
Clustering in Discrete Path Planning for Approximating Minimum Length Paths

Frank Imeson Stephen L. Smith

Abstract— In this paper we consider discrete robot path
planning problems on metric graphs. We propose a clustering
method, Γ-Clustering for the planning graph that significantly
reduces the number of feasible solutions, yet retains a solution
within a constant factor of the optimal. By increasing the input
parameter Γ, the constant factor can be decreased, but with less
reduction in the search space. We provide a simple polynomial-
time algorithm for finding optimal Γ-Clusters, and show that
for a given Γ, this optimal is unique. We demonstrate the
effectiveness of the clustering method on traveling salesman
instances, showing that for many instances we obtain significant
reductions in computation time with little to no reduction in
solution quality.

I. INTRODUCTION

Discrete path planning is at the root of many robotic
applications, from surveillance and monitoring for security,
to pickup and delivery problems in automated warehouses. In
such problems the environment is described as a graph, and
the goal is to find a path in the graph that completes the task
and minimizes the cost function. For example, in monitoring,
a common problem is to compute a tour of the graph that
visits all vertices and has minimum length [1]. These discrete
planning problems are typically NP-hard [1], [2], and thus
there is a fundamental trade off between solution quality
and computation time. In this paper we propose a graph
clustering method, called Γ-Clustering, that can be used to
reduce the space of feasible solutions considered during the
optimization. The parameter Γ serves to trade-off the feasible
solution space reduction (and typically computation time)
with the quality of the resulting solution.

The idea behind Γ-Clustering is to group vertices together
that are in close proximity to each other but are also far
from all other vertices. Figure 1 shows an example of Γ-
Clustering in an office environment. Given this clustering,
we solve the path planning problem by restricting the path
to visit vertices within each cluster consecutively (i.e., no
path can visit any cluster more than once). This restriction
reduces the number of possible solutions exponentially and
thus reduces the amount of computational time needed to
find good solutions.

Unlike other clustering methods, Γ-Clustering does not
accept as input a desired number of clusters. This means that
some instances will have no clusters, while others will have
many. In this way, Γ-Clusters only explore natural structures
within the problem instances instead of imposing structures
onto the instance. Additionally, when the graph is metric,

This research is partially supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

The authors are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo ON, N2L 3G1 Canada
(fcimeson@uwaterloo.ca; stephen.smith@uwaterloo.ca)

Fig. 1: The results of Γ-Clustering used on an office environment. The red
dots represent locations of interest and the red rectangles show clusters of
size two or greater.

we establish that for a given Γ-Clustering, the optimal path
of the clustered planning problem is within a constant factor
(dependent on Γ) of the true optimal solution.

Related work: There are a number of clustering methods
for Euclidean [3], [4] and discrete [5], [6], [7] environments.
Typically the objective of these algorithms is to find a set
of equal (or roughly equal) non-overlapping clusters that
are grouped by similarity (close in proximity, little to no
outgoing edges, etc . . .), where each location in the graph
is assigned to one cluster. For these methods, the desired
number of clusters is given as an input parameter. In contrast,
in Γ-Clustering, the idea is to simply find a specific form
of clustering within the environment, if it exists. These Γ-
Clusters may be nested within one another.

There are other clustering methods that also look for
specific structures within the graph such as community struc-
tures [8], which is based on a metric that captures the density
of links within communities to that between communities.
In contrast, our clustering method is specifically designed
to find structures that yield desirable properties for path
planning on road maps.

The use of clustering to save on processing/time is done in
a variety of different fields such as data mining [9], parallel
computer processing [10], image processing [11], and con-
trol [12] for path planning. In environments that have regions
with a high degree of connectivity, such as electronic circuits,
clustering is commonly used to identify these regions and
then plan (nearly) independently in each cluster [13]. For
path planning problems with repetitive tasks, one can cluster
a set of popular robot action sequences into macros [14],
[15], allowing the solver to quickly discover solutions that
benefit from these action sequences. In applications such as
sensor sweeping for coverage problems [16] or in the routing

of multiple agents [17], clustering has been used to partition
the environment into regions that can again be treated in a
nearly independent manner, reducing computation time.

