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Re-Balancing Self-Interested Drivers in Ride-Sharing
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Abstract— In this paper, we address the problem of con-
trolling self-interested drivers in ride-sharing applications.
The objective of the ride-sharing company is to improve
the customer experience by minimizing the wait-time before
pick-up. Meanwhile, the drivers attempt to maximize their
profit by choosing the best location to wait in the envi-
ronment between the ride requests assigned to them. The
objectives of the ride-sharing company and the drivers are
not aligned, and the company has no direct control over the
waiting locations of the drivers. The focus of this paper is
to provide two indirect control methods for the ride-sharing
company to optimize the set of waiting locations of the
drivers, thereby minimize one of two objectives: 1) the ex-
pected wait-time of the customers, or 2) the maximum wait-
time of customers. The proposed indirect control meth-
ods are 1) sharing information to a subset of the drivers
on the location of other waiting drivers, and 2) paying
drivers to relocate. We show that the problem of finding
the optimal control is NP-hard for both objectives and both
control methods. For the information sharing method, we
provide an LP-rounding algorithm to minimize the expected
wait-time and a 3-approximation algorithm to minimize the
maximum wait-time. To incentivize the drivers to relocate
with payments, we provide 3-approximation algorithms for
both objectives. Finally, we evaluate the proposed control
methods on real-world data and show that we can achieve
up to 80% improvement for both objectives.

Index Terms— Mobility-On-Demand Systems, Re-
Balancing Self-Interested Drivers, Facility Location
Problem

I. INTRODUCTION

In recent years, ride-sharing services such as UberX and
Lyft have emerged as an alternative mode of urban transporta-
tion. The compelling feature of these services compared to
conventional taxi services is the improved service quality such
as the expected wait time for pick-up [1]. The wait-time of a
pick-up for a ride request is a function of the distribution of
the drivers and the customers in the environment. Therefore,
the objective of the ride-sharing company is to distribute the
drivers in the environment to improve the service quality.
However, the ride-sharing company does not have control over
the positions of the drivers as they are self-interested units
maximizing their local objectives. Therefore, the challenge is
to ensure the service quality only using indirect controls on
the positions of the drivers.
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Fig. 1. A set of drivers in the ride-sharing system and a set of locations
with high probability of ride request arrival.

Surge pricing in high demand areas is an instance of a
conventional indirect control method for both re-balancing the
drivers and increasing the supply of drivers which is employed
by Uber. Although this control method reduces the expected
response time of servicing the requests by drawing more
drivers to the high demand areas, it can draw drivers away
from lower demand areas, resulting in higher wait times in
those areas and more imbalance [2], [3].

The problem of servicing ride requests in ride-sharing
networks consists of two major problems: 1) assignment of
the current ride requests to the drivers; and 2) rebalancing of
the drivers for the future ride requests. The main focus of this
paper is the latter where we rebalance a subset of drivers to
service ride requests arriving sequentially in an environment.
The transportation network is represented by a graph and the
ride requests arrive on the nodes of the graph according to
a known arrival rate (see Figure 1). The drivers are self-
interested units maximizing their expected profit by choosing
their location in the environment to wait for the next ride
request. Therefore, the objective of the ride-sharing company
is to incentivize the drivers to relocate to a set of waiting
locations that maximizes the service quality. We measure the
service quality using two objectives: 1) the expected wait-time
before pick-up, which provides better service in high demand
regions; or 2) the maximum wait-time before pickup, which
provides a more balanced service quality across different
regions. Note that the relocation of drivers is effective when
ride requests are less frequent relative to the number of active
drivers (i.e., in light load), and thus there is time to relocate
between consecutive rides.

Contributions: The contributions of this paper are four-
fold. First, we formulate the ride-sharing problem with self-
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interested units and two global objectives; minimizing the
expected wait time, and minimizing the maximum wait time of
the ride request. We prove the NP-hardness of these problems.
Second, we propose two indirect control methods to relocate
the drivers in the environment: 1) sharing the location of all
drivers with a subset of drivers, and 2) paying the drivers
to relocate. Third, we develop novel algorithms for each
objective and control method combination. For the problem of
minimizing the expected wait-time under information sharing,
we propose an LP-rounding algorithm which provides near-
optimal solutions in an extensive set of experiments. We
provide a 3-approximation algorithm for the problem of min-
imizing the maximum wait-time under information sharing.
To find the optimal payment in the second control method,
we first cast the problem as a game between the drivers
and the service provider, where the service provider seeks to
minimize a linear combination of the total amount paid and
the global objective. We provide 3-approximation algorithms
to find the optimal control for both global objectives. Fourth,
we extend the proposed methods to capture uncertainty in
drivers behaviour while maintaining the bounds on the solution
quality. Finally, we evaluate the performance of the proposed
control methods on real-world ride-sharing data for the two
global objectives.

A preliminary version of this work appeared in [4]. In this
paper, we extend the results in [4] to capture an additional
global objective of minimizing the maximum wait-time and
we propose two new algorithms to handle this objective.
The objective of minimizing the expected wait-time can draw
drivers to high demand areas, which results in unbalanced
service quality across the environment. In contrast, the min-
max objective promotes equal service quality across the entire
environment. This type of objective could be particularly
important if the ride-share system is offered as a public service,
where, for example, a high quality of service is required
in both urban and rural areas. We also extend the proposed
control methods to capture uncertainty in drivers behaviour.

Related Work: An extensive number of studies consider
the problem of optimally assigning taxis to the ride requests
arriving sequentially over time [5]–[8]. In contrast, we focus
on the problem of optimally assigning waiting locations to
the drivers such that the expected wait-time or the maximum
wait-time of the customers is minimized. For assignment of the
ride requests to the drivers, we borrow the common method
employed by the ride-sharing companies which is to assign
the requests to the closest available drivers in a first-come-
first serve fashion [9].

The problem of rebalancing service units in the environment
has been studied for various applications. In the mobility-
on-demand problem (MOD) [10]–[12], a group of vehicles
are located at a set of stations. The customers arrive at the
stations, hire vehicles for ride, and then drop the vehicles
off at the station closest to their destination. The objective
is to balance the vehicles at the stations to minimize the
expected wait time of the customer. In comparison to MOD,
we consider the customer wait-time as the time between the
request arrival and the pick-up time, which incorporates the
distance of the closest available vehicle to the pick-up location.

In [13], the authors focus on the intersection of the MOD
systems and the public transportation where the ride-sharing
company, customers and the municipal transportation authority
are self-interested units. In this study, the authors provide
a pricing scheme for the ride-sharing company to maximize
service quality. The MOD methods consider the macroscopic
aspect of the ride-sharing problem where a flow formulation
is provided to approximate the average number of vehicles
to relocate from a station to others. In contrast to the MOD
approaches, our paper captures the microscopic aspect of ride-
sharing, focusing on the movement of individual drivers.

