
Optimal Multi-Robot Path Planning with LTL
Constraints: Guaranteeing Correctness Through
Synchronization

Alphan Ulusoy, Stephen L. Smith, and Calin Belta

Abstract In this paper, we consider the automated planning of optimal paths for
a robotic team satisfying a high level mission specification. Each robot in the team
is modeled as a weighted transition system where the weights have associated de-
viation values that capture the non-determinism in the traveling times of the robot
during its deployment. The mission is given as a Linear Temporal Logic (LTL) for-
mula over a set of propositions satisfied at the regions of the environment. Addi-
tionally, we have an optimizing proposition capturing some particular task that must
be repeatedly completed by the team. The goal is to minimize the maximum time
between successive satisfying instances of the optimizing proposition while guaran-
teeing that the mission is satisfied even under non-deterministic traveling times. Our
method relies on the communication capabilities of the robots to guarantee correct-
ness and maintain performance during deployment. After computing a set of optimal
satisfying paths for the members of the team, we also compute a set of synchroniza-
tion sequences for each robot to ensure that the LTL formula is never violated during
deployment. We implement and experimentally evaluate our method considering a
persistent monitoring task in a road network environment.

1 Introduction

Temporal logics [5], such as Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL), are extensions of propositional logic that can capture temporal re-
lations. Even though temporal logics have been used in model checking of finite
systems [1] for quite some time, they have gained popularity as a means for specify-
ing complex mission requirements in path planning and control synthesis problems
only recently [15, 13, 22]. Existing work on path planning and control synthesis

Alphan Ulusoy, Calin Belta
Boston University, Boston, MA, USA e-mail: alphan@bu.edu,cbelta@bu.edu

Stephen L. Smith
University of Waterloo, Waterloo, ON, Canada e-mail: stephen.smith@uwaterloo.ca

1

2 Alphan Ulusoy, Stephen L. Smith, and Calin Belta

concentrates on LTL specifications for finite state systems, which may be abstrac-
tions of their infinite counterparts [15, 18]. Particularly, given the system model and
the mission specification expressed in some temporal logic, satisfying paths and cor-
responding control strategies can be computed automatically through a search of the
state space for deterministic [9], non-deterministic [16, 18, 13, 10] and probabilistic
systems [2, 11, 4].

In our previous work, we focused on mission specifications given in LTL along
with a particular cost function, and proposed an automated method for finding opti-
mal robot paths that satisfy the mission and minimize the cost function for a single
robot [14]. Next, we extended this approach to multi-robot teams by utilizing an
abstraction based on timed automata [21]. Then, we proposed a robust method that
could accomodate uncertainties in the traveling times of robots with limited com-
munication capabilities [20].

Extending the optimal path planning problem from a single robot to multiple
robots is not trivial, as the joint asynchronous motion of all members of the team
must be captured in a finite model. In [9], the authors propose a method for de-
centralized motion of multiple robots subject to LTL specifications. Their method,
however, results in sub-optimal performance as it requires the robots to travel syn-
chronously, blocking the execution of the mission before each transition until all
robots are synchronized. The vehicle routing problem (VRP) [17] and its extensions
to more general classes of temporal constraints [7, 8] also deal with finding optimal
satisfying paths for a given specification. In [8], the authors consider optimal vehi-
cle routing with metric temporal logic specifications by converting the problem to a
mixed integer linear program (MILP). However, their method does not apply to the
missions where robots must repeatedly complete some task, as it does not allow for
specifications of the form “always eventually”. Furthermore, none of these methods
are robust to timing errors that can occur during deployment, as they rely on the
robots’ ability to follow generated trajectories exactly for satisfaction of the mission
specification.

In [21], we proposed a method that uses timed automata to capture the joint
asynchronous motion of the members of the robotic team in the environment. After
providing a bisimulation [12] of an infinite-dimensional timed automaton to a finite
dimensional transition system, we applied our results from [14] to compute an opti-
mal satisfying run. However, multi-robot paths found using this method are imple-
mentable only if the traveling times of the robots during deployment exactly match
the traveling times used for planning. Otherwise, the order of events may switch
resulting in the violation of the mission specification during deployment. In [20],
we addressed this issue for robots operating under communication constraints that
limit their communication capabilities to a subset of regions. We showed that a
trace-closed mission specification will never be violated due to uncertainties in the
speeds of the robots. Then, we proposed a synchronization protocol to maintain and
characterize the field performance of the robotic team.

The methods given in [21] and [20] are actually two extremes: In [21], the robots
can follow the generated trajectories exactly and do not communicate at all, while
in [20] the robots’ traveling times during deployment deviate from those used in
planning, and they cannot communicate freely. In this paper, we address the mid-
dle between these two extremes: the robots cannot follow the generated trajectories

Optimal Multi-Robot Path Planning with LTL Constraints and Synchronization 3

exactly, but they can communicate regardless of their positions in the environment.
Thus, after obtaining an optimal satisfying run of the team, we compute synchro-
nization sequences that leverage the communication capabilities of the robots to
robustify the planned trajectory against deviations in traveling times.

