robots.

The main contribution of this paper is to enable the
persistent speed controllers developed in [2] to operate



Fig. 1: Four robots (yellow-filled circles) performing a persistent task where
their paths produce many collision zones. Each robot r has a unique color to
represent its path γr and its footprint. The paths are the four large circles,
and the footprints are the small circles which are centered around each
respective robot. In the persistent task, the robots follow a speed profile
which seeks to keep the accumulation function of each point of interest
bounded. In this figure, the points of interest are colored in light blue and
the value of the accumulation function at each point is proportional to the
size of that point.

when multiple robots have intersecting trajectories. Here, we
mean intersection in the sense that the robot bodies could
collide. We develop a collision avoidance procedure based
on stopping, and quantify its effect on the stability of these
controllers. The collision avoidance operates by identifying
collision zones in which collisions could occur. We then
avoid collisions by stopping and restarting robots so that at
most one robot occupies a given collision zone at any mo-
ment in time. We also design a procedure to avoid deadlocks;
a situation in which a group of robots are all stopped, and
are waiting for each other to move before resuming motion.
We identify several different stopping policies and perform
extensive simulations to determine the most effective policy.
We also present results from a distributed implementation for
two ground robots performing a persistent monitoring task.

The organization of this paper is as follows. In Section II
we formulate the problem, and in Sections III and IV we
introduce collision zones and how they avoid both collisions
and deadlock. In Section V we introduce three different
stopping policies and in Section VI we derive a condition
under which the accumulation function will remain bounded
when using our collision avoidance procedure. Finally, in
Section VII we present stopping policy simulation results
and our distributed implementation.

II. PROBLEM FORMULATION

We are given n robots, indexed by r ∈ {1, 2, . . . , n}.
Each robot is constrained to move along a pre-determined
path γr : [0, 2π] → R2, where γr(0) = γr(2π). Path γr
is parametrized by 0 ≤ θr ≤ 2π, which is assumed to be
the arc-length parametrization. The robot’s position at time
t can be described by θr(t), its position along the curve γr.
Each robot has a sensor/sweeping footprint Br(θr(t)). This
footprint could be thought of, for example, as the cleaning
surface of a sweeping robot. The environment contains a
finite number of points of interests q ∈ Q. These finite points

could be the discretization of a continuous environment. A
scalar field Z(q, t) ≥ 0 is defined over the points of interest
q ∈ Q. The field (called the accumulation function) behaves
analogously to dust accumulating over a floor. At a point of
interest q ∈ Q, the field increases at a constant production
rate of p(q) when not covered by any robot footprints, and
it is consumed at a constant rate of cr(q), by each robot r
whose footprint is covering q. More specifically,

Ż(q, t) =






p(q)−
�

r∈Nq(t)

cr(q), if Z(q, t) > 0,

�
p(q)−

�

r∈Nq(t)

cr(q)
�+

, if Z(q, t) = 0,

(1)
where Nq(t) is the set of robots whose footprints are over
the point q at time t, Nq(t) := {r | q ∈ Br

�
θr(t)

�
}.

Our earlier work [2] studied the problem of controlling the
speed of each robot along its path in order to keep the field
(accumulation function) Z(q, t) bounded for all time t, and
for all points q. We showed that a necessary and sufficient
condition for stability of the field is that

n�

r=1

τr(q)

Tr
cr(q)− p(q) > 0,

for all points of interest q ∈ Q, where Tr is the period
(or cycle time) of robot r along its path γr, τr(q) is the
amount of time per period that robot r’s footprint is covering
the point of interest q. We then developed a method for
producing a speed controller vr(θr) for each robot r, which
maximizes the stability margin

min
q∈Q

�
n�

r=1

τr(q)

Tr
cr(q)− p(q)

�
. (2)

Figure 1 shows four robots performing a persistent moni-
toring task. This set of paths generates multiple potential col-
lision locations. Therefore, when implementing the system,
if no collision avoidance procedure is used, the robots would
collide frequently. The objective of this paper is to present
and prove a practical collision avoidance procedure for a
multi-robot persistent monitoring task that seeks to minimize
its effects on the stabilizing persistent speed controller.

