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ABSTRACT
The use of collaborative robots is becoming more widespread across
industries. This makes it essential to study robot planning in order
to work effectively and smoothly with human teammates while
maintaining a positive human perception of the robots. This paper
evaluates the influence of a robot’s strategy and decision making
on the participants’ perception of the robot. We designed an on-
line experiment where a robot and participants need to collaborate
and organize a set of objects. We studied three different strategies
where the robot either prioritizes the human’s objective, its own
objective, or uses a balanced strategy. We then analyze and report
the results based on participants’ answers to questionnaires before
and after the experiment, their comments, and their actions during
the experiment. The results show that strategies prioritizing the
human’s objective, or balancing between the robot’s and the hu-
man’s objectives can effectively improve participants’ perception
of the robot and create a collaborative environment.
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1 INTRODUCTION
A quick search of the term “Industrial Robots” returns a plethora
of results showing large, fast, and powerful traditional industrial
robotic arms. These traditional robotic arms, one of the most suc-
cessful commercial robots, can work quickly, efficiently, and safely
twenty-four hours a day for mass production. However, the In-
dustry 4.0 era directs manufacturers to also employ robots that
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are able to work closely and collaborate safely with humans, an
ability that traditional industrial robots lack [1, 9]. Such human and
robot collaboration can compensate for a human’s limitations (e.g.,
repeatability, precision, speed, cognitive load, physical strength,
and stamina) while using their superior abilities (e.g., adapting and
coping with the uncertainties of customers’ changing preferences,
or changing environments and situations that require human-level
intelligence and decision-making).

In this paper, we investigate how a cobot’s strategy influences
the human perception of the robot and its collaboration. In the
experimental scenario, having a single-human collaborating with a
single-robot, the following three different strategies are adopted:
the robot either prioritizes objectives of the human teammate, pri-
oritizes own objectives, or uses a balanced strategy (i.e., considers
both human and robot objectives). Then, based on the data collected
from the questionnaires and participants’ actions, we analyze and
discuss influences of each strategy on their perception of the col-
laboration and the robot.

1.1 Related work
Cobot programming: In a scenario where a robot works in iso-
lation or without any direct interaction with humans, the control
objectives are based on the robot’s performance metrics — time,
energy, traversed distance, covered area, etc. However, in HRC,
humans may take a collaborative or even a leading role, and the
control objectives thus need to be modified to meet the humans’
comfort needs, both physical and mental. Many studies have fo-
cused on the human teammate’s physical comfort, such as their
ergonomic posture [5] and fatigue levels [20]. Trust [15], intention
[14, 22], knowledge of the task [2, 8], and acceptance of cobots
are some key topics of interest in HRC specifically, and human-
robot interaction (HRI) in general. Programming robots to consider
humans’ mental states in their decision making can significantly
enhance the quality and efficiency of collaboration and humans’
perception of robots [2, 6, 19].
Trade-offs between human and task objectives: Clearly, de-
ploying cobots in industry is economically justifiable only when
they can offer long- or short-term benefits and returns on invest-
ment [9]. Hence, HRC systems have to not only improve and main-
tain humans’ perception of robots at a reasonably high level, but
need to improve task efficiency as well. In [11], a probabilistic ap-
proach was adopted to predict human actions in order to optimize a
cobot’s assitance and reduce wait times. In [12], workloads per sub-
task were minimized by distributing assembly sub-tasks between
a human and a cobot. In another study [4], an optimal task distri-
bution between humans and robots was proposed to minimize the
completion time of a realistic production process.
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However, the problem is more challenging with cases in which
human objectives and task objectives conflict, and pull in opposite
directions, or where human’s plans and actions are not optimal. To
cope with these problems, the robot needs to balance the two objec-
tives and adopt a policy to guide the human to make (sub)optimal
policies and decisions. Probabilistic and game theory approaches
are commonly used to achieve a mutual benefit, or to guide (per-
suade) adaptable agents toward (sub)optimal actions [10, 16, 18].

For these cases, little is known about the influence of robot’s
strategy on human perception of the robot. Some studies have fo-
cused on the effects of robot’s blame attribution (blaming either
itself, the human, or the human-robot team) in HRC after the collab-
oration or after doing its actions [3, 13, 21]. The authors in [7] have
investigated how a robot’s prosocial and selfish behaviors in a col-
laborative game can affect the human’s perception of competence,
responsibility, trust, and preference for future collaborations. How-
ever, our study also considers a balanced behavior to compromise
between the robot and the human’s objectives and priorities.

