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Abstract—In this paper, we develop a method to automatically
generate a control policy for a dynamical system modeled as
a Markov Decision Process (MDP). The control specification is
given as a Linear Temporal Logic (LTL) formula over a set
of propositions defined on the states of the MDP. Motivated
by robotic applications requiring persistent tasks, such as en-
vironmental monitoring and data gathering, we synthesize a
control policy that minimizes the expected cost between satis-
fying instances of a particular proposition over all policies that
maximize the probability of satisfying the given LTL specification.
Our approach is based on the definition of a novel optimization
problem that extends the existing average cost per stage problem.
We propose a sufficient condition for a policy to be optimal, and
develop a dynamic programming algorithm that synthesizes a
policy that is optimal for a set of LTL specifications.

I. INTRODUCTION

In this paper, we consider the problem of controlling a (finite
state) Markov Decision Process (MDP). Such models are
widely used in many areas encompassing engineering, biology,
and economics. They have been successfully used to model
and control autonomous robots subject to uncertainty in their
sensing and actuation, such as ground robots [3], unmanned
aircraft [4] and surgical steering needles [5]. In these studies,
the underlying motion of the system cannot be predicted
with certainty, but it can be obtained from the sensing and
the actuation model through a simulator or empirical trials.
Standard textbooks in this area include [6], [7].

Several authors [8]–[11] have proposed using temporal
logics, such as Linear Temporal Logic (LTL) and Computa-
tion Tree Logic (CTL), as rich and expressive specification
languages for control systems. As their syntax and semantics
are well-defined and deeply explored [12], [13], these logics
can be easily used to specify complex system behaviors. In
particular, LTL is well-suited for specifying persistent tasks,
e.g., “Visit regions A, then B, and then C, infinitely often.
Never enter B unless coming directly from D.” Off-the-shelf
model checking algorithms [12] and temporal logic game
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strategies [14] can be used to verify the correctness of system
trajectories.

Existing works focusing on LTL assume that a finite model
of the system is available and the current state can be
precisely determined. If the control model is deterministic
(i.e., at each state, an available control enables exactly one
transition), control strategies from specifications given as LTL
formulas can be found through simple adaptations of off-the-
shelf model checking algorithms [15]. If the control is non-
deterministic (an available control at a state enables one of
several transitions, and their probabilities are not known), the
control problem from an LTL specification can be mapped to
the solution of a Rabin game [16] in general, and a Büchi
[17] or GR(1) game [8] if the specification is restricted to
certain fragments of LTL. If the probabilities of the enabled
transitions at each state are known, then the control problem
reduces to finding a control policy for an MDP such that
a probabilistic temporal logic formula is satisfied. Solutions
can be found by adapting methods from probabilistic model-
checking [13], [18], [19]. In our recent work [1] we addressed
the problem of synthesizing control policies for MDPs subject
to LTL satisfaction constraints. A similar approach was taken
in a number of other studies [20], [21].

In all of the above results, a control policy is designed to
maximize the probability of satisfying a given LTL formula.
Such policies that maximize the satisfaction probability are
generally not unique, but rather belong to a family of policies
with the same “transient response” that maximizes the proba-
bility of reaching a specific set of accepting states. So far, no
attempt has been made to optimize the long-term behavior of
the system after the accepting states have been reached, while
enforcing LTL satisfaction guarantees.

In this paper, we compute an optimal control policy over
the infinite time horizon for a dynamical system modeled as
an MDP under temporal logic constraints. This work aims to
bridge the gap between preliminary work on MDP control
policies with LTL probabilistic guarantees [1], and optimal
control synthesis under LTL constraints for deterministic sys-
tems [22]. In particular, we consider LTL formulas defined
over a set of propositions assigned to the states of the MDP. We
synthesize a control policy that minimizes the expected cost
between satisfying instances of an “optimizing proposition”
over all policies that maximize the probability of satisfying the
given LTL specification. Such an objective is often critical in
many applications, such as surveillance, persistent monitoring,
and pickup-delivery tasks, where an agent must repeatedly
visit some areas in an environment and the time in between
revisits should be minimized. It can also be relevant to certain
persistent tasks (e.g. cell growth and division) in biological
systems.



The main contribution of this paper is two-fold. First, we
formulate the above MDP optimization problem in terms
of minimizing the average cost per cycle, where cycles are
defined by successive satisfactions of the optimizing propo-
sition. We present a novel connection between this problem
and the well-known average cost per stage problem, and the
condition of optimality for average cost per cycle problems
is proposed. Second, we incorporate the LTL constraints
and obtain a sufficient condition for optimal policies. We
present a dynamic programming algorithm that under some
conditions synthesizes an optimal control policy, and a sub-
optimal policy otherwise. We show that the given algorithm
produces the optimal policy for a fragment of LTL formulas.
We demonstrate that the proposed framework is useful for
a variety of persistent tasks and demonstrate our approaches
with case studies in motion planning. This work combines
and extends preliminary results [1], [2] by addressing a more
general formulation of the problem, examining the optimality
of the proposed approach, and including all proofs which were
omitted in [1], [2].

The organization of this paper is as follows. In Sec. II we
provide some preliminaries on LTL and MDPs. We formulate
the problem in Sec. III and we formalize the connection
between the average cost per cycle and the average cost per
stage problems in Sec. IV. In Sec. V, we provide a method
for incorporating LTL constraints. We present a case study
illustrating our framework in Sec. VI and we conclude in Sec.
VII

II. PRELIMINARIES

In this section we provide background material on linear
temporal logic and Markov decision processes.

Notation: For a set S, we use 2S and |S| to denote its
power set and cardinality, respectively. A sequence over S
will be referred as a word over S. For a matrix A, we denote
the element at the ith row and jth column by A(i, j). For a
vector g, we denote its ith element by g(i). We let 1 ∈ Rn
denote the vector of all 1s. For two vectors a and b, a ≤ b
means a(i) ≤ b(i) for all i.

A. Linear Temporal Logic

We employ Linear Temporal Logic (LTL) to describe MDP
control specifications. A detailed description of the syntax and
semantics of LTL is beyond the scope of this paper and can be
found in [12], [13]. Roughly, an LTL formula is built up from
a set of atomic propositions Π, standard Boolean operators
¬ (negation), ∨ (disjunction), ∧ (conjunction), and temporal
operators X (next), U (until), F (eventually), G (always). The
semantics of LTL formulas are given over infinite words in
2Π. A word satisfies an LTL formula φ if φ is true at the first
position of the word; Gφ means that φ is true at all positions
of the word; Fφ means that φ eventually becomes true in
the word; φ1 Uφ2 means that φ1 has to hold at each position
in the word, at least until φ2 is true. More expressivity can
be achieved by combining the above temporal and Boolean
operators. As an example, the formula GFφ means that at
all positions of the word, φ must eventually become true at

some later position in the word. This implies that φ must be
satisfied infinitely often in the word. We use o � φ to denote
that word o satisfies the LTL formula φ. An LTL formula can
be represented by a deterministic Rabin automaton, which is
defined as follows.
Definition II.1 (Deterministic Rabin Automaton). A determin-
istic Rabin automaton (DRA) is a tuple R = (Q,Σ, δ, q0, F ),
where (i) Q is a finite set of states; (ii) Σ is a set of
inputs (alphabet); (iii) δ : Q × Σ → Q is the transi-
tion function; (iv) q0 ∈ Q is the initial state; and (v)
F = {(L(1),K(1)), . . . , (L(M),K(M))}, with M being a
positive integer, is a set of pairs of sets of states such that
L(i),K(i) ⊆ Q for all i = 1, . . . ,M .

A run of a Rabin automaton R, denoted by rR = q0q1 . . .,
is an infinite sequence of states in R such that for each i ≥ 0,
qi+1 ∈ δ(qi, α) for some α ∈ Σ. A run rR is accepting if
there exists a pair (L,K) ∈ F such that 1) there exists n ≥ 0,
such that for all m ≥ n, we have qm /∈ L, and 2) there
exist infinitely many indices k where qk ∈ K. This acceptance
conditions means that rR is accepting if for a pair (L,K) ∈ F ,
rR intersects with L finitely many times and K infinitely many
times. Note that for a given pair (L,K), L can be an empty
set, but K is not empty. This acceptance condition will be used
later in the paper to enforce the satisfaction of LTL formulae
by words produced by MDP executions.