III. COLLISION AVOIDANCE

For each robot r we define a safety radius ρr > 0,
and the corresponding safety disk B(γr(θr), ρr) = {x ∈
R2 : �x − γr(θr)� ≤ ρr}.1 We say that a collision occurs
between robots i and j at locations (θi, θj) if B(γi(θi), ρi)∩
B(γj(θj), ρj) �= ∅. To avoid robot collisions, we must first
know where collisions can occur. There are a number of
ways to do this. For example, we could search all (θi, θj)
pairs between any two robots i and j and obtain the set of
collision configurations between any two robots. The set of
collision configurations between robot i and j is defined as

1For simplicity of presentation we use a safety disk, but our collision
procedure works for any safety set containing the robot’s current position.



0 pi/2 pi 3pi/2 2pi
0

pi/2

pi

3pi/2

2pi
Phase Portrait: robots i and j 

theta i

th
e

ta
 j

Fig. 2: Phase portrait for robots i and j. The axis are θi and θj , which are
the parametrized positions of robots i and j. In this figure, the black-colored
sets are the set of collision configurations (θi, θj) for robots i and j. The
arrows in this plot correspond to the phase portrait, i.e. flow lines of the
state (θi, θj) through time. If no collision avoidance is used, the robots will
eventually collide due to the flow lines leading (θi, θj) into the black sets.

Pi,j = {(θi, θj) ∈ [0, 2π]2 : B(γi(θi), ρi) ∩B(γj(θj), ρj) �=
∅}.

An example of Pi,j can be seen in Figure 2. This figure
shows the phase portrait of θi vs. θj for a given γi and
γj . The flow lines depict speed profiles that stabilize the
system for a given set of points of interest. The set Pi,j is
given by the black-colored regions. There are various flow
lines that lead (θi, θj) to enter Pi,j , resulting in collisions.
One way to avoid collision is to not allow (θi, θj) to enter
Pi,j by forcing (θi, θj) to move along the edge of Pi,j .
However, there are a few problems with this approach. First,
since Pi,j can have an arbitrary geometric shape, a collision
avoidance of this type will in general require robots to move
backwards. Moving backwards affects the shape of the phase
portrait by including flow lines at angles less than zero or
greater than π/2. When considering multiple robots, such
backward motion will require additional collision avoidance
procedures. Second, we are interested in solutions that can
be implemented in a distributed manner, and thus we would
like the robots to utilize pair-wise decisions in order to
avoid collisions. However, it is possible for such pair-wise
decisions to contradict each other. This can result in a
deadlock situation in which a group of robots are all blocking
each other.

Based on the above discussion, we propose a collision
avoidance method that relies on stopping the robots. When a
robot stops in order to avoid collision, the collision avoidance
procedure pauses the speed controller, and un-pauses it to re-
sume robot motion. When the speed controller is un-paused,
it is as if the system is re-started with a new set of initial
conditions. This method for avoiding collision is tractable in
a persistent task because the speed profile prescribed by [2]
is proven to stabilize the field for any set of initial conditions.
Therefore, any increase in the accumulation functions of the
field while a robot is stopped will eventually be consumed,
maintaining the system stable. However, if trajectories are
selected in such a way that collision avoidance is needed very
frequently, then the stabilizing effect of the speed controller
may not be “strong” enough to overcome the frequent stops.

We describe an algorithm for stopping robots that ensures
no deadlock amongst stopped robots while enabling the
persistent operation of the system without collision. The
intuition is to compute, for each robot, the region in space
where the robot might collide with any other robot.

Since the path for each robot is known, we can search
for all possible collision locations along the path. The set
of all possible collision locations for robot i is defined as
Pi = {θi ∈ [0, 2π] : B(γi(θi), ρi) ∩ B(γj(θj), ρj) �= ∅
for some j �= i}. For example, in Figure 2, Pi would be
set containing the projection of Pi,j onto the θi axis, and
Pj would be the set containing the projection onto the θj
axis. We can decompose Pi into a collection of wi connected
sets Ck

i , which are pairwise disjoint. Thus, we have Pi =
∪wi
k=1C

k
i , and Ck

i ∩ Ck�

i = ∅ for any k, k� ∈ {1, . . . , wi}.
As an example, in Figure 2, both Pi and Pj consist of two
disjoint sets.