The main contribution of this paper is threefold. First, we provide an algorithm
to capture the joint asynchronous behavior of a team of robots modeled as transition
systems in a single transition system. This team transition system is provably more
compact than the approach based on timed automata that we previously proposed
in [21]. Second, for a satisfying run made up of a finite length prefix and an infinite
length cyclic suffix, we propose a synchronization protocol and an algorithm to com-
pute synchronization sequences that guarantee correctness under non-deterministic
traveling times that may be observed during deployment. Finally, we provide an
automated framework that uses these two methods along with the OPTIMAL-RUN
algorithm previously proposed in [14] to solve the multi-robot optimal path plan-
ning problem with robustness guarantees. Our experiments show that the computed
runs and synchronization sequences indeed provide robustness to uncertainties in
traveling times that may occur during the deployment of the team.

The rest of the paper is organized as follows: In Sec. 2, we provide some defini-
tions and preliminaries in formal methods. In Sec. 3, we formulate the optimal and
robust multi-robot path planning problem and give an outline of our approach. We
provide a complete solution to this problem in Sec. 4. In Sec. 5, we present exper-
iments involving a team of robots performing a persistent surveillance mission in a
road network environment. In Sec. 6, we conclude with final remarks. Due to page
constraints we omit the proofs of all results. The proofs are contained in an extended
version available online [19].

2 Preliminaries

In this section, we introduce the notations that we use in the rest of the paper and
briefly review some concepts related to automata theory, LTL, and formal verifica-
tion. For a more rigorous treatment of these topics, we refer the interested reader
to [3, 6, 1] and references therein.

For a set Σ , we use |Σ |, 2Σ , Σ ∗, and Σ ω to denote its cardinality, power set, set
of finite words, and set of infinite words, respectively. We define Σ ∞ = Σ ∗∪Σ ω and
denote the empty string by /0.

Definition 1 (Transition System). A (weighted) transition system (TS) is a tuple
T := (QT,q0

T,δT,ΠT,LT,wT), where (1) QT is a finite set of states; (2) q0
T ∈QT

is the initial state; (3) δT ⊆ QT×QT is the transition relation; (4) ΠT is a finite
set of atomic propositions; (5) LT : QT → 2ΠT is a map giving the set of atomic
propositions satisfied in a state; (6) wT : δT → N>0 is a map that assigns a positive
integer weight to each transition.

We define a run of T as an infinite sequence of states rT = q0,q1, . . . such that
q0 = q0

T , qk ∈QT and (qk,qk+1) ∈ δT for all k≥ 0. A run generates an infinite word
ωT = L (q0),L (q1), . . . where L (qk) is the set of atomic propositions satisfied at
state qk.

4 Alphan Ulusoy, Stephen L. Smith, and Calin Belta

In this work, we consider mission specifications expressed as Linear Tempo-
ral Logic (LTL) formulas over Π using the standard syntax and semantics defined
in [1]. We follow the literal notation for temporal operators (G,F,X,U). We say a
run rT satisfies φ if and only if the word generated by rT satisfies φ .

Definition 2 (Büchi Automaton). A Büchi automaton is a tuple B ··= (QB,Q
0
B,ΣB,

δB,FB), consisting of (1) a finite set of states QB; (2) a set of initial states Q0
B ⊆

QB; (3) an input alphabet ΣB; (4) a non-deterministic transition relation δB ⊆QB×
ΣB×QB; (5) a set of accepting (final) states FB ⊆QB.

A run of B over an input word ω = ω0,ω1, . . . is a sequence rB = q0,q1, . . ., such
that q0 ∈Q0

B, and (qk,ωk,qk+1) ∈ δB, for all k ≥ 0. A Büchi automaton B accepts
a word over ΣB if and only if at least one of the corresponding runs intersects with
FB infinitely many times. For any LTL formula φ over a set Π , one can construct
a Büchi automaton with input alphabet ΣB = 2Π accepting all and only words over
2Π that satisfy φ .

Definition 3 (Prefix-Suffix Structure). A prefix of a run is a finite path from an
initial state to a state q. A periodic suffix is an infinite run originating at the state
q reached by the prefix, and periodically repeating a finite path, which we call the
suffix cycle, originating and ending at q. A run is in prefix-suffix form if it consists
of a prefix followed by a periodic suffix.

3 Problem Formulation and Approach

In this section we introduce the multi-robot path planning problem with temporal
logic constraints for robots with uncertain, but bounded traveling times. Let E =
(V,→E) be a directed graph, where V is the set of vertices and→E⊆ V ×V is the
set of edges. We consider E as the quotient graph of a partitioned environment,
where V is the set of labels of the regions and→E is the corresponding adjacency
relation.

Consider a team of m robots moving in an environment modeled by E . The mo-
tion capabilities of robot i, i = 1, . . . ,m are modeled by a TS Ti = (Qi,q0

i ,δi,Πi,
Li,wi), where Qi ⊆V ; q0

i is the initial vertex of robot i; δi ⊆→E is a relation mod-
eling the capability of robot i to move among the vertices; Πi ⊆ Π is the subset
of propositions that can be satisfied by robot i; Li is a mapping from Qi to 2Πi

showing how the propositions are satisfied at vertices; and wi(q,q′) gives the nom-
inal time for robot i to go from vertex q to q′, which we assume to be a positive
integer. However, due to the uncertainty in the traveling times of the robots, the ac-
tual time it takes for robot i to go from q to q′, which we denote by w̃i(q,q′), is
a non-deterministic quantity that lies in the interval [ρiwi(q,q′),ρiwi(q,q′)], where
ρi,ρi are the predetermined lower and upper deviation values of robot i that satisfy
0 < ρi ≤ 1≤ ρi. In this model, robot i travels along the edges of Ti, and spends zero
time on the vertices. We also assume that the robots are equipped with motion prim-
itives that allow them to deterministically move from q to q′ for each (q,q′) ∈ δi,
even though the time it takes to reach from q to q′ is uncertain. In the following, we

Optimal Multi-Robot Path Planning with LTL Constraints and Synchronization 5

use the expression “in the field” to refer to the model with uncertain traveling times,
and use x and x̃ to denote the nominal and actual values of some variable x.

