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Abstract— We consider a class of submodular maximization
problems in which decision-makers have limited access to the
objective function. We explore scenarios where the decision-
maker has access to only k-wise information about the objective
function; that is, they can evaluate the submodular objective
function on sets of size at most k. We begin with a negative
result that no algorithm using only k-wise information can
guarantee performance better than k/n, where n is the size
of the selected set. We present an algorithm that utilizes only
k-wise information about the function and characterizes its
performance relative to the optimal, which depends on a new
notion of curvature of the submodular function. Finally, we
present an experiment in maximum entropy sampling that
highlight the approximation performance of our proposed
algorithm.

I. INTRODUCTION

Submodular maximization has recently generated interest
in many decision-making problems, as it can provide strong
performance guarantees for computationally difficult prob-
lems. Submodular functions are set functions that exhibit the
property of diminishing returns. Submodular optimization is
a well-studied subject, as these functions model many real-
world problems in controls [1], [2], robotics [3], [4], [5], data
processing [6], [7] and machine learning [8], [9].

Recently, information constraints on decision makers are
explored in distributed submodular maximization, where they
collaboratively maximize a submodular function. Each agent
has access to their own set of actions and can observe a
limited number of decisions made by other agents [10], [11],
[12], [13], [14]. In contrast, we consider the case where each
decision-maker has limited access to the function f itself.

Submodular functions can also effectively model objec-
tives in many sensing applications. Some example appli-
cations include sensor selection for Kalman filtering [15],
[16], [17], surveillance [18] and target tracking [19]. Another
common sensing application is environment monitoring and
event detection [20]. In these scenarios, the goal is to select
a set sensors to maximize the information gained from
observations made by the selected set. In this work, we test
our algorithm on the maximum entropy sampling problem,
similar to the one found in [9].

One practical difficulty in implementing algorithms for
submodular maximization in complex settings is that the
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required function evaluations are computationally expensive.
This can be attributed to the large-scale characteristics of
the system [21], application-specific constraints such as
communication constraints [22], or the type of data the
objective function is evaluating [20]. In its most common
form, the submodular function is treated as a value oracle,
which is repeatedly queried by a greedy strategy to maximize
the objective function. Therefore, it is inherently assumed
that one can evaluate the function for sets of any size. In
practice, however, it may only be possible to evaluate the
functions on smaller set sizes due to computation cost or
limitations imposed. Consider the setting where a company
is selecting locations for several new retail stores. The total
revenue received by a set of store locations can be modelled
as a submodular function: As more stores are added, the
marginal benefit of adding a new store is reduced. In the
classical greedy algorithm for submodular maximization, we
assume we have access to a value oracle to evaluate subsets
of store locations. Armed with this oracle, we iteratively
add a new store sk to the existing set {s1, . . . , sk−1} by
selecting the location sk that maximizes the marginal benefit
f(s1, . . . , sk−1, s)− f(s1, . . . , sk−1). To evaluate this quan-
tity, the oracle must accurately model the revenue of k stores,
which can be challenging in practice due to their complex
interactions: for example, sk may reduce the revenue at some
si, which then may affect some other store’s revenue.

Motivated by the lack of access to the full value oracle
in practical settings, in this paper, we seek to determine
how well we can approximate the maximum value of a
submodular function when we have access to a limited set
of function values. Suppose we can access function values
for single elements f(si) and for pairs of elements f(si, sj).
We refer to this as pairwise information. In the motivating
example, this corresponds to knowing the total revenue for a
single store and the total revenue for any two stores together
and nothing more. Note that this restriction on information is
severe. A submodular function on a base set of N elements
can be represented as a look-up table with 2N values. If only
singleton and pairwise information are available, this means
we have access to only N(N +1)/2 values. In this work we
focus on the case of k-wise information, where we can eval-
uate any set of size at most k. Greedy algorithms have also
been applied to submodular maximization in applications
including 1) large-scale distributed coverage, where low-
power robots seek locations that maximize the area covered
by their sensors [23], [24]; 2) large-scale transportation
networks, where sensing infrastructure locations must be
selected to best observe large traffic networks [25] (a similar



problem is explored in detail in the simulation results of this
paper); and 3) or sensor selection for state estimation of a
linear dynamical system [26].