We would now like to determine the following: if robot
i enters the set Ck

i , which sets Ck�

j must robot j avoid?
We can relate individual collision zones by constructing an
undirected graph where each Ck

i is a node, ∀i, k. We define
an edge between two nodes Ck

i and Ck�

j if B(γi(θi), ρi) ∩
B(γj(θj), ρj) �= ∅, for some θi ∈ Ck

i and some θj ∈ Ck�

j .
We will refer to this graph as the collision graph.
Definition III.1 (Collision Zone). Given the collision graph,
a collision zone CZm is defined for each connected com-
ponent in the graph, where m will range from 1 to the
total number of connected components in the graph. CZm

is defined as a tuple CZm = (CZm
1 ,CZm

2 , . . . ,CZm
n ), where

CZm
i is the union of nodes Ck

i , ∀k, present in the connected
component corresponding to CZm

Note that CZm
i is disjoint from CZm�

i for all i, where
m �= m�, because if they were not, then ∃θi for some i
such that θi ∈ Ck

i and θi ∈ Ck�

i , where Ck
i ∈ CZm

i and
Ck�

i ∈ CZm�

i . However, by definition Ck
i and Ck�

i are disjoint.
Therefore, CZm

i and CZm�

i are also disjoint. Example III.2
and Figure 4 illustrate these mathematical constructions.
Example III.2. Figure 3 shows three trajectories that in-
tersect each other at several places. After obtaining all the
disjoint collision sets Ck

i for all robots, we construct the
collision graph in Figure 4, which shows five connected com-
ponents, i.e. five collision zones CZm, m ∈ {1, 2, 3, 4, 5},
where:

(i) CZ1
1 = C1

1 , CZ1
2 = C1

2 , CZ1
3 = (C1

3 ∪ C2
3 )

(ii) CZ2
1 = C2

1 , CZ2
2 = ∅, CZ2

3 = C3
3

(iii) CZ3
1 = C3

1 , CZ3
2 = ∅, CZ3

3 = C4
3

(iv) CZ4
1 = ∅, CZ4

2 = C2
2 , CZ4

3 = C5
3

(v) CZ5
1 = ∅, CZ5

2 = C3
2 , CZ5

3 = C6
3

The following shows the importance of collision zones.
Theorem III.3. If any two robots i and j collide, then θi ∈
CZm

i and θj ∈ CZm
j , for some m.

Proof. Suppose there is a collision between robots i and j,
when robot i is at θi and robot j is at θj . This implies that
B(γi(θi), ρi) ∩ B(γj(θj), ρj) �= ∅. By definition, θi ∈ Ck

i

and θj ∈ Ck�

j for some k and k�. Also by definition, there



Algorithm 1: COLLISION AVOIDANCE FRAMEWORK,
FOR ROBOT i

Data: θi is at the entering edge of CZm
i

Result: No collisions occur.
if flagm is raised then1

Stop trajectory until flagm is lowered.2

else3
Robot i can enter CZm

i and raise flagm.4
When robot i exits CZm

i , then flagm is lowered.5

Fig. 3: Plot of paths for the three robots, whose collision zones were obtained
in Figure 4. The final five collision zones CZm are plotted in segments of
black, while the rest of the trajectories are plotted in different light colors.

exists an edge in the collision graph between nodes Ck
i and

Ck�

j . This, in turn, means that θi ∈ CZm
i and θj ∈ CZm

j for
some m.

By Theorem III.3, no collisions are possible in CZm if
there exists at most one robot i such that θi ∈ CZm

i .
Therefore, the collision avoidance framework will allow at
most one robot to travel through CZm at any moment in time,
for each m. Let flagm be a flag which is raised if a robot i
is currently inside CZm

i . The collision avoidance framework
is given as Algorithm 1. A requirements for Algorithm 1 to
work is that if flagm is raised by some robot i, then it is
lowered only by robot i once it exits CZm

i .
Note that the converse of Theorem III.3 is not true. That

is, if θi ∈ CZm
i and θj ∈ CZm

j , for some m, this does
not mean that the robots have collided. This is because, in
general, a connected set of (θi, θj) that results in collision
is not equal to the cartesian product of its projections on
the θi and θj axis, although it is a subset. This means that
this collision avoidance algorithm is conservative. However,
the trade-off is a solution without backward motion and

Fig. 4: Example of a collision graph used to construct the collision zones
CZm. In this graph, there are 12 nodes corresponding to the disjoint
connected sets in P1, P2, P3, for robots 1, 2 and 3, respectively. The
result from this graph is that there are five disjoint collision zones, i.e.
CZm, m ∈ {1, 2, 3, 4, 5}. These five collision zones are mapped to their
respective paths in Figure 3.

conflicting decisions where a robot stops while blocking the
path of another, potentially causing a deadlock.