A conventional method for relocating the drivers in a ride-
sharing network is by the surge pricing method in high-
demand areas. The problem of pricing ride requests in a ride-
sharing system has been studied recently in the literature [14]–
[16]. In [15], the authors study the ride-sharing problem in a
ride-sharing network where the service units are a combination
of the self-interested drivers and autonomous vehicles. The
authors propose a pricing scheme and a payment method
for the self-interested drivers to rebalance in the network.
However, increasing the price of rides in high-demand areas
to incentivize the drivers to relocate to those areas decreases
the demand [15]. In contrast, we propose an indirect control
method for relocating the drivers by sharing information on
the position of the drivers to a subset of them and steer them
towards the areas with higher demand and lower supply.

The facility location problem [17], [18] and its extension to
the mobile facility location problem (MFL) [19] is the problem
of distributing facilities in a set of locations to respond to
the demands arriving at different locations. The objective is
to minimize the time to respond to the demands and the
total cost of opening facilities. A special case of the facility
location problem is the k-median problem [18] where the
number of open facilities is limited and the cost of opening
a facility is zero. In [20], we addressed a multi-stage MFL
problem where we relocate a set of autonomous vehicles
to minimize expected response time for future requests in a
receding horizon manner. However, a key difference in MFL
problems is that the objective of the service units are aligned
with the service provider, and thus the waiting locations of
service units can be directly controlled.

A closely related variant of the facility location problem is
that of Voronoi games on graphs [21] where service units are
self-interested. The objective of each self-interested service
unit is to maximize the number vertices assigned to them.
This work shows that the problem of finding the pure Nash
equilibrium for the game between the service units on general
graphs is NP-hard. In [22], the authors provide the best
response strategy for each driver and they approximate Nash
equilibria. These studies focus on the strategies of the self-
interested service units. In contrast, we focus on finding the
optimal policy for the ride-sharing company to optimally
respond to the ride requests.

The paper is organized as follows. In Section II, we
formulate the problem of minimizing the expected or the
maximum wait-time of customers with self-interested drivers.
In Section III, we propose the first indirect control method to
relocate the drivers based on sharing the information on the
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drivers with a subset of them. In Section IV-A, we provide
the second control method based on incentive pay. Finally
in Section V, we evaluate the performance of the proposed
control methods on an extensive set of experiments with real-
world ride-sharing data.

II. PROBLEM FORMULATION

In this section, we provide the detailed description of
the environment model for the ride-sharing problem and the
models for the self-interested drivers and the service provider.

A. Environment Model
Consider a complete metric graph G = (V,E, c) where the

vertex set V represents the pick-up and drop-off locations, the
edge set E is the set of connections between the vertices and
the function c : E → R+ assigns a travel time to each edge on
the graph. There are m drivers in the environment responding
to the ride requests arriving over time. The drivers wait on a
subset of the vertices for the next request, which we call the
configuration of the drivers Q. The set of all configurations of
the drivers is denoted by Q.

The ride requests arrive at each vertex u of the graph ac-
cording to an independent process. Upon a request arrival, the
closest driver to the vertex of the request is assigned to service
the request. Let pa(u) denote the arrival probability, which
represents the likelihood of ride request arriving at vertex u.
Let the drop-off probability pd(dropoff = w|pickup = v)
be the probability of a request with pickup location v and a
drop-off location w.

B. Self-interested Drivers’ Model
We assume that the drivers in the system act in their self-

interest to maximize their profit. A driver i might be aware
of the position of a subset of other drivers which we call the
information of driver i and denote by Ii. For instance, each
driver may be aware of the location of the other drivers in its
vicinity. We assume that the information Ii = ∅ for all drivers
unless it is provided by the centralized service provider.

Each driver selects her next waiting location based on her
perception of profit at different locations. Driver i’s perception
of her expected profit is a function of her current location qi,
the information Ii provided to her by the service provider on
the location of other drivers, environment parameters such as
arrival times, drop-off location probabilities and the period of
working time Bi, denoted by Vi(u,Bi, Ii). Hence, the self-
interested driver will wait at a location that maximizes its
expected profit, i.e.,

arg max
u∈V

−σc(qi, u) + Vi(u,Bi − c(qi, u), Ii), (1)

where σ is the cost per minute of driving. The drivers
following this model are called deterministic drivers.

The remainder of this paper and the proposed main control
methods do not rely on any specific form of function Vi. We
do assume, however, that the ride-sharing company has access
to this function, obtained through data of driver behavior. In
Appendix B we present one potential model of V , which

TABLE I
SUMMARY OF ALGORITHMS PROPOSED

Control method Jexp Jmax

information sharing LP-rounding 3-approx. algorithm
pay-to-control∗ 3-approx. algorithm 3-approx. algorithm
∗For the pay-to-control method we minimize a linear combination of the total
amount paid and the global objective.

is then used for simulating the two control methods. In
Sections III and IV, we provide a noisy driver model and
evaluate the robustness of the proposed control methods to
the uncertainty in the behaviour of drivers.

C. Service Provider’s Model

We consider a global objective J(Q) to maximize the ser-
vice quality. In this paper, we focus on two global objectives in
servicing tasks: 1) the expected wait-time and 2) the maximum
wait-time of the ride requests.

The expected wait-time objective can be expressed as

Jexp(Q) =
∑
u∈V

min
qi∈Q

pa(u)c(qi, u). (2)

Under global objective (2), the desired configuration of the
drivers concentrates on the regions with higher arrival rates.

An alternative global objective is to minimize the maximum
wait-time over all ride requests, i.e.,

Jmax(Q) = max
u∈V

min
qi∈Q

c(qi, u). (3)

Under this objective, the drivers provide a more uniform
service quality at different locations regardless of the arrival
rate at the locations.

The main challenge in optimizing these global objectives
is that the drivers are self-interested units and the service
provider does not have any direct control over the waiting
locations of the drivers. The two indirect control methods
proposed in this paper incentivize the drivers to relocate to
desired waiting locations. The first control method exploits the
dependency of the expected profit of the drivers on their infor-
mation Ii. The service provider selects a subset of the drivers
to share information on the location of drivers and manipulate
their decision towards relocating to a desired waiting location.
We refer to this as the information sharing control method. The
second proposed control method, incentivizes the drivers to
relocate to desired waiting locations with payments, which we
refer to as the pay-to-control method. These control methods
are applicable to various models of driver behavior V . Table I
summarizes the results provided on the proposed two control
methods and the two global objectives. The proposed control
methods are applied whenever the wait-time for the customers
with current configuration of the drivers is surpassing the
desired threshold of the service provider. In the event that
a ride-request arrives while the drivers are relocating, the
closest driver is assigned to service the ride-request. The
drivers currently servicing a ride-request are not considered
for relocation by the proposed control methods.
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(a) Equal information sharing (b) Partial information sharing

Fig. 2. Ride-sharing problem with two vehicles and two request arrival
locations.