There is some prior work on partitioning in discrete
path planning. Multilevel refinement [18] is the process of
recursively coarsening the graph by aggregating the vertices
together to create smaller and smaller instances, for which a
plan can be found more easily. The plan is then recursively
refined to obtain a solution to the original problem. The idea
in coarsening a graph is that the new coarse edges should
approximate the transition costs in the original graph. This
differs from Γ-Clustering, which preserves the edges within
the graph. There are a number of clustering approaches that
aim to reduced the complexity of Euclidean and or planar
TSP problems [19], [20]. Γ-Clustering is more general, in that
it works on any graph, while the solution quality guarantees
only hold for metric graphs.

Contributions: The main contribution of this paper is the
introduction of Γ-Clustering, a clustering method for a class
of discrete path planning problems. We establish that the
solution to the corresponding clustered problem provides a
min

(
2, 1 + 3

2Γ

)
-factor approximation to the optimal solu-

tion. We give some insight into the reduction of the search
space as a function of the amount of clustering, and we
provide an efficient algorithm for computing the optimal Γ-
Clustering. We then use an integer programming formulation
of the TSP problem to demonstrate that for many problem
instances the clustering method reduces the computation time
while still finding near-optimal solutions.

Due to space constraints, we have omitted all proofs from
this document. The omitted content can be found in our
technical note [21].

II. PRELIMINARIES IN DISCRETE PATH PLANNING

In this section we define the class of problems considered
in this paper, review some semantics of clusters, review the
traveling salesman problem (TSP) [22] and define its clustered
variant, the general clustered traveling salesman problem
(CTSP

∗).

A. Discrete Path Planning

Given a graph G = 〈V,E,w〉, we define a path as a non-
repeating sequence of vertices in V , connected by edges in
E. A cycle is a path in which the first and last vertex are
equal, and for simplicity we will also refer to cycles as paths.
Let P represent the set of all possible paths in G. Then,
abstractly, a path planning constraint defines a subset P1 ⊆ P
of feasible paths. Given a set of constraints P1,P2, . . . ,Pm,
the set of all feasible paths is P1∩P2∩· · ·∩Pm. In this paper
we restrict our attention to the following class of constraints
and planning problems.

Definition II.1 (Order-Free Constraints). A constraint P1 is
order-free if, given any p ∈ P1, then all paths obtained by
permuting the vertices of p are also in P1.

Problem II.2 (Discrete Path Planning Problem). Given a
complete weighted graph G = 〈V,E,w〉 and a set of order-

free constraints {P1,P2, . . . ,Pm}, find the minimum length
feasible path.

Many discrete path planning problems for single and
multiple robots fall into this class, so long as they do not
restrict the ordering of vertex visits (i.e., no constraints of
the form “visit A before B”). Some examples include single
and multi-robot traveling salesman problems, point-to-point
planning, and patrolling. As a specific example the GTSP is
a problem where a robot is required to visit exactly one
location in each non-overlapping set of locations [23]. This
is naturally expressed in the above framework by having
one constraint for each set: for each cluster Vi we have a
constraint stating that exactly one vertex in Vi must be visited
in the path.

A metric discrete path planning problem is one where the
edge weights in the graph G satisfy the triangle inequality:
for va, vb, vc ∈ V , we have w(va, vc) ≤ w(va, vb) +
w(vb, vc).

To describe the number of feasible paths for a given
planning problem, we use the phrase search space size. For
example, a problem where we must choose an ordering of
n locations has a search space size of n!, since there are
n! combinations that a path may take. Note that as more
constraints are added to the problem, the search space size
can only be reduced, since a feasible path must lie in the
intersection of all constraints.

