Distributed Dominating Sets on Grids

Elaheh Fata

Abstract— This paper presents a distributed algorithm for
finding near optimal dominating sets on grids. The basis for this
algorithm is an existing centralized algorithm that constructs
dominating sets on grids. The size of the dominating set

rovided by this centralized algorithm is upper-bounded by

w for m x n grids and its difference from the optimal

domination number of the grid is upper-bounded by five. Both
the centralized and distributed algorithms are generalized for
the k-distance dominating set problem, where all grid vertices
are within distance & of the vertices in the dominating set.

I. INTRODUCTION

Significant attention has been devoted in recent years to
the study of large-scale sensor and robotic networks due
to their promise in a variety of fields [1]. One of the key
objectives in such networks is to ensure coverage of a given
area, where every point in the space is within the sensing
radius of one or more of the agents (i.e., sensors or robots).

In certain scenarios, the environment may impose restric-
tions on the feasible locations and motion of the agents [2]. In
such cases, it is natural to model the environment as a graph,
where each node represents a feasible location for an agent,
and edges between nodes indicate available paths for the
agents to follow. The coverage capabilities of any given agent
are then related to the shortest-path distance metric on the
graph: an agent located on a node can cover all nodes within
a certain distance of that node. The goal of selecting certain
nodes in a graph so that all other nodes are within a specified
distance of the selected nodes is known as the dominating
set problem [3]. Versions of this problem appear in settings
such as multi-agent security and pursuit [4], routing in
communication networks [5], and sensor placement in power
networks [6]. Finding the domination number (i.e., the size
of a smallest dominating set) of arbitrary graphs is NP-hard
[3] and in fact one cannot obtain better approximation ratios
than clogn for any ¢ < % for general graphs [7].

Grid graphs are a special class of graphs that have attracted
attention due to their ability to model and discretize rectan-
gular environments [8], [9]. Due to the special structure of
grids, their domination number can in fact be determined
optimally, although this number was unknown until recently.
For m x n grids, an upper bound of L(m@jﬂ
shown in [10] for 8 < m < n using a constructive method.
Various attempts have been made in recent years to find a
tight lower bound on the size of the optimal dominating
set. In [11], the authors used brute-force computational
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techniques to find optimal dominating sets in grids of size up
to n =m =29. The paper [12] showed finally that the lower
bound on the domination number is equal to the upper bound
for 16 < m < n, thus characterizing the domination number
in grids.

In this paper, we make two contributions to the study
of dominating sets on grids and their application to multi-
agent coverage. First, we provide a distributed algorithm that
locates a set of agents on the vertices of an m X n grid
such that they construct a dominating set for the grid, where
the required number of agents is within a constant error
from the optimal. The agents require only limited memory,
sensing and communication abilities, and thus the solution
is applicable to multi-robot coverage applications where the
environment can be discretized as a grid. Our distributed
algorithm is based on a simple constructive method to obtain
near-optimal dominating sets (i.e., that require no more than
5 vertices over the optimal number) in grids by Chang [10].
This approach is based on a systematic tiling pattern that
we call a diagonalization. Second, we generalize Chang’s
construction to the k-distance dominating set problem, where
a given vertex can cover all other vertices within a distance
k from it. We show that our distributed algorithm can also be
generalized to work in the k-distance domination scenario.

II. BACKGROUND

A graph G = (V,E) is defined as a set of vertices V
connected by a set of edges £ C V x V. We assume the
graph is undirected, i.e., (vyu) € E < (u,v) € E,NvyueV.
A vertex u €V is defined as a neighbour of vertex v eV, if
(u,v) € E. The set of all neighbours of vertex v is denoted
by N(v). For a set of vertices U C V, we define N(U) as
Uucy N(u). For a set of vertices U C V, we say the vertices
in N(U) are dominated by the vertices in U. For graph G, a
set of vertices S CV is a dominating set if each vertex veV
is either in S or is dominated by S.

A dominating set with minimum cardinality is called an
optimal dominating set of a graph G; its cardinality is called
the domination number of G and is denoted by y(G). Note
that although the domination number of a graph, ¥(G), is
unique, there may be different optimal dominating sets.