IV. DEADLOCK AVOIDANCE

Much of the previous work in deadlock avoidance is based
on re-planning of the robot trajectories [16], [17], [18], [19],
or schedule coordination for robots [20]. In our problem
formulation, however, the robots are constrained to their
prescribed paths and speed controllers, so these approaches
do not apply. Instead, our approach is similar to [21], where
graphs are used to detect and avoid collisions in critical
sections, and to [22], where permission is given to one robot
to move along a zone that can cause deadlock.

In order to avoid deadlock, we define the notion of a
deadlock graph.
Definition IV.1 (Deadlock Graph). A deadlock graph is a
directed graph, where an edge from node i to node j encodes
in robot i is stopped waiting for robot j to exit a collision
zone CZm

j , for some m.
It is assumed that all robots have knowledge of the

deadlock graph. In our application, deadlocks can be avoided
by noting that they can only occur when a cycle is created
on a deadlock graph. If a cycle were to exist, then deadlock
is avoided by erasing one of the edges in the cycle. This
corresponds to one of the robots resuming motion and
breaking the deadlock.
Definition IV.2 (Stopping Policy). A stopping policy, exe-
cuted by robot i when about to enter a collision zone is any
algorithm that returns n options ranked from best to worst.
Out of n options, n − 1 correspond to robot i stopping for
each other robot j, i.e., an edge being drawn from node i to
node j in the deadlock graph. The last option corresponds
to robot i continuing its trajectory, i.e., no edge drawn in the
deadlock graph.

Building upon Algorithm 1, if flagm is not raised, then
the robot can use a stopping policy to obtain the ranked
n options. The deadlock avoidance framework consists of
choosing the best-ranked option that does not cause a cycle
in the deadlock graph. The collision avoidance and deadlock
avoidance frameworks merged with the stopping policies,
lead to the complete collision avoidance algorithm, seen as
Algorithm 2, which ensures no collision or deadlocks will
occur between any number of robots.

Algorithm 2 is executed only in two situations:
(i) when robot i is moving along its trajectory and is about

to enter CZm
i

(ii) when robot i is stopped at the edge of CZm
i , and the

robot j that was inside CZm
j just exited CZm

j .
The following theorem shows that Algorithm 2 avoids

deadlocks.
Theorem IV.3. Assuming all robots follow Algorithm 2,

consider a robot i about to enter a collision zone CZm
i for

any m. Then, there exists a decision by robot i which does

not cause a deadlock.



Algorithm 2: COLLISION AND DEADLOCK AVOIDANCE
ALGORITHM, FOR ROBOT i

Data: θi is at the entering edge of CZm
i

Result: No collisions or deadlocks occur.
if flagm is raised then1

Stop trajectory.2

else3
Execute stopping policy. Choose best-ranked option that4
does not create a cycle in the deadlock graph.
If the decision is to continue trajectory, then flagm is5
raised, and any outgoing edge from robot i’s node in the
deadlock graph is deleted.
Otherwise the decision edge is drawn in deadlock graph.6
When robot i exits CZm

i , then flagm is lowered.7

Proof. Suppose robot i is about to enter CZm
i . If flagm is not

raised, then it will test its n options obtained from a stopping
policy, in the deadlock graph. If the best ranked option does
not cause a cycle in the deadlock graph, then it is allowed and
the robot chooses that option. If the option causes a cycle,
then it is not allowed, and the robot tests the next best-ranked
option, and so on. By default, the robot will always have the
option of continuing its trajectory, which does not create an
edge in the deadlock graph, which in turn does not create a
cycle.

If flagm is raised, then robot i is forced to stop because
some robot j is already in CZm

j . Conceptually, robot i would
draw an edge to robot j in the deadlock graph. However, this
does not create a cycle because robot j is moving inside the
collision zone, and will never stop inside it because CZm

j is
disjoint from CZm�

j , ∀m� �= m.

