
On Efficient Computation of Shortest Dubins Paths
Through Three Consecutive Points

Armin Sadeghi Stephen L. Smith

Abstract— In this paper, we address the problem of com-
puting optimal paths through three consecutive points for the
curvature-constrained forward moving Dubins vehicle. Given
initial and final configurations of the Dubins vehicle, and a
midpoint with an unconstrained heading, the objective is to
compute the midpoint heading that minimizes the total Dubins
path length. We provide a novel geometrical analysis of the
optimal path, and establish new properties of the optimal Du-
bins’ path through three points. We then show how our method
can be used to quickly refine Dubins TSP tours produced using
state-of-the-art techniques. We also provide extensive simulation
results showing the improvement of the proposed approach
in both runtime and solution quality over the conventional
method of uniform discretization of the heading at the mid-
point, followed by solving the minimum Dubins path for each
discrete heading.

I. INTRODUCTION

Routing problems for non-holonomic vehicles have been
studied extensively in the fields of robotics and autonomous
systems [1], [2], [3], [4]. The non-holonomic motion of a
forward-moving Dubins vehicle with bounded turning radius
[5] is commonly studied as a model for fixed-wing aerial ve-
hicles. A configuration of a Dubins vehicle consists of a loca-
tion (x, y) in the Euclidean plane and a heading α ∈ [0, 2π).
The motion of the Dubins’ vehicle with minimum-turning
radius Rmin and control input u ∈ [−1/Rmin, 1/Rmin] is
governed by the following equations:

ẋ = cosα, ẏ = sinα, α̇ = u.

Dubins [5] provided the set of candidate optimal paths
between pair-wise configurations of the Dubins vehicle.

In this paper, we focus on the Dubins path problem
between three consecutive points, where headings at only
the initial and final point are fixed. Our interest in this
problem stems from two applications. First, given a Dubins
path through a set of points, a fast solution to this problem
provides a method for inserting a new point into the Dubins
path with minimum additional cost. Second, we show how it
can be used as a tool to perform repeated local optimizations
on a Dubins path through a set of points.

Related work: Ma et al. [6] study the optimal Dubins paths
for three consecutive points where the initial heading is fixed
and the midpoint and final point have free headings, building
on the optimal control results in [7]. Under the assumption
that the pairwise Euclidean distance between all points is at

This research is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

The authors are with the Department of Electrical and Com-
puter Engineering, University of Waterloo, Waterloo ON, N2L 3G1
Canada (a6sadeghiyengejeh@uwaterloo.ca; stephen.smith@
uwaterloo.ca)

least 2Rmin, the authors provide a sufficient condition for
the optimal path between the points. In addition, a receding
horizon algorithm is proposed to construct feasible Dubins
path on an ordered set of points.

The authors of [8] formulate a family of convex opti-
mization sub-problems to address the problem of the optimal
Dubins path between a set of n ordered points with distance
at least 4Rmin apart. The drawback of the approach is that
the number of convex optimization sub-problems can grow
to 2(n−2) in the worst case. Their approach provides a
solution to the three-point Dubins problem, but it requires
solving several convex optimization problems. A heuristic
was recently proposed [9] to extend this method to the
problem of Dubins paths through neighborhoods.

Another closely related problem is the Dubins TSP, where
given n points, the objective is to sequence the points and
choose a heading at each point such that the resulting Dubins
tour length is minimum. In [10], [11], [12], approximation
algorithms are proposed to assign headings to each point
when the points are ordered according to the Euclidean TSP
tour. In [12], the headings are assigned by a heuristic solution
to the three-point Dubins problem considered in this paper.
This heuristic approach is adopted in [13] to insert points
into the tours of multiple-Dubins vehicles.

In [14], the continuous interval of headings at each point is
approximated by a finite number of samples. Each sample,
along with the position of the corresponding point forms
a configuration, and the problem reduces to computing a
generalized traveling salesman problem (GTSP) tour that
visits one configuration for each point. The authors in
[15] present an experimental comparison of Dubins TSP
algorithms including the GTSP approach. Recently and built
on the results for the pairwise optimal Dubins interval
path, Manyam and Rathinam [16] proposed a Dubins TSP
algorithm based on uniform discretization of the headings at
each point to intervals.