Here, we study the dominating set problem on grid graphs.
An m x n grid graph G = (V,E) has vertex set V = {v; ;|1 <
i<m,1 <j<n} and edge set E = {(vij,v; /)| |j—J|=
1} U{(vij,ve )| |i—1i'| =1} [13]. For ease of exposition,
we will fix an orientation and labelling of the vertices, so
that vertex vy is the lower-left vertex and vertex vy, is
the upper-right vertex of the grid. We denote the domination
number of an m X n grid G by Y., = Y(G).
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Fig. 1: In (a), a 12 x 12 grid G’ is demonstrated and its 10 x 10 sub-grid G
is highlighted by a red dashed square. G’ is diagonalized by a set U’ of 28
vertices. In (b), vertices in U’\V are projected onto their neighbours in G.

Theorem II.1 (Gongalves etal, [12]). For an m X n grid with
16 <m<mn, Ymn = w —4. ]
We also require the following definitions.

Definition IL2. (Grid Boundary) For an m x n grid G =
(V,E), we define the boundary of G, denoted by B(G), as
the set of vertices with less than 4 neighbours. [ ]

Definition IL.3. (Sub-Grids and Super-Grids) An m x n grid
G=(V,E) is called a sub-grid of an m’ x n’ grid G’ = (V' ,E’)
if G is induced by vertices v; ;€ V/, where 2 <i<m' —1
and 2 < j<n'—1.If G is a sub-grid of G, G’ is called the
super-grid of G (see Figure 1(a)). [ ]

III. OVERVIEW OF CENTRALIZED GRID DOMINATION
ALGORITHM

In this section, we provide an overview of a construction
presented in [10] which we will use in the subsequent
sections. To begin we require a few definitions.

Definition IIL.1. (Diagonal Pattern) A set of vertices U C V
constitutes a diagonal pattern on grid G = (V,E) if there
exists a fixed r € {0,1,2,3,4} such that for any vertex v, €
U we have y—2x=r (mod 5). [ |

Definition III.2. (Diagonalization) A set of vertices U C
V diagonalizes grid G = (V,E) if it constitutes a diagonal
pattern and there exists no vertex v € V\U that can be added
to U so that U remains a diagonal pattern. [ ]

An example of a diagonalization is shown in Figure 1(a).!
The algorithm derived from Chang’s construction consists of
the following two main steps:

(i) Diagonalization: A set of vertices U that diagonalizes
the grid is provided.

(i) Projection: New vertices are added to U to dominate
the vertices that are not in N(U).

We now discuss these two steps in more detail. Chang
showed in [10] that if a grid G = (V,E) is diagonalized by
a set of vertices U C V, then any vertex v € (V\U) that
is not located on the grid’s boundary shares an edge with
exactly one vertex in U. Moreover, [10] proved that if a set
of vertices U C V diagonalizes an m x n grid G = (V,E), then
U contains at most (%1 vertices. To construct a dominating
set for G it only remains to add some vertices to U so that

the resulting set dominates the vertices on the boundary as

'One can also define a diagonal pattern as a set of vertices whose (x,y)
coordinates satisfy x —2y =r (mod 5), for some fixed r. This corresponds
to swapping the x and y axes. For the proofs we only analyze the case
mentioned in Definition III.1; the other case can be treated similarly.

well. The vertices located on B(G) with no neighbour in U
are called orphans and are defined formally as follows.

Definition IIL.3. (Orphans) Let U C V be a set of vertices
that diagonalizes grid G = (V,E). A vertex v € V that has no
neighbour in U is called an orphan (see Figure 1(a)). |

To dominate orphans, Chang used G' = (V’, E’), the super-
grid of G. Since the vertices on the boundary of G lie
inside grid G', a set of vertices U’ C V' that diagonalizes
G’ dominates all vertices of G. Moreover, it can be seen that
U =U’'NV is a diagonalization for grid G.

Recall that diagonalization results in every vertex being
dominated by at most one vertex in the diagonal pattern.
Therefore, if a set of vertices U’ C V’ diagonalizes G’, then
there are vertices in B(G) that are dominated by vertices in
U'\V. Hence, the orphan of a vertex v U’'\V is a vertex u €
B(G) such that u € N(v), and is denoted by u = orphan(v).

Since by diagonalizing G’ the orphans in G are domi-
nated by the dominating vertices on the boundary of G,
a procedure called projection is introduced that projects
the dominating vertices in B(G’) inside sub-grid G. Hence,
projection results in having all vertices in G being dominated.
This procedure is defined formally as follows.