V. STOPPING POLICIES

We are interested in stopping policies that minimize the
effect on the stabilizing persistent speed controller, i.e. we
would like the stopping policy to result in maximizing the
stability margin of the system, which is given by Equa-
tion (2). However, Equation (2) assumes the system is
periodic (a proof for this can be found in [2]). That is, it
assumes that each robot takes a fixed amount of time to
complete a cycle of its path. However, each time a robot
stops, it breaks periodicity. In Sections V-A, V-B and V-C,
we define three stopping policies, two of which use very
similar versions of Equation (2) to generate their n ranked
options.

For the following policies, executed by robot i, optioni
corresponds to robot i continuing its trajectory, and optionj

corresponds to robot i stopping for robot j. These policies
assume no other collision procedures are taking place while
the current collision is being resolved. Although this is
not always true, it provides a quick and inexpensive ap-
proximation, compared to the price of obtaining the exact
information.
Remark V.1 (Limitation of locally optimizing). All of the
following stopping policies look ahead in time, up to the
point where the collision is avoided, and they optimize the

Algorithm 3: MIN-TIME POLICY, FOR ROBOT i

Initialize: optioni = ∞1
foreach robot j �= robot i do2

/* If stopping is necessary */
if T i

exit > T j
enter then3

optioni = min(T i
exit − T j

enter, optioni)4
optionj = T j

exit5
else6

optionj = ∞7

Rank the options in ascending order of their values.8

system, according to their metric for that look-ahead time.
Therefore, these policies are limited to optimizing locally in
time, and there could be the case where a decision is optimal
for the policy, but suboptimal over a longer time horizon.

A. Minimum Time Policy

This policy ranks the options based on how much time a
robot spends stopped to avoid the collision. For robot i, the
policy takes into account all of the robots’ current positions
and trajectories, and calculates the amount of time robot i
would have to stop while the other robots enter and exit
the collision zone, and the amount of time the other robots
would have to stop while robot i exits the the collision zone.
The options are ranked in ascending order of stopping time.
Algorithm 3 contains the pseudocode for this policy, which
is called the Min-Time policy, where:

• T i
enter is the time robot i would take to get from where

it is right now until it enters the collision zone.
• T i

exit is the time robot i would take to get from where
it is right now until it exits the collision zone.

B. All Time Policy

This stopping policy approximates Equation (2) with the
empirical stability margin of the system up until the current
time t. This is done by constructing the same expression
in Equation (2), where Tr becomes the current time t, and
τr(q) becomes the total coverage time on point q. The policy
estimates the empirical stability margin at the time when
the collision is avoided, and ranks the options in descending
order of estimated empirical stability margin. Algorithm 4
contains the pseudocode for this policy, which is called the
All-Time policy, where:

• TCi
enter(q) is the time robot i covers point q while it

moves from its current position until it enters CZm
i

• TCi
exit(q) is the time robot i covers point q while it

moves from its current position until it exits CZm
i

• The average consumption on point q from all robots,
except robots i and j, up to time t is obtained by

�

r �=i,j

τr(q)

t
cr(q) (3)

• The average consumption on point q from robots i and
j at the time the collision is avoided, assuming robot i



Algorithm 4: ALL-TIME POLICY, FOR ROBOT i

Initialize: optioni = −∞1
Initialize: Vr(q) = −p, ∀r2
foreach robot j �= robot i do3

Vi(q) = −p4
/* If stopping is necessary */
if T i

exit > T j
enter then5

/* case: robot i continues moving */
foreach q do6

Add to Vi(q) the average consumption on point7
q from all robots, except robots i and j, given
by equation (3).
Add to Vi(q) the average consumption on point8
q, by robots i and j, given by equation (4).

/* case: robot j continues moving */
foreach q do9

Add to Vj(q) the average consumption on point10
q from all robots, except robots i and j, given
by equation (3).
Add to Vj(q)the average consumption on point11
q, by robots i and j, given by equation (5).

optioni = max(minq Vi(q), optioni).12
optionj = minq Vj(q).13

else14
optionj = −∞.15

Rank the options in descending order of their values.16

continues moving is obtained by
�
τi(q) + TCi

exit

�
ci(q)

t+ T i
exit

+

�
τj(q) + TCj

enter + Ij(T i
exit − T j

enter)
�
cj(q)

t+ T i
exit

, (4)

where Ij = 1 if robot j’s footprint covers q while it is
stopped, and zero otherwise.