In these applications, function evaluations may be limited
due to computational resources, modelling challenges, sensor
limitations, or communication constraints. For example, in
sensor coverage, a function evaluation requires an agent to
compute the set difference between their own sensor footprint
and the union of all other sensor footprints. This requires
accurate position information for all other agents. In contrast,
pairwise function evaluations require only the distance to
each agent (provided by a range sensor), and computation
is limited to the intersecting two sets. In transportation
networks, accurately modelling the interactions of a large
number of agents poses similar challenges to the revenue
example above. This paper sheds light onto the fundamental
question of how well one can optimize a submodular function
when given only limited access to its values.

Statement of Contributions: We consider the submodular
maximization problem where information about the under-
lying function is limited, in that we only have access to
evaluations of sets of size at most k. Let X be the base set
of elements we are optimizing over and n be the maximum
number of elements that can be in our solution set. We
begin with a negative result; namely, there exists a class
submodular functions for which no algorithm subject to this
information constraint can guarantee performance better than
k/n of optimal. In light of this, we propose a class of
functions where we can upper bound the marginal gains of
the objective function in terms of k-wise information. We
proposed a simple simple greedy algorithm that utilize only
k-wise information. We introduce a new notion of curvature
named the k-Marginal Curvature which capture “how k-wise
submodular” a function is. We then adapt a previous result
for approximate value oracles to prove performance bounds
for the algorithm in terms of our new notion of curvature. The
new notion of curvature provides a new way to understand
submodular functions and may be of independent interest.
Finally, we show experimental results that highlights the
effectiveness of the algorithm.

An extended version of this work, which includes all
proofs is available in [27].

II. PROBLEM DEFINITION AND INAPPROXIMABILITY

Let X be a set of elements and 2X be the power set of
those elements. A set function f : 2X → R≥0 is submodular
if the following property of diminishing returns holds: For
all A ⊆ B ⊆ X and x ∈ X\B we have

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

We refer to f(A ∪ {x}) − f(A) as the marginal return of
x given A, denoted by f(x|A). For simplicity, we denote
the objective value of a singleton f({x}) by f(x). We also
denote marginal return of x with respect to a singleton set
A = {y} by f(x|y) and refer to it as the pairwise marginal
return of x given y. In addition to submodularity, throughout
this paper, we assume that the functions satisfy

1) Monotonicity: For all A ⊆ B ⊆ X , f(A) ≤ f(B),
2) Normalization: f(∅) = 0.
Another property of submodular functions we utilize is the

notion of curvature [28], [29]. The curvature of a submodular
function f is defined as

c = 1− min
A⊆X,x∈X\A

f(x|A)

f(x)
. (1)

Note that if the value of c = 0, the function is modular.
We start by recalling the problem of maximizing a sub-

modular function over the uniform matriod. Let X be a set
of elements and let f : 2X → R≥0 be a monotone normal-
ized submodular function. We wish to solve the following
problem:

max
S⊆X

f(S) (2)

s.t. |S| ≤ n.

This is the classical submodular maximization problem that
can be solved to an approximation factor of (1− 1/e) using
the following simple greedy algorithm, see [30]:

xi ∈ argmax
x∈X\Si−1

f(x|Si−1) (3)

Si = Si−1 ∪ {xi},

where i is the iteration of the algorithm and Si is the solution
produced after i iterations. In what follows, we often refer to
this strategy as the full information greedy algorithm. A key
focus of our contributions is to understand the limitations
of algorithms that only have access to partial information
about the objective function. We make this precise in the
next definition.
Definition II.1. (k-wise Information) Given a submodular
function f , the k-wise information set is defined as the set
of tuples {(S, f(S))|S ⊆ X, |S| ≤ k}. When k = 2, we
refer to this as pairwise information.

In this work we consider algorithms that take as input a
base set of elements X , a function f : 2X → R≥0 as a
black box, and a number n and which outputs a subset of S
with cardinality |S| ≤ n in finite time. An algorithm that has
access to k-wise information can utilize the black box for f
only to evaluate f on sets of size k or less. We denote the
class of such algorithms by Πk-wise, or Πpairwise when k = 2.