We consider the case where the robotic team has a mission in which some partic-
ular task must be repeatedly completed and the maximum time between successive
completions of this task must be minimized. For instance, in a persistent surveil-
lance mission, the global mission could be keep gathering data while obeying traffic
rules at all times, and the repeating task could be gathering data. For this example,
the robots would operate according to the mission specification while ensuring that
the maximum time between successive data gatherings is minimized. Consequently,
we assume that there is an optimizing proposition π ∈ Π that corresponds to this
repeating task and consider multi-robot missions specified by LTL formulae of the
form

φ ··= ϕ ∧GFπ, (1)

where ϕ can be any LTL formula over Π , and GFπ means that the proposition π

must be repeatedly satisfied. Our aim is to plan multi-robot paths that satisfy φ and
minimize the maximum time between successive satisfying instances of π .

To state this problem formally, we assume that each run ri = q0
i ,q

1
i , . . . of Ti

(robot i) starts at t = 0 and generates a word ωi = ω0
i ,ω

1
i , . . . and a corresponding

sequence of time instances Ti ··= t0
i , t

1
i , . . . such that ωk

i = Li(qk
i) is satisfied at tk

i .
To define the behavior of the team as a whole, we interpret the sequences Ti as
sets and take the union

⋃m
i=1Ti and order this set in an ascending order to obtain

the sequence T ··= t0, t1, Then, we define ωteam = ω0
team,ω

1
team, . . . to be the word

generated by the team of robots where ωk
team is the union of all propositions satisfied

at tk. Finally, we define the infinite sequence Tπ = Tπ(1),Tπ(2), . . . where Tπ(k) is
the time instance when π is satisfied for the kth time by the team and define the cost
function

J(Tπ) = limsup
i→+∞

(Tπ(i+1)−Tπ(i)) . (2)

The form of the cost function given in Eq. (2) is motivated by persistent surveil-
lance missions, where one is interested in the long-term behavior of the team. Given
a sequence Tπ corresponding to some run of the team, the cost function in Eq. (2)
captures the maximum time between satisfying instances of π once the team be-
havior reaches a steady-state, which we achieve in finite time as we will discuss in
Sec. 4.2. Thus, the problem becomes that of finding an optimal run of the team that
satisfies φ and minimizes (2). However, the non-determinism in traveling times im-
poses two additional difficulties which directly follow from Prop. 3.2 in [20]: First,
if the traveling times observed during deployment deviate from those used in plan-
ning, then there exist missions that will be violated in the field. Second, the worst
case performance of the robotic team during deployment in terms of Eq. (2) will be
limited by that of a single member.

To guarantee correctness in the field, and limit the deviation of the performance
of the team from the planned optimal run during deployment, we propose peri-
odic synchronization of the robots. Using this synchronization protocol, robots syn-
chronize with each other according to pre-computed synchronization sequences
si, i = 1, . . . ,m as they execute their runs ri, i = 1, . . . ,m in the field. We can now
formulate the problem.

6 Alphan Ulusoy, Stephen L. Smith, and Calin Belta

Problem 1. Given a team of m robots modeled as transition systems Ti, i=1, . . . ,m,
and an LTL formula φ over Π in the form (1), synthesize individual runs ri and syn-
chronization sequences si for each robot such that Tπ minimizes the cost function
(2), and ω̃team, i.e., the word observed in the field, satisfies φ .

Note that our aim in Prob. 1 is to find a run that is optimal under nominal values
while ensuring that φ is never violated in the field. Since T̃π , i.e., the sequence of
instants at which π is satisfied during deployment, is likely to be sub-optimal, we
will also seek to bound the deviation from optimality in the field. As we consider
LTL formulas containing GFπ , this optimization problem is always well-posed.

Our solution to Prob. 1 consists of three steps: (1) We obtain the team transition
system T that captures the joint asynchronous behavior of the robots (See Sec. 4.1);
(2) We find an optimal satisfying run r?team on T using the OPTIMAL-RUN algorithm
we previously developed in [14] and obtain individual optimal runs r?i , i = 1, . . . ,m
(See Sec. 4.2); (3) We generate the synchronization sequences si, i = 1, . . . ,m to
guarantee correctness in the field and calculate an upper bound on the field value of
the cost function Eq. (2) (See Sec. 4.3).

4 Problem Solution

In this section, we describe each step of our solution to Prob. 1 in detail with the
help of a simple illustrative example. We present our experimental results in Sec. 5.