• The average consumption on point q from robots i and
j at the time the collision is avoided, assuming robot j
continues moving is obtained by
�
τi(q) + IiT

j
exit

�
ci(q) +

�
τj(q) + TCj

exit

�
cj(q)

t+ T j
exit

, (5)

where Ii = 1 if robot i’s footprint covers q while it’s
stopped, and zero otherwise.

C. Time Window Policy

This policy is similar to the All-Time policy, but instead of
considering all past information, it only considers informa-
tion in a time window of constant length Tw. This is done by
exchanging t for Tw in Algorithm 4. Also, τr(q) becomes
the coverage time of point q within the time window. We
will refer to this stopping policy as the Time-Window policy.

VI. PERFORMANCE BOUND

Equation (2) is not useful for persistent monitoring with
intersecting paths since this problem is not periodic. How-
ever, it can be used to prove performance bounds on the

system. We define V (q) to be the stability margin for point
q. That is,

V (q) =
n�

r=1

τr(q)

Tr
cr(q)− p(q). (6)

Then the stability constraint for a periodic system is V (q) >
0, ∀q, and the following result holds.
Theorem VI.1. Consider a persistent task, and a set of speed

controllers that result in a stability margin of V (q) for each

point of interest q ∈ Q. There exists a known α > 0 such

that if V (q) > αp(q) for each q, then the robot system will

remain stable under Algorithm 2. The value α is a function

of the trajectories and safety disks of all robots.

Proof. In the worst-case, each robot will have to stop at every
collision zone on each cycle of its path. In this worst-case,
each robot takes the same amount of time to complete each
cycle, and thus we can use Equation (6). Then the stability
constraint for all points q becomes

n�

r=1

τr(q)

arTr
cr(q) > p(q),

where ar = (Tr + T s
r )/Tr ≥ 1, and T s

r is the maximum
stopping time for robot r in one cycle along its path, and
is defined as T s

r :=
�

m(n�
m − 1)(

�
CZm

r

1
vr(θr)

dθr), where
n�
m is the number of robots whose CZm

r is nonempty. Let
a = maxr ar. Then,

n�

r=1

τr(q)

arTr
cr(q) ≥

1

a

n�

r=1

τr(q)

Tr
cr(q).

Therefore, for the system to be stable in the worst case,

1

a

n�

r=1

τr(q)

Tr
cr(q) > p(q). (7)

Substituting Equation (6) into Equation (7), we get

V (q) > (a− 1)p(q). (8)

Setting α = (a− 1) we get the desired result.

If a system satisfies Equation (8) ∀q, then it is guaranteed
to be stable, no matter how many collision avoidance steps
are needed. Although this bound is not tight, it captures a
sufficient amount of slack in the system that would result in
the system being stable, collision-free and deadlock-free.

VII. SIMULATION RESULTS AND IMPLEMENTATION

A. Stopping Policy Simulation Results

We implemented in simulation the collision and deadlock
avoidance strategies, as well as the three stopping policies
in Section V. The Time-Window policy was implemented
with two different time windows: Tw = maxr(Tr) and
Tw = 3maxr(Tr). We refer to the former as Time-Window1

and the later as Time-Window3. We also implemented a
Greedy stopping policy, which allows the first robot to enter
a collision zone, and queues subsequently arriving robots.



Trajectory set #1 Trajectory set #2 Trajectory set #3

Trajectory set #4 Trajectory set #5 Trajectory set #6

Fig. 5: Six different sets of trajectories used to obtain results on the
performance of the tested stopping policies. These trajectories range from
using only two robots to using four robots. Each robot has a different colored
trajectory.

first second third fourth fifth
0

50

100

150

200

250

300
Stopping Policy Ranking

Ranking of policies (best to worst)

N
u

m
b

e
r 

o
f 

in
st

a
n

ce
s 

p
e

r 
ra

n
k

 

 
All−Time

Min−Time

Greedy
Window

1

Window
3

Fig. 6: Results from stopping policy simulations. The horizontal axis
corresponds to the ranking of the policies in the simulation instances, from
first place (corresponding to the best policy) to fifth place (corresponding
to the policy with worst results). The best policy refers to the policy
that generated the largest empirical stability margin. The vertical axis
corresponds to the number of instances that the policy achieved a particular
ranking.