In the following sections, we provide a detailed description
of the two control methods and propose algorithms to find
near-optimal controls.

III. CONTROL BY SHARING INFORMATION

The method proposed in this section exploits the fact that the
decision of the self-interested drivers on their optimal waiting
location (see Equation (1)) is a function of the information
provided them on the position of the other drivers, i.e., Ii.

First we provide an example to demonstrate the importance
of the information of the drivers in controlling their configu-
ration in the environment.

Example III.1: Consider a ride-sharing system with two
ride request locations, unit distance apart, and two vehicles
(see Figure 2). The vehicles are initially located at v1 and
will relocate to the best waiting location, namely optimizing
Equation (1). Let the expected profits at both locations are
sufficiently larger that σ, i.e., σ � V(vi, Bi, Ii) for i ∈
1, 2 and any information provided. Figure 2(a) shows the
two scenarios where both vehicles are provided the same
information, i.e., I1 = I2 = ∅ and I1 = I2 = Q. In the first
scenario, no information is provided to both drivers, therefore,
the drivers uninformed about the other driver, will not incur
the cost of relocation as they consider that the rides in both
locations will be assigned to them. In the second scenario,
both drivers are given the information about the position of the
other driver. Therefore the expected profit of the drivers will
decrease if they wait at v1, and they will both relocate to v2 to
make sure that the rides at v2 will be assigned to them. Note
that the configuration of the vehicles when they are provided
the same information is the worst possible configuration for
the global objective Jexp. However, illustrated in Figure 2(b),
providing the information to a subset of the vehicles results
in the optimal configuration for the global objective. •

A. Formal Defintion and Complexity Class
The information sharing problem consists of 1) deciding the

subset of drivers we share information with, and 2) deciding
what information to share with each driver. The number of
different information sets is exponential in the number of
drivers. In this work we simplify 1) and 2) into a binary
decision for each driver; either share full information or share
no information. Theorem III.4 shows that finding the optimal
information control even with this binary decision is NP-hard.
Moreover, our experiments on real-world ride-sharing data in

Fig. 3. An instance of Problem III.3. The green vertices represent the
desired waiting location of each driver if Ii = ∅, and the red vertices
represent the waiting location of the drivers if Ii = Q.

Section V suggests that even limiting to the binary decision,
we achieve significant improvement in the service quality.

Remark III.2 (Alternate information sets): The approach
proposed in this section does not require that the binary
choice is between the empty set and the full information set.
One can replace this with any two subsets of the information
set: For example, for each driver, the binary decision could be
between the empty set and the set of all other driver positions
within a certain radius. •

Let q′i,Ii be the waiting location selected by driver i from
Equation (1) with information Ii, and let Fi = {q′i,Q, q′i,∅} be
the set of candidate waiting locations for driver i. The formal
definition of the problem of sharing information as follows:

Problem III.3: Consider a metric graph G = (∪mi=1Fi ∪
V,E, c). Find a new configuration Q′ by picking only one
vertex from each Fi, i.e., such that |Q′ ∩ Fi| = 1 for each i,
while minimizing the global objective Jexp(Q′) or Jmax(Q′).

Figure 3 shows an instance of the information sharing
problem. For each driver, there are two candidate waiting
locations based on the information shared with them. The
green (resp. red) vertex represents the waiting location of
the driver if she has no information (resp. full information)
on the position of the other drivers. Let Q′ be the solution
to Problem III.3 in which if qi,Q ∈ Q′ then the driver i is
provided complete information, and no information is available
for driver i if q′i,∅ ∈ Q′. In the solution to the information
sharing problem, if driver i is selected to receive information
on the location of drivers, a snapshot of the location of drivers
is presented to driver i and the driver can calculate their
expected profit based on complete information. We assume
that the next waiting location of drivers only depends on the
information shared with them. The case of adversarial drivers
that leverage the information shared with them to anticipate the
information shared with other drivers and adjust their location
accordingly is out of the scope of this paper.

First, we analyze the complexity of Problem III.3 for the
two global objectives (2) and (3), and then we provide our
algorithm for each of the global objectives.

Theorem III.4: The problem of finding the optimal infor-
mation sharing control, i.e. Problem III.3, with the objective
of minimizing the expected wait-time Jexp is NP-hard.

Theorem III.5: The problem of finding the optimal infor-
mation sharing control, i.e. Problem III.3, with the objective
of minimizing the maximum wait-time Jmax is NP-hard.

The proofs of the Theorems III.4 and III.5 are provided in
Appendix A.
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B. Minimizing The Expected Wait Time
Given that Problem III.3 is NP-hard for both objectives,

we turn our focus to sub-optimal algorithms. In particular, we
provide a simple Linear Program (LP)-rounding algorithm for
Problem III.3 with the global objective Jexp. Although we do
not provide bounds on the performance of the LP-rounding
algorithm, we evaluate the performance of the algorithm on
an extensive set of real-world ride-sharing data in Section V
and we show that the proposed algorithm is on average within
0.021% of the optimal.

First we provide an integer linear program (ILP) formulation
for Problem III.3 with the global objective Jexp. Let binary
variable xu,v ∈ {0, 1} denote the assignment of a request at
v to a driver at vertex u if xu,v = 1, and xu,v = 0 otherwise.
Let the binary variable yu ∈ {0, 1} for all u ∈ ∪mi Fi represent
if there is a driver assigned to wait for next request arrival at
u. Then we write the ILP for Problem III.3 as follows:

minimize
∑
v∈V

∑
u∈∪m

i Fi

pa(v)c(u, v)xu,v (4a)

subject to
∑

u∈∪m
i Fi

xu,v ≥ 1,∀v ∈ V, (4b)

xu,v ≤ yu,∀v ∈ V,∀u ∈ ∪mi Fi, (4c)
yu + yv = 1, Fi = {u, v}, i ∈ [m], (4d)
yu, xu,v ∈ {0, 1},∀v ∈ V,∀u ∪mi Fi. (4e)

By constraint (4b), a feasible solution assigns each request
location to a driver. Equation (4c) ensures that a request is
assigned to u only if there is a driver located at u, and finally
Equation (4d) shows that in a feasible solution only one of
the candidate waiting locations is chosen from each subset
Fi, which represent that either the information is provided to
a driver or otherwise.

