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On Dynamic Vehicle Routing with Time Constraints

Shaunak D. Bopardikar Stephen L. Smith Francesco Bullo

Abstract—We consider the problem of dynamic vehicle routing under
exact time constraints on servicing demands. Demands are sequentially
generated in an environment and every demand needs to be serviced
exactly after a fixed, finite interval of time after it is generated. We
design routing policies for a service vehicle to maximize the fraction of
demands serviced at steady-state. The main contributions are as follows.
First, we demonstrate that this problem is described by an appropriate
directed acyclic graph structure which leads to a computationally-efficient
routing algorithm based on a longest-path computation. Second, under
the assumption of the demands being generated uniformly randomly
in the environment and via a Poisson process in time, we provide two
analytic lower bounds on the service fraction of the longest path policy.
The first bound is relative to an optimal, non-causal version of the
policy, i.e., a policy based on knowledge of all future demand requests.
The second bound is an explicit function of the vehicle dynamics and
demand generation rate, and therefore, useful as a design tool. We present
numerical results to support the analytic bounds.

I. INTRODUCTION

Dynamic Vehicle Routing (DVR) refers to a class of path planning
problems for one (or many) vehicle(s) to efficiently service demand
requests that appear sequentially in a given environment as per a
spatio-temporal process. These problems arise in robotic applications
such as surveillance/reconnaissance, where the goal is to detect and/or
track mobile targets [1], [2]; environmental monitoring, where a
dynamically evolving region needs to be estimated [3]; and industrial
automation, wherein robotic arms need to perform efficient pick-and-
place operations [4].

Early results on DVR problems comprised of policies that achieved
the minimum (for arrival rates tending to zero), or were within a
constant factor of optimality (for arrival rates tending to infinity)
with respect to the expected time spent by each demand before being
served [5],[6]. A single policy was proposed in [7] which is optimal
for the case of low arrival rate and performs within a constant factor
of the best known policy for the case of high arrival rate. Due to a
recent surge of activity in the area of motion planning for autonomous
robots, there have been a lot of variants of DVR being addressed over
the last decade. We refer the reader to [8] for a comprehensive survey
on this topic.

Pertaining to the variant of DVR problems with time windows, the
problem traces its origin to the classic static vehicle routing problem
with time windows [9], which is known to be NP-hard. A dynamic
version of this problem was considered in [10], which also accounted
for demands stochastically disappearing with a known distribution.
The work in [11] considers a related problem where demands appear
and disappear via known time distributions and take place at fixed
points of interest in a region. Related problems in which the goal
is to efficiently plan collision-free paths through environments with
obstacles have been considered more recently in [12] and in [13].
Both of these two references deal with a problem which is essentially
a dual of the one we consider in the sense that our goal is to reach
certain points in a region.
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This paper considers a DVR problem in which demands appear
uniformly randomly in a compact planar environment via a Poisson
process in time with parameter �. Each demand needs to be serviced
exactly T time units after its generation. A demand is serviced by a
vehicle if the vehicle is present at the demand location at its service
time. Our goal is to design routing policies, i.e., the order in which
the demands should be serviced, so as to maximize the fraction of
demands serviced at steady state.

The scenario of exact-time service with advance information arises
in planning routes for a transportation service in which a demand
for pick-up must be made T time units in advance. Exact time
service requirements also arise in border patrol applications in which
autonomous vehicles seek to intercept as many targets as possible that
are moving towards a region [14]. An approach to this application is
to allocate a subset of the border to each robot. Intruders arrive over
time, attempting to cross this border. The time T then represents
an estimate of the time between when the crossing point of an
intruder becomes known, and when the attempted crossing will occur.
The robots goal is to maximize the number of intruders that are
successfully intercepted at their crossing point. Another application of
this work is related to the scenario of catching the maximum number
of balls thrown at a robot [15]. In this application, the robot has three
degrees of freedom, but its reachable workspace is approximated
by a planar, non-convex region. The work presented in this paper
provides an initial approximation to these real-world problems, and
we believe it provides some interesting insights into the structure of
these problems.

Our main contributions are as follows. First, we demonstrate that
this problem is described by an appropriate directed acyclic graph
structure in the space-time environment. This structure leads to a
computationally-efficient routing algorithm based on a longest-path
computation. Second, we provide two novel analytic lower bounds
on the service fraction of the longest path policy. The first bound is
a function of T and µmax, which is the maximum time taken by the
vehicle to traverse the diameter of the environment, and is defined
relative to an optimal, non-causal version of the policy, i.e., a policy
based on knowledge of all future demand requests. Such comparison
with non-causal policies has been studied in literature under the
terminology of competitive ratio, e.g., see [16] on characterizing
this ratio for the k-server problem. Through this bound, we establish
asymptotic optimality of the longest path policy in the parameter
regimes for which the term µmax/T ! 0

+. However, this bound is not
amenable for use as a design tool primarily because the non-causal
version of the policy is not physically realizable. For the case when
T � µmax, we derive a second bound, which is an explicit function
of µmax and �, and therefore, useful as a design tool. In particular,
given a demand generation rate �, this second bound can be used to
determine the minimum velocity (or acceleration, depending upon the
vehicle motion model) with which the vehicle should move in order to
guarantee a specified service fraction. Finally, we present numerical
results to support the analytic bounds as well as to shed light on
parameter regimes where the analytic bounds are not conclusive.