The main objective that we have in mind is to study
Problem 2 with such limitations. We now present a negative
result that addresses the inapproximability of this problem.
Proposition II.2. Consider Problem 2 with k-wise informa-
tion. Then for every algorithm π ∈ Πk-wise, there exists a
normalized, monotone and submodular function f : 2X → R
with |X| ≥ 2n such that

f(Sπ) ≤ k

n
f(S∗),

where Sπ is the solution constructed by π and S∗ is the
optimal solution.

Proof. We begin by constructing a normalized, monotone
submodular function f . Consider a set X that is partitioned



into two disjoint sets X = V ∪ V ∗, where |V ∗| = n
and |V | ≥ n. We define the function f : 2X → R≥0 as:

f(S) = min{|S ∩ V |, k}+ |S ∩ V ∗|. (4)

This function is normalized and monotone, and given k,
it assigns a value of k to all sets of size k. The set V can be
thought of as the general set and V ∗ is a special set where
you are guaranteed to get value if you selected an element
from V ∗. The function, counts the number of elements of S
that are in V ∗. However, for all sets S where |S| ≤ k get
mapped to their cardinality.

We now show that f is also submodular. Consider any two
sets A ⊂ B ⊂ X and an element x ∈ X \B. We show that

f(x|A) ≥ f(x|B).

First notice that f(x|A) and f(x|B) are each either 0 or 1,
since adding an element can increase the function value by
at most one. There are two cases to consider:

Case 1 (x ∈ V ∗): In this case f(x|A) = 1, since A∪ {x}
has one more element in V ∗ than A. Since f(x|B) ≤ 1, the
result follows.

Case 2 (x ∈ V ): We assume that f(x|B) = 1, as
otherwise, the result holds. Since f(x|B) = 1 and x ∈ V ,
we must have |B∩V | < k. But this implies that |A∩V | < k
since A ⊆ B. Thus f(x|A) = 1 and the result holds.

For any set S with |S| ≤ k we have that f(S) = |S| which
reveals no information on which elements of S are in V or
V ∗. Hence, for any algorithm in Πk-wise, the values returned
by the black box for f are independent of the choice of V
and V ∗. Given an algorithm π in Πk-wise, we can provide
the black box containing k-wise information (i.e., a black
box implementing f(S) = |S|) and observe the resulting
solution Sπ . We then select any V ∗ ⊂ X of size n such that
Sπ ∩V ∗ = ∅. Equation (4) then defines a function such that
Sπ is a solution returned by π with value f(Sπ) = k, and
S∗ = V ∗ is the optimal solution with value f(S∗) = n. This
proves the desired result. ■

This result highlights the challenges that arise under k-
wise information constraints. In the following sections, we
characterize functions where the marginals with respect to
sets of size k, or smaller, are informative of the higher order
marginals using new notions of curvature.

III. LIMITED INFORMATION ALGORITHM

Our main objective in what follows is to leverage k-wise
information to find an approximate solution to Problem 2.

A. Optimistic Algorithm

A natural strategy is to greedily select elements that
maximize the estimated marginal return using only k-wise
information. First, given S ⊆ X and x ∈ X\S note that

min
A⊆S,|A|<k

f(x|A) ≥ f(x|S), (5)

which holds by submodularity of f , because for all A ⊆ S,
we have f(x|A) ≥ f(x|S). We will define a simple estimate
of the marginal returns of f as the left hand side of (5):

f̄k(x|S) := min
A⊆S,|A|<k

f(x|A).

The k-wise marginal for all A ⊆ S upper bounds f(x|S)
and hence we choose the minimum as it is the best available
estimate of the true value of f(x|A). In a nearly identical
style to the classical greedy strategy, we now define an
algorithm as follows:

xi ∈ argmax
x∈X\Si−1

f̄k(x|Si−1) (6)

Si = Si−1 ∪ {xi}.

Throughout this paper, we will refer to (6) as the optimistic
algorithm. In essence, the optimistic algorithm aims to greed-
ily select elements with maximum potential marginal return.