B. Clusters

A cluster is a subset of the graph’s vertices, Vi ⊂ V . Given
the clusters V1 and V2, we say V1 is nested in V2 if V1 ⊆ V2.
The clusters V1 and V2 are overlapping if V1∩V2 6= ∅, V1 *
V2, and V2 * V1. A set of clusters (or clustering) is denoted
by C = {V1, . . . , Vm}. A clustering C = {V1, V2, . . . , Vm}
is a nested if there exists some Vi ⊆ Vj for Vi, Vj ∈ C.

In this paper we seek to add clustering constraints to
a discrete planning problem that reduce its search space
size, but also retains low-cost feasible paths. The clustering
constraints we consider are of the following form.

Definition II.3 (Consecutive Visit Constraint). Given a graph
G = 〈V,E,w〉 and a cluster Vi ⊆ V , a feasible path p
must visit the vertices within the cluster Vi consecutively.
Formally, the vertices visited by p, V [p] are visited consecu-
tively if there exists a path segment p′ of p that visits every
vertex in Vi ∩ V [p] and is of length |Vi ∩ V [p]|.

Note that in the above definition, it is not necessary for
all of the vertices in Vi to be visited. It is just necessary to
visit the vertices consecutively in Vi that are visited.

C. Traveling Salesman Problems

The traveling salesman problem (TSP) is defined as fol-
lows: given a set of cities and distances between each pair
of cities, find the shortest path that the salesman can take to
visit each city exactly once and return to the first city (i.e., the
shortest tour). A tour in a graph that visits each vertex exactly
once is called a Hamiltonian cycle (regardless of path cost).
The general clustered version of TSP is the extension that

requires the solution to visit the vertices within the clusters
consecutively. The definition of these problems is as follows:

Problem II.4 (Traveling Salesman Problem (TSP)). Given a
complete graph G = 〈V,E,w〉 with edge weights w : E →
R≥0, find a Hamiltonian cycle of G with minimum cost.

Problem II.5 (General-CTSP). Given a complete and
weighted graph G = 〈V,E,w〉 along with a clustering
C = {V1, . . . , Vm}, find a Hamiltonian cycle of G with
minimum cost such that the vertices within each cluster Vi
are visited consecutively.

The traditional version of the CTSP restricts the clusters
to be non-overlapping (and non-nested). For this paper we
use the syntax CTSP

∗ to emphasize when we are solving
a General-CTSP problem CTSP to refer to the traditional
problem.

III. Γ-CLUSTERING

In this section, we define Γ-Clustering and show
that the Γ-Clustered path planning problem provides a
min

(
2, 1 + 3

2Γ

)
approximation of the original path plan-

ning problem. We then describe an algorithm for finding
the optimal Γ-Clustering, and characterize the search space
reductions.

A. Definition of Γ-Clustering

Below we define the notion of Γ-Clusters, Γ-Clusterings,
and the clustered discrete path planning problem. Then we
pose the clustering problem as one of maximizing the search
space reduction.

Definition III.1 (Γ-Metric of a cluster). Given a graph G =
〈V,E,w〉 and a cluster Vi ⊂ V , we define the following
quantities for Vi relative to G:

αi ≡ min
va∈Vi,vb∈V \Vi

(w(va, vb), w(vb, va))

βi ≡ max
va,vb∈Vi,va 6=vb

w(va, vb)

Γi ≡
αi

βi
,

where αi represents the minimum weight edge entering or
exiting the cluster Vi, and βi represents the maximum weight
edge within Vi. The ratio Γi is a measure of how separated
the vertices in Vi are from the remaining vertices in G.

Definition III.2 (Γ-Clustering). Given an input parameter
Γ ≥ 0 and a graph G = 〈V,E,w〉, a clustering C =
{V1, V2, . . . , Vm} is said to be a Γ-Clustering if and only if V
is covered by V1∪V2∪· · ·∪Vm; each Vi ∈ C has a separation
Γi ≥ Γ; and the clusters are either nested (Vi ⊆ Vj or
Vj ⊆ Vi for all Vi, Vj ∈ C) or non-overlapping (Vi∩Vj = ∅).

The search space reduction for path planning problems
comes from restricting paths to visit the clusters consecu-
tively and our goal is to maximize that reduction. Thus we
are interested in the following two problems.