The primary insight provided in this paper is how advance temporal
information on location of demands can be converted into an under-
lying reachability graph in a space-time environment. This directed
graph happens to be acyclic and, therefore, longest paths inside it can
be computed efficiently in polynomial time. A preliminary version of
this work was addressed in [17], in which we considered the case of
mobile (translating) demands being generated on a line segment, and
which need to be serviced before they reached a finish line. While
the present work borrows the main concepts, such as identifying
the directed acyclic graph structure, the novelty of this paper lies
in formulating the problem in space-time environment, and in the
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derivation of the two analytic lower bounds.
This paper is organized as follows. The problem formulation along

with background results are presented in Section II. The service
policies are described in Section III. The analytic lower bounds
are presented in Section IV. Simulation results are presented in
Section V. Finally, conclusions and directions for future work are
presented in Section VI.

II. PROBLEM STATEMENT AND BACKGROUND

In this section, we present the problem statement and background
results useful to establish the main results of this paper.

A. Problem Formulation

Consider a compact environment E ⇢ R2, that contains a single
vehicle whose position is denoted by p(t) = [X(t), Y (t)]T 2 E .
We assume that the motion model admits a function µ : E ⇥ E !
R�0 which denotes the minimum time taken for the vehicle to move
from rest at a point in E to reach another point in E at rest. By
being at rest, we mean that all higher derivatives of the position, i.e.,
velocity, acceleration, etc., are equal to zero. Such a function exists
for single integrator and double integrator motion models, which we
will address in detail later.

Demands for service are generated in the environment via a spatio-
temporal process. We assume that the process generating the demands
is uniform in space and Poisson in time with parameter �. Specifically,
we assume that if a tagged demand i, 8i 2 N, is generated at time
trel,i, then it is required to be serviced at the exact time instant given
by trel,i + T , for a given T > 0. The demand is served when the
vehicle is at rest at the spatial location of the demand at the time
instant trel,i + T .

We would like to emphasize that our solution approach presented
in this paper is independent of the above assumption about the
demand arrival process. The assumptions on the arrival process are
required only for deriving the analytic guarantees on performance
of our solution. In particular, the Poisson arrival in time assumption
is commonly employed in operations research and queueing theory
literatures, and the uniform distribution is reasonable for scenarios in
which there is no prior information on where the demands are more
likely to appear, e.g., see [5], [18].

Let Q(t) ⇢ E denote the set of positions of all released but
unserviced demands at time t. If the ith demand is either served
or is missed, then it is removed from Q. The ith demand is active if
it is released and is neither serviced nor missed.

Online and Offline Algorithms: An online algorithm [19] (or
policy) for the vehicle is a map P : E ⇥ F(E) ! R2, where F(E)
is the set of finite subsets of E , assigning a commanded velocity to
the service vehicle as a function of the current state of the system:
˙p(t) = P(p(t),Q(t)). Thus, in an online algorithm the vehicle at a
time t has access to demand information, only for the demands that
have been generated until time t. By contrast, in an offline algorithm,
the vehicle has access to the generation time and the location of all
demands throughout its entire execution. Thus, the vehicle trajectory
t 7! p(t) can be computed at the problem outset. In particular, if
¯Q denotes the set of positions of all demands that will be released

throughout the execution of our policy, then an offline algorithm can
be analogously described by the form ˙p(t) = P(p(t), ¯Q).

Problem Statement: The goal in this paper is to find online
algorithms P that maximize the fraction of demands that are serviced
Fcap(P ), termed as the service fraction. Formally, for a policy P , we
define the steady state average service fraction as

Fcap(P ) := lim sup

t!+1
E
h

msrv(t)
msrv(t)+mmiss(t)

i
, (1)

where msrv(t),mmiss(t) are the number of demands that are served
and missed until time t, respectively, and the expectation is with
respect to the stochastic process that generates the demands.

B. Background Results

Since our goal is to characterize the service fraction, we will lever-
age existing results on the distribution of demands in an unserviced
region to yield a bound on the average number of demands missed
per single demand serviced. Then, we will review the longest path
problem as we will use it to define our policies on an appropriately
defined directed acyclic graph.