Contributions: The focus of this paper is to provide an
efficient method for computing the optimal Dubins path be-
tween three consecutive points. We present a novel analysis
of the problem that relies on inversive geometry, and results
in a set of equations defining the optimal heading at the
mid-point. We provide a simple method to approximate the
optimal heading, and give bounds on its worst-case deviation
from optimal. We then present an iterative method that is
guaranteed to converge to the optimal solution. In simulation,
we compare our approach to the uniform discretization
method of [14] in both solution quality and computation
time. Finally, we show that a Dubins TSP can be solved
using a coarse heading discretization followed by repeated

R

P ′

C

PO

Fig. 1: Point P ′ is the inverse of point P with respect to circle
C = circle(O,R).

heading optimization using our technique to achieve high-
quality tours in approximately 8% of the computation time.

II. PRELIMINARIES

Here we provide a brief background on circle inver-
sion [17]. In two dimensional geometry, circle inversion is
a mapping of a geometric object Q with respect to a circle
C = circle(O,R) to another object inv(Q, C). The inverse
of a point P with respect to C is a point on the segment
OP with distance R2

|OP | from P . The inverse of a line (resp.
circle) with respect to circle C is a circle, unless the line
(resp. circle) contains O, in which case the inverse is a line.
The inverse of a line (resp. circle) is obtained by inverting
three points on the line (resp. circle). With a slight abuse
of terminology, we define inverse of a line segment S with
respect to C to be the inverse of the infinite line containing
the line segment S with respect to C.

The angle between a circle and an intersecting line is
defined as the angle between the line and the tangent to
the circle at the intersection point. The angles between the
intersecting lines and circles are preserved under the circle
inversion operation.

III. PROBLEM FORMULATION

We now formulate the problem of finding an optimal path
for a Dubins vehicle between three consecutive points.

A. Three-Point Dubins Path

Let the tuple Xi = (xi, αi) denote a Dubins vehicle
configuration, consisting of a point xi in the Euclidean
plane, and a heading αi ∈ [0, 2π) at xi. An alternative
representation of the heading at xi is two circular arcs (left
and right turns) containing xi and tangent to the heading.
Given initial and final configurations Xi and Xf , along with
a midpoint xm with free heading, the three-point problem is
defined by the tuple (Xi,xm, Xf) and stated as follows.
Problem III.1 (Three-point Dubins path). Given a tuple
(Xi,xm, Xf), with pairwise Euclidean distances between the
points xi, xm, xf of at least 4Rmin, find a heading αm at
xm such that the length of an optimal Dubins path starting
at Xi, passing through Xm = (xm, αm), and arriving at Xf

is minimum.
From the Bellman’s principle of optimality [18], the opti-

mal Dubins path through three configurations is obtained by
concatenating two optimal Dubins paths between the pairs.
Given two configurations X1 and X2, the optimal Dubins

path from X1 to X2 can be computed in constant time [5].
The optimal Dubins paths between two configurations is in
the set {CCC,CSC} where S is a straight line segment and
C is a circular turn with minimum turning radius in either
left L or right R direction. Therefore, in general the optimal
path through three points is obtained by concatenating two
Dubins paths as follows.

{(C1C2C3)1(C4C5C6)2, (C1C2C3)1(C4S5C6)2,

(C1S2C3)1(C4C5C6)2, (C1S2C3)1(C4S5C6)2}.

From [8] the set of optimal Dubins paths under 4Rmin

distance assumption of Problem III.1 is reduced to
(C1S2C3)1(C4S5C6)2 . The 4Rmin distance constraint is
relaxed further in Section VII.

B. Properties of Three-Point Dubins Path

In a path of type (C1S2C3)1(C4S5C6)2, the arc segments
C3 and C4 are the two incident path segments to the mid-
point. In the optimal solution to Problem III.1, the two arcs
incident to the mid-point have equal lengths and both are
in the same turning direction i.e., left turn or right turn [8].
Thus for simplicity we represent the path as C1S2C3S4C5.
We summarize the properties of the optimal Dubins path
through three consecutive points, provided in [8], as follows.
Lemma III.2 (Three-point Dubins). Given (Xi,xm, Xf),
in a shortest path of type C1S2C3S4C5, the line segment
between xm and the center of the circle associated with the
optimal heading bisects the angle between the line segments
S2 and S4.

Substituting the left L and right R turns for each Ci in the
path C1S2C3S4C5, we obtain the set of 8 candidate optimal
path types for Problem III.1.

IV. OPTIMAL PATH AND INVERSIVE GEOMETRY

In this section we use inversive geometry to establish
properties of optimal paths of type C1S2C3S4C5, that form
the basis of our solution approach to Problem III.1.