For any LTL formula φ over Π, one can construct a DRA
with input alphabet Σ = 2Π accepting all and only words
over Π that satisfy φ (see [23]). We refer readers to [24]
and references therein for algorithms and to freely available
implementations, such as [25], to translate a LTL formula over
Π to a corresponding DRA.

B. Markov Decision Process and Probability Measure

Definition II.2 (Markov Decision Process). A (weighted,
labeled) Markov decision process (MDP) is a tuple M =
(S,U, P, s0,Π,L, g), where S = {1, 2, . . . , n} is a finite set
of states; U is a finite set of controls (actions) (with a slight
abuse of notation U(i) ⊆ U denotes the controls available at
state i ∈ S); P : S×U×S → [0, 1] is the transition probability
function such that for all i ∈ S,

∑
j∈S P (i, u, j) = 1 if

u ∈ U(i), and P (i, u, j) = 0 if u /∈ U(i); s0 ∈ S is the
initial state; Π is a set of atomic propositions; L : S → 2Π is
a labeling function and g : S × U → R+ is such that g(i, u)
is the (non-negative) cost when control u ∈ U(i) is taken at
state i.

We define a control function µ : S → U such that µ(i) ∈
U(i) for all i ∈ S. A infinite sequence of control functions
M = {µ0, µ1, . . .} is called a policy. One can use a policy to
resolve all non-deterministic choices in an MDP by applying
the action µk(sk) at state sk 1. Given an initial state s0, an
infinite sequence rMM = s0s1 . . . on M generated under a
policy M is called a path on M if P (sk, µk(sk), sk+1) > 0
for all k. The index k of a path is called stage k. If µk = µ
for all k, then we call it a stationary policy and we denote it

1Throughout the paper, we use i ∈ {1, 2, . . . , n} to refer to a state of
the MDP and si ∈ {1, 2, . . . , n}, i ∈ {0, 1, 2, . . .} to refer to a position in
a word over {1, 2, . . . , n}.



simply as µ. A stationary policy µ induces a Markov chain
where its set of states is S and the transition probability from
state i to j is P (i, µ(i), j).

We define PathsMM and FPathsMM as the set of all infinite
and finite paths of M under a policy M , respectively. We
can then define a probability measure over the set PathsMM.
For a path rMM = s0s1 . . . smsm+1 . . . ∈ PathsMM, the prefix
of length m of rMM is the finite subsequence s0s1 . . . sm.
Let PathsMM(s0s1 . . . sm) denote the set of all paths in
PathsMM with the prefix s0s1 . . . sm. (Note that s0s1 . . . sm
is a finite path in FPathsMM.) Then, the probability measure
PrMM on the smallest σ-algebra over PathsMM containing
PathsMM(s0s1 . . . sm) for all s0s1 . . . sm ∈ FPathsMM is the
unique measure satisfying

PrMM{PathsMM(s0s1 . . . sm)} =
∏

0≤k<m

P (sk, µk(sk), sk+1).

Finally, we can define the probability that an MDPM under
a policy M satisfies an LTL formula φ. A path rMM = s0s1 . . .
deterministically generates a word o = o0o1 . . ., where oi =
L(si) for all i. With a slight abuse of notation, we denote
L(rMM) as the word generated by rMM. Given an LTL formula
φ, one can show that the set {rMM ∈ PathsMM : L(rMM) � φ}
is measurable [13]. We define:

PrMM(φ) := PrMM{rMM ∈ PathsMM : L(rMM) � φ} (1)

as the probability of satisfying φ forM under M . As a special
case, given a set of states A ⊆ S, we let PrMM(FA) denote the
probability of eventually reaching the set of states A under
policy M . For more details about probability measures on
MDPs under a policy and measurability of LTL formulas, we
refer readers to a text in probabilistic model checking, such
as [13].

III. PROBLEM FORMULATION

Consider a MDP M = (S,U, P, s0,Π,L, g) and an LTL
formula φ over Π. We assume that formula φ is of the form:

φ = GFπ ∧ ψ, (2)

where the atomic proposition π ∈ Π is called the optimizing
proposition and ψ is an arbitrary LTL formula. In other words,
φ requires that ψ be satisfied and π be satisfied infinitely often.

Let M be the set of all policies M = {µ0, µ1, . . .}. We let
Mφ denote the set of all policies that maximize the probability
of satisfying φ. Thus, if M? ∈Mφ, we have that

PrM
?

M (φ) = max
M∈M

PrMM(φ). (3)

It has been shown that the maximization in (3) is well-defined
for arbitrary LTL formula φ [18], [19]. Note that there typically
exist many (possibly an infinite number of) policies in Mφ. We
assume that PrM

?

M (φ) 6= 0 to avoid triviality.
We would like to obtain the optimal policy M such that

the probability of satisfying φ is maximized (i.e., M ∈ Mφ),
and the expected cost in between visiting states satisfying
π is minimized. To formalize the latter objective, we first
denote Sπ = {i ∈ S, π ∈ L(i)} (i.e., the states where
atomic proposition π is true). We say that each visit to set

Sπ completes a cycle. Thus, starting at the initial state, the
finite path reaching Sπ for the first time is the first cycle; the
finite path that starts after the completion of the first cycle and
ends with revisiting Sπ for the second time is the second cycle,
and so on. Given a path rMM = s0s1 . . ., we use C(rMM, N) to
denote the cycle index up to stage N , which is defined as the
total number of cycles completed at stage N plus 1 (i.e., the
cycle index starts with 1 at the initial state).

The main problem that we consider in this paper is to find
a policy that minimizes the average cost per cycle (ACPC)
starting from the initial state s0. Formally, this problem can
be stated as follows:
Problem III.1. Given a MDP M and an LTL formula φ of
the form (2), find a policy M = {µ0, µ1, . . .}, M ∈ Mφ that
minimizes

J(s0) = lim sup
N→∞

E

{∑N
k=0 g(sk, µk(sk))

C(rMM, N)

∣∣∣∣∣L(rMM) � φ

}
,

(4)
where E{·} denotes the expected value (i.e., we find the policy
with the minimal average cost per cycle over all policies that
maximize the probability of satisfying φ).

Prob. III.1 is related to the standard average cost per stage
(ACPS) problem, which consist of minimizing

Js(s0) = lim sup
N→∞

E

{∑N
k=0 g(sk, µk(sk))

N

}
, (5)

over M, with the noted difference that the right-hand-side
(RHS) of (5) is divided by the index of stages instead of cycles.
The ACPS problem has been widely studied in the dynamic
programming community, without the constraint of satisfying
temporal logic formulas [6].

The ACPC cost function we consider in this paper is rel-
evant for probabilistic abstractions and practical applications,
where the cost of controls can represent the time, energy, or
fuel required to apply controls at each state. In particular, it
is a suitable performance measure for persistent tasks, which
can be specified by LTL formulas. In these applications, the
ACPS cost function does not usually translate to a meaning-
ful performance criterion. For example, in a data gathering
mission [22], an agent is required to repeatedly gather and
upload data. We can assign π to the data upload locations
and a solution to Prob. III.1 minimizes the expected cost in
between data uploads. In this case, the average cost per stage
problem formulation is not meaningful as it does not in general
minimize the cost towards satisfying the LTL specification.
Nevertheless, we will make a connection between the ACPS
and the ACPC problems in Sec. IV as a starting point in finding
a solution.
Remark III.2 (Optimization Criterion). The conditional ex-
pectation and the form (2) of LTL formula we consider are
chosen such that Prob. III.1 is sufficiently well-posed. Part of
the formula (GFπ) ensures that π is satisfied infinitely often,
which is a necessary condition for Prob. III.1 to have a finite
solution.



IV. SOLVING THE AVERAGE COST PER CYCLE PROBLEM

In this section we develop a solution to the average cost
per cycle problem in the absence of a LTL specification (i.e.,
Prob. III.1 without the requirement that M ∈Mφ). We extend
the results from this section to LTL specifications in Sec. V.

A. Optimality conditions for ACPS problems

In this section, we recall some known results on the ACPS
problem, namely finding a policy over M that minimizes Js

in (5). The reader interested in more details is referred to [6],
[7] and references therein.
Definition IV.1 (Classification of MDPs). An MDPM is said
to satisfy the Weak Accessibility (WA) condition if there exists
a set of states Sr ⊆ S, such that (i) there exists a stationary
policy where j is reachable from i for any i, j ∈ Sr, and (ii)
states in S \Sr are transient under all stationary policies. An
MDP M is called single-chain (or weakly-communicating) if
it satisfies the WA condition. If M satisfies the WA condition
with Sr = S, then M is called communicating.