Definition IIL.4. (Projection) Consider a grid G = (V,E) and
its super-grid G’ = (V',E’). For a set U’ C V', its projection
is defined as the set U” = (N(U’\V)UU’)NV. Similarly,
we say a vertex v € U'\V is projected if it is mapped to its
neighbour in V. [ ]

Figure 1(b) shows an example of a projection. For grid
G = (V,E), its super-grid G' = (V',E’) and set U’ C V' that
diagonalizes G, the size of the obtained dominating set of G
using projection is at most |U’|. The reason is that vertices in
U’ that are located at the corners of G’ have no neighbours
in V and hence, after projection they are not mapped into V.
Thus, |U’| is an upper-bound on the number of dominating
vertices obtained by diagonalization and projection. As the
size of the super-grid of an m x n grid G is (m+2) X (n+2),
one has |U ! | < [W—‘, leading to the following result.

Theorem IIL.5 (Chang, [10]). For any m xn grid G= (V,E)
with m,n € N, a dominating set S CV can be constructed in
polynomial-time, such that |S| < [Mw—‘ [ |
By virtue of Theorem II.1, the set S provided by diago-
nalization and projection satisfies |S| < ¥, + 53, when 16 <
m < n. An example of constructing dominating sets for grids
using diagonalization and projection is shown in Figure 1.
In the following lemma, we show that although in diagonal
patterns no vertex is dominated by more than one dominating
vertex, a simple greedy algorithm does not necessarily result
in diagonalizing the grid or using at most w
dominating vertices. Note that a greedy algorithm adds a
vertex to the dominating set that is a neighbour of the most

undominated vertices at each step.

Lemma IIL.6. The size of the dominating set obtained by a
greedy algorithm on an m x n grid G might be as large as

[51051+2[5] [5):

Proof. The proof can be found in [14]. O



IV. DISTRIBUTED GRID DOMINATION
A. Model and Notation

Here we assume that the environment is an m X n grid
G = (V,E) with m,n € N. The goal is to dominate the grid
environment in a distributed fashion using several robots (or
agents) without any knowledge of environment size. Initially,
there exist k agents in the environment, where k can be
smaller or greater than the number of agents needed to
dominate the grid. The following assumptions are made for
the grid and agents.

Grid Assumptions: Agents can be located only on the
vertices of the grid and are able to move between the grid
vertices only on the edges of the grid. At each moment, a
vertex can contain more than one agent.

Agent Assumptions: The agents, denoted by ay,...,a, are
initially located at arbitrary vertices on the grid. The agents
have three modes: (a) sleep, (b) active, and (c) settled. The
mode of an agent a and the vertex it is located at are
denoted by mode(a) and v(a), respectively. Only agents in
the active and settled modes are able to communicate. At the
beginning of the procedure, all the agents are in sleep mode.
During each epoch (a time interval with a specified length),
one agent goes to active mode. The activation sequence of
agents is arbitrary. The active agent can communicate with
the settled agents to perform the distributed dominating set
algorithm. Once an agent activates and performs its part in
the algorithm, it goes to settled mode. Ultimately, all settled
agents go back to sleep mode and will not activate again.

Here, each agent is equipped with suitable angle-of-arrival
(bearing) and range sensors. Using these sensors, agent
a computes the coordinates of other agents in its own
coordinate frame ¥, with its origin at v(a) and an arbitrary
orientation, fixed relative to agent a. Each agent also has
a compass to determine its heading direction. Additionally,
agents are equipped with short-ranged proximity sensors to
sense the environment boundary. Agents are able to sense
the boundary only if they are on a vertex v whose neighbour
is a boundary vertex of the grid, i.e., N(v) N B(G) # 0.
The compass helps agents to distinguish which of the four
boundary edges they are approaching.

B. Overview of Algorithm

The main idea in this algorithm is to implement the
diagonal pattern defined in Section III on grid G = (V,E),
using communications among active and settled agents. A
special unit called a module is defined for the active and
settled agents. A module is a cross-like shape consisting
of the agent at its center with the associated dominated
vertices in the arms of the cross (see Figure 2(a)). For
each module m, the vertex that contains the agent, i.e., the
center vertex, is referred to as the module center, denoted
by c¢(m). Modules m; and m; with module centers c¢(m;) =
vij and c(mp) = vy 7 can connect to each other if vy €
{Vit1,j42:Vis2,j—1,Vi-1,j-2,Vi-2,j+1} (see Figure 2(f)). This
condition is called the module connection condition. The set
of centers of the connected modules is called a cluster.