Definition III.3 (The Clustered Path Planning Problem).
Given a discrete path planning problem P and a clustering
C, the clustered version of the problem P ′ has the constraint

that the path must visit the vertices within each cluster
consecutively, in addition to all the constraints of P .

Definition III.4 (The Clustering Problem). Given a graph
G = 〈V,E,w〉 and a parameter Γ > 0, find a Γ-Clustering
C∗ such that the search space reduction is maximized.

Remark III.5 (Overlap). Note that in Definition III.2 over-
lapping clusters are not permitted. This is necessary for the
problem in Definition III.3 to be well defined. In addition,
we will see in the following section that clusters that have a
separation of Γi > 1 cannot overlap.

B. Solution Quality Bounds

In this section, we show that when the graph G is metric
and Γ > 1, then the solution to the Γ-clustered path planning
problem provides a min

(
2,
(
1 + 3

2Γ

))
-factor approximation

to the optimal.

Theorem III.6 (Approximation Factor). Given a metric
discrete path planning problem P with optimal solution p∗

and cost c∗, a Γ-Clustering C = {V1, V2, . . . , Vm} where
Γ > 1, then the optimal solution (p′)∗ to the clustered
problem P ′ over the same set of vertices is a solution to
P with cost (c′)∗ ≤ min

(
2, 1 + 3

2Γ

)
c∗.

The proof this Theorem III.6 and all subsequent proofs
are found in [21].

C. Finding Γ-Clusters

Before we describe our method for finding optimal Γ-
Clustering (s), we describe a few properties of Γ-Clusterings.

1) Overlap: A special property of Γ-Clustering is that
when Γ > 1, there are no overlapping clusters.

Lemma III.7. Given a graph G and clusters Vi and Vj with
Γi > 1 and Γj > 1, then Vi and Vj do not overlap.

2) Uniqueness: The non-overlapping property for Γ-
Clusterings with Γ > 1 implies that there exists a unique
maximal clustering set C∗ (more clusters equals more re-
ductions in the search space size).

Proposition III.8. Given graph G and a parameter Γ > 1,
the problem of finding a Γ-Clustering C∗ that maximizes the
search space reduction has a unique solution C∗. Further-
more C∗ contains all clusters Vi with separation Γi ≥ Γ.

3) An MST Approach For Finding Γ-Clusters: Given an in-
put Γ > 1, Algorithm 1 computes the optimal Γ-Clusterings,
i.e., the Γ-Clustering with maximum search space reduction.
Informally the algorithm deletes edges in the graph from
largest to smallest (line 6-7) to look for Γ-Clusters. It uses
a minimum spanning tree (MST) to keep track of when
the graph becomes disconnected, and when it does the
disconnected components are tested to see if they qualify
as Γ-Clusters (line 9-11). Regardless, any non-trivial sized
disconnected component (Γ-Cluster or not) is added back to
the queue (line 13-14), so that it can be broken and tested
again to find of all nested Γ-Clusters.

Theorem III.9. Given G and a Γ > 1, Algorithm 1 finds
the optimal Γ-Clustering C∗ in O(|V |3) time.

Algorithm 1: Γ-CLUSTERING(G,Γ)

1 assert(Γ > 1)
2 C ← {}
3 M ← {MST(G)}
4 while |M | > 0 do
5 m←M.pop()
6 α← largest edge cost in m
7 M ′ ← disconnected trees after removing edge(s) of cost

α from m
8 for m′ ∈M ′ do
9 G′ ← graph induced by V [m′]

10 β ← max edge cost of G′

11 if G′ is a clique and Γ′ ≡ α/β ≥ Γ then
12 C ← C ∪ {V [m′]}
13 if |m′| > 1 then
14 M ←M ∪m′