A. Inversive Geometry in Dubins Paths

Figure 2 shows the optimal path for the case
R1S2R3S4L5. The points A,B and xc are the centers of
the circles associated with the headings at the points xi,xf
and xm respectively. In Figure 2, the common tangent of the
circles centered at A and xc is an outer-common tangent and
the common tangent of the circles centered at xc and B is
an inner-common tangent.

Figure 3 shows the inverse of the components of the path
with respect to the circle C centered at xm with radius Rmin.
Each S segment in Figure 2 is shown as a line in Figure 3.
The circle inversion operation on each line generates a circle
containing the mid-point xm, shown in Figure 3 in the same
color. The inverse of the circle associated with the heading
at xm is a line passing through the two intersection points
of circle(xm, Rmin) and circle(xc, Rmin).

The following lemma provides a sufficient condition for
optimality of a C1S2C3S4C5 path based on Lemma III.2.
The proof of the lemma is given in [19].

Fig. 2: An optimal path of type R1S2R3S4L5. Each component of
the path is sketched in different colors.

Fig. 3: Path R1S2R3S4L5 and inverse of the path components. The
optimal path given in the figure with initial state Xi, final state Xf

and point xm to visit.

Lemma IV.1 (Radius of inverted circles in an optimal path).
In any optimal path of type C1S2C3S4C5, the inverses of the
line segments, S2 and S4, with respect to a circle centered
at xm with radius Rmin are two circles of equal radius.

B. Optimality Condition

Without loss of generality we set Rmin to 1 in the rest of
the paper, otherwise we scale the location of the points to
satisfy the assumption. In addition, we rotate the coordinate
system such that the centers A and B lie on the x-axis. Then,
the optimal heading at xm equals the angle between the line
tangent to circle(xc, Rmin) at xm and the x-axis.

Due to the 4Rmin distance constraint on the points,
circle(A,Rmin) does not contain xm. Therefore, the inverse
of circle(A,Rmin), i.e.,inv(circle(A,Rmin), C), is a circle
centered at point A′ with radius rA′ (see Figure 3). The
point A′ and radius rA′ are defined as follows:

rA′ =
1

|Axm|2 − 1
, |A′xm| = |Axm|rA′ . (1)

Substituting A,A′ and rA′ with B,B′ and rB′ , respectively,
we can define B′ and rB′ .

To derive a set of equations for the optimal heading in the
path C1S2C3S4C5, we require the following definitions:
• µA is 1 if C1 = C3 and −1 otherwise,
• µB is 1 if C5 = C3 and −1 otherwise,

xm

l

A′

B′

C

D

α

θ

θ

Fig. 4: Triangles 4CA′xm and 4DB′xm of Figure 3. Line l
contains xm and is parallel to the direction of the heading at xm.

• R is the radius of the circles centered at C and D in
the optimal path,

• θ = ∠xmCD = ∠xmDC (see Figure 3),
• β1 = ∠xmAB and β2 = ∠xmBA.

The following proposition (proof given in [19]) provides the
set of equations to obtain the optimal heading.
Proposition IV.2. The optimal heading α∗ at xm is the
unique solution to the following set of equations:

1

2(µA + |Axm| cos(β1 + θ − α∗))
= R, (2)

1

2(µB + |Bxm| cos(β2 + θ + α∗))
= R, (3)

1

2(1− sin(θ))
= R. (4)

The set of unknowns in Equations (2), (3) and (4) are R, α
and θ, where α is the optimal heading at xm. Unfortunately,
we have been unsuccessful in obtaining a closed form solu-
tion to these set of trigonometric equations. In Section V.I,
we leverage Proposition IV.2 to bound the optimal heading
at the the mid-point. Moreover, we propose a geometric
method to approximate the heading, followed by an iterative
procedure to converge to the optimal.

In the analysis of the inverse geometry for the
C1S2C3S4C5 paths, there are two special cases that must
be considered in which the line segments S2 and S4 are
parallel. Due to lack of space we refer the reader to [19] for
a detailed analysis. When the lines S2 and S4 are parallel
and non-intersecting, the result in Lemma IV.1 still holds.
Moreover, all the parameters in Equations (2), (3) and (4).
When S2 and S4 are parallel and intersecting, the analysis
in [19] shows that the corresponding path C1S2C3S4C5 must
be the optimal path of its type.