2 RESEARCH QUESTIONS AND HYPOTHESIS
This study seeks to learn how a robot’s decision making in a col-
laborative task can affect its human teammate’s perception of the
robot. To do so, we consider three different strategies for the robot:
(i) Strategy 1 (SH) - The robot completely prioritizes the human’s
task and objective; (ii) Strategy 2 (SR) - The robot completely pri-
oritizes its own task and objective; (iii) Strategy 3 (SHR) - The
robot adopts a compromising strategy that balances its own and
the human’s priorities.

The first two strategies are at opposite ends of the planning spec-
trum, where we expect to see the highest and the lowest levels of
satisfaction and trust. Based on these three strategies, we developed
the following hypothesis:
Hypothesis 1: The human’s (a) trust in the robot, (b) perception of
the robot’s performance, (c) perception of the robot’s collaboration,
and (d) willingness to collaborate with the robot, will all be the
highest when the robot uses strategy 1 (SH), second highest when
using strategy 3 (SHR), and lowest when using strategy 2 (SR).

The study received ethics approval from the University of Wa-
terloo Research Ethics Board (ORE #42760).

3 EXPERIMENTAL METHOD
For this experiment, we have designed an online interactive sim-
ulation environment in which the human and the robot need to
organize a certain number of objects.
Materials and setup: For the simulation environment, we chose
Webots robot simulator and the UR5 robot, a well-known 6-degree-
of-freedom cobot manufactured by Universal Robots.
Experiment task: Participants collaborate with a robot to orga-
nize certain objects. As shown in Figure 1, the human (1) stands
beside their table (2). Their task is to put the colored blocks on
the corresponding squares marked on the board (3) placed beside
them in the shortest time. Participants have to fill each row before
moving to the next one, starting with the first one and end at the
fourth. The color of the blocks and the squares have to be matched.
For example, a blue block has to be placed on a blue square. The
robot (5) also needs to put orange objects in the orange bin, next

Figure 1: Online experiment environment

to it. This is a turn-taking activity, meaning that the robot takes
the first turn, and when it is done, the human chooses their action;
then, the robot makes its next move, and so on.

There are four red, four blue, and four orange blocks on the
human’s table (2). Participants need blue, red, and green blocks
to complete the board, but they only have access to blue and red
ones on their table. Thus, the robot has to place the green objects
on the shared space (6), the green platform beside their table, so
that participants can use them to complete the board. Participants
also need to place the orange blocks from their table on the same
shared area (6) so that the robot can take them and put them in
its bin (8). The shared space has a capacity of two objects. There
is also a skip button (4) on the participants’ table, which they can
press if they want to skip their turn. The participants’ goal is to
fill the board in the shortest time, while the robot’s goal is to put
all the orange blocks in the bin. The task finishes when all objects
are removed from the tables and the shared space. Based on the
explained scenario, there is a set of possible actions for both human
and robot, from which they can choose a feasible action in each
turn:
Human’s possible actions 𝐴ℎ : (1) Pick up a blue block from the table
and place it on the board. (2) Pick up a red block from the table
and place it on the board. (3) Pick up a green block from the shared
space and place it on the board. (4) Pick up an orange block from
the table and place it on the shared space. (5) Skip their turn.
Robot’s possible actions 𝐴𝑟 : (1) Pick up an orange block from the
table and place it in the bin. (2) Pick up an orange block from the
shared space and place it in the bin. (3) Pick up a green block from
the table and place it on the shared space. (4) Skip its turn.
System Modeling and Planning: The human-robot team can be
represented by the system state x𝑘 ∈ 𝑋 , robot action 𝑎𝑟 ∈ 𝐴𝑟 , and
human action 𝑎ℎ ∈ 𝐴ℎ . After each robot action, the robot receives
a real-valued reward 𝑟 (x𝑘 , u𝑘 ), where u𝑘 =

[
𝑎𝑟 , 𝑎ℎ

]
represents the

vector of the system input, at time step 𝑘 .
At any time step 𝑘 , first the robot takes its action 𝑎𝑟

𝑘
changing

the system state to an intermediate state x′
𝑘
. The human observes

the robot’s action and then decides their action 𝑎ℎ
𝑘
, transitioning

the system to the next state x𝑘+1. Thereafter, the robot takes its
action for time step 𝑘 + 1 and so on. This turn-taking between the
robot and the human continues until the system reaches the goal
state.
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In this experiment, the human policy is not known in advance
and no online or offline estimation is made during the robot plan-
ning. Instead, it is assumed that the human takes the optimal action
at every step, i.e, the one that helps maximizing the accumulated
reward. Define the optimal policy 𝜋∗ : 𝑋 → 𝑈 that maximizes the
discounted sum of rewards as,