4.1 Obtaining the Team Transition System

In [21], we showed that the joint asynchronous behavior of a robotic team modeled
as m transition systems Ti, i = 1, . . . ,m (Def. 1) can be captured using a region au-
tomaton. A region automaton, as given in the following definition from [20], is a
finite transition system that keeps track of the relative positions of the robots as they
move asynchronously in the environment.

Definition 4 (Region Automaton). The region automaton R is a TS (Def. 1) R ··=
(QR,q0

R,δR,ΠR,LR,wR), where QR is the set of states of the form (q,r) such that
q is a tuple of state pairs (q1q′1, . . . ,qmq′m) where the ith element qiq′i is a source-
target state pair from Qi of Ti meaning robot i is currently on its way from qi to q′i,
and r is a tuple of clock values (x1, . . . ,xm) where xi ∈ N denotes the time elapsed
since robot i left state qi. q0

R ⊆ QR is the set of initial states with r = (0, . . . ,0)
and q = (q0

1q′1, . . . ,q
0
mq′m) such that q0

i is the initial state of Ti and (q0
i ,q
′
i) ∈ δi. δR

is the transition relation such that a transition from (q,r) to (q′,r′) where the ith

state pair qiq′i and the ith clock value xi in (q,r) change to q′iq
′′
i and x′i in (q′,r′)

exists if and only if (qi,q′i),(q
′
i,q
′′
i) ∈ δi for all changed state pairs, wi(qi,q′i)− xi

of all changed state pairs are equal to each other and are strictly smaller than those
of unchanged state pairs, and for all changed state pairs, the corresponding x′i in r′

becomes x′i = 0 and all other clock values in r are incremented by wi(qi,q′i)− xi in
r′. ΠR =∪m

i=1Πi is the set of propositions. LR : QR→ 2ΠR is a map giving the set of
atomic propositions satisfied in a state. For a state (q,r), LR((q,r)) =∪i|xi=0Li(qi).

Optimal Multi-Robot Path Planning with LTL Constraints and Synchronization 7

wR : δR→N>0 is a map that assigns a positive integer weight to each transition such
that wR((q,r),(q′,r′)) = wi(qi,q′i)−xi for each state pair that has changed from qiq′i
to q′iq

′′
i with a corresponding clock value of x′i = 0 in r′.

Example 1. Fig. 1 illustrates the TS’s of two robots that are expected to sat-
isfy the mission φ := G(p1 ⇒ X(¬p1 U p3))∧GFπ , where Π1 = {p1, π}, Π2 =
{p2, p3, π}, and Π = {p1, p2, p3, π}. We also have ρ1 = ρ2 = 1.1 and ρ1 = ρ2 =
0.9. The region automaton R that models the robots is given in Fig. 2.

a

b p1,πT1

2 2

(a)

a

b p2,π

c p3

T2

2

2

1

1

(b)

Fig. 1 Figs. (a) and (b) show the transition systems T1 and T2 of two robots in an environment with
three vertices. The states of the transition systems correspond to vertices {a,b,c} and the edges
represent the motion capabilities of each robot. The weights of the edges represent the traveling
times between any two vertices. The propositions p1,p2,p3 and π are shown next to the vertices
where they can be satisfied by the robots.

However, as a region automaton encodes the directions of travel of the robots
as opposed to their locations, it typically contains redundant states, and thus can
typically be reduced to a smaller size. The following example illustrates this fact.

ab,ab
(0,0)

ba,cb
(1,0)

p3
ab,bc
(0,0)

p2
π

ab,ba
(0,0)

p2
π

ba,ba
(0,0)

p1
p2
π

ba,bc
(0,0)

p1
p2
π

ab,cb
(1,0)

p3
ba,ab
(0,0)

p1
π

R

2 2

1

1

1 2 22

1

1

12 Fig. 2 The finite state region
automaton capturing the joint
behavior of two robots in 9
states. In a circle representing
a state (q,r), the first line is q
and the second line is r.

Example 1 Revisited. State ((ab,bc),(0,0)) of the region automaton R given in
Fig. 2 is equivalent to the state ((ab,ba),(0,0)) in the sense that both robots satisfy
the same propositions and the positions of both robots are the same at both states,
i.e., robot 1 is at a and robot 2 is at b. These two states differ only in the future
direction of travel of the second robot, i.e., robot 2 travels towards c in the first
state whereas it travels towards a in the second state. This information, however, is
redundant as it can be obtained just by looking at the next state of the team in any
given run.

Motivated by this observation, we define a binary relation R to reduce the region
automaton R to a smaller team transition system T.

8 Alphan Ulusoy, Stephen L. Smith, and Calin Belta

Definition 5 (Binary Relation R). Binary relation R = {(s, t)|s ∈QR, t ∈QT} is
a mapping between the states of R and T that maps a state s = ((q1q′1, . . . ,qmq′m),
(x1, . . . ,xm)) in QR to a state t = (t1, . . . , tm) in QT, where ti = qi if xi = 0 and
ti = qiq′ixi if xi > 0. Note that, xi = 0 for at least one i ∈ {1, . . . ,m}. We refer to a
state ti ∈QT of the form qiq′ixi as a traveling state as it captures the instant where
robot i has traveled from qi to q′i for xi time units.

Given a region automaton R, we can obtain the corresponding team transition
system T using the binary relation R and the following procedure.