1) Demand distribution: Suppose that demands are generated
uniformly randomly in a planar region E 2 R2, and as per a Poisson
process in time with rate �. Then, for every positive integer i, the ith
demand is represented uniquely by a triple (x

i

, y
i

, trel,i) 2 E ⇥R�0.
The following result characterizes the distribution of demands within
any region contained in E ⇥ [0, t].

Lemma II.1 (Distribution of outstanding demands, [20])
Suppose the generation of demands commences at time 0 and no
demands are serviced in the interval [0, t]. Let Q denote the set
of all demands in E ⇥ [0, t] at time t. Then, given a measurable
compact region R of volume V contained in E ⇥ [0, t],

P[|R \Q| = n] =
e

��V/A(E)
(�V/A(E))n

n!
, (2)

where A(E) is the area of E . As a consequence, conditioned on
the number of demands within such a region R, the demands are
distributed uniformly randomly in R.

2) Longest Paths in Directed Acyclic Graphs: A directed graph
G = (V,E) consists of a set of vertices V and a set of directed
edges E ⇢ V ⇥V . An edge (v, w) 2 E is directed from vertex v to
vertex w. A path in G is a sequence of vertices such that from each
vertex in the sequence, there is an edge in E directed to the next
vertex in the sequence. A path is simple if it contains no repeated
vertices. A cycle is a path in which the first and last vertices in the
sequence are the same. A graph G is acyclic if it contains no cycles.
The longest path problem is to find a simple path of maximum length
(i.e., a path that visits a maximum number of vertices). In general
this problem is NP-hard as its solution would imply a solution to the
well known Hamiltonian path problem [21]. However, if the graph
is a Directed Acyclic Graph (DAG), then the longest path problem
has an efficient dynamic programming solution [22] with complexity
O(|V |+ |E|), that relies on topologically sorting [23] the vertices.

III. SERVICE POLICIES

In this section, we begin by introducing a notion of reachability
graph, and then proceed to define service policies based on the
computation of longest paths over the reachability graph.

A. Characterization of reachable demands

Without loss of generality, we assume that the demands are labelled
sequentially as per their generation time. When the ith demand is
active at time t, the time for which the demand remains active is
given by

trel,i + T � t, (3)

where trel,i is the generation time of the demand. Therefore, we define
the space-time environment as EST := E ⇥ R�0.

Consider demand i with generation time trel,i and position q
i

=

(x
i

, y
i

) 2 E . Suppose that the service vehicle is located at p(t) =
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(X(t), Y (t)), at a time instant t satisfying trel,i  t  trel,i + T .
Recall that from the assumption on the vehicle dynamics, the function
µ(p(t),q

i

) denotes the minimum time taken for the vehicle to move
from rest at p(t) to reach q

i

at rest. Clearly, demand i can be serviced
if and only if

µ(p(t),q
i

)  trel,i + T � t. (4)

From this description, we can define the set of reachable demands
from any location in EST.

Definition III.1 (Reachable set from a point) The reachable set
R

T

(y, t) from a position y 2 E at time t � 0 is defined as

R
T

(y, t) := {(z, ⌧) 2 E ⇥ [t, T ] | µ(y, z)  ⌧ � t}. (5)

Next, consider the set of demands in R
T

(p(¯t), ¯t), and suppose
the vehicle chooses to service demand i, with position (q

i

, t) =

(x
i

, y
i

, t) 2 R
T

(p(¯t), ¯t). Upon service at time t
i

= trel,i + T , the
service vehicle can recompute the reachable set R

T

(p(t
i

), t
i

), and
select a demand that lies within. In the space-time representation,
every demand that is reachable from (q

i

, t
i

), is reachable from
(p(¯t), ¯t). Thus, the service vehicle can “look ahead in time with
a horizon of T ” and compute the demands that will be reachable
from each serviced demand position in EST. This idea motivates the
concept of a reachability graph in EST.

Definition III.2 (Reachability graph) The reachability graph of a
set of points {(q1, t1), . . . , (qn

, t
n

)} 2 EST, is a directed acyclic
graph with vertex set V := {1, . . . , n}, and edge set E, where for
i, j 2 V , the edge (i, j) is in E if and only if (q

j

, t
j

) 2 R
T

(q
i

, t
i

)

and j 6= i.

Given a set Q of n outstanding demands, and a vehicle position
(p, t), we can compute the corresponding reachability graph. For
the purpose of illustration, we will represent the reachability graph
assuming a simple first-order integrator motion with bounded speed
for the vehicle (cf. Fig. 1). However, the concept generalizes to higher
order dynamical models since the vehicle needs to start and end its
motion from the rest condition while moving between demands.

In addition, by Section II-B2, we can compute the longest path in
a reachability graph in O(n2

) computation time.

