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Abstract— Human supervisors in multi-robot systems are
primarily responsible for monitoring robots, but can also
be assigned with secondary tasks. These tasks can act as
interruptions and can be categorized as either intrinsic, i.e.,
being directly related to the monitoring task, or extrinsic, i.e.,
being unrelated. In this paper, we investigate the impact of these
two types of interruptions through a user study (N = 39), where
participants monitor a number of remote mobile robots while
intermittently being interrupted by either a robot fault correc-
tion task (intrinsic) or a messaging task (extrinsic). We find that
task performance of participants does not change significantly
with the interruptions but depends greatly on the number of
robots. However, interruptions result in an increase in perceived
workload, and extrinsic interruptions have a more negative
effect on workload across all NASA-TLX scales. Participants
also reported switching between extrinsic interruptions and the
primary task to be more difficult compared to the intrinsic
interruption case. Statistical significance of these results is
confirmed using ANOVA and one-sample t-test. These findings
suggest that when deciding task assignment in such supervision
systems, one should limit interruptions from secondary tasks,
especially extrinsic ones, in order to limit user workload.

I. INTRODUCTION

Many of the systems built for assisting humans in remote
supervision of multiple robots are developed around the
assumption that human operators will be solely working
on the supervision task [1], [2]. However, as robot tech-
nology advances, the reliance on strict human supervision
is reduced. This has enabled the development of semi-
autonomous robotic systems where the robots can execute
most of their tasks autonomously, only requiring human
assistance when they encounter some critical states or an
unforeseen fault [3], [4].

In a common implementation of such systems, there are
several different tasks that a supervisor can be working on (or
switching between) at a given time. Their primary task is to
monitor the robots looking for fault status in their operation.
As a secondary task, they may be responsible for resolving
faults when robot’s automatic correction procedure fails [5].
Additionally, in a practical scenario, a supervisor may need
to work on tasks unrelated to active robot monitoring, such
as coordinating with colleagues. However, even though these
secondary tasks are parts of supervisor’s job, they can act
as interruptions as they take the supervisor’s attention away
from the primary task of monitoring the robots. This can
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Fig. 1: Multi-robot supervision user study setup: a) A partici-
pant monitoring multiple robots using the web-based interface, b)
Clearpath Jackal robots used for the study.

be a problem, especially in the case of time-critical systems
(e.g., robots navigating on a road network).

In the multi-robot supervision literature, it is well-
established that controlling a large number of robots neg-
atively affects supervisor’s attention and increases their
workload [1], [6]. Researchers have used approaches like
implementing different communication strategies [7], using
task coordinators [8] or adjusting robot behaviors [9] to
tackle this problem. Several studies from outside the robotics
literature have compared the impact of interruptions on
workload based on their relation to the primary task [10]–
[12]. However, there is a gap in research in understanding
the role of interruptions in multi-robot supervision systems,
and the significance of differentiating interruptions based on
their relation to the primary task of robot supervision.

In this paper, we investigate the effects of two types of
interruptions in a multi-robot supervision system. We con-
sider a system where users primarily work on a monitoring
task (reporting faults in robot behaviour) and intermittently
face either of the two types of interruptions: 1) Intrinsic:
ones related to the primary task, and 2) Extrinsic: ones
unrelated to the primary task. Given a primary task, we
define intrinsic interruptions as the ones that are closely
related to the primary task. In a robot supervision task,
intrinsic interruptions can include teleoperating the robot or
resolving robot failures. We define extrinsic interruptions as
those where the supervisor works on something completely
unrelated to the primary task environment. This can either be
another part of their job or simply an unexpected distraction.

We investigate the effects of the two types of interruptions
using a user study with a simulated robot supervision task
(Fig. 1). The main findings of this work are as follows. We
found the number of robots monitored by the participants



to be a good predictor of their performance, both in terms
of percentage fault reported (F = 20.23, p = 0.0) and
average response time (F = 852, p = 0.0). Even though
the interruptions do not significantly affect performance, they
do result in an increase in participants’ perceived workload
on most of the NASA-TLX scales. Pairwise comparison
of different test conditions reveal a significant increase in
participants’ workload, with extrinsic interruptions resulting
in higher workload than intrinsic ones.

The rest of the paper is organized as follows: In Section II,
we present some of the existing work on interruptions in
workplace, and in multi-robot supervision tasks. In Sec-
tion III, we describe different elements of our study design
and in Section IV, the results are presented. The paper ends
with Section V discussing the findings and implications.

II. BACKGROUND AND RELATED WORK

In this section, we discuss existing work on interruptions
in workplace and their role in human–multi-robot systems, as
well as the relevance of intrinsic and extrinsic interruptions.

A. Human Supervision of Multiple Robots

Even though robotic systems are rapidly increasing their
autonomous capabilities, human supervision is still consid-
ered necessary to ensure that task goals are met during
unanticipated events [13], [14]. There exists motivation to
decrease the number of supervisors required in large multi-
robot systems [15], but doing so negatively impacts supervi-
sors’ workload and performance [1], [16], [17].