V. THREE-POINT DUBINS ALGORITHM

In this section we propose a simple method to find the
optimal path in the problem instance (Xi,xm, Xf). First,
leveraging the properties in Section IV, we propose a method
to find an approximate midpoint heading.

A. Approximation Method

In this section we propose an approximation of the optimal
heading at the mid-point xm. We assume that the pair-
wise distances of xi, xm and xf go to infinity. Then, the

length of segments Axm and Bxm go to infinity which,
by Equation (1), implies |A′xm| and |B′xm| approach zero.
From Lemma I.1 in [19], the radius of the circles inv(S2, C)
and inv(S4, C) is bounded from below by 1

4Rmin. Therefore,
the angles ∠xmCA′ and ∠xmDB′ (see Figure 4) approach
zero and the angles ∠CxmA and ∠BxmD go to π

2 .
Therefore, in terms of the angles β1 = ∠xmAB, β2 =

∠xmBA, θ = ∠xmCD, we have β1 − α + θ = π
2 , and

β2 + α+ θ = π
2 . From these equations we can approximate

the heading α at the mid-point α by

ᾱ =
β1 − β2

2
. (5)

The following result (proof given in [19]) establishes the
maximum error between ᾱ and the optimal heading α∗.
Proposition V.1 (Maximum error of approximated heading).
For the optimal path of Problem III.1, the following holds
for the optimal heading at xm:∣∣∣∣α∗ − β1 − β2

2

∣∣∣∣ ≤ ζ.
For the optimal path P ∗, the bound ζ is defined as

(i) ζ = 0 if |Axm| = |Bxm| and P ∗ is RSRSR,
LSLSL, RSLSR, or LSRSL;

(ii) ζ = π
9 if P ∗ is RSRSR or LSLSL;

(iii) ζ = π
5 if P ∗ is RSLSR or LSRSL; and

(iv) ζ = 11π
36 if P ∗ is RSRSL, LSRSR, RSLSL, or

LSLSR.
Note that the ζ values in Proposition V.1 are the worst-

case bounds. In addition, these worst-case bounds improve
as the distance between the points increase. Given these
approximation of the optimal heading at the mid-point, we
can initialize an iterative method to converge to the optimal.

B. Iterative Method

Starting from the heading given in Section IV as the initial
heading, we propose the following method for iteratively
improving the heading. The method converges to the optimal
heading by iteratively correcting the angle between the
bisector of the two line segments of the path C1S2C3S4C5

and the vector between the mid-point and the center of the
circle associated with the heading (see Figure 5). Without
loss of generality, assume that the center of the first curve
is located at the origin and the center of the final curve is
located at (xf , 0) and let xm = (xm, ym) be the mid-point.
We define vectors ~vi and ~vf parallel to the first and second
line segments the path C1S2C3S4C5. Let xc = (xc, yc) be
the center of the circle associated with a heading at the mid-
point. Let Rotθ be the rotation matrix with angle θ and ~ev
be the unit length vector in the direction of ~v. We have,

~vi = Rotθi [xc, yc], ~vf = Rotθf [xc − xf , yc],

~vm = [xm − xc, ym − yc], ~v = ~ev + ~evf .

The angle θi is the angle of a common tangent of two
circles circle(A, 1) and circle(xc, 1) from the line connecting
the centers A and xc. The angle θi equals zero if the
line segment is an outer-common tangent and sin−1(2/|vi|),

Fig. 5: The vectors ~evi , ~evf and ~vm for a R1S2R3S4R5 path.

otherwise. The algorithm for each path of type C1S2C3S4C5

is as follows:
(i) Find the approximated heading ᾱ (Equation (5)),

(ii) Compute vectors ~vi, ~vf and ~vm,
(iii) Compute the vector ~v bisecting the angle between ~vi

and ~vf ,
(iv) Return if vectors ~v and ~vm are aligned,
(v) compute the angle γ between ~vi and ~vm,

(vi) Rotate (xc, yc) about xm by γ,
(vii) continue from step (ii).

The problem of finding the optimal heading at the mid-
point is defined as the following:

min
xc,yc

cos−1(~ev · ~vm) (6)

The minimum of (6) occurs when the vectors ~v and ~vm
are parallel. Note that the derivative of the right hand side
of objective function (6) is not defined where the vectors ~ev
and ~vm are parallel. However, minimizing (6) is equivalent
to the following maximization:

max
xc,yc

~ev · ~vm (7)

To prove correctness of the iterative method, it suffices to
show that all local maxima (xc, yc) of (7) are globally max-
imal. The following lemma validates the iterative method.
The detailed proof of the lemma is given in [19].
Lemma V.2. The center of the circle associated with the
optimal heading is the unique maximizer of (7).