Now we propose our LP-rounding algorithm for Prob-
lem III.3 with the global objective Jexp. Let (x′,y′) be the
solution to the LP relaxation of ILP (4). Given the optimal
solution (x′,y′) to the LP relaxation we construct an integer
solution to ILP (4) by setting yu = 1 for each vertex u with
y′u > 1/2 and yu = 0 otherwise. In a case, Fi = {u, v} and
y′u = y′v = 1/2, we set yu = 1 where u is the waiting location
of driver i with Ii = ∅. Finally, we assign each demand
vertex v ∈ V to the closest candidate waiting location u with
yu = 1 by setting xu,v = 1. Observe that the constructed
integer solution solution (x, y) by the LP-rounding algorithm
satisfies the constraints of ILP (4). Also, observe that the
optimal objective value to the LP relaxation is a lower-bound
on the optimal value of ILP (4) and provides a bound on the
performance of the LP-rounding algorithm.

C. Minimizing The Maximum Wait-Time
In this section, we propose an algorithm for Problem III.3

with the objective of minimizing the maximum wait-time. We
also prove that the solution provided by the proposed algorithm
is within a factor of 3 of the optimal control.

The proposed algorithm makes a guess on the optimal
maximum wait time of the demands on the vertices, removes

the edges longer than the guess, then tries to find a subset of
∪mi Fi in the resulting graph such that there is an edge between
any v ∈ V and a vertex in the subset.

Let T be our guess for the maximum wait-time in the
optimal solution of Problem III.3. Let H = (V,EH) be the
induced graph of G by deleting the edges longer than T , i.e.,
EH = {e ∈ E|c(e) ≤ T}. Let NH(v) denote the vertices in
∪i∈[m]Fi with an edge incident to vertex v in graph H . At
any step of the algorithm, if there exist a v ∈ V such that
|N (v)| = 0, then we reached a conflict, and we increase our
guess T . Let Nk(v) denote the neighbours of v after adding
k vertices to the solution. The approximation algorithm for
Problem III.3 with the objective of minimizing the maximum
time consists of the following two subroutines:

Subroutine I: For any vertex v with |Nk(v)| = 1, in a
sequential manner, we add the vertex u ∈ Nk(v) to our
solution. At each step, we declare the vertices in V within
distance 3T of u as serviced. Also, we remove the vertex
w = Fi \ {u} and all the edges incident to it, and we update
Nk(v) for all v ∈ V . If at any stage of this process, there
is a v with |Nk(v)| = 0, then there exists a conflict and we
increase our guess T .

Subroutine II: Assuming that Subroutine I is completed
without any conflicts, then at the start of the Subroutine II
of the algorithm all the vertices in V that are not serviced
at the end of Subroutine I have |Nk(v)| ≥ 2. Starting from
an arbitrary vertex v ∈ V , we add a vertex u ∈ Nk(v) to
the solution and declare all the vertices in V within distance
3T of u as serviced. We also, remove w = Fi \ {u} and all
the edges incident to it, and we update Nk(v) for all v ∈ V .
Then we execute the Subroutine I for all the vertices with
|Nk+1(v)| = 1. Subroutine II continues until all the vertices
in V are serviced.

The algorithm performs a binary search on T ∈
[minu,v∈V c(u, v),maxu,v c(u, v)] to find the optimal max-
imum wait-time T ∗. Observe that there is no conflict in
Subroutine I for any T ≥ T ∗, therefore, in the course of the
binary search, the algorithm will reach T = T ∗ and return no
conflicts. Prior to the result on the solution quality, we show
the following result on Subroutine II.

Lemma III.6: There is no conflict in Subroutine II.
Proof: The detailed proof is provided in Appendix A.

Theorem III.7: The proposed algorithm is a 3-
approximation algorithm for Problem III.3 with global
objective Jmax.

Proof: Assume that the algorithm returns a conflict with
T > T ∗. By Lemma III.6, there is no conflict in the execution
of Subroutine II, therefore the conflict can only happen in the
first execution of Subroutine I. Let H∗ be the induced graph
by removing edges longer that T ∗ in E. Since T > T ∗, then
NH∗(v) ⊆ NH(v), i.e., if vertex v is serviced in the optimal
solution by qi ∈ NH∗(v), then qi ∈ NH(v) can service v in
time T > T ∗. Therefore, if there is a conflict in H , there is a
conflict in H∗, which is a contradiction.

D. Information Sharing for Noisy Drivers
The proposed information sharing algorithms to minimize

the Jexp and Jmax assumes that the drivers pick their next
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waiting location according to Equation (1). However, the
drivers might demonstrate noisy behavior. We model this
behavior as follows:

arg max
u∈V

−σc(qi, u) + Vi(u,Bi − c(qi, u), Ii) + Zu, (5)

where Zu is the zero mean noise which represents the uncer-
tainty in the behavior of the drivers. We refer to the drivers
following this model as noisy drivers.

In this section, we extend the proposed algorithms to capture
the uncertainty in the behavior of the drivers. Observe that
the set Fi = {qi,Q, qi,∅} consists of the waiting locations
of driver i given full information or no information on the
position of the other drivers. In the presence of uncertainty
in the behavior of the drivers, qi,∅ (resp. qi,Q) represents the
expected waiting location of driver i given no information
(resp. full information). Let piw(u, I) be the probability that
driver i picks u as her next waiting location given information
I according to Equation (5). Then the expected cost of
servicing a demand at v by driver i given information I
is c(qi,I , v) =

∑
u∈V p

i
w(u, I)c(u, v). To capture the noisy

behavior of the drivers, qi,∅ and qi,Q in Fi for i ∈ [m]
become the expected waiting locations. With this modification,
the proposed algorithms are applicable to the problem with
noisy drivers. Following result shows the performance of
the proposed algorithm for the problem of minimizing the
maximum wait-time with noisy drivers.

Corollary III.8: The proposed algorithm to minimize the
maximum wait-time is a 3-approximation algorithm for Prob-
lem III.3 with noisy drivers and global objective Jmax.
The proof of Corollary III.8 is provided in Appendix A.

IV. PAY TO CONTROL

In this section, we propose another in-direct control method
to relocate the drivers. The idea is that to incentivize a driver to
relocate, the difference between the driver’s expected profit at
the waiting location from Equation (1) and the expected profit
at the desired waiting location needs to be compensated. We
pose the problem between the drivers and the service provider
as a leader-follower game [23] and provide our algorithms for
finding the optimal policy of the service provider.