Remark III.3 (Finite onsite service times) The reachability graph
concept can be extended to the case of finite onsite service time
equal to �t as follows. For every demand i, create a copy of it at
time instant trel,i +T +�t. Create a directed edge from the demand
location to that of its copy. Now, demand j is reachable from i if
and only if (q

j

, trel,j) 2 R
T

(q
i

, trel,i + T + �t). For the ease of
presentation, we will consider zero onsite service time in this paper.

B. The Longest Path Policy

We now introduce the Longest Path policy. In the LP policy, the
fraction ⌘ is a design parameter. The lower ⌘ is chosen, the better
the performance of the policy, but this comes at the expense of
increased computation. Notice that at least one demand is serviced
on the path prior to recomputation of the longest path. This excludes
the possibility of undesired switching behavior, where a vehicle
continuously switches between paths without ever servicing any.

Fig. 1. The construction of the reachability graph. The top-left figure shows
the set of reachable demand locations in the space-time environment EST from
the vehicle positioned at a location in the environment E . The top-right and
bottom-left figures show the reachable set R

T

from the applicable demand
locations in EST. The bottom-right figure shows the reachability graph in EST.

Algorithm 1: The Longest Path (LP) policy
1 Compute the reachability graph of the vehicle position and all

unserviced demands in Q(0).
2 Compute a longest path in this graph, starting at the service

vehicle location.
3 if longest path is empty then
4 Move to the center of E and recompute reachability graph

whenever a new demand is released, and return to step 2.
5 else
6 Service demands in the order they appear on the path.
7 Once the fraction of demands served on the path exceeds

⌘ 2 ]0, 1], recompute the reachability graph of all
outstanding demands and return to step 2.

C. A Non-causal Longest Path Policy

For the sake of characterizing the performance of the Longest Path
policy, we will consider a non-causal policy. In the online algorithms
literature, such a policy is referred to as an offline algorithm [19].
Fig. 2 shows an example of a path generated by the Non-causal
Longest Path policy. Note that the service vehicle will serve each
demand by moving to its location in E , and thus the path depicts
which demands will be served, and in what order.

Algorithm 2: Non-causal Longest Path (NCLP) policy
Assumes: Release times for all demands are known a priori.

1 Compute the reachability graph of the vehicle position and all
demands in Q(0) [ ¯Q.

2 Compute a longest path in this graph, starting at the service
vehicle location.

3 Serve demands in the order they appear on the path.
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Fig. 2. A snapshot in the evolution of the Non-causal Longest Path policy as
shown in the EST viewed along the +y direction. The vehicle has planned the
solid red path through all demands, including those that have not yet arrived.
In comparison, a dashed causal longest path is shown, which only considers
demands that have arrived.

While this policy is not physically realizable, it will serve as a
baseline to evaluate the performance of a causal, longest path policy
as described in the next section.

IV. ANALYSIS OF THE LONGEST PATH POLICY

In this section, we present analytic results characterizing bounds
on the performance of the Longest Path Policy, defined in Section III.
The LP policy is difficult to analyze directly. This is due to the fact
that the position of the vehicle at time t depends on the positions of
all outstanding demands in Q(t). Therefore, in this section, we will
present two approaches to analyze the policy; the first is to derive
a factor of optimality with respect to the Non-causal Longest Path
policy, and the second is to lower bound the performance of the LP
policy by comparing it with a simpler, greedy policy.

A. Comparison with Non-causal Longest Path

The first approach is summarized by the following theorem in
which we relate the Longest Path policy to its non-causal relative.
Such a bound is referred to as a competitive ratio in the online
algorithms literature [19]. Define,

µmax := max

y,z2E
µ(y, z), (6)

which is the maximum of the time taken by the vehicle to move
between any two points in the environment. Then, the following result
holds.

Theorem IV.1 (Optimality of Longest Path policy) The service
fraction for the Longest Path Policy satisfies

Fcap(LP) �
⇣
1� µmax

T

⌘
Fcap(NCLP), (7)

so that the Longest Path policy is optimal as µmax/T ! 0

+.

Proof: Suppose that the generation of demands begins at t = 0

and let us consider two scenarios; (a) the vehicle uses the Longest
Path policy, and (b) the vehicle uses the Non-causal Longest Path
policy. Then, at any instant in time t1 > 0 we can compare the
number of demands serviced in scenario (a) to the number serviced
in scenario (b) (refer to Fig. 3).

t

x

scenario (a)

pa(t1) pb(t1)

q1

q2

q3

q4

scenario (b)

Fig. 3. Scenario (a) and (b) for the proof of Theorem IV.1, as viewed along
the +y direction. Path (a) visits five demands and thus L

a

= 5. Path (b) visits
four demands, yielding m = 4. The demand q2 is the highest on path (b)
that can be serviced from p

a

(t1). Thus, n = 1, and 5 = L
a

> m� n = 3.