An immediate consequence of Lemma V.2 is the conver-
gence of the iterative method.
Corollary V.3. The iterative method converges to the optimal
heading at the mid-point.

Remark V.4 (Eliminating the distance constraint). The 4Rmin

distance constraint in Problem III.1 ensures that the path
types are of type C1S2C3S4C5. Eliminating the distance
constraint introduces additional path types with CC and
CCC segments. The iterative method is applicable to any
C1S2C3S4C5 path type even when 4Rmin is not satisfied.
Implementing the method for computing CC paths in [3]
alongside our iterative method for C1S2C3S4C5 paths, we

obtain a method to optimally find the heading at the mid
point for all path types between three consecutive points with
exception of {C1C2C3S4C5, C1S2C3C4C5, C1C2C3C4C5}.
Although these path types are not considered in our method,
simulations in Section VII show the paths generated by our
method are within 0.1 percent of the optimal path. •

VI. LOCALLY OPTIMIZING A DUBINS TSP TOUR

The solution to Problem III.1 provides a method for locally
optimizing a Dubins TSP tour in a post-processing phase.
Given a set of n points in the Euclidean plane, a solution
to the Dubins TSP is an ordering of the n points, along
with a heading at each point that minimizes the total path
length. Let T be a Dubins tour such that Ti is the ith
configuration (xi, αi). Now we define our post-processing
method as follows:

(i) For every Ti, solve the problem (Ti−1,xi, Ti+1) and
update αi,

(ii) Randomly delete a configuration Ti in T and re-insert
to a position in the tour with minimum additional cost.

Note that every segment of three consecutive vertices on
the tour is a (Xi,xm, Xf) problem instance. Therefore, in a
tour of length n, finding the position to insert a point with
minimum additional cost requires solving n − 1 problem
instances of type (Xi,xm, Xf). The steps (i) and (ii) of
refinements terminates if there is no improvement in the path.

VII. SIMULATION RESULTS

We evaluate the performance of the proposed approach on
both randomly generated (Xi,xm, Xf) instances and in post-
processing Dubins TSP tours as in Section VI. The point-to-
point Dubins path [20] and the three-point Dubins method are
implemented in Python and the experiments are conducted
on an Intel Corei5 @2.5Ghz processor. The experiments in
this section consider a Dubins vehicle with Rmin = 1.

A. Three-Point Dubins

In this section we compare performance if the iterative
method to discretizing the heading at xm with 360 equally-
spaced headings. Let αd be a heading among the discretized
headings. The discretization method creates the configuration
Xm = (xm, αd), and solves two Dubins path problems,
namely (Xi, Xm) and (Xm, Xf). The discretization method
returns the minimum path among the headings.

Figure 6 shows the deviation of the path length produced
by the iterative method to that of the discretized heading. The
experiments are conducted on 50000 random (Xi,xm, Xf)
instances, where the points are uniformly randomly selected
in a 10 × 10 environment. The x-axis in Figure 6 is the
rounded minimum distance of the three points. For example,
1 on the x-axis represent the instances where the minimum
distance between the points is in interval [1, 1.5). The
negative values represent instances in which the proposed
methods outperform the discretization method. The distribu-
tion shows that even when points are less than 4Rmin apart
from each other, the iterative method generates shorter paths.

The average computation time may vary based on the dis-
tances of the points due to considering additional path types

1 2 3 4 5
Minimum Distance

−0.4

−0.3

−0.2

−0.1

0.0

0.1

E
rr

o
r

P
e
rc

e
n
ta

g
e

Fig. 6: The percentage deviation of path length produced by the
iterative method relative to the discretization method with 360
equally spaced headings. The width of the distributions represent the
probability an instance lying in the corresponding error percentile.

2Rmin 3Rmin 4Rmin

Approx. heading 65.3 67.1 74.2
Iterative method 5.2 6.8 13.6

TABLE I: The factor of improvement in runtime of the iterative and
approximation method over 360 discrete headings. The average of
solver time on 10000 instances for the discretization method with
360 equally spaced headings is 0.01728 seconds.

mentioned in Remark V.4. The iterative method improves
the runtime of computing a three-point Dubins path, under
4Rmin distance constraint, compared to 360 discretization
by a factor of 13.65. However, this factor of improvement is
5.21 for the instances with points less than 2Rmin apart.
Table I shows the factor of improvement in runtime of
the iterative and approximation method when compared to
discretization with 360 headings.