B. Approximate Value Oracles

To characterize the performance of the optimistic algo-
rithm given by (6), we consider the problem through the
lens of maximizing a submodular objective function via
surrogate objective functions. Following [29], we will discuss
how to determine performance guarantees when using such
surrogates.

Let S ⊆ X be the result set produced by an al-
gorithm. Suppose we have an ordering of the elements
of S = {x1, . . . , xn}, then we work with the set
Si = {x1, . . . , xi}. Now let {xg

1, . . . , x
g
n} ⊆ X be such

that each xg
i maximizes the marginal return of f conditioned

on Si−1, i.e.,

xg
i ∈ argmax

x∈X\Si−1

f(x|Si−1) (7)

The set {xg
1, . . . , x

g
n} represents the elements that a greedy

algorithm with full information about the objective f would
have selected if it had previously selected Si−1. Using
these values, we can now measure the quality of a given
algorithm’s choices compared to that of an algorithm with
full information about the objective. We do this by finding
αi ∈ R+, for i ∈ {1, . . . , n} such that

αif(xi|Si−1) ≥ f(xg
i |Si−1). (8)

By the greedy choice property of xg
i , we have that

f(xi|Si−1) ≤ f(xg
i |Si−1).

Hence, αi ≥ 1, for all i ∈ {1, . . . , n}. From this point on,
we call each αi the approximation factor associated with xi.

In the general framework proposed in [29], the objective is
to greedily maximize multiple surrogate objective functions,
and to use these to generate approximate solutions. For our
problem of submodular maximization with only pairwise
information, we simply maximize using a single surrogate
function f̄k(x|S). We provide a simplified version of [29,
Theorem 1] as follows.



Theorem III.1. Suppose that S = {x1, . . . , xn} ⊆ X is the
set of elements selected by an algorithm and {α1, . . . , αn}
are the set of approximation factors that satisfy (8). Let S∗

be the optimal solution to Problem 2. Then

f(S) ≥
(
1− e

− 1
n

∑n
i=1

1
αi

)
f(S∗). (9)

Note that Theorem III.1 relies on f being a normalized,
monotone and submodular function, and hence the result
can be applied to any algorithm for Problem 2, not just
algorithms that only have access to k-wise information. An
interesting remark about Theorem III.1 is that the perfor-
mance bound depends essentially on the average of the
approximation factors. Some of these factors could be large
compared to the others, but as long as most of them are
small, good performance is maintained.
Remark III.2 (On The Ordering Of The Result Set). As
described in this section, we impose an ordering of the
elements produced by an algorithm. From the proof provided
in [27], the result holds for any ordering. Therefore, the
tightest bound produced by an algorithm is achieved by
taking the maximum over all permutations of the output set
of the algorithm. From a practical perspective, computing the
bound for every permutation is infeasible. The algorithms we
present later in this work, select elements iteratively. There-
fore, the ordering we impose on elements in the resulting
solution is the order that the elements were selected.

C. Optimistic Algorithm Approximation Performance

We aim to provide approximation guarantees for the
optimistic algorithm. To give an intuition for what we are
about to present, we consider the following example.

Example III.3. Consider the scenario depicted in Figure 1.
Suppose we only have access to pairwise information i.e.,
k = 2, here we wish to select four sensors to maximize
the area of their combined footprints. One of the simplest
algorithms that satisfies the pairwise information constraint
is the uninformed greedy strategy:

xi ∈ argmax
x∈X\Si−1

f(x) (10)

Si = Si−1 ∪ {xi}.

We refer to this algorithm as uninformed because it only
use the most basic information about f which it’s values
evaluated on single elements. For the uninformed greedy
strategy, the scenario described in Figure 1 could potentially
lead to poor performance. This strategy cannot distinguish
between its choices and therefore could select four sensors
that almost perfectly overlap with each other (i.e., in the
same pile), resulting in a low objective value. Alternatively,
if we had used the optimistic algorithm, once one element
is selected from a pile, the 2-wise upper bound on the
other elements in a pile would be low. In later iterations,
the optimistic algorithm would avoid selecting elements in
piles where elements have been previously selected from.
Interestingly, we see that for each i, the difference between
f(xi|Si−1) and f̄2(xi|Si−1) is small. We notice that in

Fig. 1. Example sensor coverage configuration where the optimistic
algorithm performs better than uninformed greedy strategy

these scenarios, the value of f̄2(xi|Si−1) provides accurate
information about the value of f(xi|Si−1). This is the idea
that we want to capture in the following result.