Let us consider a time instant t1 where in scenario (a), the vehicle
is recomputing the longest path through all outstanding demands
Q(t1). Let p

a

(t1) and p
b

(t1) denote the vehicle position in scenario
(a) and scenario (b), respectively, at time t1. In scenario (b), let
the path that the vehicle will take through Q(t1) be given by
(q1,q2, . . . ,qm

) 2 Q(t1). The demand q1 is reachable from p
b

(t1),
but it may not be reachable from p

a

(t1). To obtain a lower bound
on the length of the longest path in scenario (a), consider the set of
demands (q

n+1,qn+2, . . . ,qm

), where q
n+1 is the earliest demand

on the path (q1, . . . ,qm

) that can be reached from p
a

(t1), see Fig. 3.
Clearly this set has cardinality that can be at most the length of the
longest path in scenario (a). Thus, the length of the longest path in
scenario (a), L

a

, is at least

L
a

� m� n, (8)

where m is the length of the path in scenario (b).
Now, the vehicle in scenario (a) can service any demand (q

i

, trel,i)

with trel,i + T � t1 � µmax. Thus, the demands q1, . . . ,qn

must
all have their release times in [t1 � T, t1 + µmax � T ], since they
are active at time t1. Let the total number of active demands at
time t1 be Ntot. Then, conditioned on Ntot, by Lemma II.1, the
active demands are distributed uniformly randomly in the region
E ⇥ [t1 � T, t1]. Conditioned on Ntot, the density of the active
demands in this region is Ntot/(A(E)T ), where A(E) is the area of
the environment. Since µmax  T , the expected number of active
demands contained in the region E ⇥ [t1 � T, t1 + µmax � T ] is
NtotA(E)µmax/(A(E)T ) = Ntotµmax/T . Hence,

E [n|Ntot] = Ntot
µmax

T
Fcap(NCLP). (9)

Similarly, for the length of the path through Q(t1) in scenario (b),
we have

E [m|Ntot] = NtotFcap(NCLP). (10)

Combining equations (9) and (10) with equation (8) we obtain

E [L
a

|Ntot] � Ntot

⇣
1� µmax

T

⌘
Fcap(NCLP), (11)

E
h

La
Ntot

|Ntot

i
�

⇣
1� µmax

T

⌘
Fcap(NCLP). (12)

But L
a

/Ntot is the fraction of outstanding demands in Q(t1) that
will be serviced in scenario (a), and it does not depend on the value
of Ntot. By the law of total expectation

E
h

La
Ntot

i
= E

h
E
h

La
Ntot

|Ntot

ii
�

⇣
1� µmax

T

⌘
Fcap(NCLP). (13)
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At each epoch when the longest path is recomputed, the path in
scenario (a) will service at least this fraction of demands. Thus, we
have Fcap(LP) � E [L

a

/Ntot] and have proved the result.
Note that in this approach, the performance has been compared

to the optimal non-causal version. Theorem IV.1 does not provide
a bound on the performance of the LP policy in an absolute sense,
e.g., as a function of the environment dimensions or the demand
generation rate. Such a bound requires a different analysis, presented
in the following subsection.

B. Lower bound using a Greedy policy

The second approach to characterize the LP policy performance is
to lower bound the service fraction of the LP policy with a Greedy
Path policy, presented in Algorithm 3.

Algorithm 3: The Greedy Path (GP) policy
Assumes: Vehicle is located at (X(t), Y (t))

1 Compute the reachability set R
T

((X(t), Y (t)), t).
2 Service the demand in R

T

((X(t), Y (t)), t) with the highest
time coordinate.

3 If no demands exist, move toward the center of the environment.
4 Repeat.

Given a set of outstanding demands Q(t) at time t, the vehicle po-
sition is independent of all outstanding demands, except the demand
currently being serviced. At any time instant, let p

a

(t),p
b

(t) 2 E
denote the positions of the vehicle when following the Longest path
and the Greedy path policies from the initial instant, respectively.
The capture fraction Fcap can be viewed as a function of Q(t) and
the vehicle position along with the choice of policy P . Since both
p
a

(t) and p
b

(t) are independent of Q(t),

Fcap(LP,Q(t),p
a

(t)) = Fcap(LP,Q(t),p
b

(t)). (14)

But conditioned on the position p
b

(t),

Fcap(LP,Q(t),p
b

(t)) � Fcap(GP,Q(t),p
b

(t)), (15)

since the Greedy Path policy generates a suboptimal longest path
through Q(t). Combining these two relations, we conclude that

Fcap(LP,Q(t),p
a

(t)) � Fcap(GP,Q(t),p
b

(t)), (16)

which implies that the Greedy Path policy provides a lower bound
on the performance of the Longest path policy.

We are now able to establish the following result.