B. Post-processing on Dubins Tour

In this experiment, we implement the GTSP method
[14] on random instances with various discretization levels
followed by our post-processing method in Section VI. Given
a Dubins TSP on n points, and a discretization level of
d at each point, the GTSP instance will have nd vertices.
The results show the advantages of the local optimization
on GTSP solutions with coarse discretization over solving
GTSP with fine discretization.

To characterize the performance of our algorithm, we
conduct experiments on low and high-density Dubins TSP
instances. Table II shows the results on uniformly randomly
generated instances. Each row of the table is a class of 20
random instances with the same problem parameters: that is,
the environment size W × W , the number of points N , and
the minimum pair-wise distance D.

The GTSP instances are solved using the state-of-the-art
GTSP solver, GLKH [21] which is implemented in C. In
Table II the abbreviations G. Len and G. Time represent the
average tour length and solver time, in seconds, for the GTSP
solver. Similarly, P. Len represents the average tour length
after post-processing and P. Time represents the time required

P. Time GTSP 1-discretization GTSP 10-discretization

G. Time G. Len P. Len P. Len/ref Time/ref G. Time G. Len P. Len P. Len/ref Time/ref

L
ow

D
en

si
ty

N10W15D4.0 0.1 0.0 75.5 54.6 1.000 0.02 0.8 54.8 54.6 1.000 0.17
N10W10D3.0 0.1 0.0 66.0 38.2 1.003 0.03 0.6 38.4 38.1 1.000 0.18
N20W20D3.0 0.3 0.0 142.5 94.5 1.002 0.01 9.5 94.7 94.5 1.002 0.26
N30W20D2.0 0.5 0.4 187.3 110.3 1.037 0.01 18.4 107.1 106.4 1.000 0.18
N30W30D3.0 0.7 0.1 229.0 157.6 1.006 0.01 20.5 157.1 156.7 1.000 0.15
N40W30D4.0 1.6 0.3 289.7 205.3 1.022 0.01 45.8 201.3 200.7 1.000 0.16

P. Time GTSP 5-discretization GTSP 10-discretization GTSP 20-discretization

G. Time G. Len P. Len G. Time G. Len P. Len G. Time G. Len P. Len

H
ig

h
D

en
si

ty

N10W5D0.0 0.3 1.5 28.0 25.1 2.4 24.6 22.9 6.5 21.4 21.2
N20W5D0.0 0.6 7.5 44.6 41.8 16.5 38.6 36.4 46.2 35.1 34.8
N30W5D0.0 2.3 24.5 58.2 54.5 39.2 52.5 50.9 121.4 46.6 46.0
N30W20D0.0 0.7 3.6 103.0 97.5 16.0 97.0 93.2 67.3 95.4 92.3
N40W5D0.0 2.1 39.0 71.8 70.2 77.9 65.5 63.2 222.4 61.4 61.1
N50W20D0.0 0.8 23.2 153.5 145.2 63.3 141.7 137.9 318.0 137.7 136.9

TABLE II: Average tour length and time of the GTSP approach compared to the post-processing method on random instances with low-
density of points (top table) and high-density (bottom table). The instance names consist of the environment size W × W , the number
of points N , and the minimum pair-wise distance D.

for the post-processing of the GTSP tour. The total time
of the GTSP approach and the post-processing is denoted
by Time. Table II (top) shows the performance of the post-
processing technique on the GTSP tours with a discretization
level of 1 and 10 in low-density Dubins TSP instances.
The time and the tour length of the GTSP solution with
discretization level 20 is the reference, denoted by ref, for
evaluating the performance of the post-processing method.
The table (top) includes the ratios of the total time and
post-processed tour length to the reference. In the class of
instances N30W20D2.0, the deviation of the post-processed
tour length from the reference is 3.7% and the total time
of solving the GTSP with 1-discretization followed by the
post-processing technique is just 1% of the solver-time of
the GTSP approach with discretization level 20.