Valid Slots: Let G' = (V',E’) be the super-grid of G.
A vertex v, € V' is called a slot if there exists a mod-
ule m in the cluster with center v;; such that v, €
{Vit1j42,viv2,j-1,vi-1,j-2,vi-2,j+1} and vgy is not already
a center for a module in the cluster. For a settled agent a
located at v(a), denote the set of all its slots by slots(a).
Recall that the orphan of a vertex v € V/\V, i.e., orphan(v),
is a vertex u € B(G) such that u € N(v). The set of all valid
slots for settled agent a, denoted by vslots(a), is defined as
(slots(a) NV) Uorphan(slots(a)\V). Newly activated agents
can settle only on the valid slots of the settled agents.

Updating Valid Slots: When an active agent settles, it
creates the list of its valid slots as follows. If a settled agent
a cannot sense the boundary (i.e., it has no neighbour on the
boundary), slots(a)\V = 0 and hence vslots(a) = slots(a).
Conversely, a settled agent can also determine which of its
slots lie outside the grid boundary (Figure 3(a)). Each newly
settled agent marks the vertices on the grid boundary that
are neighbours of slots(a)\V as orphans and so vslots(a) =
(slots(a) N'V) U orphan(slots(a)\V) (Figure 3(b)). By the
definition of valid slots, no valid slot exists in an orphan’s
neighbourhood. Therefore, each orphan needs one agent to
be located on itself or one of its neighbours to be dominated.
For simplicity we always put an agent on the orphan itself.

When an agent activates, it transmits a signal to find
the settled agents on the grid and waits for some specified
time for a response from them. Since there is no settled
agent in the environment when the first agent activates, it
receives no signal and concludes it is the first one activated.
Thus, the agent stays at its initial location and goes to the
settled mode. Subsequently, each active agent translates to
the closest settled agent.”

C. Distributed Grid Domination Algorithm

During the distributed grid domination algorithm, active
agents can either contribute to grid diagonalization by lo-
cating on non-orphan valid slots or can settle on orphans. In
each epoch, the set of the non-orphan vertices containing the
previously settled agents is called the cluster and is denoted
by C, while the set of occupied orphans is denoted by P.
At the beginning of the algorithm C = P = 0. It should be
mentioned that C and P are not saved by any agent, and
are used only to aid in the presentation of the algorithm.
Moreover, we denote the set of all settled agents at each
moment by A;, where at the beginning of the algorithm
Ag = 0. If agent a is already settled and is now in sleep
mode, done(a) = 1; otherwise done(a) = 0.

D. Distributed Algorithm Analysis

We now prove that the set of vertices determined by
Algorithm 1, i.e., CUP, creates a dominating set for the
grid. Recall that at each epoch, C is the set of non-orphan
vertices containing the previously settled agents and P is the
set of occupied orphans.

2Note that for completeness of the algorithm, it is not necessary for
the active agents to go to the closest settled agents. An active agent can go
toward any arbitrary settled agent to occupy its valid slot.



Algorithm 1: DISTRIBUTED GRID DOMINATION

Input: An m x n Grid and a set of agents A
1 while 3 agent a € A with mode(a) = sleep and done(a) =0
do

2 mode(a) := active, a sends out signal to As (Figure 2(b)).

3 if A; # 0 then

4 L At least one agent in A, sends a signal out to a.

5 if a receives no signal then

6 mode(a) := settled (Figure 2(a)).

7 Set A :={a}, C:={v(a)}, and skip to Step 20.

8 if vslots(Ay) # 0 then

9 Agent a computes the closest settled agent s € A; and
notifies Ag.

10 Agent s sends the coordinates of vslots(s) to a.

1 Agent a moves toward the closest v € vslots(s).

12 if v(a) = v then

13 mode(a) := settled (Figure 2(d)).

14 Ay :=A,U{a}.

15 if v(a) and v(s) satisfy connection condition then

16 | C:=CU{v(a)}.