𝜋∗ (x) = argmax
𝜋 ∈Π

[ ∞∑
𝑘=0

𝛾𝑘𝑟 (xk, 𝜋 (x𝑘 ))
��� x0 = x

]
, (1)

where Π is the set of all admissible policies 𝜋 : 𝑋 → 𝑈 .
During the experiment, at each time step, the robot chooses its

action according to the policy 𝜋∗. The reward is only the function
of the current state of the system and the robot’s action, and is
a weighted combination of two scalar functions 𝜑𝑅 (xk, 𝑎𝑟𝑘 ) and
𝜑𝐻 (xk, 𝑎𝑟𝑘 ) reflecting the extent to which the action 𝑎𝑟

𝑘
aims to

satisfy the robot’s and the human’s preferences:

𝑟

(
x𝑘 , 𝑎𝑟𝑘

)
= (1 − 𝑞) × 𝜑𝑅 (xk, 𝑎𝑟𝑘 ) + 𝑞 × 𝜑𝐻 (xk, 𝑎𝑟𝑘 ), (2)

where 𝑞 ∈ [0, 1] is a constant value indicating the importance of
the human preferences. The three strategies can be implemented
by simply setting the value of 𝑞. For strategy 1 (pure-assistive) we
set 𝑞 = 1, for strategy 2 (self-serving) we set 𝑞 = 0 and for strategy
3 (balanced) we set 𝑞 = 0.5.
Procedure: We recruited 50 participants (48 graduate and 2 un-
dergraduate), through email advertisements. The cohort for each
condition (planning strategy) consisted of: (i) Condition-1: 17 par-
ticipants (9 men and 8 women) with an average age of 28.71 ± 9.59
years (ii) Condition-2: 17 participants (10 men and 7 women) with
an average age of 28.07 ± 4.18 years (iii) Condition-3: 16 participants
(9 men and 7 women) with an average age of 27.56 ± 4.76 years. The
participants were randomly assigned to one of three mentioned
between-participant conditions in a way that has a balance across
the conditions. After giving their consent, participants needed to
take part in three phases of the experiment:

Phase 1 - Pre-experiment Questionnaire: (i) Asking demographic
information (age, gender, education, and field of study) (ii) Explain-
ing details of the experiment (iii) Showing a video of collaboration
(iv) Asking participants’ prior experience with robots (v) Asking
participants’ prior trust in the robot (Muir’s questionnaire [17] with
a seven-point Likert scale - Q1-4 in Table 1)

Phase 2 - Main Experiment: (i) Connecting and giving remote
control via Zoom (ii) Explaining how to work with the simulation
environment (iii) Starting the main experiment (iv) Asking verbally
to explain their strategy

Phase 3 - Post-experiment: (i) Asking Q1-4 to measure partici-
pants trust in robot after the experiment (ii) Asking Q5-8 to assess
participants perception of the robot

4 RESULTS AND DISCUSSION
To show how the participants’ trust changed after the experiment,
we took the average of the question 1-4, both in the pre- and post-
study questionnaires, and calculated their differences (see Figure 2).
The results show that for the first and the third conditions partici-
pants’ trust in the robot increased post-experiment. Figure 3 shows
the average of participants answers to Q5-8. As expected, partici-
pants gave a high score to question 5 of Table 1, because the robot
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Figure 3: Average answers to the questions in Table 1, Q5-8

can always successfully manipulate objects. Since the questionnaire
data does not have a normal distribution, we used a Kruskal Wallis
test to evaluate the statistical difference between the three different
strategies. Next, Dunn’s test, a non-parametric pairwise multiple
comparisons procedure, was used as a Post-hoc test. Table 2 shows
the results of these tests indicating a significance between strategies
1 (SH) and 2 (SR) and strategies 2 (SH) and 3 (SHR). However, no
significant difference was found between strategies 1 and 3.
Participants’ strategy: After the experiment, participants were
asked to explain the strategy they adopted to accomplish their
objective (i.e., finishing the board) and the task (i.e., removing all
objects). We also recorded participants’ and the robot’s actions and
analyzed their collaboration with the robot.