Procedure 1 (Obtaining T from R) Using R we construct the team transition sys-
tem T from the region automaton R as follows: (1) For each s ∈ QR we define
the corresponding t ∈ QT as given in Def. 5 such that (s, t) ∈ R. (2) We set
LT(t) = LR(s). Note that, each s that corresponds to a given t has the same set
of propositions due to the way R is constructed (Def. 4) [21]. (3) For each s corre-
sponding to a given t, we define the corresponding transitions originating from t in
T such that ∃(t, t ′) ∈ δT∀(s,s′) ∈ δR where (s, t) ∈R and (s′, t ′) ∈R. (4) We mark
a state t in QT as the initial state of T if the corresponding s is an initial state in
QR. Note that, all states that correspond to a given t are either in q0

R altogether or
none of them are in q0

R.

The following proposition shows that the team transition system T obtained us-
ing Proc. 1 and the corresponding region automaton R are bisimulation equivalent,
i.e., there exists a binary relation between the states and the transitions of R and T
such that they behave in the same way [1].

Proposition 1 (Bisimulation Equivalence). The team transition system T obtained
using Proc. 1 and the region automaton R are bisimulation equivalent, i.e., R∼ T,
and R is a bisimulation relation for R and T.

Example 1 Revisited. Using R, we construct T (Fig. 3) that captures the joint
asynchronous behavior of the team in 6 states whereas the corresponding region
automaton R had 9 states. A state labeled (a,b) means robot 1 is at region a and
robot 2 is at region b, whereas a state labeled (ba1,c) means robot 1 traveled from
b to a for 1 time unit and robot 2 is at c.

a,a ba1,cp3 a,b p2
π

b,b
p1
p2
π

ab1,c p3 b,a p1
π

T

2

1

1
2 2

1

2
1

Fig. 3 The team transition
system capturing the joint
behavior of two robots in 6
states.

In [21] we showed that the number of states |QR| of the region automaton R that
models m robots Ti, i= 1, . . . ,m is bounded by (∏m

i=1 |δi|)(∏m
i=1 Wi−∏

m
i=1(Wi−1)),

where |δi| is the number of transitions in the TS Ti of robot i and Wi is maximum
weight of any transition in Ti. The following proposition provides a bound on the
number of states |QT| of T and shows that it is indeed significantly smaller than the
bound on |QR|.

Optimal Multi-Robot Path Planning with LTL Constraints and Synchronization 9

Proposition 2. The number of states |QT| of T is bounded by ∏
m
i=1 |Qi|+ (W −

1)∏
m
i=1 |δi| where W is the largest edge weight in all TS’s.

Finally, we note that the states of T correspond to the instants where at least one
robot has completed a transition in its individual TS and is currently at a vertex while
other robots may still be traveling. Using this fact, one can construct T directly by
using a depth first search that runs in parallel on the TS’s of the individual members
of the team as given in Alg. 1. A detailed discussion on Alg. 1 can be found in [19].

Algorithm 1: CONSTRUCT-TEAM-TS
Input: (T1, . . . ,Tm).
Output: Corresponding team transition system T.

1 q0
T := (q0

1, . . . ,q
0
m), where q0

i is the initial state of Ti.
2 dfsT(q0

T).

3 Function dfsT(state tuple q ∈QT)

4 q[i] is the ith element of state tuple q ∈QT.
5 ti is a transition of Ti, i = 1, . . . ,m, such that ti ∈ {(q[i],q′i)|(q[i],q′i) ∈ δi} if q[i] ∈Qi. Else if

q[i] = qiq′ixi, then ti = (qi,q′i).
6 T := (t1, . . . , tm) is a tuple of such transitions.
7 T is the set of all such transition tuples at q.
8 foreach transition tuple T ∈T do
9 w← Shortest time until a robot is at a vertex while the transitions in T are being taken.

10 Find the q′ that corresponds to this new state of the team using R.
11 if q′ /∈QT then
12 Add state q′ to QT.
13 Set L (q′) = ∪i|q[i]∈QiL (q[i]).
14 Add (q,q′) to δT with weight w.
15 Continue search from q′: dfsT(q′).
16 else if (q,q′) /∈ δT then
17 Add (q,q′) to δT with weight w.

Remark 1 (Comparison with Naive Construction). One can avoid going through
Alg. 1 and capture the joint behavior of the team by discretizing each transition in
Ti, i = 1, . . . ,m to unit-length edges and taking the synchronous product of these
m Ti’s. This approach, however, yields a much larger model whose state count is
bounded by ∏

m
i=1
(
|Qi|+∑(q,q′)∈δi wi(q,q′)−|δi|

)
. For the case where we have m

identical robots in an environment with Q vertices, ∆ edges and a largest edge
weight of W, the above given bound is O((Q+∆W)m), whereas the bound given by
Prop. 2 is O(Qm +∆ mW).

4.2 Obtaining Optimal Satisfying Runs and Transition Systems
with Traveling States

After constructing T that models the team, we use OPTIMAL-RUN from [14] to
obtain an optimal satisfying run r?team on T that minimizes the cost function (2) and
satisfies φ . The optimal run r?team is always in prefix-suffix form, consisting of a

10 Alphan Ulusoy, Stephen L. Smith, and Calin Belta

finite sequence of states of T (prefix), followed by infinite repetitions of another
finite sequence of states of T (suffix) as given in Def. 3.