17 else

18 P:=PU{v(a)} (Figure 3(c)).

19 mode(a) := sleep.

20 for i=1— |A| do

21 if v(A;(i)) € C and mode(A,(i)) # sleep then

22 Update vslots(As(i)) (Figures 2(e) and 3(c)).

23 if vslots(A;(i)) = 0 then

2 mode(A;(i)) := sleep (Figure 2(f)).

25 L done(A4(i)) :=1.

26 else

27 | Break.

28 The remaining non-activated agents leave the grid.

Lemma IV.1. During the operation of Algorithm 1, the
module connection condition forces the vertices in C to
create a diagonal pattern.

Proof. This will be proved by induction on the size of C
during the operation of the algorithm. According to the
module connection condition, the module of agent a located
at v(a) = vy y ¢ C can connect to the module of v;; € C
if vy i € {viy1ji2,viv2,j-1,Vi-1,j-2,vi-2,j+1}. The base of
induction is |C| =0, when the first agent is about to be added
to C. In this case, the first agent settles at its current location
v(a) =v;; and establishes the value r = j—2i (mod 5).
For |C| > 1, C has a diagonal pattern and an active agent
a at v(a) = vy 7 aims to join it by connecting to a module
centered at v; ;. Since v; ; is already in C, j—2i=r (mod 5).
It can be seen that for a vertex vy ; that satisfies the module
connection condition with respect to v; j we have j/—2i' =r
(mod 5). Thus, the resulting set has a diagonal pattern. [

Theorem IV.2. The number of agents used to dominate an
mxn grid G= (V,E) by Algorithm 1 is upper-bounded by

[W—‘ For grids with 16 < m < n, the number of
agents used is upper-bounded by Y, , +5. [ |

Proof. Here we only provide a sketch of the proof, a more
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Fig. 2: Non-activated agents are marked by black crosses and the already
settled agents are shown by black circles. Agents in C have red crosses as
their modules. Figure (a) shows the first active agent, as in Step 6. The
green circles show the valid slots. In (b), an active agent is highlighted by
a blue square. Step 11 is depicted in (c), where a dashed blue square shows
the closest valid slot to the active agent. In (d), the active agent moves to
the valid slot and joins C, as in Step 13. In (e), the list of valid slots is
updated as in Step 22. In (f), the grey circle shows an agent that goes from
settled to sleep mode.
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Fig. 3: Non-activated agents are marked by black crosses and the already
settled agents are shown by black circles, with red crosses as their modules.
The green circles demonstrate the valid slots. In (a), a settled agent,
highlighted by a solid blue square, realizes one of its slots, shown by a
dashed blue square, is outside the grid boundary. In (b), the settled agent
replaces the slot outside the grid boundary with its orphan and names the
resulting set as its valid slots. In (c), an active agent locates at the orphan
and it is shown that it has no valid slot.

detailed proof can be found in [14]. Set C denotes the set of
the non-orphan vertices in G, the super-grid of G, occupied
by the previously settled agents when Algorithm 1 finishes
and P is the set of occupied orphans. It can be seen that
C diagonalizes G and P contains the projected vertices and
hence by Theorems II.1 and IIL.5 this bound holds. O

Note that while the agents do not form a dominating set for
G, an active agent finds a valid slot in at most n+m steps.
A step is a specified time duration within which an agent
performs its basic operation, such as traversing an edge or
transmitting signals. Since the number of agents needed to
dominate an m x n grid is less than mn, Algorithm 1 takes at
most mn(m+n) steps to construct a dominating set for G.

Figure 4 shows snapshots from a simulation of Algo-
rithm 1. Figure 4(a) shows the initial positions of 41 agents
on a 10 x 15 grid graph. The first agent that activates is
located on vertex (5,9) and hence stays on that vertex.
Figure 4(b) shows the location of agents when Algorithm 1
is completed. It can be seen that every vertex is dominated.
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Fig. 4: A 10 x 15 grid with agents shown in blue. In (a), the initial
configuration of the agents is shown and (b) shows the agents’ configuration
when Algorithm 1 is finished. In (c), all non-settled and non-asleep agents
leave the grid.