Robot strategy 1 (SH): In this case, based on the robot’s recorded
actions, the robot provides participants with green blocks regard-
less of their needs. Assuming a self-serving human teammate, we
expect that they would give the orange objects to the robot after
finishing their own objective. The thick line in Figure 4a shows the
number of orange objects that a self-serving human will give the
robot. The thin line shows the average number of orange objects
that participants gave the robot. Six out of 17 participants followed
the self-serving plan, and the others gave at least one orange object
before finishing their board. The explanation that participants gave
about their strategy revealed two main reasons for doing so: collab-
orating with the robot to finish the task and preventing the robot
from being idle in cases where the robot had no object to move.
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Questions
Q1 - To what extent can the robot’s behavior be predicted from
moment to moment?

Q5 - The robot is able to manipulate objects successfully and without
any failure.

Q2 - To what extent can you count on the robot to do its job? Q6 - The robot works efficiently for minimizing collaboration time.
Q3 - Overall how much do you trust the robot? Q7 - The robot tends to collaborate.
Q4 - What degree of faith do you have that the robot will be able to
cope with similar situations in the future?

Q8 - I will be happy to collaborate again with this robot in similar
future tasks.

Table 1: Questions for humans’ trust in the robot (Q1-4) and their perception of the robot (Q5-8)
SH-SR-SHR SH-SR SHR-SR SHR-SH

𝜒2 𝑝 𝑝 (post-hoc test)

Hypothesis 1a (Q1-4) 12.56 0.0019 (S) 0.01 (S) 0.003 (S) 0.63 (NS)
Hypothesis 1b (Q6) 15.561 0.0004 (S) 0.0004 (S) 0.0122 (S) 0.308 (NS)
Hypothesis 1c (Q7) 12.317 0.002 (S) 0.0088 (S) 0.0043 (S) 0.7008 (NS)
Hypothesis 1d (Q8) 8.168 0.009 (S) 0.013 (S) 0.291 (NS) 0.291 (NS)

Table 2: Statistical difference for hypothesis1 a-d (S: Significant difference, NS: No significant difference).

Robot strategy 2 (SR): The recorded robot’s actions show that the
robot optimizes its own objective and does not give green objects
at first and continues with sorting its own objects. The thick line
in Figure 4b shows the number of orange objects that an assistive
human teammate (i.e., ones that do not press the skip button when
they can provide the robot with orange objects) give to the robot.
The thin line shows the average number of orange objects that
participants gave to the robot. Six out of 17 participants followed
the purely assistive behavior, and the others pressed the skip button
at least once despite having the option to give the robot a block.
According to participants’ answers to our question about their
strategy, two of them were annoyed by the robot’s behavior, and
others wanted to check whether the robot gave them a green object
when they pressed the skip button, withholding orange objects.

Robot strategy 3 (SHR): In strategy 3, the robot starts with its
own blocks and tries to give green blocks whenever the human
needs them. Similar to strategy 1, the thick line in Figure 4c shows
the expected number of orange objects that a self-serving human
will give to the robot. Three out of 16 participants followed the
self-serving behavior, and others gave at least one orange block to
the robot although they had the option to place their own blocks on
the board. Their explanations for doing so were: (1) Collaborating
with the robot to finish the task, (2) Preventing the robot from being
idle, (3) Testing if the robot gave them a green object in return.
Prior experiencewith robot:We also examined how participants’
prior experience with robots affected their initial trust in the robot,
but the result showed no significant effects.

5 CONCLUSION
In this paper we considered a single-human single-robot scenario
that required the two parties to collaborate to accomplish a given
task. The team’s task was to remove all blocks from the tables
and shared area and put them in the designated bin or assembly
board. However, aligned with this task, we assigned the human
an objective: to complete their board in the shortest time. Then,
we developed three different robot strategies: 1- prioritizing the
human (Strategy 1-SH), 2- prioritizing the robot (Strategy 2-SR),
and 3- balancing between the human and the robot (Strategy 3-
SHR). Through this experiment we sought to find out the extent to
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Figure 4: Expected (thick lines) and observed (thin lines) av-
erage number of orange blocks passed to the robot along
with their confidence intervals.

which the third strategy canmaintain human’s trust and satisfaction
while optimizing the robot’s (or team’s) objectives. Based on the
results, human perception of the robot was improved by strategies
1 and 3 compared to strategy 2. However, there was no significant
difference between strategies 1 and 3. Considering all the above,
our findings suggest that, in a collaborating scenario, developing
a plan and strategy for the robot that can balance between the
human teammate’s objective (or policy) and the robot’s (or team’s)
objective can benefit the team without negatively affecting humans’
perception of the robot. These results will inform our future work
towards improving human-cobot collaboration.
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