A stationary policy induces a Markov chain with a set
of recurrent classes. A state that does not belong to any
recurrent class is called transient. A stationary policy µ is
called unichain if the Markov chain induced by µ contains one
recurrent class (and a possible set of transient states). If every
stationary policy of M is unichain, M is called unichain. A
unichain MDP is single-chain, but not vice versa. The unichain
condition requires a set of “recurrent” states to be mutually
reachable under all stationary policies, while the single chain
condition requires them to be mutually reachable only under
some stationary policy.

For each stationary policy µ, we use Pµ to denote the
transition probability matrix: Pµ(i, j) = P (i, µ(i), j). Define
the vector gµ as gµ(i) = g(i, µ(i)) for each i ∈ S. For each
stationary policy µ, we can obtain a so-called gain-bias pair
(Jsµ, h

s
µ),2 where

Jsµ = P ∗µgµ, hsµ = Hs
µgµ (6)

with

P ∗µ = lim
N→∞

1

N

N−1∑
k=0

P kµ , Hs
µ = (I−Pµ+P ∗µ)−1−P ∗µ . (7)

The vector Jsµ is such that Jsµ(i) is the ACPS starting at
initial state i under policy µ. Note that the limit in (7) exists
for any stochastic matrix Pµ, and P ∗µ is stochastic. Therefore,
the lim sup in (5) can be replaced by the limit for a stationary
policy. A key result for the ACPS problem is that, (Jsµ, h

s
µ)

satisfies

Jsµ = PµJ
s
µ, Jsµ + hsµ = gµ + Pµh

s
µ. (8)

Moreover,
hsµ + vsµ = Pµv

s
µ, (9)

for some vector vsµ. The triple (Jsµ, h
s
µ, v

s
µ) can be found as

the solution of 3n linear equations with 3n unknowns.

2Note, here we use the superscript s to remind the reader that this gain-
bias pair is for the average cost per stage problem. We will then extend this
notion to average cost per cycle problems.

It has been shown that there exists a stationary optimal
policy µ? minimizing (5) over all policies, such that its
gain-bias pair, denoted by (Js, hs), satisfies the Bellman’s
equations for ACPS problems:

Js(i) = min
u∈U(i)

n∑
j=1

P (i, u, j)Js(j) (10)

and

Js(i) + hs(i) = min
u∈Ū(i)

[
g(i, u) +

n∑
j=1

P (i, u, j)hs(j)

]
, (11)

for all i = 1, . . . , n, where Ūi is the set of controls attaining
the minimum in (10). Furthermore, if M is single-chain, the
optimal average cost does not depend on the initial state, i.e.,
Js(i) = λ for all i ∈ S. In this case, (10) is trivially satisfied
and Ūi in (11) can be replaced by U(i). Hence, µ? with gain-
bias pair (λ1, h) is optimal over all polices if for all stationary
policies µ, we have

λ1 + h ≤ gµ + Pµh. (12)

Therefore, the optimal solution for ACPS problems can be
found by policy iteration algorithms using (10) and (11).

B. Optimality conditions for ACPC problems

Now we derive equations similar to (10) and (11) for ACPC
problems, without considering the satisfaction constraint, i.e.,
we do not limit the set of polices to Mφ at the moment. We
consider the following problem.
Problem IV.2. Given a communicating MDP M and a set
Sπ , find a policy µ ∈M that minimizes (4).

Note that, for reasons that will become clear in Sec. V, we
assume in Prob. IV.2 that the MDP is communicating.

We limit our attention to stationary policies. We will show
that, as in many dynamic programming problems, there exist
optimal policies that are stationary, thus it is sufficient to
consider only stationary policies. For such policies, we use
the following notion of proper policies, which is the same as
the one used in stochastic shortest path problems (see [6]).
Definition IV.3 (Proper Polices). We say a stationary policy µ
is proper if, under µ, all initial states have positive probability
to reach the set Sπ in a finite number of stages.

We define Jµ such that Jµ(i) is the ACPC in (4) starting
from state i under policy µ. If policy µ is improper, then there
exist some states i ∈ S that can never reach Sπ . In this case,
since g(i, u) is positive for all i, u, we can immediately see that
Jµ(i) =∞. Thus, we will first consider only proper policies.

Without loss of generality, we assume that Sπ = {1, . . . ,m}
(i.e., states m + 1, . . . , n are not in Sπ). Given a proper
policy µ, we obtain its transition matrix Pµ as Pµ(i, j) =
P (i, µ(i), j). Our goal is to express Jµ in terms of Pµ, similar
to (6) in the ACPS case. To achieve this, we first compute the
probability that j ∈ Sπ is the first state visited in Sπ after
leaving from a state i ∈ S by applying policy µ. We denote
this probability by P̃ (i, µ, j). We can obtain this probability
for all i ∈ S and j ∈ Sπ by the following proposition:



Proposition IV.4. For a proper policy µ, the probability
P̃ (i, µ, j) satisfies

P̃ (i, µ, j) =

n∑
k=m+1

P (i, µ(i), k)P̃ (k, µ(k), j) + P (i, µ(i), j).

(13)
Proof: From i, the next state can either be in Sπ or not.

The first term in the RHS of (13) is the probability of reaching
Sπ and the first state is j, given that the next state is not in
Sπ . Adding it with the probability of next step is in Sπ and
the state is j gives the desired result.

We now define a n× n matrix P̃µ such that

P̃µ(i, j) =

{
P̃ (i, µ, j) if j ∈ Sπ
0 otherwise

(14)

We can immediately see that P̃µ is a stochastic matrix, i.e., all
its rows sum to 1, since

∑n
j=1 P̃ (i, µ, j) = 1. More precisely,∑m

j=1 P̃ (i, µ, j) = 1 since P̃ (i, µ, j) = 0 for all j = m +
1, . . . , n.

Using (13), we can express P̃µ in a matrix equation in terms
of Pµ. To do this, we need to first define two n× n matrices
from Pµ as follows:

←−
P µ(i, j) =

{
Pµ(i, j) if j ∈ Sπ
0 otherwise (15)

−→
P µ(i, j) =

{
Pµ(i, j) if j /∈ Sπ
0 otherwise (16)

From Fig. 1, we can see that matrix Pµ is “split” into
←−
P µ and−→

P µ, i.e., Pµ =
←−
P µ +

−→
P µ.

�!
P µ

 �
P µ

Pµ

0 0

S⇡ } S⇡ }

S⇡ }

Fig. 1. The constructions of
←
P µ and

→
P µ from Pµ.

Proposition IV.5. If a policy µ is proper, then matrix I−−→P µ

is non-singular.
Proof: Since µ is proper, for every initial state i ∈ S,

the set Sπ is eventually reached. Because of this, and since−→
P µ(i, j) = 0 if j ∈ Sπ , the matrix

−→
P µ is transient, i.e.,

limk→∞
−→
P k
µ = 0. From matrix analysis (see, e.g., Ch. 9.4

of [26]), since
−→
P µ is transient and sub-stochastic, I −−→P µ is

non-singular.

We can then write (13) as the following matrix equation:

P̃µ =
−→
P µP̃µ +

←−
P µ. (17)

Since I −−→P µ is invertible, we have

P̃µ = (I −−→P µ)−1←−P µ. (18)

Next, we give an expression for the expected cost of
reaching Sπ from i ∈ S under µ (if i ∈ Sπ , this is the expected
cost of reaching Sπ again), and denote it as g̃(i, µ).
Proposition IV.6. g̃(i, µ) satisfies

g̃(i, µ) =

n∑
k=m+1

P (i, µ(i), k)g̃(k, µ) + g(i, µ(i)). (19)

Proof: The first term of the RHS of (19) is the expected
cost from the next state if the next state is not in Sπ (if the
next state is in Sπ then no extra cost is incurred), and the
second term is the one-step cost, which is incurred regardless
of the next state.