We generated six sets of test trajectories shown in Figure
5, for systems ranging from two robots to four robots. We
simulated each trajectory set 100 times. Each one of these
simulations is called a test case, and contained 10 randomly
located points with random production rates, and a speed
controller obtained from [2] that stabilized the environment.
Each test case was simulated five times, one for each
stopping policy. In each simulation instance, the robots had a
safety disk of ρr equal to 1.25 times the radius of the robot,
and they were initialized in collision-free starting locations.
Each simulation instance ran for 10,000 iterations and, after
finishing, the empirical stability margin was recorded.

The aggregated results from all the simulations can be seen
in Figure 6. Figure 6 shows the ranking of the policies versus
the number of instances that the policy achieved a ranking.
A first place ranking corresponds to the policy producing the
largest empirical stability margin at the end of the simulation
instance. The simulation data shows that the most effective

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

All−Time vs Min−Time Policy
performance for 6 trajectory sets

Trajectory sets

In
st

a
n
ce

s 
o
f 
b
e
tt
e
r 

p
e
rf

o
rm

a
n
ce

 

 
All−Time

Min−Time

Fig. 7: Head-to-head results from the All-Time and Min-Time policies. The
horizontal axis corresponds to the trajectory set number, and the vertical
axis corresponds to the number of instances that the policy generated the
better performance between the two.

policy is the All-Time policy, followed by the Min-Time

policy. Figure 7 shows the trajectory set number (using the
same reference as in Figure 5) versus the number of instances
that the policy outperformed its counterpart for the All-Time

and Min-Time policies. The data shows that the overall best
performance is achieved by the All-Time policy, but there
is one trajectory where the Min-Time policy outperforms it.
This shows that the geometry of the trajectories can strongly
affect the performance of the stopping policies. We plan to
investigate this further in our future work.

In summary, six trajectory sets were simulated for five
different stopping policies and for 100 different sets of points
of interest. In total, 3,000 instances of the system were
simulated, and 100% of the tested instances were free of
collision and deadlock, which verifies the correctness of our
collision avoidance procedure.

B. Distributed Implementation

We implemented the persistent monitoring task with col-
lision avoidance on a multi-robot system consisting of two
iRobot Create robots. Algorithm 2 used safety disks with
ρr equal to 1.1 times the radius of the robot, and it used
the All-Time stopping policy. Figure 8 shows three snapshots
of the evolution of the system in the implementation. This
implementation was executed in a distributed way. Each
robot only knew information about itself, and communicated
with the other robot when entering a collision zone in
order to decide whether to continue its trajectory or stop
to avoid collision. The robots tracked their paths with their
speed profiles using a controller based on dynamic feedback
linearization [23]. More than 20 experiments were executed,
and all were collision-free and deadlock-free. In 20 trials
of the setup shown in Figure 8, we observed that robot #1,
which follows the ellipsoid trajectory, stopped an average of
four times every 10 cycles. Robot #2 stopped an average of 5
times for every 1,000 cycles. Our video submission displays
one of these trials.



(a) t = 5 seconds (b) t = 12 seconds (c) t = 34 seconds

Fig. 8: Snapshots at different times of a distributed implementation for the persistent monitoring task with collision avoidance for two robots. The points of
interest are represented as green-filled circles, whose size is proportional to the value of the accumulation function Z(q, t) for each point q. Each robot’s
footprint is represented by a concentric circle around the robot’s location, and it is the same color as the trajectory that robot is following.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we presented a collision avoidance procedure
for persistent tasks. The procedure was based on computing
collision zones, and then ensuring that only one robot occu-
pied a given collision zone at any moment in time. This was
performed by stopping robots before they entered a collision
zone, and resuming motion only once the zone was clear. We
empirically investigated the performance of several different
stopping policies, and determined that the All-Time policy
resulted in the best stability margin. We also presented a
distributed implementation on the iRobot Create platform.

For future work we are interested in analytically charac-
terizing the performance of the different stopping policies.
We are also looking into ways to tighten our analysis of the
required nominal stability margin. Finally we are interested
in investigating other application areas for our collision
avoidance procedure, such as in traffic control, or automated
material handling.

REFERENCES

[1] S. L. Smith and D. Rus, “Multi-robot monitoring in dynamic envi-
ronments with guaranteed currency of observations,” in Proc CDC,
Atlanta, GA, Dec. 2010, pp. 514–521.

[2] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic
tasks: Monitoring and sweeping in changing environments,”
IEEE Trans Robotics, Jul. 2010, submitted. Available at
http://arxiv.org/abs/1102.0603.