Theorem III.4. Let Si−1 ⊆ X be the partial solution of
optimistic algorithm after (i− 1) iterations, and let xi ∈ X
be the element selected during the ith iteration. Then we
have that

αi =

{
1 i ≤ k
f̄k(xi|Si−1)
f(xi|Si−1)

i > k
(11)

satisfy (8) for all i ≤ n.

Proof. Let xg
i be the true greedy choice at iteration i given

Si−1. For i ≤ k we have that f(xi|Si−1) = f(xg
i |Si−1)

by the definition of f̄k(xi|Si−1). Therefore we have, α1 =
· · · = αk = 1. The minimum possible approximation factor
we have can be written as

αmin
i =

f(xg
i |Si−1)

f(xi|Si−1)
(12)

Any approximation factor αi such that αi ≥ αmin
i will satisfy

equation (8). We will now upper bound αmin
i as follows.

αmin
i =

f(xg
i |Si−1)

f(xi|Si−1)

≤ f̄k(x
g
i |Si−1)

f(xi|Si−1)
(13)

≤ f̄k(xi|Si−1)

f(xi|Si−1)
, (14)

where equation (13) holds by the definition of the upper
bound. Equation (14) holds by the greedy choice property
of the k-wise optimistic algorithm. Therefore, the right hand
side of (14) is a valid approximation factor, which we set αi

to, concluding the result. ■

The following corollary is an immediate consequence.

Corollary III.5. Let S ⊆ X be the solution produced by the
optimistic algorithm and Si−1 ⊆ S be the partial solution
after (i − 1) iterations of the optimistic algorithm and let



xi ∈ S be the element selected at the i-th iteration, then we
have

f(S) ≥

(
1− e

− 1
n

(
k+

∑n
i=k+1

f(xi|Si−1)

f̄k(xi|Si−1)

))
f(S∗). (15)

We see that the approximation performance of the algo-
rithm is dictated by the sum in the exponent. We can interpret
the exponent as the mean of the set{

1, 1,
f(x3|S2)

f̄k(x3|S2)
, . . . ,

f(xn|Sn−1)

f̄k(xn|Sn−1)

}
.

This implies that, to get adequate performance from the
optimistic algorithm, we need the value of f̄k(xi|Si−1) to
be close to f(xi|Si−1) on average.

The term f(xi|Si−1)

f̄k(xi|Si−1)
is closely related to the traditional

notion of curvature, leading us to the next definition.
Definition III.6 (k-Marginal Curvature). The k-marginal
curvature of f given S ⊆ X and x ∈ X\S is defined as

ck(x|S) = 1− max
A⊆S,|A|<k

f(x|S)
f(x|A)

. (16)

Note that ck(x|S) = 1− f(x|S)

f̄k(x|S)
.

Remark III.7. This k-marginal curvature characterizes the
relationship between the values of the k-wise upper bounds
f̄k(x|S) and true values of f(x|S). Note that there exist
functions where the values of the k-marginal curvatures can
be close to 0 even though the value of traditional curvature is
close to 1. The sensor coverage function, described in Figure
1, is an example of a function where the traditional curvature
is close to 1 and the values of the 2-marginal curvatures are
close to 0.

This allows us to rewrite (15) as follows:

f(S) ≥
(
1− e−

1
n (k+

∑n
i=k+1 1−ck(xi|Si−1))

)
f(S∗). (17)

We characterize the worst-case performance in terms of the
average of the k-marginal curvatures, which capture the
intuition from Example III.3.

We can now compare the performance of the k-wise
optimistic strategy when more information is provided to the
algorithm, using the k-marginal curvatures. We see that

ck(x|S) ≥ cl(x|S),

for all l > k. Therefore, (17) will provide a tighter bound
for higher values of k.