We define g̃µ such that g̃µ(i) = g̃(i, µ), and note that (19)
can be written as

g̃µ =
−→
P µg̃µ + gµ

g̃µ = (I −−→P µ)−1gµ, (20)

where gµ is defined in Sec. IV-A.
We can now express the ACPC Jµ in terms of P̃µ and

g̃µ. Observe that, starting from i, the expected cost of the
first cycle is g̃µ(i); the expected cost of the second cycle is∑m
j=1 P̃µ(i, µ, j)g̃µ(j); the expected cost of the third cycle

is
∑m
j=1

∑m
k=1 P̃µ(i, µ, j)P̃µ(j, µ, k)g̃µ(k); and so on. There-

fore,

Jµ = lim sup
C→∞

1

C

C−1∑
k=0

P̃ kµ g̃µ, (21)

where C represents the cycle count. Since P̃µ is a stochastic
matrix, the lim sup in (21) can be replaced by the limit, and
we have

Jµ = lim
C→∞

1

C

C−1∑
k=0

P̃ kµ g̃µ = P̃ ∗µ g̃µ, (22)

where P ∗ for a stochastic matrix P is defined in (7).
We can now make a connection between Prob. IV.2 and the

ACPS problem. Each proper policy µ of M can be mapped
via (18) and (20) to a policy µ̃ with transition matrix Pµ̃ := P̃µ
and vector of costs gµ̃ := g̃µ, and we have

Jµ = Jsµ̃. (23)

Moreover, we define hµ := hsµ̃. Together with Jµ, pair
(Jµ, hµ) can be seen as the gain-bias pair for the ACPC
problem. We denote the set of all polices that can be mapped
from a proper policy as Mµ̃. We see that a proper policy µ
minimizing the ACPC maps to a policy over Mµ̃ minimizing
the ACPS.

A by-product of the above analysis is that, if µ is proper,
then Jµ(i) is finite for all i, since P̃ ∗µ is a stochastic matrix and
gµ(i) is finite. We now show that, among stationary policies,
it is sufficient to consider only proper policies.



Proposition IV.7. Assume µ to be an improper policy. If M
is communicating, then there exists a proper policy µ′ such
that Jµ′(i) ≤ Jµ(i) for all i = 1, . . . , n, with strict inequality
for at least one i.

Proof: We partition S into two sets of states: S9π is the
set of states in S that cannot reach Sπ and S→π as the set
of states that can reach Sπ with positive probability. Since µ
is improper and g(i, u) is postive-valued, S9π is not empty
and Jµ(i) = ∞ for all i ∈ S9π . Moreover, states in S9π

cannot visit S→π by definition. Since M is communicating,
there exists some actions at some states in S9π such that,
if applied, all states in S9π can now visit Sπ with positive
probability and this policy is now proper (all states can now
reach Sπ). We denote this new policy as µ′. Note that this does
not increase Jµ(i) if i ∈ S→π since controls at these states
are not changed. Moreover, since µ′ is proper, Jµ′(i) <∞ for
all i ∈ S9π . Therefore Jµ′(i) < Jµ(i) for all i ∈ S9π .
Corollary IV.8. If µ is optimal over the set of proper policies,
it is optimal over the set of stationary policies.

Proof: Follows directly from Prop. IV.7.
Using the connection to the ACPS problem, we have the

following result.
Proposition IV.9. The optimal ACPC policy over stationary
policies is independent of the initial state.

Proof: We first consider the optimal ACPC over proper
policies. As mentioned before, if all stationary policies of
an MDP satisfies the WA condition (see Def. IV.1), then the
ACPS is equal for all initial states. Thus, we need to show that
the WA condition is satisfied for all µ̃. We will use Sπ as set
Sr. Since M is communicating, then for each pair i, j ∈ Sπ ,
P (i, µ, j) is positive for some µ, therefore from (13), P̃µ(i, j)
is positive for some µ (i.e., Pµ̃(i, j) is positive for some µ̃),
and the first condition of Def. IV.1 is satisfied. Since µ is
proper, the set Sπ can be reached from all i ∈ S. In addition,
Pµ̃(i, j) = 0 for all j /∈ Sπ . Thus, all states i /∈ Sπ are
transient under all policies µ̃ ∈Mµ̃, and the second condition
is satisfied. Therefore WA condition is satisfied and the optimal
ACPS over Mµ̃ is equal for all initial state. Hence, the optimal
ACPC is the same for all initial states over proper policies.
Using Prop. IV.7, we can conclude the same statement over
stationary policies.

The above result is not surprising, as it mirrors the result
for communicating MDPs in the ACPS problem. Essentially,
transient behavior does not matter in the long run so the
optimal cost is the same for any initial state.

Using Bellman’s equation (10) and (11), and in the par-
ticular case when the optimal cost is the same for all initial
states (12), policy µ̃? with the ACPS gain-bias pair (λ1, h)
satisfying for all µ̃ ∈Mµ̃:

λ1 + h ≤ gµ̃ + Pµ̃h (24)

is optimal. Equivalently, µ? that maps to µ̃? is optimal over all
proper policies (and from Prop. IV.7, all stationary policies).
Remark IV.10. Eq. (23) and (24) relate the ACPS and ACPC
costs for the same MDP. However, they do not directly allow
one to solve the ACPC problem using techniques from the
ACPS problem. Indeed, it is not clear how to find the optimal

policy from (24) except for by searching through all policies
in Mµ̃. This exhaustive search is not feasible for reasonably
large problems. Instead, we would like equations in the form
of Bellman’s equations (10) and (11), so that computations
can be carried out independently at each state.

To circumvent this difficulty, we need to express the gain-
bias pair (Jµ, hµ), which is equal to (Jsµ̃, h

s
µ̃), in terms of µ.

From (8), we have

Jµ = Pµ̃Jµ, Jµ + hµ = gµ̃ + Pµ̃hµ.

By manipulating the above equations, we can now show that
Jµ and hµ can be expressed in terms of µ (analogous to (8))
instead of µ̃.
Proposition IV.11. The gain-bias pair (Jµ, hµ) for the aver-
age cost per cycle problem satisfies

Jµ = PµJµ, Jµ + hµ = gµ + Pµhµ +
−→
P µJµ. (25)

Moreover, we have

(I −−→P µ)hµ + vµ = Pµvµ, (26)

for some vector vµ.
Proof: We start from (8):

Jµ = Pµ̃Jµ, Jµ + hµ = gµ̃ + Pµ̃hµ. (27)

For the first equation in (27), using (18), we have

Jµ = Pµ̃Jµ

Jµ = (I −−→P µ)−1←−P µJµ

(I −−→P µ)Jµ =
←−
P µJµ

Jµ −
−→
P µJµ =

←−
P µJµ

Jµ = (
−→
P µ +

←−
P µ)Jµ

Jµ = PµJµ.

For the second equation in (27), using (18) and (20), we have

Jµ + hµ = gµ̃ + Pµ̃hµ

Jµ + hµ = (I −−→P µ)−1(gµ +
←−
P µhµ)

(I −−→P µ)(Jµ + hµ) = gµ +
←−
P µhµ

Jµ −
−→
P µJµ + hµ −

−→
P µhµ = gµ +

←−
P µhµ

Jµ + hµ −
−→
P µJµ = gµ + (

−→
P µ +

←−
P µ)hµ

Jµ + hµ = gµ + Pµhµ +
−→
P µJµ.

Thus, (27) can be expressed in terms of µ as:

Jµ = PµJµ, Jµ + hµ = gµ + Pµhµ +
−→
P µJµ.

To compute Jµ and hµ, we need an extra equation similar to
(9). Using (9), we have

hµ + vµ = Pµ̃vµ

hµ + vµ = (I −−→P µ)−1←−P µvµ

(I −−→P µ)hµ + vµ = Pµvµ,

which completes the proof.
From Prop. IV.11, similar to the ACPS problem,

(Jµ, hµ, vµ) can be solved as a linear system of 3n equations



and 3n unknowns. The insight gained when simplifying Jµ
and hµ in terms of µ motivate us to propose the following
optimality condition for an optimal policy.
Proposition IV.12. The policy µ? with gain-bias pair (λ1, h)
satisfying

λ+ h(i) =

min
u∈U(i)

[
g(i, u) +

n∑
j=1

P (i, u, j)h(j) + λ

n∑
j=m+1

P (i, u, j)

]
,

(28)

for all i = 1, . . . , n, is the optimal policy, minimizing (4) over
all stationary policies in M.