[3] H. Choset, “Coverage for robotics – A survey of recent results,” Annals

of Mathematics and Artificial Intelligence, vol. 31, no. 1-4, pp. 113–
126, 2001.

[4] Y. Elmaliach, N. Agmon, and G. A. Kaminka, “Multi-robot area patrol
under frequency constraints,” in Proc ICRA, Roma, Italy, Apr. 2007,
pp. 385–390.

[5] P. F. Hokayem, D. Stipanović, and M. W. Spong, “On persistent
coverage control,” in Proc CDC, New Orleans, LA, Dec. 2007, pp.
6130–6135.

[6] N. Nigram and I. Kroo, “Persistent surveillance using multiple un-
mannded air vehicles,” in IEEE Aerospace Conf., Big Sky, MT, May
2008, pp. 1–14.

[7] K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Freeman, “Decen-
tralized environmental modeling by mobile sensor networks,” IEEE

Trans Robotics, vol. 24, no. 3, pp. 710–724, 2008.
[8] J. Cortés, “Distributed Kriged Kalman filter for spatial estimation,”

IEEE Trans Automatic Ctrl, vol. 54, no. 12, pp. 2816–2827, 2009.
[9] F. Zhang and N. E. Leonard, “Cooperative filters and control for

cooperative exploration,” IEEE Trans Automatic Ctrl, vol. 55, no. 3,
pp. 650–663, 2010.

[10] J. L. Ny and G. J. Pappas, “On trajectory optimization for active
sensing in gaussian process models,” in Proc CDC, Shanghai, China,
Dec. 2009, pp. 6282–6292.

[11] F. Bourgault, A. A. Makarenko, S. B. Williams, B. Grocholsky, and
H. F. Durrant-Whyte, “Information based adaptive robotic explo-
ration,” in Proc IROS, Lausanne, Switzerland, Oct. 2002, pp. 540–545.

[12] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int J Robotic Research, vol. 5, no. 1, pp. 90–98, 1986.

[13] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha, “Independent
navigation of multiple mobile robots with hybrid reciprocal velocity
obstacles,” in Proc IROS, St. Louis, MO, Oct. 2009, pp. 5917–5922.

[14] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for
multiple robots having independent goals,” IEEE Trans Robotics &

Automation, vol. 14, no. 6, pp. 912–925, 1998.
[15] S. Akella and S. A. Hutchinson, “Coordinating the motions of multiple

robots with specified trajectories,” in Proc ICRA, Washington, DC,
2002, pp. 624–631.

[16] M. Jager and B. Nebel, “Decentralized collision avoidance, deadlock
detection, and deadlock resolution for multiple mobile robots,” in Proc

IROS, vol. 3, Maui, HI, Oct. 2001, pp. 1213 – 1219.
[17] T. Arai, H. Ogata, and T. Suzuki, “Collision avoidance amongts

multiple robots using virtual impedance,” in Proc IROS, Tsukuba,
Japan, 1989, pp. 479–485.

[18] S. Qutub, R. Alami, and F. Ingrand, “Hot to solve deadlock situations
within the plan-mergin paradigm for multi-robots cooperation,” in Proc

IROS, vol. 3, Grenoble, France, 1997, pp. 1610 – 1615.
[19] R. Alami, F. Ingrand, and S. Qutub, “A scheme for coordinating multi-

robot planning activities and plans execution,” in Proc ECAI, 1998.
[20] P. A. O’Donnell and T. Lozano-Pérez, “Deadlock-free and collision-

free coordination of two robot manipulators,” in Proc ICRA, vol. 1,
Scottsdale, AZ, 1989, pp. 484–489.

[21] A. L. Schuote and P. J. Bouwens, “Deadlock-free traffic control
with geometrical critical sections,” in Proc Computing Science in the

Netherlands, Amsterdam, 1994, pp. 260–270.
[22] Z. Butler and D. Rus, “Distributed planning and control for modular

robots with unit-compressible modules,” Int J Robotic Research,
vol. 22, no. 9, pp. 699–715, 2003.

[23] G. Oriolo, A. D. Luca, and M. Vendittelli, “WMR control via dynamic
feedback linearization: design, implementation, and experimental val-
idation,” IEEE Trans Control Systems Technology, vol. 10, no. 6, pp.
835–852, 2002.