Theorem IV.2 (Lower Bound for Longest Path policy) If T �
µmax, then for the Longest Path policy

Fcap(LP) � Fcap(GP) � 1/g(�, µmax, E), (17)

where the function

g(�, µmax,E) := 1 + �
h Z

µmax

0

✓
t�

Z
t

0

⇢(Z
⌧

)d⌧

◆
f(t)dt

+

✓
µmax �

Z
µmax

0

⇢(Z
t

)dt

◆
e

��

R µmax
0 ⇢(Zt)dt

i
, (18)

the set Z
t

✓ E denotes the set of points reachable from the worst-
case service vehicle location in E in time t 2 [0, µmax], A(·) denotes
the area of a planar region, the scalar ⇢(Z

t

) := A(Z
t

)/A(E) is the
ratio of the area of the reachable set Z

t

to that of the environment,
and the function

f(t) = �⇢(Z
t

)e

��

R t
0 ⇢(Z⌧ )d⌧ . (19)

x y

t

z
w

t
d

R
td(zw, t)

E

T

Demands missed

Fig. 4. The setup for the proof of Theorem IV.2. The service vehicle is
located at (z

w

, t̄). The circle centered at z
w

with radius equal to t
d

is the
set of points which the vehicle can reach at rest starting from rest at z

w

.
The worst case for the region R

t

(z
w

, t̄) is indicated by the green solid. As
per the Greedy policy, any demand within EST, which is outside of the green
solid region is left unserviced.

Proof: Notice that if msrv(t) > 0 for some t > 0, then

lim sup

t!+1
E
h

msrv(t)
msrv(t)+mmiss(t)

i
= lim sup

t!+1
E


1

1+
mmiss(t)
msrv(t)

�

�
✓
1 + lim sup

t!+1
E
h
mmiss(t)
msrv(t)

i◆�1

,

(20)
where the last step comes from an application of Jensen’s inequal-
ity [24]. Thus, we can determine a lower bound on the service fraction
by studying the number of demands that escape per serviced demand.

Let us study the time instant ¯t at which the service vehicle
services its ith demand, and determine an upper bound on the
number of demands that escape before the service vehicle services
its (i + 1)th demand. Since we seek a lower bound on the service
fraction of the LP policy, we may consider the path generated by
the Greedy Path policy. In addition, we consider the worst-case
service vehicle position in EST; namely, the position z

w

2 E from
which the reachability set R

T

(z
w

, t) has the least volume, for every
T > 0. An illustration of this location for a crescent-like, non-
convex environment (also considered later in Section V), is shown in
Figure 4.

Let Z
t

⇢ E denote the set of points that can be reached from z
w

in time t 2 [0, µmax]. This set is the intersection of the purple region
with E in Fig. 4. Let A(Z

t

) denote the area of this set and let |R
t

|
denote the volume of R

t

(z
w

, ¯t). An illustration of the set R
t

(z
w

, ¯t)
is shown as a green solid in Fig. 4. Then,

|R
t

(z
w

, ¯t)| =
(R

t

0
A(Z

⌧

)d⌧, if z  µmax,R
µmax
0

A(Z
⌧

)d⌧ +A(E)(t� µmax), if t > µmax.
(21)

Let t
d

be the time for which the first reachable demand is active at
time ¯t. That is,

t
d

:= min

(x,y,t)2Q(t̄)\Rt(zw,t̄)
{T � t}, (22)

where Q(

¯t) is the set of outstanding demands at time ¯t. By
Lemma II.1, the probability that a subset B ⇢ E with volume |B|
contains zero demands is given by

P[|B \Q(

¯t)| = 0] = e

��|B|/A(E), (23)



6

where |B \Q(

¯t)| denotes the cardinality of the finite set B \Q(

¯t).
Thus,

P[t
d

> t] = P[|R
t

(z
w

, ¯t) \Q(

¯t)| = 0] = e

��|Rt(zw,t̄)|/A(E). (24)

The probability density function of t
d

for t  µmax, which is obtained
from the expression

f(t) =
d

dt
(1� P[t

d

> t]) = � d

dt
e

��|Rt(zw,t̄)|/A(E), (25)

satisfies
f(t) =

�A(Z
t

)

A(E) e

��

R t
0 A(Z⌧ )d⌧/A(E). (26)

Now, given t
d

, all demands residing in the region miss
td := (E ⇥

[T � t
d

, T ]) \ R
t

(z
w

, ¯t) will be lost unserviced (see Fig. 4). Using
the expressions for |R

t

(z
w

, ⌧)|, the volume of miss
td is given by

|miss
td | =

(
t
d

A(E)�
R

td
0

A(Z
⌧

)d⌧, if t
d

 µmax,

A(E)µmax �
R

µmax
0

A(Z
⌧

)d⌧, if t
d

> µmax.
(27)

From Lemma II.1, the expected number of outstanding demands in
an unserviced region of volume V is �V/A(E). Thus, given that the
vehicle is located at (z

w

, ¯t) 2 EST, the expected number of demands
that will be missed while the service vehicle is serving its (i+ 1)th
demand is given by

E [mmiss,i] =
�

A(E)E [|miss
td |]

=

�

A(E)

h Z
µmax

0

✓
tA(E)�

Z
t

0

A(Z
⌧

)d⌧

◆
f(t)dt

+

✓
A(E)µmax �

Z
µmax

0

A(Z
t

)dt

◆
P[t

d

> µmax]

i
. (28)

Since E [mmiss,i] is computed for the worst-case vehicle position
(z

w

, ¯t) in EST, and since this expression holds at every demand
service, by equation (20) and using equation (24), we obtain the
desired result.