Proof: The optimality condition (28) can be written as:

λ1 + h ≤ gµ + Pµh+
−→
P µλ1, (29)

for all stationary policies µ.
Note that, given a, b ∈ Rn and a ≤ b, if A is an n×n matrix

with all non-negative entries, then Aa ≤ Ab. Moreover, given
c ∈ Rn, we have a+ c ≤ b+ c.

From (29) we have

λ1 + h ≤ gµ + Pµh+
−→
P µλ1

λ1−−→P µλ1 + h ≤ gµ + Pµh

λ1−−→P µλ1 + h ≤ gµ + (
←−
P µ +

−→
P µ)h

λ1−−→P µλ1 + h−−→P µh ≤ gµ +
←−
P µh

(I −−→P µ)(λ1 + h) ≤ gµ +
←−
P µh (30)

If µ is proper, then
−→
P µ is a transient matrix (see proof of

Prop. IV.5), and all of its eigenvalues are strictly inside the
unit circle. Therefore, we have

(I −−→P µ)−1 = I +
−→
P µ +

−→
P 2
µ + . . . .

Therefore, since all entries of
−→
P µ are non-negative, all entries

of (I −−→P µ)−1 are non-negative. Thus, continuing from (30),
we have

(I −−→P µ)(λ1 + h) ≤ gµ +
←−
P µh

λ1 + h ≤ (I −−→P µ)−1(gµ +
←−
P µh)

λ1 + h ≤ gµ̃ + Pµ̃h

for all proper policies µ and all µ̃ ∈ Mµ̃. Hence, µ̃? satisfies
(24) and µ? is optimal over all proper policies. This completes
the proof.

In the next section, we will present an algorithm that uses
Prop. IV.12 to find the optimal policy. Note that, unlike (24),
the equations in (28) can be checked for any policy µ by
finding the minimum for all states i = 1, . . . , n, which is
significantly easier than searching over all proper policies.

Finally, we show that the optimal stationary policy is
optimal over all policies in M.
Proposition IV.13. The proper policy µ? that maps to µ̃?

satisfying (24) is optimal over all policies in M.
Proof: Define an operator Tµ̃h as

(Tµ̃h)(i) = gµ̃(i) +

n∑
i=1

Pµ̃(i, j)h(j)

for all i = 1 . . . , n. Since µ̃? is ACPS optimal, we have (see
[6]) that Tµ̃kh ≥ λ1 + h for all λ, h.

Consider a M = {µ1, µ2, . . .} and assume it to be optimal.
We first consider that M is stationary for each cycle, but
different for different cycles, and the policy is µk for the k-th
cycle. Among this type of polices, from Prop. IV.7, we see
that if M is optimal, then µk is proper for all k. In addition,
the ACPC of policy M is the ACPS with policy {µ̃1, µ̃2, . . .}.
Since the optimal policy of the ACPS is µ̃? (stationary). Then
we can conclude that if M is stationary in between cycles,
then optimal policy for each cycle is µ? and thus M = µ?.

Now we assume that M is not stationary for each cycle.
For any cycle k, assume now we solve a stochastic shortest
path problem with Sπ as the target state, with no cost on
controls, and terminal cost g′(i) = JM (i), where JM (i) is
the optimal ACPC cost for M . Since there exists at least one
proper policy and terminal costs are positive, the stochastic
shortest path problem for Sπ admits an optimal stationary
policy as a solution [6]. If we replace the policy for cycle
k with this stationary policy, we see that it clearly yields the
same ACPC cost. Therefore, if we know M

Since g(i, u) > 0 for all i, u, and there exists at least
one proper policy, the stochastic shortest path problem for Sπ
admits an optimal stationary policy as a solution [6]. Hence,
for each cycle k, the cycle cost can be minimized if a stationary
policy is used for the cycle. Therefore, a policy which is
stationary in between cycles is optimal over M, which is in
turn, optimal if M = µ?. This completes the proof.

V. SYNTHESIZING THE OPTIMAL POLICY UNDER LTL
CONSTRAINTS

In this section we present an approach for Prob. III.1. We
aim for a computational framework that produces a policy that
both maximizes the satisfaction probability and optimizes the
long-term performance of the system, using results from Sec.
IV.

A. Automata-theoretical approach to LTL control synthesis

Our approach proceeds by converting the LTL formula
φ to a DRA as defined in Def. II.1. We denote the
resulting DRA by Rφ = (Q, 2Π, δ, q0, F ) with F =
{(L(1),K(1)), . . . , (L(M),K(M))} where L(i),K(i) ⊆ Q
for all i = 1, . . . ,M . We now obtain an MDP as the product
of a MDPM and a DRA Rφ, which captures all paths ofM
satisfying φ.
Definition V.1 (Product MDP). The product MDP M×Rφ
between a MDPM = (S,U, P, s0,Π,L, g) and a DRA Rφ =
(Q, 2Π, δ, q0, F ) is a tuple
P = (SP , UP , PP , sP0, FP , SPπ, gP), where

(i) SP = S ×Q is a set of states;
(ii) UP is a set of controls inherited from M and we define

UP((s, q)) = U(s);
(iii) PP gives the transition probabilities:

PP((s, q), u, (s′, q′))=

{
P (s, u, s′) if q′ = δ(q,L(s))

0 otherwise;

(iv) sP0 = (s0, q0) is the initial state;



(v) FP = {(LP(1),KP(1)), . . . , (LP(M),KP(M))} where
LP(i) = S×L(i), KP(i) = S×K(i), for i = 1, . . . ,M ;

(vi) SPπ is the set of states in SP for which proposition π is
satisfied. Thus, SPπ = Sπ ×Q;

(vii) gP((s, q), u) = g(s, u) for all (s, q) ∈ SP ;
Note that some states of SP may be unreachable and

therefore have no control available. To maintain a valid MDP
satisfying Def. II.2, the unreachable states should be removed
from P (via a simple graph search). With a slight abuse
of notation we always assume that unreachable states are
removed and still denote the resulting product MDP as P .
An example of a product MDP between a MDP and a DRA
corresponding to the LTL formula φ = GFπ∧GF a is shown
in Fig. 2.

There is an one-to-one correspondence between a path
s0s1, . . . onM and a path (s0, q0)(s1, q1) . . . on P . Moreover,
from the definition of gP , the costs along these two paths are
the same. The product MDP is constructed so that, given a
path (s0, q0)(s1, q1) . . ., the corresponding path s0s1 . . . on
M generates a word satisfying φ if and only if, there exists
(LP ,KP) ∈ FP such that the set KP is visited infinitely often
and LP finitely often.

A similar one-to-one correspondence exists for policies.
Definition V.2 (Inducing a policy from P). A policy MP =
{µP0 , µP1 , . . .} on P , where µPk ((s, q)) ∈ UP((s, q)) induces
a policy M = {µ0, µ1, . . .} on M by setting µk(sk) =
µPk ((sk, qk)) for all k. We denote MP |M as the policy on
M induced by MP , and we use the same notation for a set
of policies.

An induced policy can be implemented on M by simply
keeping track of its current state on P . Note that a stationary
policy on P induces a non-stationary policy on M. From the
one-to-one correspondence between paths and the equivalence
of their costs, the expected cost in (4) from initial state s0

under MP |M is equal to the expected cost from initial state
(s0, q0) under MP .

For each pair of states (LP ,KP) ∈ FP , we can obtain a
set of accepting maximal end components (AMEC):
Definition V.3 (Accepting Maximal End Components). Given
(LP ,KP) ∈ FP , an end component C is a communicating
MDP3 (SC , UC , PC ,KC , SCπ, gC) such that SC ⊆ SP , UC ⊆
UP , UC(i) ⊆ U(i) for all i ∈ SC , KC = SC ∩ KP , SCπ =
SC ∩ SPπ , and gC(i, u) = gP(i, u) if i ∈ SC , u ∈ UC(i). If
P (i, u, j) > 0 for any i ∈ SC and u ∈ UC(i), then j ∈ SC and
PC(i, u, j) = P (i, u, j). An accepting maximal end component
(AMEC) is the largest such end component such that KC 6= ∅
and SC ∩ LP = ∅. We denote the set of all AMECs for P as
C(P) and SC(P) :=

⋃
C∈C(P) SC .

Note that for a given pair (LP ,KP), states of different
AMECs are pairwise disjoint. For simplicity of notation, given
i ∈ SC(P), we let C(i) denote the AMEC that state i belongs
to. An AMEC is a communicating MDP (and a subset of P)
containing at least one state in KP and no state in LP . In
the example shown in Fig. 2, there exists only one AMEC

3with a slight abuse of notation, we call C an MDP even though it is not
initalized.

corresponding to (LP ,KP), which is the only pair of states
in FP .