In an environment with high density of points, the dis-
cretization level has larger impact on the ordering of the
points in a GTSP solution. Table II (bottom) shows the
results of the GTSP tour with post-processing on high-
density instances. For example, the results on the class of
instances N50W20D0.0 show that the tour length of the post-
processed GTSP tour with discretization level 5 is 5.3%
longer than the GTSP tour with discretization level 20.
However, the runtime is improved by a factor of 13.26.

REFERENCES

[1] J. T. Isaacs, D. J. Klein, and J. P. Hespanha, “Algorithms for the
traveling salesman problem with neighborhoods involving a Dubins
vehicle,” in American Control Conference, 2011, pp. 1704–1709.

[2] Z. Tang and U. Ozguner, “Motion planning for multitarget surveillance
with mobile sensor agents,” IEEE Transactions on Robotics, vol. 21,
no. 5, pp. 898–908, 2005.

[3] P. Isaiah and T. Shima, “Motion planning algorithms for the Dubins
travelling salesperson problem,” Automatica, vol. 53, pp. 247–255,
2015.

[4] B. Hérissé and R. Pepy, “Shortest paths for the Dubins’ vehicle in
heterogeneous environments,” in IEEE Conference on Decision and
Control, 2013, pp. 4504–4509.

[5] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of mathematics, pp. 497–516, 1957.

[6] X. Ma and D. Castañón, “Receding horizon planning for Dubins
traveling salesman problems,” in IEEE Conference on Decision and
Control, 2006, pp. 5453–5458.

[7] H. J. Sussmann and G. Tang, “Shortest paths for the reeds-shepp car:
a worked out example of the use of geometric techniques in nonlinear
optimal control,” Rutgers Center for Systems and Control Technical
Report, vol. 10, pp. 1–71, 1991.

[8] X. Goaoc, H.-S. Kim, and S. Lazard, “Bounded-curvature shortest
paths through a sequence of points using convex optimization,” SIAM
Journal on Computing, vol. 42, no. 2, pp. 662–684, 2013.

[9] P. Vana and J. Faigl, “On the Dubins traveling salesman problem with
neighborhoods,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2015, pp. 4029–4034.

[10] K. Savla, E. Frazzoli, and F. Bullo, “Traveling salesperson problems
for the Dubins vehicle,” IEEE Transactions on Automatic Control,
vol. 53, no. 6, pp. 1378–1391, 2008.

[11] S. Rathinam, R. Sengupta, and S. Darbha, “A resource allocation
algorithm for multivehicle systems with nonholonomic constraints,”
IEEE Transactions on Automation Science and Engineering, vol. 4,
no. 1, pp. 98–104, 2007.

[12] D. G. Macharet and M. F. Campos, “An orientation assignment
heuristic to the Dubins traveling salesman problem,” in Advances in
Artificial Intelligence–IBERAMIA 2014. Springer, 2014, pp. 457–468.

[13] D. G. Macharet, A. Alves Neto, V. F. da Camara Neto, and M. F.
Campos, “Efficient target visiting path planning for multiple vehicles
with bounded curvature,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2013, pp. 3830–3836.

[14] J. Le Ny, E. Feron, and E. Frazzoli, “On the Dubins traveling salesman
problem,” IEEE Transactions on Automatic Control, vol. 57, no. 1, pp.
265–270, 2012.

[15] M. S. Cons, T. Shima, and C. Domshlak, “Integrating task and motion
planning for unmanned aerial vehicles,” Unmanned Systems, vol. 2,
no. 01, pp. 19–38, 2014.

[16] S. Manyam and S. Rathinam, “On tightly bounding the Dubins trav-
eling salesmans optimum,” arXiv preprint arXiv:1506.08752, 2015.

[17] D. W. Henderson and D. Taimina, Experiencing geometry. Prentice
Hall, 2000.

[18] R. Bellman, “Dynamic programming and lagrange multipliers,” Pro-
ceedings of the National Academy of Sciences, vol. 42, no. 10, pp.
767–769, 1956.

[19] A. Sadeghi and S. L. Smith, “On efficient computation of shortest
Dubins paths through three consecutive points,” Sep. 2016, arXiv
preprint arXiv:1609.06662.

[20] A. M. Shkel and V. Lumelsky, “Classification of the Dubins set,”
Robotics and Autonomous Systems, vol. 34, no. 4, pp. 179–202, 2001.

[21] K. Helsgaun, “Solving the equality generalized traveling salesman
problem using the Lin–Kernighan–Helsgaun algorithm,” Mathematical
Programming Computation, vol. 7, no. 3, pp. 269–287, 2015.