15 return C

D. Search Space Reduction

The last remaining question is to determine how much
the clustering approach reduces the search space. In general,
this is difficult to answer since it depends on the particular
constraints of the path planning problem. However, to get
an understanding of the search space reduction, consider the
example of TSP with a non-nested clustering (nesting would
result in further search space reductions). Let r be the ratio
of the non-clustered search space size N0, to the clustered
search space size N1, for a graph with vertices V and a
clustering C = {V1, V2, . . . , Vm}. Then, the ratio (derived
from counting the number of solutions) is as follows:

r ≡ N0

N1
=

|V |!
m!
∏m

i |Vi|!
To further simplify the ratio consider the case where all
clusters are equally sized (for all Vi, Vj ∈ C, |Vi| = |Vj |):
Proposition III.10 (Search Space Reduction). Given a graph
G and a clustering C = {V1, V2, . . . , Vm} such that |Vi| =
|Vj | for all i, j ∈ [1,m] then the ratio r of the search space
size for the original TSP problem to the cluster TSP problem
is 1

r = Ω
(
(m!)x−1

)
,

where x = |V |/m.

To get an idea of the magnitude of r, consider an instance
of size |V | = 100 divided into four equal clusters. The
clustered problem has a feasible solution space of size N1 ≈
1.49×10−56N0, where N0 is the feasible solution space size
of the non-clustered problem. However, N1 is still extremely
large at about 1.39× 10102.

IV. Γ-CLUSTERING EXPERIMENTS

In this section we present experimental results that demon-
strate the effectiveness of Γ-Clustering for solving discrete
path planning problems. We focus on metric TSP instances

1The big-Ω notation states that for large enough |V | the ratio r is at least
k(̇m!)x−1 for some constant k.

drawn from the established TSP library TSPLIB [24], which
have a variety of TSP problem types (the first portion of the
instance name indicates the type and the number indicates
the size). The tests were conducted with Γ = 1.000001, for
which Theorem III.6 implies that the solution to the clustered
problem gives a min

(
2, 1 + 3

2Γ

)
-factor approximation to the

TSP instance. However, we will see that the observed gap in
performance is considerably smaller.

To test the effectiveness of the clustering method, we
perform Γ-Clustering on each TSP instance and recorded both
the runtime and the number of clusters found. This gives us
an idea of whether or not instances from TSPLIB have a
structure that can be exploited by Γ-Clustering. Then, we
use standard integer programming formulations for both the
original TSP instance and the general clustered version of the
instance (CTSP

∗). We solve each instance three times using
the solver Gurobi [25] and recorded the average solver time
and solution quality. All instances were given a time budget
of 900 seconds, after which they were terminated and the best
solution found in that run was outputted. The TSP instances
reported in this paper are the 37 instances that were solved to
within 50% of optimal and have Γ-Clusters. The remaining
instances are not reported as they would have required more
than 900 seconds to provide a meaningful comparison.

Additionally we demonstrate Γ-Clustering on an office
environment to gain insight into the structure of Γ-Clusters.

A. Integer Programming Formulation

The clustering algorithm was implemented in Python and
run on an Intel Core i7-6700, 3.40GHz with 16GB of RAM.
The integer programming (IP) expression of the TSP problem
and clustered problem is solved on the same computer with
Gurobi, also accessed through python. The results of both
of these approaches is found in Table I and summarized in
Figure 3.

The following is the IP expression used for the clustered
and non-clustered path planning problems, where each vari-
able ea,b ∈ {0, 1}:

minimize
|V |∑
a=1

|V |∑
b=1

ea,b w(va, vb) (1)

subject to
|V |∑
b=1

ea,b = 1, for each a ∈ {1, 2, . . . , |V |} (2)

|V |∑
a=1

ea,b = 1, for each b ∈ {1, 2, . . . , |V |} (3)∑
∀va∈Vi,vb 6∈Vi

ea,b = 1, for each i ∈ {1, 2, . . . ,m} (4)∑
∀va 6∈Vi,vb∈Vi

ea,b = 1, for each i ∈ {1, 2, . . . ,m} (5)∑
ea,b∈E′

ea,b ≤ |E′| − 1, for each subtour E′ (6)

The formulation was adapted from a TSP IP formulation
found in [26], where the Boolean variables ea,b represent the
inclusion/exclusion of the edge 〈va, vb〉 from the solution.