Remark IV.3 (Asymptotic performance) Our bounds achieve op-
timality in the asymptotic regimes of µmax/T ! 0

+ for the first
bound, and � ! 0

+ or µmax ! 0

+ for the second bound.

C. Special Case: Single Integrator Dynamics & Square Environment

In this section, we show how the analytic results reduce to
closed-form expression under special circumstances. Specifically, we
consider first-order integrator dynamics with maximum speed u, and
square operating environments with edge length W .

Corollary IV.4 (Simple motion and square environments) For
simple vehicle motion with maximum speed u and in square
environments with edge length W ,

(i) the capture fraction of the Longest path and the non-causal
Longest Path satisfy

Fcap(LP) �
✓
1�

p
2W

Tu

◆
Fcap(NCLP). (29)

(ii) If T �
p
2W/u, then the Longest Path policy satisfies

Fcap(LP) � Fcap(GP) � 1/g(�, u,W ), (30)

with the function g defined as

g := e

�
p

2�W
3u

+

�

3

⇣
6W 2

�u2

⌘ 1
3
⇣
�

�
1

3

, 0
�
� �

�
1

3

,

p
2�W

3u

�⌘
,

(31)

and the function

�(a, z) :=

Z +1

z

ta�1
e

�tdt, (32)

is the incomplete Gamma function.

The first claim follows by direct substitution of µmax =

p
2W/u.

The second claim follows from the fact that A(Z
z

) has a closed
form expression in terms of u and W in square environments, and
the resulting integral can be evaluated in closed-form.

V. SIMULATIONS

We now present results from numerical experiments. Through these
experiments, we compare the Longest Path policy, with the parameter
⌘ = 1, with the Non-causal Longest Path policy and to the theoretical
lower bound in Theorem IV.2, in order to verify the analytic claims.

A. Simple motion and square environment

In the first experiment, we considered a square environment with
edge length equal to W . The vehicle motion model was chosen to
be simple first-order integrator with bounded speed u. To simulate
the LP and the NCLP policies, we performed 20 runs of the policy,
where each run consists of 500 demands. A comparison of the service
fractions for the two policies is presented in Fig. 5. When T >p
2W/u, we observe that the service fraction of the LP policy is

nearly identical to that of the NCLP policy. We also confirm the
analytic results, i.e., the bound relative to the non-causal Longest path
policy and the explicit lower bound summarized in Corollary IV.4.

In this experiment, we also simulated the Longest Path policy for a
variation of the problem with a service time window instead of exact
service time. In other words, suppose that for every i, the ith demand
could be serviced at any time within the time interval [trel,i, trel,i+T ].
Then, the vehicle may still use the Longest Path policy to service the
demands. The solid blue curve in Fig. 5 shows that the empirically
observed performance is very close to that of the Longest Path policy
in the exact time service scenario. By applying the Longest Path
policy to the problem with service time windows, the analytic lower
bounds (Theorem IV.1 and Corollary IV.4) still apply, as seen from
Fig. 5. However, for large values of T , the longest path policy would
prove to be very sub-optimal, as it corresponds to the vehicle simply
waiting at a demand’s location before servicing it. In this parameter
regime, the performance may be improved using other heuristics that
are based on the order in which the vehicle serves existing demands.
The main challenge here is that history-based searches have much
higher computational complexity than the longest path policy. We
believe such algorithmic questions are a promising direction for future
research.

B. Double-integrator motion in a non-convex environment

We now report the results of simulating the LP and the NCLP
policies in a more complex, non-convex environment similar to the
crescent-like, approximation of the reachable workspace of the robot
in [15]. We consider the following scenario, illustrated in Figure 6.
If B(x, y,R) denotes the closed circular region centered around the
point (x, y) in the plane. Then, our workspace is the closure of the
region B(0, 0, R)\ (B(0, 0, R)\B(�d, 0, R)), for some d 2 [0, R].
In our experiments, we chose R = 1 and d = R/2. The vehicle
motion model was chosen to be a double integrator with the control
input u being the acceleration of the vehicle. This can be extended
to a more detailed motion model for the vehicle that enables at least
an approximate computation of the bound in Theorem IV.2. Balls
are assumed to be moving with identical speeds v in a direction
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Fig. 5. Simulation results for LP policy (solid red line with error bars
showing ± one standard deviation) and the NCLP policy (dashed black line)
for a square environment of width W = 100 and maximum vehicle speed
u = 3. This yields T = 100 >

p
2W/u, and the explicit lower bound in

Theorem IV.2 is shown in solid green, while the lower bound relative to the
non-causal Longest path is shown in solid cyan. The solid blue curve shows
the performance of the Longest Path policy (recomputed after every serviced
demand) for the scenario of finite service time window.