A procedure to obtain all AMECs of an MDP was provided
in [13]. Note that there exists at least one AMEC. From
probabilistic model checking [18], [19], a policy M maximizes
the probability of satisfying φ (i.e., M ∈Mφ as defined in (3))
if and only if M = M?

P |M and M?
P is such that the probability

of reaching a state i ∈ SC(P) from the initial state (s0, q0)

is maximized on P , i.e., M?
P = arg maxM∈M PrMP (FSC(P)).

A stationary optimal policy for the problem maximizing the
satisfaction probability can be obtained by a value iteration
algorithm or via a linear program (see [13]). We denote this
optimal stationary policy as µ?→C(P). Note that µ?→C(P) is
defined only for states outside of SC(P).

On the product MDP P , once an AMEC C is reached, since
C itself is a communicating MDP, a policy can be constructed
such that a state in KC is visited infinitely often, satisfying
the acceptance condition.
Remark V.4 (Maximal Probability Policy). One can always
construct at least one stationary policy µ from µ?→C(P) such
that µ|M maximizes the probability of satisfying φ. Define µ
such that µ(i) = µ?→C(P)(i) for all i /∈ SC(P). Given an (L,K)
pair, for any AMEC C ∈ C(P), assume that the recurrent
class of the Markov chain induced by a stationary policy does
not intersect KC . Since C is communicating, one can always
alter the action for a state in KC and such that the recurrent
class induced by the policy now intersects KC . The set Mφ is,
in general not unique since this construction can be used to
generate a set of maximal probability stationary policies on
P .

B. Optimizing the long-term performance of the MDP

For a control policy designed to satisfy an LTL formula,
the system behavior outside an AMEC is transient, while the
behavior inside an AMEC is long-term. The policy obtained
from finding the maximal probability policy is not sufficient
for an optimal policy, since it disregards the behavior inside an
AMEC, as long as an accepting state is visited infinitely often.
We now aim to optimize the long-term behavior of the MDP
with respect to the ACPC cost function, while enforcing the
satisfaction constraint. Since each AMEC is a communicating
MDP, we can use results in Sec. IV-B to obtain a solution.
Our approach consists of the following steps:

(i) Convert formula φ to a DRA Rφ and obtain the product
MDP P between M and Rφ;

(ii) Obtain the set of reachable AMECs, C(P);
(iii) For each C ∈ C(P): Find a stationary policy µ?→C(i),

defined for i ∈ S \ SC , that reaches SC with maximal
probability maxM∈M PrMM(φ); Find a stationary policy
µ?�C(i), defined for i ∈ SC minimizing (4) for MDP C
and set SCπ while satisfying the LTL constraint; Define
µ?C to be:

µ?C =

{
µ?→C(i) if i /∈ SC
µ?�C(i) if i ∈ SC , (31)

and denote the ACPC of µ?�C as λC ;
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Fig. 2. The construction of the product MDP between a MDP and a DRA. In this example, the set of atomic proposition is {a, π}. (a): A MDP where
the label next to a state denotes the set of atomic propositions assigned to the state. The number on top of an arrow pointing from a state s to s′ is the
probability P (s, u, s′) associated with a control u ∈ U(s). The set of states marked by ovals is Sπ . (b): The DRA Rφ corresponding to the LTL formula
φ = GFπ ∧ GF a. In this example, there is one set of accepting states F = {(L,K)} where L = ∅ and K = {q2, q3} (marked by double-strokes). Thus,
the accepting runs of this DRA must visit q2 or q3 (or both) infinitely often. (c): The product MDP P =M×Rφ, where the states of KP are marked by
double-strokes and the states of SPπ are marked by ovals. The states with dashed borders are unreachable, and they are removed from SP . The states inside
the AMEC are shown in grey.

(iv) Find the solution to Prob. III.1 by

J?(s0) = min
C∈C(P)

λC . (32)

The optimal policy is µ?C? |M, where C? is the AMEC
attaining the minimum in (32).

We now provide the sufficient conditions for a policy µ?�C
to be optimal. Moreover, if an optimal policy µ?�C can be
obtained for each C, we show that the above procedure indeed
gives the optimal solution to Prob. III.1.
Proposition V.5. For each C ∈ C(P), let µ?C to be constructed
as in (31), where µ?�C is a stationary policy satisfying two
optimality conditions: (i) its ACPC gain-bias pair is (λC1, h),
where

λC + h(i)

= min
u∈UC(i)

[
gC(i, u) +

∑
j∈SC

P (i, u, j)h(j)

+λC
∑
j /∈SCπ

P (i, u, j)

]
, (33)

for all i ∈ SC , and (ii) there exists a state of KC in each
recurrent class of µ?�C . Then the optimal cost for Prob. III.1
is J?(s0) = minC∈C(P) λC , and the optimal policy is µ?C? |M,
where C? is the AMEC attaining this minimum.

Proof: Given C ∈ C(P), define a set of policies MC , such
that for each policy in MC : from initial state (s0, q0), (i) SC
is reached with probability maxM∈M PrMM(φ), (ii) S \ SC is
not visited thereafter, and (iii) KC is visited infinitely often.
We see that, by the definition of AMECs, a policy almost
surely satisfying φ belongs to MC |M for a C ∈ C(P). Thus,
Mφ = ∪C∈C(P)MC |M.

Since µ?C(i) = µ?→C(i) if i /∈ SC , the state reaches SC
with probability maxM∈M PrMM(φ) and in a finite number of
stages. We denote the probability that j ∈ SC is the first
state visited in SC when C is reached from initial state sP0 as
P̃C(j, µ

?
→C , sP0). Since the ACPC for the finite path from the

initial state to a state j ∈ SC is 0 as the cycle index goes to
∞, the ACPC from initial state sP0 under policy µ?C is

J(s0) =
∑
j∈SC

P̃C(j, µ
?
→C , sP0)Jµ?�C

(j). (34)

Since C is communicating, the optimal cost is the same for all
states of SC (and thus it does not matter which state in SC is
first visited when SC is reached). We have

J(s0) =
∑
j∈SC

P̃C(j, µ
?
→C , (s0, q0))λC

= λC . (35)

Applying Prop. IV.12, we see that µ?�C satisfies the optimality
condition for MDP C with respect to set SCπ . Since there exists
a state of KC is in each recurrent class of µ?�C , a state in KC
is visited infinitely often and it satisfies the LTL constraint.
Therefore, µ?C as constructed in (31) is optimal over MC and
µ?C |M is optimal over MC |M (due to equivalence of expected
costs between MP and MP |M). Since Mφ = ∪C∈C(P)MC |M,
we have that J?(s0) = minC∈C(P) λC and the policy corre-
sponding to C? attaining this minimum is the optimal policy.

We can relax the optimality conditions for µ?�C in Prop. V.5
and require that there exist a state i ∈ KC in one recurrent
class of µ?�C . For such a policy, we can construct a policy
such that it has one recurrent class containing state i, with the
same ACPC cost at each state. This construction is identical
to a similar procedure for ACPS problems when the MDP
is communicating (see [6, p. 203]). We can then use (31) to
obtain the optimal policy µ?C for C.

We now present an algorithm (see Alg. 1) that iteratively
updates the policy in an attempt to find one that satisfies
the optimality conditions given in Prop. V.5, for a given
C ∈ C(P). Note that Alg. 1 is similar in nature to policy
iteration algorithms for ACPS problems. Moreover, Alg.1
always returns a stationary policy, and the cost of the policy
returned by the algorithm does not depend on the initial state.