Constraints 2 and 3 restricts the incoming and outgo-
ing degree of each vertex to be exactly one (the vertex
is visited exactly once). Similarly constraints 4 and 5
restrict the incoming and outgoing degree of each cluster
to be exactly one (these constraints are only present in
the clustered version of the problem). Constraint 6 is the
subtour elimination constraint, which is lazily added to the
formulation as conflicts occur due to the exponential number
of these constraints. For each instance, we seed the solver
with a random initial feasible solution.

B. Results

Figure 2 shows the ratio of time spent finding clusters
with respect to total solver time. In all instances this time
is less than 6% and most is less than 1%. Additionally as
the total solver time grows, the ratio gets smaller (Time02 is
for instances that use the full 900 seconds). This approach
is able to find Γ-Clusters on 63 out of 70 TSP instances.
In total it found 3700 non-trivial Γ-Clusters (i.e., clusters
with |Vi| ≥ 2), which is promising since the TSPLIB library
contains a variety of different TSP applications.

Figure 3 and Table I, shows that for instances that do
not time out the solution path costs found by the clustering
approach are close to optimal (Cost01 is close to 1 in the
figure and the instances from burma14 to pr107 are almost all
within 1% error as shown in the table). Furthermore when the
solver starts to time out (exceeds its 900 second time budget)
the solution quality of the Γ-Clustering approach starts to
surpass the solution quality of the non-clustered approach
(as shown by Cost02 in the figure). We attribute this trend to
the fact that the clustered approach needs less time to search
its feasible solution space and thus is able to find better
quality solutions faster than its counterpart. In instances
gr202, kroB200, pr107, tsp225, and gr229 the clustering
approach does very well compared to the non-clustering
approach, enabling the solver to find solutions within 1%
of optimal for the first three instances and solutions within
6% of optimal for the latter two instances, while the non-
clustered approach exceeds 8% of optimal in the first three
instances and 28% of optimal for the latter two instances.

On average the Γ-Clustering approach is more efficient
than the non-clustered approach, which is highlighted in
Figure 3 and Table I. For the results that do not time out
(Time01 in the figure) we often save more than 50% of
the computational time, while maintaining a near optimal
solution quality (Cost01 in the figure). For instances that
require most or all of the 900 seconds (harder instances)
the time savings can be quite large. This is particularly clear
from the table when we compare the easy instances burma14
up to st70 that have an average time savings of around 60%
to the harder instances kroA100, gr96, bier127, and ch130,
which all have a time savings of more than 95%. For the
instances that both time out (Time02 in the figure), the time
savings is not present since both solvers use the full 900

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

Time01 Time02

C
lu

st
er

in
g

T
im

e
/ T

ot
al

 T
im

e

Fig. 2: Box plot of the clustering time ratio with respect to the Γ-Clustering
approach. The data is categorized by instances that did not time out (Time01)
and instances that did time out (Time02).

seconds.
From these results we can see that when the Γ-Clustering

approach does not time out, we usually save time and when
the approach does time out we often find better quality
solutions as compared to the non-clustered approach.
Remark IV.1 (Discussion on using Γ-Clustering for TSP). It is
worth emphasizing that we are not necessarily recommend-
ing solving TSP instances in this manner. We are simply using
TSP as an illustrative example to show how Γ-Clustering can
be used to reduce computation time in a given solver. Many
discrete path planning problems are solved with IP solvers
and as such we hope our results help provide some insight
as to how Γ-Clustering would work on other path planning
problems. In general unless the solver approach (IP or not)
takes advantage of the clustering, there is no guarantee that
a computation saving will be achieved.

C. Clustering Real-World Environments

As shown in Figure 1 we have also performed Γ-
Clustering on real-world environments. The figure shows the
floor-plan for a portion of one floor of the Engineering 5
building at the University of Waterloo. Red dots denote the
locations of desks within the environment. We encoded the
environment with a graph, where there is a vertex for each
red dot and edge weights between vertices are given by the
shortest axis-aligned obstacle free path between the locations
(obstacle-free Manhattan distances). The figure shows the
results of clustering for Γ = 1.000001. We see that locations
that are close together are formed into clusters unless there
are other vertices in close proximity.