A. Service Provider’s Game

Let Q = {q1, . . . , qm} be the current configuration of
the drivers. Then, the game between the drivers and service
provider consists of the following:

(i) m players and a service provider,
(ii) An action set Ai for each driver i, which is the waiting

locations in the graph, i.e. Ai = V for all i ∈ [m]. The
action set of the service provider is Q; and

(iii) The utility function of the service provider is h(Q′) =∑
i∈m diσc(qi, q

′
i) + βJ(Q′), where di is the incentive

per unit distance offered to driver i and β ≥ 0 is a user-
defined parameter. If β is small, the service provider
will offer waiting locations close to the driver’s desired
waiting location in order to minimize incentive pay. If β
is large, the service provider will offer larger payments

to relocate the drivers to configurations with minimum
expected response time.

(iv) The profit of driver i is the maximum between the
expected profit of the offered waiting location including
incentive pay and the expected profit of the waiting
location from Equation (1), i.e.,

max{(di − 1)σc(qi, q
′
i) + V(q′i, Bi − c(qi, q′i), Ii),

max
u∈V
−σc(qi, u) + V(u,Bi − c(qi, u), Ii)}.

Driver i will accept the offer by the service provider to
relocate to q′i only if the offered incentives surpass the best-
expected profit of the driver. Since the profit functions of the
drivers are known to the service provider, then the minimum
di in which the drivers will accept the offer to move to
configuration Q′ is

di =
maxu∈V −σc(qi, u) + Vi(u,B − c(qi, u), Ii)

σc(qi, q′i)

− Vi(q
′
i, Bi − c(qi, q′i), Ii)
σc(qi, q′i)

+ 1. (6)

Knowing this minimum di, the objective of the service
provider becomes

h(Q′) =
∑
i∈m

σc(qi, q
′
i)− Vi(q′i, Bi − c(qi, q′i), Ii) + βJ(Q′)

+
∑
i∈m

max
u∈V
−σc(qi, u) + Vi(u,B − c(qi, u), Ii). (7)

Remark IV.1 (Equilibrium): The optimal solution to the
problem minQ′ h(Q′) is the equilibrium of the leader-follower
game between the service provider and the drivers. Since
any other configuration will increase the cost function of the
service provider. In addition, By Equation (6), waiting in a
location other than the one suggested by the service provider
will decrease driver’s expected profit.

B. Minimizing The Expected Wait-Time
First, observe that finding the optimal configuration Q′ in

Equation (7) is independent of
∑
i∈m maxu∈V −σc(qi, u) +

Vi(u,B − c(qi, u), Ii). Therefore, the problem of minimizing
the utility function of the service provider with the global
objective Jexp, has the mobile facility location (MFL) problem
as a special case where Vi(v,Bi−c(u, v)) = 0 for all u, v ∈ V
and i ∈ [m]. The MFL is a well-known NP-hard problem [24]
where given a metric graph G = (F ∪ D,E, c), mapping
µ : D → R+ and a subset Q ⊆ F∪D of size m. The objective
is to find a subset Q′ = {q′1, . . . , q′m} ⊆ F minimizing∑
i∈[m] c(qi, q

′
i) +

∑
u∈D µu minq′∈Q′ c(u, q

′).

Let wq′i,Ii = 1
σ

[
maxu∈V σc(qi, u) − Vi(u,B − c(qi, u)) +

V(q′i, Bi−c(qi, q′i), Ii)
]
, then the utility function of the service

provider becomes

h(Q′) = σ
[ ∑
i∈[m]

(
c(qi, q

′
i)− wq′i,Ii

)
+
β

σ
Jexp(Q′)

]
.

We now propose a constant factor approximation for the
minimum pay-to-control problem, namely minimizing Equa-
tion (7). The algorithm follows by a reduction from the
minimum pay-to-control problem to MFL.
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Fig. 4. Constructed MFL instance

Given an instance of the minimum pay-to-control problem
we construct an MFL instance as follows:

(i) A graph G = (Q ∪ F ∪ V,E, c′) where F is the set of
possible waiting locations for the drivers

(ii) There is an edge between qi ∈ Q and q′ ∈ F with cost
c′(qi, q

′) = 1
2

(
c(qi, q

′)− wq′,Ii
)
,

(iii) There is an edge between q′ ∈ F and v ∈ V with cost
c′(q′, v) = c(q′, v).

(iv) The objective is to find a subset of Q′ ⊆ F with |Q′| =
m such that minimizes

C(Q′) =
∑
i∈m

c′(qi, q
′
i) +

β

2σ

∑
u∈V

pa(u) min
i∈[m]

c′(q′i, u).

Figure 4 shows the constructed MFL instance. Suppose Q′ is a
solution to the MFL instance, we let Q′ be the solution of the
minimum pay-to-control problem and provide the following
result on the cost of the solution.

Theorem IV.2: Given an α-approximation algorithm for
the MFL problem, the reduction above provides an α-
approximation for the pay-to-control problem with objective
Jexp and any β > 0.

Proof: For any Q′ ⊆ F , by the construction of the
MFL instance, we have h(Q′) = 2σC(Q′). Therefore, given
an α-approximation algorithm for the MFL problem, and Q′

obtained from the constructed MFL instance, we select Q′

as a solution to the minimum pay-to-control problem. Hence,
h(Q′) ≤ 2ασminQ∗⊆F C(Q∗) = αminQ∗⊆F h(Q∗).

By the result of Theorem IV.2, the 3 + o(1)-approximation
algorithm for the MFL problem in [24] applies to the minimum
pay-to-control problem.

C. Minimizing The Maximum Wait-Time

In this section, we propose an algorithm for minimizing the
service provider’s utility function h(Q) in Equation (7) where
the measure of the service quality is the maximum wait-time,
i.e., Jmax(Q). Therefore, the utility function of the service
provider becomes

h(Q′) =
∑
i∈m

σc(qi, q
′
i) + βmax

u∈V
min
q′∈Q′

c(u, q′)

−
∑
i∈m
Vi(q′i, Bi − c(qi, q′i), Ii)

+
∑
i∈m

max
u∈V
−σc(qi, u) + Vi(u,B − c(qi, u), Ii).

Similar to the previous section, observe that the minimiza-
tion of h(Q′) (see Equation (7)) is independent of the term

Fig. 5. Constructed bipartite graph for the problem of minimizing service
provider’s utility function with the global objective of Jmax.

∑
i∈m maxu∈V −σc(qi, u)+Vi(u,B−c(qi, u), Ii). Therefore,

the problem of minimizing the service provider’s utility func-
tion has the metric k-center problem [25] as a special case with
σ = 0 and

∑
i∈m Vi(q′i, Bi − c(qi, q′i), Ii) = 0. The metric k-

center problem is a well-known NP-hard problem.
Now consider the graph G = (V,E, c) on the demand

vertices. Without the loss of generality, we assume c(e1) ≤
c(e2) ≤ . . . ≤ c(e|V |2) where ei ∈ E for all i ∈ {1, . . . , |V |2}.
Now consider a set of sub-graphs {G1, . . . , G|V |2} where
Gi = (V,Ei, c) with Ei = {e ∈ E|c(e) ≤ c(ei)}.