Example 1 Revisited. Running Alg. OPTIMAL-RUN [14] on T given in Fig. 3 for
the formula φ = G(p1⇒ X(¬p1 U p3))∧GFπ results in the optimal run with the
prefix (a,a),(b,b) and the suffix cycle (ba1,c),(a,b),(ab1,c),(b,b), which will be
repeated indefinitely. The cost as defined in (2) is J(Tπ) = 2.

Since T captures the asynchronous motion of the robots, the optimal satisfying run
r?team on T may contain some traveling states which do not appear in the individual
TSs Ti, i = 1, . . . ,m that we started with. But we cannot ignore such traveling states
either, as each one of them is a candidate synchronization point for the correspond-
ing robot as we discuss in Sec. 4.3. Instead, we insert those traveling states into the
individual TSs so that the robots will be able to synchronize with each other at those
points if needed. In the following, we use qk[i] to denote the ith element of the kth

state tuple in r?team, which is also the state of robot i at that position of r?team. As
given in Def. 5, a traveling state of robot i has the form qiq′ixi. First, we construct
the set S = {(i,qk[i]) | qk[i] = qiq′ixi∀k, i} of all traveling states that appear in r?team.
Elements of S are tuples where the second element is a traveling state and the first
element gives the transition system this new traveling state will be added to. Next,
we construct the set T = {(i,(qk[i],qk+1[i]),x) | (qk[i] ∈S)∨ (qk+1[i] ∈S), x =
wT(qk,qk+1)∀k, i} of all transitions that involve any of the traveling states in r?team.
Elements of T are triplets where the second element is a transition, the third element
is the weight of this transition, and the first element shows the transition system that
this new transition will be added to. Then, we add the traveling states in S and the
transitions in T to their corresponding transition systems. Finally, using the follow-
ing definition, we project the optimal satisfying run r?team down to individual robots
Ti, i = 1, . . . ,m to obtain individual optimal satisfying runs r?i , i = 1, . . . ,m.

Definition 6 (Projection of a Run on T to Ti’s). Given a run rteam on T where
rteam = q0,q1, . . ., we define its projection on Ti as run ri = q0

i ,q
1
i , . . . for all i =

1, . . . ,m, such that qk
i = qk[i] where qk[i] is the ith element of tuple qk.

a

ab1

b p1,π

ba1

T1

2 2

1

1 1

1

(a)

a

b p2,π

c p3

T2

2

2

1

1

(b)

Fig. 4 Figs. (a) and (b) show
the TSs with new traveling
states that correspond to the
optimal run r?team that we
computed for Ex. 1. The new
traveling states and transitions
of T1 are highlighted in red.

Example 1 Revisited. For this example, we have S = {(1,ab1),(1,ba1)} and
T = {(1,(a,ab1),1),(1,(ab1,b),1),(1,(b,ba1),1),(1,(ba1,a),1)}. Fig. 4 illus-
trates the corresponding TSs with new traveling states and transitions highlighted in

Optimal Multi-Robot Path Planning with LTL Constraints and Synchronization 11

red. Using Def. 6, we obtain the runs of the individual robots as r?1 = a,b,ba1,a,ab1,
b,ba1,a,ab1, . . . and r?2 = a,b,c,b,c,b,c,b,c,

4.3 Guaranteeing Correctness through Synchronization and the
Optimality Bound

As the robots execute their infinite runs in the field, they synchronize with each
other according to the synchronization sequences that we generate using Alg. 2.
The synchronization sequence si of robot i is an infinite sequence of pairs of sets.
The kth element of si, denoted by sk

i , corresponds to the kth element qk
i of r?i . Each sk

i
is a tuple of two sets of robots: sk

i = (sk
i,wait ,s

k
i,noti f y), where sk

i,wait and sk
i,noti f y are the

wait-set and notify-set of sk
i , respectively. The wait-set of sk

i is the set of robots that
robot i must wait for at state qk

i before satisfying its propositions and proceeding to
the next state qk+1

i in r?i . The notify-set of sk
i is the set of robots that robot i must

notify as soon as it reaches state qk
i . As we discussed earlier in Sec. 4.2, the optimal

run r?team of the team and the individual optimal runs r?i , i = 1, . . . ,m of the robots
are always in prefix-suffix form (Def. 3). Consequently, individual synchronization
sequences si of the robots are also in prefix-suffix form. A detailed discussion on
Alg. 2 can be found in [19].

Algorithm 2: SYNC-SEQ

Input: Individual optimal runs of the robots {r?1, . . . ,r?m}, Büchi automaton B¬φ that
corresponds to ¬φ .

Output: Synchronization sequence for each robot {s1, . . . ,sm}.
1 I = {1, . . . ,m}.
2 beg← beginning of suffix cycle.
3 end← end of suffix cycle.
4 Initialize each si so that all robots wait for and notify each other at every position of their

runs.
5 foreach k = 1, . . . ,end do
6 foreach i ∈I do
7 if k 6= 1 and k 6= beg then
8 foreach j ∈I \ i do
9 Remove j from sk

i,wait .
10 Remove i from sk

j,noti f y.
11 Construct the TS W that generates every possible ω̃team.
12 if the language of B¬φ ×W is not empty then
13 Add j back to sk

i,wait .
14 Add i back to sk

j,noti f y.