Reachable Workspace

Detection Plane

L

x

y

z

u

v

Fig. 6. An abstraction of the ball-catching scenario from [15]. The yellow
square denotes the vehicle’s location, the environment is crescent-like, non-
convex planar region. Balls (denoted by black dots) are assumed to be moving
with identical speeds v in a direction perpendicular to the environment. A ball
is detected after it passes the shaded detection plane located at a distance L
from the environment along the �z direction.

perpendicular to the environment. A ball is detected after it passes
the detection plane located at a distance L from the environment
along the �z direction. This problem can now be modeled in our
current framework with the choice of T = L/v.

To simulate the LP and the NCLP policies, we performed 10 runs
of the policy, where each run consists of 100 demands. A comparison
of the service fractions for the two policies for a fixed demand
generation rate � and at varying vehicle acceleration values u is
presented in Fig. 7. When µmax < T , we observe that the service
fraction of the LP policy is nearly identical to that of the NCLP
policy, as shown in Fig. 7. Further, the analytic results, i.e., the bound
relative to the non-causal Longest path policy from Theorem IV.1 and
the explicit lower bound from Theorem IV.2, are fairly consistent with
the experimental results.

These results (both numerical and analytic) can be used to design
the vehicle acceleration u, given a certain desired value of the service
fraction. For example, for a generation rate of � = 0.5, if the desired
service fraction is 0.6, then the analytic result states that a vehicle
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0.4
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e 
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Non−causal Longest path (numerical)
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Relative Lower bound

Fig. 7. Simulation results for LP policy (solid red line with error bars showing
± one standard deviation) and the NCLP policy (dashed black line) for a non-
convex environment similar to the workspace of the robot in [15] and for a
fixed demand generation rate � = 0.5. A double integrator model is assumed
in this experiment. The explicit lower bound, computed approximately using
the expression in Theorem IV.2, is shown in solid green, while the lower
bound relative to the non-causal Longest path from Theorem IV.1 is shown
in dashed cyan.

acceleration of u � 0.75 is sufficient to achieve the goal, while the
numerical result suggests that u � 1 is sufficient for the same. This
gap is higher for higher values of the desired service fraction.

C. Key steps towards implementation

We believe that the work in this paper provides a good initial
approximate solution for a realistic scenario, such as motion planning
for the ball-catching robot. We identify the following gaps that need
to be addressed before our work can be applied to real experimental
scenarios:

(i) Control action computation: Our results are presented in terms
of the function µ, which characterizes the time it takes to
move the robot from one location to another. A closed form
expression for such a function is not readily available for more
complex robots, beyond the class of linear systems. Further,
the computation of control actions, e.g., the precise actuator
signals at the joints which would realize the motion of the robot
from one point to the other, would need to be obtained through
heuristics such as sampling based approaches. This aspect is a
focus of future research.

(ii) Effect of uncertainty in the time T : Our present work neglects
the effect of uncertainty in the time T at which each demand
needs to be served. Uncertainty in real scenarios can arise due
to several reasons ranging from obtaining precise information
about demand’s location to computation of the longest path
approach coupled with the control action for the robot actuators.
However, we believe that our approach based on the longest
path can yield a good initial solution which may be further
optimized for the more-realistic model of the overall system.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper considered a dynamic version of the classic vehicle
routing problem in which service needed to be provided exactly at a
specified instant of time after every demand generation. The primary
insight provided in this paper is how advance temporal information on
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location of demands can be converted into an underlying reachability
graph in a space-time environment. This graph happens to be directed
and acyclic, and therefore, we can compute longest paths in an
efficient (polynomial time) manner. A novel policy based on repeated
computation of longest paths through the available set of demands
was proposed. A performance analysis in terms of the expected
fraction of demands serviced was presented, for which we provided
two novel lower bounds. The first bound was relative to a non-causal
version of the longest path policy, and the second was an explicit
bound as a function of the problem parameters. Numerical results
verifying the analytic claims were presented.

In future, it would be of interest to analyze the parameter regimes
in which the bounds are not currently known to hold. Other related
directions are motion models in which the vehicle cannot be brought
to rest at a demand location, e.g., Dubins model, and multi-vehicle
versions of this problem.
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