Algorithm 1 : Policy iteration algorithm for ACPC
Input: C = (SC , UC , PC ,KC , SCπ, gC)
Output: Policy µ�C

1: Initialize µ0 to a proper policy containing KC in its
recurrent classes (such a policy can always be constructed
since C is communicating)

2: repeat
3: Given µk, compute Jµk and hµk with (25) and (26)
4: Compute for all i ∈ SC :

Ū(i) = arg min
u∈UC(i)

∑
j∈SC

P (i, u, j)Jµk(j) (36)

5: if µk(i) ∈ Ū(i) for all i ∈ SC then
6: Compute, for all i ∈ SC :

M̄(i) = arg min
u∈Ū(i)

[
gC(i, u) +

∑
j∈SC

P (i, u, j)hµk(j)

+
∑
j /∈SCπ

P (i, u, j)Jµk(j)

]
(37)

7: Find µk+1 such that µk+1(i) ∈ M̄(i) for all i ∈ SC ,
and contains a state of KC in its recurrent classes. If
one does not exist. Return: µk with “not optimal”

8: else
9: Find µk+1 such that µk+1(i) ∈ Ū(i) for all i ∈ SC ,

and contains a state of KC in its recurrent classes. If
one does not exist, Return: µk with “not optimal”

10: end if
11: Set k ← k + 1
12: until µk with gain-bias pair satisfying (33) and Return:

µk with “optimal”

Theorem V.6. Given an accepting maximal end component
C, Alg. 1 terminates in a finite number of iterations. If it
returns policy µ�C with “optimal”, then µ�C satisfies the
optimality conditions in Prop. V.5. If C is unichain (i.e., each
stationary policy of C contains one recurrent class), then Alg.
1 is guaranteed to return the optimal policy µ?�C .

Proof: If C is unichain, then since it is also communi-
cating, µ?�C contains a single recurrent class (and no transient
state). In this case, since KC is not empty, states in KC are
recurrent and the LTL constraint is always satisfied at step 7
and 9 of Alg. 1. The rest of the proof (for the general case
and not assuming C to be unichain) is similar to the proof of
convergence for the policy iteration algorithm for the ACPS
problem (see [6, pp. 237-239]). Note that the proof is the same
except that when the algorithm terminates at step 11 in Alg.
1, µk satisfies (33) instead of the optimality conditions for the
ACPS problem ((10) and (11)).

If we obtain the optimal policy for each C ∈ C(P), then
we use (32) to obtain the optimal solution for Prob. III.1.
If for some C, Alg. 1 returns “not optimal”, then the policy
returned by Alg. 1 is only sub-optimal. We can then apply
this algorithm to each AMEC in C(P) and use (32) to obtain a
sub-optimal solution for Prob. III.1. Note that similar to policy
iteration algorithms for ACPS problems, either the gain or the

bias strictly decreases every time when µ is updated, so policy
µ is improved in each iteration. In both cases, the satisfaction
constraint is always enforced.

C. Properties of the proposed approach

1) Complexity: The complexity of our proposed algorithm
is dictated by the size of the generated MDPs. We use | · | to
denote cardinality of a set. The size of the DRA (|Q|) is in the
worst case, doubly exponential with respect to |Σ|. However,
empirical studies such as [24] have shown that in practice, the
sizes of the DRAs for many LTL formulas are generally much
lower and manageable. The size of product MDP P is at most
|S|×|Q|. The complexity for the algorithm generating AMECs
is at most quadratic in the size of P [13]. The complexity of
Alg. 1 depends on the size of C. The policy evaluation (step
3) requires solving a system of 3× |SC | linear equation with
3×|SC | unknowns. The optimization step (step 4 and 6) each
requires at most |UC |×|SC | evaluations. Checking the recurrent
classes of µ is linear in |SC |. Therefore, assuming that |UC |
is dominated by |SC |2 (which is usually true) and the number
of policies satisfying (36) and (37) for all i is also dominated
by |SC |2, for each iteration, the computational complexity is
O(|SC |3).

2) Optimality: Even though the presented algorithm pro-
duces policies that are optimal only under a strict condition, it
can be proved that for some fragments of LTL, the produced
policy is optimal. One such fragment that is particularly
relevant to persistent robotic tasks is in the form of

φ = GFπ
∧

ψ∈ΦG F

GFψ

N∧
i=1

G

(
ψi ⇒ X (

∧
ψ∈ΦG F \ψi+1

¬ψUψi+1)

)
, (38)

where {ψ1, . . . , ψN} = ΦGF is a set of propositions such that
π ∈ ΦGF , and ψN+1 = ψ1 for convenience of notation. The
first part of (38),

∧
ψ∈ΦG F

GFψ, ensures that all propositions
in ΦGF are satisfied infinitely many times; the second part
of (38),

∧N
i=1 G (ψi ⇒ ¬ψi Uψi+1), ensures that proposition

ψi+1 is always satisfied after ψi, and not before ψi is satisfied
again.
Proposition V.7. If the LTL formula φ is in the form of (38),
then Alg. 1 always returns an optimal solution.

Proof: If GFπ is satisfied, then the last portion of (38),∧N
i=1 G

(
ψi ⇒ X (¬ψi Uψi+1)

)
ensures that all proposi-

tions in the sequence ψ1, . . . , ψN are visited infinitely often.
Therefore,

∧
ψ∈ΦG F

GFψ is always satisfied. In this case, any
policy in which π is visited infinitely often satisfies the LTL
constraint, and therefore Alg. 1 returns the optimal solution.

VI. CASE STUDY

The algorithmic framework developed in this paper is
implemented in MATLAB, and is available at http://hyness.
bu.edu/Optimal-LTL.html. In this section, we examine two
case studies. The first case study is aimed at demonstrating

http://hyness.bu.edu/Optimal-LTL.html
http://hyness.bu.edu/Optimal-LTL.html


the ACPC algorithm without additional LTL constraints. The
second case study is an example where we show that the ACPC
algorithm can be used with LTL constraints.

A. Case Study 1

Consider a robot moving in a discrete environment modeled
as an undirected graph G = (V,E, c), where V is the set
of vertices, E is a set of undirected edges, where each edge
e ∈ E is a two-element subset of V , and c : E → R≥0 gives
the travel cost between vertices. We can define the neighbors
of a vertex i ∈ V to be Ni := {j ∈ V | {i, j} ∈ E}. The
robot can deterministically choose among the edges available
at a vertex and make a transition to one of its neighbors.

Events occur on the vertices of this graph, and the robot’s
goal is to repeatedly detect these events by visiting the
associated vertices. Formally, each vertex i ∈ V has a time-
varying event status xi(k) ∈ {0, 1}, where k ∈ N (i.e., the
event status may change at each stage). The goal for the robot
is to visit vertices while they have a status xi(k) = 1 (an event
is observed). This can be viewed as an average cost per cycle
metric in which the robot seeks to minimize the expected time
between observing the event. If the robot visits a vertex i ∈ V
at stage k, it views whether or not there is an event at i, and
thus observes xi(k). We assume the probability of observing
the event at vertex i is independent of k, and thus we denote it
as PObs(i). An example graph with its corresponding PObs(i)
is shown in Fig. 3a.

This problem can be converted into an ACPC problem with
an MDP constructed as follows.
• We define the states as S := V × {0, 1}. That is, we

create two copies of each vertex, one for the status 0,
and one for the status 1.

• For each state s = (i, xi) ∈ S we define U(s) := Ni.
• For two states s = (i, xi) and s′ = (j, xj) with j ∈ U(s),

we define the transition probability as

P (s, j, s′) :=


PObs(j), if s′ = (j, 1),

1− PObs(j), if s′ = (j, 0),

0, otherwise.

We set P (s, j, s′) = 0 if s = (i, xi), s
′ = (j, xj) and

j /∈ U(s).
• We define Π := {π} and for a state s = (i, xi)

L(s) :=

{
π, if xi = 1,

∅, otherwise.

• Finally, for a state s = (i, xi), and a control j ∈ Ni we
define g(s, j) := c

(
(i, j)

)
.

The problem of minimizing the expected time between
observing an event is an average cost per cycle problem in
which we minimize the time between visits to a state with
π. We assume that in this case study, the probability of
observing an event is highest at the top left and the bottom
right corners of the environment, and decays exponentially
with respect to the distance to these two corners. We first
set s0 to the state at the lower-left corner in the graph as
shown in Fig. 3a. After running the algorithm as outlined in

Alg. 1 (without the LTL constraints), we obtain the optimal
ACPC cost J?(s0) = 15.737 after 6 iterations. Note that the
ACPC costs from all states are the same. The plot of ACPC
cost J?(s0) versus the iteration count is shown in Fig. 3b.
Finally, in Fig. 3c we show 2 sample paths, each containing
300 stages under the optimal policy from two different initial
states. To verify that the average cycle costs are correct, we
also computed the ACPC (up to stage 300) for 10 sample paths
and catalogued the costs in Table I.

The mean cost over these sample paths is 15.86. On a laptop
computer with a 2.2GHz Core i7 processor, Alg. 1 took less
than 3 seconds to generate the optimal policy.