15 Rest of each si is an infinite repetition of its suffix-cycle, i.e. sbeg
i , . . . ,send

i .

The following proposition slightly extends the result of Prop. 4.5 in [20] by con-
sidering unequal lower and upper deviation values.

Proposition 3. Suppose that each robot’s deviation values are bounded by ρ and ρ

where ρ ≥ 1≥ ρ > 0 (i.e., ρi ≥ ρ and ρi ≤ ρ for each robot i). Let J(Tπ) be the cost

12 Alphan Ulusoy, Stephen L. Smith, and Calin Belta

of the planned robot paths and let J(T̃π) be the actual value of the cost observed
during deployment. Then, if the robots use the synchronization sequences generated
by Alg. 2, the field value of the cost satisfies J(T̃π)≤ J(Tπ)ρ +ds(ρ−ρ) where ds
is the planned duration of the suffix cycle.

Example 1 Revisited. Using Alg. 2, we obtain the following individual synchroniza-
tion sequences: s1 = ({2},{2}),({},{}),({2},{2}),({},{}),({},{}),({},{}), . . .,
and s2 =({1},{1}),({},{}),({1},{1}),({},{}),({},{}),({},{}), The elements
of the kth pair in the synchronization sequences correspond to sk

i,wait and sk
i,noti f y, re-

spectively. Also, from Prop. 3, the field value of the cost function is bounded from
above by 3 for ρ1 = ρ2 = 1.1 and ρ1 = ρ2 = 0.9.

We finally summarize our approach in Alg. 3 and show that this algorithm indeed
solves Prob. 1. We discuss the complexity of our approach in Rem. 2.

Proposition 4. Alg. 3 solves Prob. 1.

Remark 2 (Computational Complexity). The main drawback of our approach is
its computational complexity, which is exponential in the number of robots (due to
generation of the team transition system and the synchronization sequences) and in
the length of the LTL formula (due to the conversion to a Büchi automaton). This
cost, however, is justified by the globally optimal runs that our approach computes,
and in practice, we can solve fairly large problems.

Algorithm 3: ROBUST-MULTI-ROBOT-OPTIMAL-RUN

Input: m transition systems Ti, i = 1, . . . ,m, corresponding deviation values, and a global
LTL specification φ of the form (1).

Output: A set of optimal runs {r?1, . . . ,r?m} that satisfies φ and minimizes (2), a set of
synchronization sequences {s1, . . . ,sm} that guarantees correctness in the field, and
the bound on the performance of the team in the field.

1 Construct the team transition system T using Alg. 1.
2 Find an optimal run r?team on T using OPTIMAL-RUN [14].
3 Insert new traveling states to TSs according to r?team (See. Sec. 4.2).
4 Obtain individual runs {r?1, . . . ,r?m} using Def. 6.
5 Generate synchronization sequences {s1, . . . ,sm} using Alg. 2.
6 Find the bound on optimality as given in Prop. 3.

5 Implementation and Case-Study

We implemented Alg. 3 as a python module (available at http://hyness.bu.
edu/lomap/) and used it to plan optimal satisfying paths and synchronization se-
quences for the scenario that we consider in this section. Our experimental platform
(Fig. 5(a)) is a road network comprising roads, intersections and task locations.
Fig. 5(b) illustrates the model that captures the motion of the robots on this plat-
form, where 1 time unit corresponds to 1.574 seconds.

In our experiments, we consider a persistent surveillance task involving two
robots with deviation values ρ1 = ρ2 = 1.05 and ρ1 = ρ2 = 0.95. The building in
the middle of the platform in Fig. 5(a) is our surveillance target. We define the

Optimal Multi-Robot Path Planning with LTL Constraints and Synchronization 13

(a)

1

2 3

4

5

6 7

8 9

10 11

12

13

14 15

16

21

22

17 18 20 19 4

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

4

4

4

2
4

2
2

2

2 2

(b)

Fig. 5 Fig. (a) shows our
experimental platform. The
squares and the circles on
the trajectories of the robots
represent the beginning of
the suffix cycle and sync.
points, respectively. Fig. (b)
illustrates the TS that models
the robots. The green and red
regions are data gather and
upload locations, respectively.

set of propositions Π = {R1Gather18, R1Gather20, R2Gather18, R2Gather20,
R1Gather, R2Gather, R1Upload, R2Upload, Gather} and assign them as
L1(18)= {Gather, R1Gather18, R1Gather}, L2(18)= {Gather, R2Gather18,
R2Gather}, L1(20) = {Gather, R1Gather20, R1Gather}, L2(20) = {Gather,
R2Gather20, R2Gather}, L1(22) = {R1Upload} and L2(22) = {R2Upload}.
The main objective is to keep gathering data while minimizing the maximum time
between successive gathers. We require the robots to gather data in a synchronous
manner at data gather locations 18 and 20 while ensuring that they do not gather data
at the same place at the same time. We also require the robots to upload their data at
upload location 22 before their next data gather. We express these requirements in
LTL in the form of (1) as

φ =G(R1gather⇒ X(¬R1gather U R1upload))∧G(R2gather⇒
X(¬R2gather U R2upload))∧G((R1Gather18⇒ R2Gather20)∧
(R1gather20⇒ R2gather18)∧ (R2gather18⇒ R1gather20)∧
(R2gather20⇒ R1gather18))∧GFGather,

where Gather is set as the optimizing proposition.
Fig. 5(a) illustrates the solution which took our algorithm 10 minutes to compute

on an iMac i5 quad-core computer. The planned value of the cost function was
44.072 seconds (28 time units) with an upper bound of 50.683 seconds (32.2 time
units) seconds. We deployed our robots in our experimental platform to demonstrate
and verify the result. The maximum time between any two successive data uploads
was measured to be 48 seconds. The video available at http://hyness.bu.edu/
lomap/dars2012.mov demonstrates the execution of this run by the robots.