The proposed algorithm for this problem is built on the ap-
proximation algorithm for the metric k-center problem in [25].
For each sub-graph Gi, we construct a graph H2

i = (V,EiH2)
where EiH2 = {(u, v)|∃w ∈ V, (u,w) ∈ Ei, (w, v) ∈ Ei}.

For each graph H2
i , starting from an empty set Si, we

greedily add a vertex in u ∈ V \ Si to Si if there is no
edge between u and any vertex in Si. We continue adding
the vertices to Si until all the vertices in V \Si have an edge
incident to a vertex in Si. The set Si is called a maximal
independent set. We call a maximal independent set Si valid,
if |Si| ≤ m. Then we construct a bipartite graph for each valid
Si by adding vertices in Q ∪ Si. We add an edge between
qk ∈ Q and sj ∈ Si with cost minu∈Vsj

c(qk, u) − wu,Ik
where Vsj = {u ∈ V |c(u, sj) ≤ c(ei)}.

After constructing the graph, we find the optimal assign-
ment in the resulting bipartite graph using the Hungarian
algorithm [26]. Let Assgn(Q,Si) represent the cost of the
optimal assignment for each valid Si. Let Assgn(Q,S′) +
βc(e′) be the smallest value among the valid independent
sets. Let sj ∈ S′ be the vertex assigned to qk ∈ Q is
the solution of the assignment problem. Then we add q′j =
arg minu∈Vsj

c(qk, u)− wu,Ik to the final solution.
Let Q∗ be the optimal solution to the problem of mini-

mizing the service provider’s utility function, let T ∗ be the
corresponding maximum wait-time in the optimal solution
and let Q′ be the configuration obtained from the proposed
algorithm. Now we prove the following result on the steps of
the algorithm.

Lemma IV.3: If the maximal independent set Si is not a
valid independent set, i.e. |Si| > m, then T ∗ ≥ c(ei).

Proof: Proof of the result is provided in Appendix A.
Theorem IV.4: The proposed algorithm provides a 3-

approximation for the pay-to-control problem with objective
Jmax and any β > 0.

Proof: In the course of the algorithm, we have considered
the graph Gi where c(ei) = T ∗. By Lemma IV.3, we have
|Si| ≤ m. Also note that for each sj ∈ Si, there is a vertex
qk ∈ Q∗ in Vsj . Observe that, while constructing the bipartite
graph, we considered the minimum payment cost from each
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q ∈ Q to the vertices in Vsj , therefore, Assgn(Q,Q′) ≤
Assgn(Q,Q∗). Since for each v ∈ V , there is a vertex sj ∈ Si
such that c(sj , v) ≤ 2T ∗, therefore, there is a vertex qk ∈ Q′
such that c(qk, v) ≤ c(qk, sj) + c(sj , v) ≤ 3T ∗. Finally we
have h(Q′) = Assgn(Q,Q′) +βJmax(Q′) ≤ Assgn(Q,Q′) +
3βT ∗. Hence, h(Q′) ≤ 3Assgn(Q,Q∗) + 3βT ∗ = 3h(Q∗)

Remark IV.5: In the presence of noisy driver i, the expected
payment per unit distance di required to convince the driver
to relocate is

E(di) =
E(maxu∈V −σc(qi, u) + Vi(u,B − c(qi, u), Ii))

σc(qi, q′i)

− Vi(q
′
i, Bi − c(qi, q′i), Ii)
σc(qi, q′i)

+ 1.

Therefore, the utility function of the service provider be-
comes h(Q′) =

∑
i∈m E(di)σc(qi.q

′
i) + βJ(Q′), where∑

i∈m E(di)σc(qi.q
′
i) is the expected payment to the drivers.

The problem formulation with the new utility function for the
service provider and the proposed algorithms follows directly
from the scenario with deterministic drivers. Also, the result in
Theorems IV.2 (resp. Theorem (IV.4)) is valid for the problem
of minimizing Jexp (resp. Jmax) with noisy drivers. •

V. SIMULATION RESULTS

In this section, we evaluate the performance of the two
proposed control methods on real-world ride-sharing data for
yellow taxis in Manhattan, N.Y. [27]. In our experiments,
we consider the ride requests for a randomly chosen day
10/06/2016, since the data-set for the year 2016 is the latest
available data-set that provides the coordinates of pick-up
and drop-off locations. To reduce the complexity of the large
data set with 401464 pick-up locations, we clustered the
ride requests using K-means algorithm [28] into 500 clusters.
Figure 6 shows the clustered pick-up locations and the arrival
rates at each cluster is represented with a bar. The drop-off
probability pd(w|v) is obtained from the average number of
ride requests assigned to cluster v with destination closest to
the center of cluster w.

We consider two global objectives: 1) the expected wait-
time, and 2) the maximum wait-time and two scenarios: 1)
random initial configuration where the initial location of the
drivers are selected uniformly randomly, and 2) jammed initial
configuration where the drivers are initialized at the 20 closest
locations to the Rockefeller center.

Observe that the proposed algorithms to find the controls
are applicable to various driver models for V . In Appendix B,
we provide a driver model V used in the simulations.

A. Information Sharing

We begin by evaluating the performance of the information
sharing control method. Observe that the number of unique
locations in the set ∪mi Fi (see Section III) improve the possi-
bility of providing better solutions for both global objectives.
Also note that the drivers that are located at the same location
given the same information have the same candidate waiting
location. Therefore, for all but one of these drivers, we replace

Fig. 6. The set of pick-up and drop off locations in Manhattan. The bars
at the locations of clusters represent the ride request arrival rates.
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Fig. 7. Improvement in Jexp by sharing partial information

the set Fi = {q′i,Q, q′i,∅} with the set Fi = {q′i,R, q′i,∅} where
R is a random subset of the full information Q.

Figure 7 shows the percentage improvement in the expected
wait time for different number of vehicles using the partial
information sharing control method of Section III-B in the
jammed and random initial configuration scenarios. The results
are the average of 200 instances for a varying number of
drivers in each scenario. The boxes show the first, second and
third quartiles of each set of experiments. Observe that the
information sharing algorithm improves the expected wait time
of the ride requests by approximately 20% in jammed initial
configuration scenario. Also observe that the improvement in
the expected wait-time with randomly distributed drivers in
the environment is minimal, since the randomly distributed
drivers provide a close to optimal expected-wait time, specially
in an environment where the arrival rates are not heavily
concentrated in a certain area. Therefore, the possibility to
improve the expected-wait time with the information sharing
algorithm is limited. The expected wait time of the solution
obtained from the LP-rounding algorithm of Section III on this
set of experiments is on average within 0.021% of optimal.
The maximum deviation from the optimal solution is 0.58%.
We obtain these bounds by comparing the solution of the
LP-rounding algorithm to that from the LP relaxation, which
provides an upper bound on the error from optimal.