A path planning problem on this environment could be
robotic mail delivery, where a subset of locations must be
visited each day. The clusters could then be visited together
(or visited using the same robot).

V. CONCLUSION

In this paper we presented a new clustering approach
called Γ-Clustering. We have shown how it can be used to
approximate the discrete path planning problems to within
a constant factor of min

(
2, 1 + 3

2Γ

)
, more efficiently than

solving the original problem. We verify these findings with
a set of experiments that show on average a time savings and
a solution quality that is closer to the optimal solution than it

 0

 0.5

 1

 1.5

 2

 2.5

Cost01 Time01 Cost02 Time02

R
at

io

Fig. 3: Box plot of the solver cost and time ratios for the Γ-Clustering
approach with respect to the TSP approach. The data is categorized by
instances that did not time out (Cost01 and Time01) and instances that did
time out (Cost02 and Time02).

is to the bound. For future directions we will be investigating
other path planning applications, which includes online path
planning with dynamic environments.

REFERENCES

[1] S. L. Smith, J. Tůmová, C. Belta, and D. Rus, “Optimal path planning
for surveillance with temporal-logic constraints,” The International
Journal of Robotics Research, vol. 30, no. 14, pp. 1695–1708, 2011.

[2] L. Gouveia and M. Ruthmair, “Load-dependent and precedence-based
models for pickup and delivery problems,” Computers & Operations
Research, vol. 63, pp. 56–71, 2015.

[3] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-
Hall, Inc., 1988.

[4] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical
clustering using dynamic modeling,” Computer, vol. 32, no. 8, pp.
68–75, 1999.

[5] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell system technical journal, vol. 49, no. 2, pp.
291–307, 1970.

[6] S. Guha, R. Rastogi, and K. Shim, “Rock: A robust clustering
algorithm for categorical attributes,” Information systems, vol. 25,
no. 5, pp. 345–366, 2000.

[7] D. Katselis and C. L. Beck, “Clustering fully and partially observable
graphs via nonconvex optimization,” in American Control Conference,
2016, pp. 4930–4935.

[8] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[9] P. Berkhin, “A survey of clustering data mining techniques,” in
Grouping multidimensional data. Springer, 2006, pp. 25–71.

[10] H. Meyerhenke, B. Monien, and T. Sauerwald, “A new diffusion-
based multilevel algorithm for computing graph partitions,” Journal
of Parallel and Distributed Computing, vol. 69, no. 9, pp. 750–761,
2009.

[11] S. Gao, I. W.-H. Tsang, and L.-T. Chia, “Kernel sparse representation
for image classification and face recognition,” in European Conference
on Computer Vision, 2010, pp. 1–14.

[12] X. Jin, S. Gupta, J. M. Luff, and A. Ray, “Multi-resolution navigation
of mobile robots with complete coverage of unknown and complex
environments,” in American Control Conference, 2012, pp. 4867–
4872.

[13] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on Scientific Comput-
ing, vol. 20, no. 1, pp. 359–392, 1998.

[14] C. Bäckström, A. Jonsson, and P. Jonsson, “Automaton plans,” Journal
of Artificial Intelligence Research, vol. 51, no. 1, pp. 255–291, 2014.

[15] M. Levihn, L. P. Kaelbling, T. Lozano-Perez, and M. Stilman, “Fore-
sight and reconsideration in hierarchical planning and execution,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2013, pp. 224–231.

[16] A. Das, M. Diu, N. Mathew, C. Scharfenberger, J. Servos, A. Wong,
J. S. Zelek, D. A. Clausi, and S. L. Waslander, “Mapping, planning,
and sample detection strategies for autonomous exploration,” Journal
of Field Robotics, vol. 31, no. 1, pp. 75–106, 2014.