B. Case Study 2

We now consider a case study, where a robot navigates in a
graph-like environment G = (V,E, c) similar to the first case
study, while being required to satisfy an LTL specification. The
environmental graph considered in the case study is shown in
Fig. 4(a).

The robot is required to continuously pick up items (or
customers) in the environment, and deliver them to desig-
nated drop-off sites (in this case study, either DROPOFFA or
DROPOFFB, as shown in Fig. 6a). Note that DROPOFFA or
DROPOFFB can each be a set of vertices. The robot can find out
the destination of the item only after it is picked up. We assume
that there is a pick-up probability PU(v) associated with each
vertex in the graph (see Fig. 4b). However, the robot is allowed
to pick up items only if it is not currently delivering an item.
Moreover, we assume that once picked-up at a vertex v, the
probability that the item is destined for DROPOFFA depends
on the vertex v, and is given as DOA(v) (i.e., the probability
that the item is destined for DROPOFFB will be 1 − DOA(v)).
This probability is shown in Fig. 4c. As shown in Fig. 4b
and Fig. 4c, the highest value of PU(v) occurs at two vertices
on the graph, while the highest value of DOA(v) occurs at the
DROPOFFB location. The problem we aim to solve for the robot
is to design a control policy that minimizes the expected cost
in between pick-ups, while satisfying the temporal constraints
imposed by the pick-up delivery task.

We start by constructing the MDP capturing the motion of
the robot in the graph as well as the state of an item being
picked up.

• We define the states as S := V ×{NONE, A, B}. That is, we
create three copies of each vertex, one for the state that
no item is currently picked up (xi = NONE), one for the
state that an item destined for DROPOFFA is just picked
up at i (xi = A), and finally one for the state that an item
destined for DROPOFFB is just picked up at i (xi = B).

• For each state s = (i, xi) ∈ S we define U(s) := Ni ×
{PICK, NOPICK}, where an action (j, PICK) indicates that
the robot moves to vertex j allowing an item to be picked-
up at j, and (j, NOPICK) indicates that the robot does not
pick up anything at j, regardless of PU(j). The action
(j, PICK) can only be enabled at states where xi = NONE.

• For two states s = (i, xi) and s′ = (j, xj) with u ∈ U(s),
we define the transition probability as follows:
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Fig. 3. (a) An example of a graph G modeling the motion of a robot in a grid-like environment. Its set of 74 vertices is a subset of the set of vertices of a
rectangular grid with cell size 1. The weight function c is the Euclidean distance between vertices, and two vertices are neighbors if the Euclidean distance
between them is less than 15. The color of the vertex corresponds to the probability that some event can be observed at the vertex, with black being 1 and
white being 0. (b) The plot of J?(s0) versus iteration count. (c) Two sample paths (colored in black) under the optimal policy with two different initial
states (colored in green) are shown. The sample paths converge either to the vertex at top left or at bottom right, where the probability of observing events
is highest. It then cycles between that vertex and its neighbor vertex indefinitely.

Sample path no. 1 2 3 4 5 6 7 8 9 10
ACPC 15.85 15.96 15.55 15.79 15.91 15.53 16.73 15.98 15.73 15.56

TABLE I
ACPC (UP TO STAGE 300) FOR 10 SAMPLE PATHS

DROPOFFA

DROPOFFB

(a) (b) (c)

Fig. 4. (a) A graph G modeling the motion of a robot in a grid-like environment. Neighbohoods and costs are similar to the ones from Fig. 3. Delivery
destination DROPOFFA is located at the bottom-left corner and DROPOFFB is located at top-right corner. (b) The shade of gray of the vertex corresponds to the
probability PU(v) that some item will be picked up at the vertex, with black being probability 1 and white being probability 0. (c) The shade of gray of the
vertex corresponds to the probability DOA(v) that after picking an item, it is to be dropped off at DROPOFFA, with black being probability 1 and white being
probability 0 (i.e., if an item is picked up near DROPOFFA, then it is more likely to be delivered to DROPOFFB and vice versa).

(i) If u = (j, NOPICK) then P (s, u, s′) = 1 if s = (i, x),
s′ = (j, x) and j ∈ Ni;

(ii) If u = (j, PICK), xi = NONE, and j ∈ Ni

P (s, u, s′) :=


1− PU(j), if xj = NONE,

PU(j)DOA(j) if xj = A,

PU(j)(1− DOA(j)) if xj = B.

;

(iii) P (s, u, s′) = 0 otherwise.
• We define Π := {PICKUP, DROPOFFA, DROPOFFB, GOTOA}.

For a state s = (i, xi), we set L(s) := {PICKUP, GOTOA}
if an item is to be picked up at i and to be dropped off
at DROPOFFA, and L(s) := {PICKUP} if an item is to
be picked up at i and to be dropped off at DROPOFFB

; we set L(s) := {DROPOFFA} if i is at the DROPOFFA

location and xi = A; and L(s) := {DROPOFFB} if i is at

the DROPOFFB location and xi = B.
• We set the optimizing proposition π to be PICKUP.
• Finally, for a state s = (i, xi), and a control u = (j, α) ∈
U(s), we define g(s, u) := c

(
(i, j)

)
(recall that this is

the edge weight for (i, j)).

The pick-up delivery task can be described by a set of
temporal constraints, which is captured by the following LTL
formula:

φ = GF PICKUP

∧G (PICKUP⇒ X (¬PICKUPU DROPOFFA ∨ DROPOFFB))

∧G (PICKUP ∧ ¬GOTOA⇒ X (¬DROPOFFAU DROPOFFB))

∧G (PICKUP ∧ GOTOA⇒ X (¬DROPOFFBU DROPOFFA))

(39)



In (39), the first line enforces that the robot repeatedly pick
up items. The second line ensures that new items cannot be
picked up until the current items are dropped off. The last
two lines enforce that, if an item is picked up at state with
proposition GOTOA, then the item is destined for DROPOFFA, or
DROPOFFB otherwise.

We generated the DRA R using the ltl2dstar tool [25] with
101 states and 2 pairs (L,K) ∈ F . The product MDP P
contains 37269 states. There is one AMEC C corresponding
to the first accepting state pair, and none for the second pair.
The size of the AMEC is 1980. After picking an initial proper
policy, Alg. 1 converged in 14 iterations to an optimal policy
for this case study and the optimal cost is 269.48. The ACPC
versus iteration count is plotted in Fig. 5. Some segments of
a sample path are shown in Fig. 6. In these sample paths,
the robot is driven to mid-center of the environment for an
increased chance of picking-up items. For each of these sample
paths, once an item is picked up, it is delivered to DROPOFFB.
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Fig. 5. The plot of J?(s0) versus iteration count.

The entire case study took about 20 minutes of computation
time on a MacBook Pro with 2.2GHz Intel Core i7 CPU and
4GB of RAM.

VII. CONCLUSIONS

We developed a method to automatically generate a control
policy for a Markov Decision Process (MDP), in order to sat-
isfy specifications given as Linear Temporal Logic formulas.
The control policy maximizes the probability that the MDP
satisfies the given specification, and in addition, the policy
optimizes the expected cost between satisfying instances of an
“optimizing proposition”, under some conditions. The problem
is motivated by robotic applications requiring persistent tasks
to be performed such as environmental monitoring or data
gathering.

We are working on several extensions of this work. First,
we are interested in characterizing the class of LTL formulas
for which our approach finds the optimal solution. Second, we
would like to apply the optimization criterion of average cost
per cycle to more complex models such as Partially Observable
MDPs (POMDPs) and semi-MDPs. Furthermore, in this paper
we assume that the transition probabilities are known. In
the case that they are not, we would like to address the
robust formulation of the same problem. A potential direction

is to convert the proposed algorithm into a linear program
(LP) and take advantage of literature on robust solutions
to LPs [27] and sensitivity analysis for LPs [28]. We are
also interested in combining formal synthesis techniques with
incremental learning of the MDP, as suggested in [29]. Finally,
we are interested in determining more general classes of cost
functions for which it is possible to determine optimal MDP
policies, subject to LTL constraints.
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[21] C. Baier, M. Größer, M. Leucker, B. Bollig, and F. Ciesinski, “Controller
synthesis for probabilistic systems,” in Proceedings of IFIP TCS’2004.
Kluwer Academic Publishers, 2004.
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