Figure 8 illustrates the percentage improvement in the
maximum wait-time of the ride requests using the partial infor-
mation sharing control method of Section III-C. Note that the
proposed algorithm improves the maximum wait-time of the
ride requests by approximately 25% (resp. 5%) in the jammed
(resp. random) scenario. In Appendix C, we provide additional
results on the performance of the information sharing method
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Fig. 8. Improvement in Jmax by sharing partial information

in a system of 80 drivers responding to 300 ride requests.

B. Pay to Control

In this section, we evaluate the performance of the pay-
to-control method for the jammed and random scenarios.
Figure 9(a) illustrates the improvement in the expected and
the maximum wait-time for the two scenarios with β = 100.
Note that the proposed algorithm improves the expected wait-
time by approximately 75% (resp. 35%) for the jammed
(resp.random) scenario. Also observe that the proposed algo-
rithm improves the maximum wait-time by approximately 70%
(resp. 50%) in the jammed (resp. random) scenario.

Figure 9(b) shows the payment per driver for the two
objectives and the two scenarios. Observe that the expected
profit of the drivers in the jammed scenario is smaller than the
expected profit of the drivers in the random scenario, therefore,
the amount paid to convince the drivers to relocate to desired
waiting locations in the jammed scenario is significantly
smaller compared to the amount paid in the random scenario.

Figure 10 shows the expected response time of a set of
80 drivers responding to 300 requests arriving over time with
the jammed initial configuration. The results are an average
of 100 experiments with 300 randomly generated requests for
each experiment. The lines represent the average and shaded
areas represent the first and third quartiles. The pay-to-control
is applied to the system if the expected-wait time is greater
than 3 minutes. Observe that the proposed algorithm maintains
the low expected wait-time in the course of servicing 300 ride
requests. The average pay to maintain the low expected wait-
time is 1.95$ per ride request. Figure 11 shows the same
experiment with the objective of minimizing the maximum
wait-time. The pay-to-control is applied to the system if the
maximum wait time is greater than 7 minutes. The average
pay to maintain the low expected wait-time is 1.58$ per ride.

In summary, the experiments on the real-world ride-sharing
data show that the proposed algorithms significantly improve
the expected or the maximum wait-time when the drivers
are concentrated in a region. In particular, given a jammed
configuration of the drivers, the proposed algorithms improve
the service quality significantly with a small number of control
inputs and maintain the same quality over-time. The improve-
ments are more evident for the social objective of minimizing
the maximum wait-time, since the natural dynamics of the
system tend to steer drivers away from the low-demand areas.
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Fig. 9. Improvement in the global objectives and the amount paid to
drivers using pay-to-control method. The blue (resp. green) represents
the results for the objective Jexp (resp. Jmax). The solid bars (resp.
hatched bars) represent the jammed (resp. random) initial configuration.
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Fig. 10. The expected wait time and the paid amount to a system of 80
drivers executing 300 ride requests under the pay-to-control method

0 50 100 150 200 250 300
Number of Ride Requests

10.0

6

7
8
9

20

30

40

50

60

M
ax

im
u

m
W

ai
t

T
im

e
(m

in
)

No Control

Pay-To-Control

Paid Amount

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
m

ou
nt

P
ai

d
to

D
ri

ve
rs

($
)

Fig. 11. The maximum wait time and the paid amount to a system of
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Therefore, the control from the proposed algorithm is required
to maintain equal service quality across different regions.

VI. DISCUSSION

The proposed control methods do not assume any specific
form for the driver model, however, they assume that the driver
model is known. Later, we extended the algorithms to capture
uncertainty in the behavior of the drivers. For the information
sharing method, we substituted the cost of servicing a ride
request by a driver with the expected cost of servicing the
ride request, and for the pay-to-control method we replaced
the compensation with the expected payment to convince the
drivers to relocate. A disadvantage to this approach is that if
the uncertainty in the driver model is high, then the expected
cost of servicing a ride requests and the expected payment can
become prohibitively high, and the proposed algorithms will
opt to not input any control into the system.

Another short-coming of the proposed methods is the scal-
ability with the number of drivers in the systems due to the
combinatorial nature of our proposed approach. The alternative
approach to these problems is to use a flow-model. However,
this approach suffers scalability issues with the number of
regions (stations) in the system. In the flow-model approaches,
the environment is usually divided to a small number of
regions. A promising direction is to utilize the proposed
methods in junction with a flow-model approach, where the
solution to the flow-model approach provides the number of
drivers in each region, and our proposed methods optimally
distribute the drivers within the regions.

VII. CONCLUSION

This paper considered the problem of controlling self-
interested drivers in ride-sharing applications. Two indirect
control methods were proposed and for each, a near-optimal
algorithm was presented. The extensive results show signifi-
cant improvement in the expected wait-time and the maximum
wait-time on real-world ride-sharing data. In addition, we
hope to extend the results to capture vehicles with different
capacities and to different ride-sharing applications.
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APPENDIX

A. Proof of Results

Proof: [Proof of Theorem 3.4] We prove the NP-hardness
of Problem III.3 for minimizing the expected wait-time Jexp
with a reduction from CNF-SAT [29] as follows:

Consider an instance of CNF-SAT with m Boolean variables
and n clauses. Now we construct an instance of Problem III.3.

(i) For each variable xi of the CNF-SAT instance, we create
a set Fi = {vTi , vFi }, where vTi will correspond to
setting the xi to true and vFi will correspond to setting
it to false.

(ii) We let V contain n vertices, one representing each
clause in the SAT formula.

(iii) Let E contain an edge for each v ∈ ∪mi=1Fi and w ∈ V .
(iv) For each e = (v, w) ∈ E, we set its cost to 1 if the literal

v appears in the clause w, and 2 if the literal does not.
Note that the costs are metric.

(v) Let pa(u) = 1/n for each u ∈ V .

Now, we solve the instance of Problem III.3 with the
objective of minimizing the expected wait-time Jexp. If it
returns a subset of ∪mi=1Fi with cost exactly 1, then for vertex
c ∈ V , there is a vertex v in ∪mi=1Fi with edge cost of 1 to c.
Vertex c corresponds to a clause and vertex v corresponds to a
literal in c. This implies that the literal chosen from each subset
in the partition of ∪mi=1Fi gives a satisfying truth assignment
for the SAT instance. If the subset returned has a cost greater
than 1, then there exists a clause w ∈ V for which every
chosen literal has an edge cost of 2. Thus, this clause is not
satisfied and no satisfying instance exists.