D. Computational Cost of k-wise Optimistic Algorithm

Having access to k-wise information provides us with
stronger approximation bounds, but we trade off computation
performance. We are required to compute the minimum
marginal overall subsets A ⊆ Si−1, where |A| < k for
each x ∈ X . When k ≤ |Si|, we need to check

( |Si|
k−1

)
subsets of S to find the minimum. This becomes expensive
to do computationally as Si−1 grows larger. If k = 3,
the computation of each marginal is quadratic in |Si−1|
and can be expensive to compute. In general, a simple
implementation of the k-wise optimistic algorithm has a

time complexity of O
(
|X| · n ·

(
n

k−1

))
. From a practical

perspective, we can actually compute the 2-wise optimistic
algorithm efficiently which is discussed [27].

E. Constant Factor Approximation

From the analysis in Sections III-C, we notice that the
performance bound for the algorithm uses the function
evaluations of the the elements selected in the set. This may
not be desirable in some applications due to the fact that the
user will have to run the algorithm (which could potentially
be expensive) to know the performance of the optimistic
algorithms. We can provide a bound that is weaker but does
not require us to know what x1, . . . , xn ∈ X are before
computing.

Let us define a similar notion of curvature as k-marginal
curvature, closer to the tradition notion (1).

Definition III.8 (Total k-Marginal Curvature). Let f be a
submodular function then, the curvature c̄k of f is defined
as

c̄k = 1− min
S⊆X,x∈X\S

f(x|S)
f̄k(x|S)

. (18)

Using this notion, we can follow a similar process to
arrive at a approximation bound for the k-wise optimistic
algorithm; we state this result next.

Theorem III.9. Let S ⊆ X be the solution produced by the
k-wise optimistic algorithm, and S∗ ⊆ X be the solution to
Problem 2 then we have

f(S) ≥
(
1− e−(1−

n−k
n c̄k)

)
f(S∗) ≥

(
1− e−(1−c̄k)

)
f(S∗).

(19)

Proof. Let S = {x1, . . . , xn} be the solution produced by
the k-wise optimistic algorithm, and Si = {x1, . . . , xi}. Let
xg
i be the true greedy as defined in (7). Let α1, . . . , αn be the

approximation factors for the solution S. For i ≤ k we have
that xi = xg

i by the definition of f̄k(xi|Si−1). Therefore
we have, αi = 1 for all i ≤ k. The minimum possible
approximation factor we have can be written as

αmin
i =

f(xg
i |Si−1)

f(xi|Si−1)
. (20)

Any approximation factor αi such that αi ≥ αmin
i will

satisfy equation (8). We will now upper bound αmin
i as

follows for i > k:

αmin
i =

f(xg
i |Si−1)

f(xi|Si−1)
≤ f̄k(x

g
i |Si−1)

f(xi|Si−1)
(21)

≤ f̄k(xi|Si−1)

f(xi|Si−1)
≤ max

S̄⊆X,x∈X\S̄

f̄k(x|S̄)
f(x|S̄)

,

(22)

where (21) holds by the definition of the k-wise upper bound,
and (22) holds by the greedy choice property of the k-wise
optimistic algorithm. To utilize Theorem III.1 for producing



an approximation bound, we compute
1

αi
=

1

maxS̄⊆X,x∈X\S̄
f̄k(x|S̄)
f(x|S̄)

= min
S̄⊆X,x∈X\S̄

f(x|S̄)
f̄k(x|S̄)

= 1− c̄k, (23)

where (23) holds since f̄k(x|S̄) ≥ f(x|S̄) for all S̄ ⊆
X,x ∈ X\S̄ and (23) holds by the definition of total k
marginal curvature. We will now substitute in each 1

αi
into

Theorem III.1 and simplify to arrive at the approximation
bound:

f(S) ≥
(
1− e−(1−

n−k
n c̄k)

)
f(S∗) ≥

(
1− e−(1−c̄k)

)
f(S∗),

where the second inequality holds since 1− n−k
n c̄k ≥ 1− c̄k,

concluding the proof. ■

Theorem III.9 shows that the k-wise optimistic algorithm
provides a constant factor approximation for Problem 2
which is dependent on this new notion of curvature. Al-
though, the performance bounds are not as strong as Corol-
lary III.5, this fact does show that the fundamental quantity
that underlies the performance of the k-wise optimistic
algorithm is the total k marginal curvature. We do not provide
experiments showing the approximation bounds produced by
Theorem III.9 since the bound produced by Corollary III.5
is stronger.