6 Conclusion

In this paper we presented an automated method for planning optimal paths for a
robotic team subject to temporal logic constraints expressed in LTL. The robots
that we consider have bounded non-deterministic traveling times characterized by
robot specific deviation values. We first compute a set of optimal satisfying paths
for the members of the team. Then, leveraging the communication capabilities of
the robots, we also compute a set of synchronization sequences for each robot to
ensure that the LTL formula is never violated during deployment. Our experiments

14 Alphan Ulusoy, Stephen L. Smith, and Calin Belta

show that our method has practical value in scenarios where the traveling times of
the robots during deployment deviate from those used in planning.

Acknowledgements This work was supported in part by ONR MURI N00014-09-1051, NSF
CNS-0834260, and NSERC.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
2. Bianco, A., Alfaro, L.D.: Model checking of probabilistic and nondeterministic systems. pp.

499–513. Springer-Verlag (1995)
3. Clarke, E.M., Peled, D., Grumberg, O.: Model checking. MIT Press (1999)
4. Ding, X.C., Smith, S.L., Belta, C., Rus, D.: Mdp optimal control under temporal logic con-

straints. In: IEEE Conf. on Decision and Control, pp. 532–538. Orlando, FL (2011)
5. Emerson, E.A.: Temporal and modal logic. In: J. van Leeuwen (ed.) Handbook of Theoretical

Computer Science: Formal Models and Semantics, vol. B, pp. 995–1072. North-Holland Pub.
Co./MIT Press (1990)

6. Hopcroft, J., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison Wesley (2007)

7. Karaman, S., Frazzoli, E.: Complex mission optimization for multiple-uavs using linear tem-
poral logic. In: American Control Conference, pp. 2003–2009. Seattle, WA (2008)

8. Karaman, S., Frazzoli, E.: Vehicle routing problem with metric temporal logic specifications.
In: IEEE Conf. on Decision and Control, pp. 3953–3958. Cancún, México (2008)

9. Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from temporal
logic specifications. IEEE Transactions on Robotics 26(1), 48–61 (2010)

10. Kress-Gazit, H., Fainekos, G., Pappas, G.J.: Where’s waldo? sensor-based temporal logic mo-
tion planning. In: IEEE Intl. Conf. on Robotics and Automation, pp. 3116–3121 (2007)

11. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with prism:
A hybrid approach. In: International Journal on Software Tools for Technology Transfer, pp.
52–66. Springer (2002)

12. Milner, R.: Communication and concurrency. Prentice-Hall (1989)
13. M.Kloetzer, Belta, C.: Dealing with non-determinism in symbolic control. In: M. Egerstedt,

B. Mishra (eds.) Hybrid Systems: Computation and Control: 11th International Workshop,
Lecture Notes in Computer Science, pp. 287–300. Springer Berlin / Heidelberg (2008)

14. Smith, S.L., Tůmová, J., Belta, C., Rus, D.: Optimal path planning for surveillance with tem-
poral logic constraints. Intl. Journal of Robotics Research 30(14), 1695–1708 (2011)

15. Tabuada, P., Pappas, G.J.: Linear time logic control of discrete-time linear systems. IEEE
Transactions on Automatic Control 51(12), 1862–1877 (2006)

16. Thomas, W.: Infinite games and verification. In: Intl. Conf. on Computer Aided Verification,
pp. 58–64 (2002)

17. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Monographs on Discrete Mathematics
and Applications. SIAM (2001)

18. Tumova, J., Yordanov, B., Belta, C., Cerna, I., Barnat, J.: A symbolic approach to controlling
piecewise affine systems. In: IEEE Conf. on Decision and Control, pp. 4230–4235. Atlanta,
GA (2010)

19. Ulusoy, A., Smith, S.L., Belta, C.: Optimal multi-robot path planning with ltl constraints:
Guaranteeing correctness through synchronization (2012). Available at http://arxiv.
org/abs/1207.2415.

20. Ulusoy, A., Smith, S.L., Ding, X.C., Belta, C.: Robust multi-robot optimal path planning with
temporal logic constraints. In: IEEE Intl. Conf. on Robotics and Automation, pp. 4693–4698.
St. Paul, MN, USA (2012)

21. Ulusoy, A., Smith, S.L., Ding, X.C., Belta, C., Rus, D.: Optimal path planning for surveillance
with temporal logic constraints. In: IEEE/RSJ Intl. Conf. on Intelligent Robots & Systems,
pp. 3087–3092. San Francisco, CA, USA (2011)

22. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon control for temporal logic
specifications. In: Hybrid systems: Computation and Control, pp. 101–110. Stockholm, Swe-
den (2010)