Proof: [Proof of Theorem 3.5] The proof of hardness for
Problem III.3 with the objective Jmax follows the same steps
as the proof of Theorem III.4 with exception of step (v) where
pa(u) = 1 for each u ∈ V .

Proof: [Proof of Lemma 3.6] By contradiction assume
there is a conflict in Subroutine II. Therefore, at some step
of the execution, there is a vertex v such that |Nk(v)| = 0.
Prior to this step, |Nk−1(v)| = 1, and there should have been
another vertex w with |Nk−1(w)| = 1, otherwise the algorithm
would have added the vertex in Nk−1(v) to the solution.
Observe that the event of |Nk−1(w)| = 1 and |Nk−1(v)| = 1
shows that at the start of Subroutine II, Ni(w) ∩ Ni(v) 6= ∅
for an i < k. Let q1 ∈ Nk−1(v), q2 ∈ Nk−1(w) and
z ∈ Ni(w) ∩ Ni(v). Without loss of generality, assume that
qi, qj and ql correspond to the expected waiting location of the
drivers i, j and l where no information is provided to them.
Then the cost of servicing v with giving no information to
driver j is c(v, qj) ≤ c(w, qj) + c(w, v) and also note that
c(w, v) ≤ c(w, ql) + c(v, ql) by the triangle inequality.

Therefore, the time to service v by driver j with no
information is c(v, qj) ≤ c(w, qj) + c(w, v) ≤ c(w, qj) +
c(w, ql) + c(v, ql) ≤ 3T . Thus, v would have been marked as
serviced prior to conflict.

Proof: [Proof of Corollary 3.8] We omit the detailed proof
due to space constraints, however, the proof directly follows
from the proof of Lemma III.6 and Theorem III.7 with only

the following modification in the proof of Lemma III.6:

c(v, qj) =
∑
z∈V

pjw(z, ∅)c(z, v) ≤
∑
z∈V

pjw(l, ∅)c(l, w) + c(w, v)

≤ c(w, qj) +
∑
z∈V

plw(l, ∅)c(z, v) +
∑
l∈V

plw(z, ∅)c(z, w)

≤ c(w, qj) + c(w, ql) + c(v, ql) ≤ 3T.

Proof: [Proof of Lemma 4.3] Suppose, T ∗ < c(ei), then
for vertex v ∈ V there is a vertex in q ∈ Q∗, denoted by
`Q∗(v), with c(q, v) ≤ T ∗. Observe that for any sj , sk ∈
Si, we have `Q∗(sj) 6= `Q∗(sk), otherwise, there is an edge
between sj , sk in graph H2

i . This is a contradiction since Si is
a maximal independent set. Therefore, for each vertex in Si,
there is a unique vertex in Q∗. This is a contradiction, since
|Q∗| = m.

B. Drivers’ model

A driver model is a function for evaluating the expected
profit of different locations at each time instance. The driver
model of the drivers in Section V takes into account the
environmental parameters such as arrival rates and drop-off
probabilities and the information shared with the driver. Let
pi(v, u) be the probability that a ride-request at v is assigned
to driver i positioned at u with information Ii. Then, we find
the perception of expected profit of a driver as follows:

Vi(u,Bi, Ii) =
∑
v,w∈V

pd(w|v)
[
pi(v, u)

(
max{0, σ′c(w, v)

− σc(u, v) + Vi(w,Bi − c(u, v)− c(v, w), Ii)}
)]
, (8)

Note that the calculation of the expected profit of drivers
for each time step is computationally expensive, thus we
trained a Random Forest Regressor [30] implemented by [28]
to approximate the values of V for each number of vehicles
in the system with training data over 10000 instances with
work-day Bi of 15 average length rides, fare σ′ = $0.81 per
kilometer [9] and driving cost σ = $0.15 per kilometer [31].

We refer the reader to [4] for a detailed description of the
model and the proposed method for computing pi(v, u).
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Fig. 12. The expected wait-time of ride requests in a system of 80
drivers executing 300 ride requests arriving over time under the partial
information control method.
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Fig. 13. The maximum wait-time of ride requests in a system of 80
drivers executing 300 ride requests arriving over time under the partial
information control method.

TABLE II
INFORMATION SHARING FOR NOISY DRIVERS

Initial Configuration Jexp Jmax

Avg. Std. Dev. Avg. Std. Dev.

Random 2.4 0.3 21.8 10.1
Jammed 43.2 4.0 54.7 6.1

C. Information Sharing in a Horizon

Figure 12 shows the expected response time of a set of
80 drivers responding to 300 requests arriving over time with
the jammed initial configuration. The figure summarizes 100
experiments with 300 randomly generated requests for each
experiment. The lines represent the average and shaded areas
represent the first and third quartiles. In the transient, the
information sharing algorithm improves the expected response
time rapidly. However, in the steady-state the performance is
very similar to the no control case. Thus, the information
sharing method serves to more quickly disperse the drivers
from the initial jammed configuration. The information sharing
algorithm is applied whenever the expected wait time is larger
than 6 minutes. Figure 13 shows the similar experiment with
the objective of minimizing the maximum wait-time. Observe
that the proposed algorithm improves the maximum wait-time
in the initial jammed configuration and maintains the quality
service over the course of responding to 300 requests. To
limit the number of information sharing control inputs to the
system, we only use the information sharing method when
the maximum wait time in the current driver configuration is
larger than 30 minutes.

D. Information Sharing for Noisy Drivers

In this section, we evaluate the performance of the proposed
information control method in the presence of noisy drivers.
We model the uncertainty in the behaviour of the driver (see
Equation (5)) with a zero mean uniform noise Zu at each
vertex where the maximum deviation from Vi(u,Bi, Ii) is
20%. Table II shows the improvement in the expected wait-
time Jexp and the maximum wait-time Jmax for the two
scenarios. The results are the average of 200 trials for each
global objective and each initial configuration of the drivers.
Observe that the proposed algorithms for the information shar-

ing problem with noisy drivers provide similar performance
to the ones with deterministic drivers under random initial
configuration. However, the performance of the algorithms
improve with uncertainty in the behavior of the drivers under
jammed initial configuration. Observe that in the jammed
initial configuration with deterministic drivers, the drivers
initialized at the same location have similar optimal waiting
locations if full-information is provided to them. Therefore,
the algorithms provide the information to only one of the
drivers positioned at each vertex. However, in the presence of
noisy drivers, if full information is provided to multiple drivers
position at the same location, the drivers relocate to different
waiting locations. Therefore, the algorithms opt to provide
information to more drivers resulting in a better distribution
of drivers in the environment.