TSP CTSP∗

|C| % Error Time (t) % Error Time (t)

burma14 5 0.00 <1 0.39 <1
ulysses16 6 0.00 <1 0.73 <1
berlin52 17 0.00 <1 0.06 <1
swiss42 16 0.00 <1 0.94 <1
eil51 11 0.00 1 0.00 <1
eil76 13 0.00 3 0.00 1
rat99 28 0.00 6 0.83 13
eil101 16 0.00 8 0.00 4
ulysses22 10 0.00 8 0.00 <1
pr76 27 0.00 40 1.40 11
st70 23 0.00 45 0.44 13
lin105 42 0.00 225 0.00 8
kroE100 43 0.00 414 0.39 20
kroC100 46 0.00 445 0.00 12
kroA100 44 0.00 602 1.11 23
gr96 32 0.00 845 0.05 38
bier127 37 0.00 900 0.23 24
gr137 44 0.00 900 0.00 154
kroD100 42 0.00 900 0.57 471
kroB100 42 0.01 900 0.96 900
ch130 59 0.20 900 0.90 29
ch150 53 0.22 900 0.31 900
kroB150 65 0.35 900 0.35 395
kroA150 58 1.37 900 0.15 492
rat195 57 1.75 900 0.89 900
kroA200 82 5.59 900 1.38 900
pr124 18 5.78 900 4.24 900
gr202 74 8.56 900 0.64 703
pr136 48 9.78 900 4.88 900
kroB200 80 10.16 900 0.67 900
pr107 6 13.01 900 0.40 900
a280 11 20.11 900 20.46 900
pr144 40 24.40 900 20.03 900
tsp225 66 28.50 900 5.76 900
gr229 73 28.63 900 2.24 900
pr152 44 40.64 900 41.15 900
gil262 98 44.81 900 21.00 900

TABLE I: Experimental results for TSPLIB instances: |C| reports the
number of Γ-Clusters, % error reports the average error from optimal and
time column reports the average solver time. The instances where the CTSP∗

approach outperforms the TSP approach are highlighted in bold. Results are
sorted from least to most difficult for the non-clustered approach.

[17] M. R. K. Ryan, “Exploiting subgraph structure in multi-robot path
planning,” Journal of Artificial Intelligence Research, pp. 497–542,
2008.

[18] C. Chevalier and I. Safro, “Comparison of coarsening schemes for
multilevel graph partitioning,” in International Conference on Learn-
ing and Intelligent Optimization, 2009, pp. 191–205.

[19] R. M. Karp, “Probabilistic analysis of partitioning algorithms for the
traveling-salesman problem in the plane,” Mathematics of operations
research, vol. 2, no. 3, pp. 209–224, 1977.

[20] Y. Haxhimusa, W. G. Kropatsch, Z. Pizlo, and A. Ion, “Approximative
graph pyramid solution of the E-TSP,” Image and Vision Computing,
vol. 27, no. 7, pp. 887–896, 2009.

[21] F. Imeson and S. L. Smith, “Clustering in Discrete Path Planning for
Approximating Minimum Length Paths,” ArXiv e-prints, Feb. 2017.
[Online]. Available: https://arxiv.org/abs/1702.08410

[22] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The
Traveling Salesman Problem: A Computational Study. Princeton
University Press, 2006.

[23] C. E. Noon and J. C. Bean, “An efficient transformation of the
generalized traveling salesman problem,” Information Systems and
Operational Research (INFOR), vol. 31, no. 1, pp. 39–44, 1993.

[24] G. Reinelt, “TSPLIB–a traveling salesman problem library,” ORSA
Journal on computing, vol. 3, no. 4, pp. 376–384, 1991.

[25] G. Optimization et al., “Gurobi optimizer reference manual,” 2012.
[Online]. Available: http://www.gurobi.com

[26] L. Gouveia and J. M. Pires, “The asymmetric travelling salesman
problem and a reformulation of the miller–tucker–zemlin constraints,”
European Journal of Operational Research, vol. 112, no. 1, pp. 134–
146, 1999.