V. k-DISTANCE DOMINATION ON GRIDS

In this section we generalize the construction introduced
in [10] for grid domination, discussed in Section III, to the
k-distance dominating set problem, where a vertex dominates
all the vertices within distance k from it. Before defining the
problem formally, let d(u,v) denote the shortest path distance
between vertices v,u € V in G = (V,E). Moreover, vertex
u €V is defined as a k-neighbour of vertex v € V if 0 <
d(u,v) < k. The set of all k-neighbours of v is denoted by
N¥(v). Moreover, for a set of vertices W C V and a vertex
v e V\W, we have u = friend*(v, W) if (a) u € W, (b) u €
Nk(v), and (c) d(v,u) < d(v,w),Yw EW.

Definition V.1. (k-Distance Dominating Set Problem) Given
a graph G = (V,E), the k-distance dominating set problem
is to find a set of vertices S C V such that for every vertex
v € V\S there exists a vertex u € S where u € N¥(v). The
cardinality of a smallest k-distance dominating set for G is
called the k-distance domination number of G and is denoted
by Y(G) [15]. m

We say that vertex u € S k-distance dominates v € V\S
if d(u,v) < k. The 1-distance dominating set problem is
a special case of the k-distance dominating set problem,
and thus, k-distance domination is also NP-hard on general
graphs. However, to the best of our knowledge the k-distance
domination number of grids is not known and the complexity
of the problem is open. In Section V-A, we generalize the
approaches in Section III to provide a k-distance dominating
set for an m x n grid graph G.

A. Centralized k-Distance Domination on Grids

Before discussing the k-distance domination algorithms
on grids we introduce the following definitions. Also note
that due to space constraints some of the proofs are not
demonstrated here and they can be found in [14].

Definition V.2. (k-Sub-Grids and k-Super-Grids) An m X n
grid G = (V,E) is called a k-sub-grid of an m' x n’ grid
G' = (V',E') if G is induced by vertices v; ; € V', where
k+1<i<m'—kandk+1<j<n'—k If Gis a k-sub-grid
of G/, G is called the k-super-grid of G. [ |

Lemma V.3. For an m x n grid G, |N*(v)| < 2k* +2k+ 1.

Proof. Since G is a grid, the k-neighbours of v form a
diamond around it with a diameter of 2k + 1 (see the red
regions in Figure 5(a)). Thus |[N*(v)| is upper-bounded by the
CHIE] =2 42k+1. O

area of this region, which is

In what follows we define NX = 2k% +2k+ 1.

Definition V.4. (k-Diagonal Pattern) A set of vertices U C
V constitutes a k-diagonal pattern on grid G = (V,E) if
there exists a fixed 0 < r < NK_.,r € Z, such that for any
vertex vy, € U we have ky — (k-+1)x =r (mod NX,,) (see
Figure 5(a)). |
The k-distance diagonalization of G is a natural general-
ization of Definition III.2. Moreover, for a grid G = (V,E)
and its k-super-grid G' = (V' E’), the k-projection is defined
as a special mapping from the vertices in V/\V to their k-
neighbours in V. It is defined formally as follows.
Definition V.5. (k-Projection) Consider a grid G = (V,E)
and its k-super-grid G' = (V',E'). The k-projection for a set
U' C V' is defined as the set U” = { |J friend*(v,V)}U
veU\V
{U'NV}, (see Figure 5(b)). \ [ |
Lemma V.6. Let U be a set of vertices that k-diagonalizes a
grid G = (V,E). For any two vertices vyy,vy v € U we have
d(vey,vy ) > 2K+ 1.
Lemma V.7. Consider a grid G = (V,E) and its k-super-
grid G = (V',E"). If U C V' k-diagonalizes G', then each
vertex in V is k-dominated by exactly one vertex from U'.