IV. SIMULATION RESULTS

To illustrate the performance of our proposed k-wise
optimistic algorithm, we consider the problem of maximum
entropy sampling problem with Gaussian Radial Basis Func-
tion (RBF) Kernels [9], and make a comparison to the full
information greedy strategy.

A. Maximum Entropy Sampling Problem
In maximum entropy sampling, we are given N random

variables and the goal is to select a subset of size n that
is most informative. This is often done by maximizing
the Boltzman-Shannon entropy [31]. Let C ∈ RN×N be
the covariance matrix of the N random variables, where
each random variable has a unique row and column in the
covariance matrix. We let C[S, T ] denote the principle sub-
matrix of C with rows indexed by S ⊆ [N ] and columns
indexed by subset T ⊆ [N ]. We wish to select a set of indices
S ⊆ [N ], such that the corresponding random variables have
maximum entropy. Assuming that the random variables are
jointly Gaussian distributed, this problem is equivalent to
selecting a set S of size n to maximize

f(S) = log det(C[S, S]).

Following [9], we assume that C takes the form of a Gaussian
RBF kernel matrix and associate each random variable with
a corresponding vector v1, . . . , vN ∈ Rd. Then, each entry
of C is defined as Ci,j = exp(−γ∥vi − vj∥2) where γ is
a scaling parameter. This function is thoroughly explored
in [9]. The function f is a normalized, monotone and
submodular when the minimum eigenvalue of C is greater 1
which can be done by scaling C.

B. Results

To compare the k-wise optimistic algorithm to the full
information greedy strategy we computed 10 covarience
matrices by randomly generating 100 uniformly distributed
points in v1 . . . , v100 ∈ [0, 3)× [0, 3). We then executed the
full information greedy algorithm, and the k-wise optimistic
algorithm for k = 2, 3, 5 on f using the 10 different
covarience matrices. We selected up 20 to elements and
computed both the objective value and performance bound
after n iterations. Figure 2 highlight the effectiveness of
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Fig. 2. Average entropy of n variables selected by algorithms. 5,3,2-
wise algorithms refer to the k-wise optimistic algorithms. The errors bars
represent 1 standard deviation from the mean value.

the k-wise algorithm relative to greedy strategy with full
access to the objective function. We see that with access to
3 and 5-wise information the optimistic algorithm is nearly
as effective as the full information greedy strategy. The 2-
wise greedy strategy has slightly weaker performance, but
for low values of n is competitive with the full information
greedy strategy.

Figure 3 looks at the average performance bound as a
function of n. We see when k increases, the optimistic
greedy strategies performance degrades much slower as
n increases. The guaranteed approximation ratios for the
pairwise optimistic strategy degrade rapidly as n increases.
On the other hand, even though the performance guarantees
degrade as n increases, we see from Figure 2 that the
performance relative to the greedy strategy is not degrading.
This suggests that the bounds produced by Corollary III.5
can be loose relative to the average performance. This is
a common observation made when experimentally testing
greedy strategies for submodular maximization [9].

V. CONCLUSIONS

In this work we introduced the problem of maximizing
a submodular function with limited function access. We
showed that for a general submodular function, we cannot
guarantee strong approximation guarantees. In light of this
we propose a simple algorithm that leverages only k-wise



5 10 15
n

40

50

60
ap

pr
ox

im
at

io
n

ra
tio

(%
)

5-wise
3-wise
2-wise

Fig. 3. Average approximation ratio for each k-wise optimistic algorithms
after selecting n random variables. Bounds were computed using Corol-
lary III.5.

information that can provide a constant factor approximation
to the problem. We also see in practice, that the k-wise
algorithms can be nearly as effective as the fully informa-
tion greedy strategy. The optimistic algorithm is relatively
simple, and we are interested in knowing if we develop a
more sophisticated approach, could we provide improved
performance guarantees for the problem. In the future we
would like to explore how the limited information greedy
strategy can be extend to the distributed scenario described
in [10], [11].
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