Proof. For each vertex vyy € V let r, = ky — (k+
Dx (mod NK,,). Consider any vertex v € V and its k-
neighbourhood N*(v). The distance between any two vertices
in J = {v}UNX(v) is at most 2k. Also, there are exactly N¥_,
vertices in this set. Thus, for any two distinct vertices u,w € J
we have r, # r,, by Lemma V.6. Hence each vertex u € N¥(v)
has a distinct value of r,. Consequently, for the value of r
that corresponds to the diagonalization U’, there is exactly
one vertex in the k-neighbourhood of v such that r, = r and
thus v is k-dominated by exactly one vertex from U’. O

Lemma V.8. If a set of vertices U CV k-diagonalizes an

k
mxn grid G=(V,E), then |U| < [N’Z:X +% )

Theorem V.9. For an mxn grid G = (VE), a k-
distance dominating set S C'V can be constructed using
k-diagonalization and k-pro}(]'ection in polynomial-time such

that |S| < [7('“%“%2”") - N%W ]

Proof. The proof follows from Lemmas V.3, V.7 and V.§,
by replacing the diagonalization and projection operations

with the k-diagonalization and k-projection operations in the
proof of Theorem IIL5 [10]. O

Lemma V.10. If S CV is a k-distance dominating set for an

mxn grid G= (V,E), |S| > ’Verm

Proof. According to Lemma V.3, a vertex v € V k-distance

dominates at most NX__ vertices. Hence, at least {N’Z" —‘

max

dominating vertices are needed to k-dominate an m X n grid.




(b)

Fig. 5: A 2-diagonal pattern with similar structure to a 1-diagonal pattern
is shown in Figure (a). In (b), a 16 x 16 grid G and its 2-super-grid G’
are shown by solid and dashed squares, respectively. Both grids are 2-
diagonalized. The black circles are the vertices that 2-diagonalize G. The
union of red and black circles 2-diagonalizes G’. The green circles are the
2-projections of the red circles onto G. Before projection these vertices are
called orphans.

Note that we use |S| > [ ~i- | instead of [S] > | 17 J since
dominating vertices in the kfneighbourhood of vertices on the

grid boundary do not have all their k-neighbours in V. [

Corollary V.11. Let S be a k-distance dominating set for
an mx n grid G = (V,E) obtained by k-diagonalization and
k-projection and let L denote the lower-bound for S from
Lemma V.10. For any constant k € Z.., the approximation

.S . . S
ratio lfl satisfies 1imy, ;oo ‘LJ =1.

Remark V.12 (k-th Power of Grids). For a graph G, its k-th
power, denoted by G*, is a graph with the same vertex set
in which two distinct vertices share an edge if and only if
their distance in G is at most k£ [13]. It might seem that a
reasonable approach for k-distance domination on a grid G
is to take its k-th power graph G* and perform 1-distance
domination on it. However, G* is no longer a grid and thus
direct analysis of the power graph is potentially difficult. B

B. Distributed k-Distance Domination on Grids

Using the algorithm explained in Section V-A, a dis-
tributed k-distance domination algorithm can be designed
for grids. In practice, the k-distance dominating set problem
corresponds to settings where agents are equipped with
longer range sensory equipment and can sense vertices up
to distance k from them. Therefore, the goal is to arrange
the agents on the grid vertices in a distributed way such that
for each vertex there exists at least one agent with distance
at most k from it.

This algorithm is similar to Algorithm 1 in Section IV-
C, except for two modifications. The first modification
is that module m, and module m; with module centers
c(my) = vi; and c(my) = vy y can now connect to each
other if vy jr € {Vitk jikt 15 Vitkt1,j—ks Vikj—k—1,Vi-k—1,j+k}
(see Figure 5(a)). These constitute the slots. The second

modification is the definition of orphans. If U’ is a set of
vertices that k-diagonalizes the k-super-grid of G, vertex
v €V is an orphan if it satisfies the two following conditions:
(a) v has no k-neighbour in U’ NV, and (b) there exists a
vertex u € U'\V so that v is the closest vertex in V in its k-
neighbourhood. Hence, valid slots are defined for each settled
agent as the union of its slots located inside the grid and the
orphans of its slots located outside the grid (see Figure 5(b)).

VI. SUMMARY AND OPEN PROBLEMS

In this paper we studied the dominating set and k-distance
dominating set problems on m x n grids. We discussed a
construction from [10] to obtain dominating sets for grids
with near optimal size and generalized it to work in the
k-distance domination scenario. We used these methods in
distributed algorithms and showed that the resulting domi-
nating sets have the same upper-bounds as the centralized
algorithm.

There are many open problems in this area. The k-distance
domination number of grids is still unknown. It is also of
interest to find centralized and distributed algorithms for
dominating sub-graphs of grids. Generalizing these algo-
rithms to the cases where the underlying graphs are cubic
or hyper-cubic grids is another direction for research.
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