The existing research primarily attempts to address this
problem from the robotics side of the system, for example, by
implementing different communication strategies [7], using
task coordinators [8], adjusting robot behaviors [9] or using
frameworks such as sliding autonomy [18], [19]. However,
human factors also play an important role in governing
system performance, and it is crucial to design the system
in a way that results in effective human operation.

Interruptions are one of the common issues that can disrupt
the ability of operators to maintain attention on a given
task. Studies have shown that interruptions during a task
can negatively impact user workload and increase error rates
[20], [21]. However, the role and impact of interruptions in
human–multi-robot systems has not been studied adequately
in the literature. This is especially true for remote multi-robot
supervision tasks where we naturally have different kinds of
interruptions based on their relation to the monitoring task.

B. Interruptions in the Workplace

Studying interruptions faced by humans is an important
area of research in many applications as they can negatively
affect the performance and workload of workers [20], [21].
Interruptions can be simply defined as unanticipated disrup-
tion in one’s primary task and diversion of attention to a
related or unrelated secondary task [22]. Interruptions can
originate externally, from the environment (noise, notifica-
tions or other external factors), or they can arise internally,
from within the human (due to, for example, boredom or

non-task-related thoughts). They can also be characterized
based on their timing, relevance and attentional requirement
[23]–[25].

In the literature on workplace interruptions (mostly in
healthcare applications), researchers have studied different
types of interruptions based on their relation and relevance
to the primary task that workers are performing [10], [11].
Researchers have used the term extraneous interruptions to
describe those that do not directly pertain to the primary
task, and such interruptions are found to be one of the most
common types faced by workers [12].

C. Interruptions in Multi-Robot Supervision
When looking at the multi-robot supervision literature,

we notice a gap in the research on how different types of
interruptions affect system performance and user workload.
With this paper, we aim to bridge this gap by differentiating
different secondary tasks that supervisors need to perform in
a multi-robot system into intrinsic and extrinsic interruptions,
as ones related and unrelated to the primary task respectively.

This distinction also bears similarities with notion of
different types of cognitive loads studied under the Cognitive
Load Theory (CLT). The theory distinguishes between three
different types of cognitive load: Intrinsic (load from the task
itself), Extrinsic/Extraneous (load not related to the task but
induced by its design), and Germane (load from learner’s
deliberate use of cognitive strategies) [26], [27]. This dis-
tinction provides further motivation to explore significance of
differentiating interruptions based on their relationship with
the primary task.

III. METHODOLOGY

In this section, we provide details of our user study,
including the application designed for robot monitoring,
different tasks that participants encounter, and our study
hypotheses. The study adopts a mixed factorial design in
which the type of interruption (intrinsic or extrinsic) is
the within-participant factor, while the number of robots
to be monitored (4 or 9) is the between-participant factor.
These numbers are selected based on a pilot study, which
ensures that the difficulty level of the monitoring task ranges
from easy to moderately difficult, and aligns with the exist-
ing understanding of human psychological attention limit.
Moreover, similar numbers have been used in prior studies
on human-multi-robot systems across various applications
[28]. We recruited 39 participants in total distributed evenly
between 4 and 9 robots cases. The participants of the study
consisted of university students and individuals who were
recruited via personal networks. None of the participants
had prior experience using a robot monitoring interface.
The study has been reviewed and received ethics clearance
through a University of Waterloo Research Ethics Committee
(ORE#43628).

A. Study Design
A web-based application is designed to conduct the

study. The application replicates a basic setup of a remote-
monitoring interface, with camera feed from multiple robots



Fig. 2: Interface for monitoring. The grid of robot cards on the left side shows video information from all robots. On the right, there is
an enlarged visual of the selected robot. On the top, there is a notification panel for incoming secondary tasks.

in one half of the screen, and an enlarged view of a single
robot in the other half. Participants can select any one robot
for an enlarged view for detailed inspection and for reporting
faults in that robot. The application also displays notifications
for any interruption that may arrive, which in our case are
the prompts for secondary tasks based on the test condition.

Each robot’s camera feed shows a pre-recorded video from
a camera mounted on the robot, navigating in an indoor
building environment with light foot traffic (see Fig. 1(b)).
The robot navigation was intentionally corrupted to include
faults, which were designed to appear as one of three
behaviors in robots’ movements: 1) Stops moving, 2) Moving
in circles at a spot, and 3) Turning side-to-side without
moving forward. The faults were randomly introduced during
robot navigation with their start and end times determined
randomly as well. Each fault lasted for at least 20 seconds
and there was at least 30 seconds between two faults. In
the videos used for the study, the robots experienced faults
between 1 and 5 times, with an average fault duration of 30
seconds. A robot was in a fault state for about 29.5% of the
total duration.”

At any given time during the experiment, a participant can
be working on one of the following three tasks:

1) Robot monitoring: This is the primary (default) task
during the experiment, which requires participants to monitor
all the robots shown in the interface (Fig. 2), and detect if
any of the robots is in fault state. Once a fault is detected,
participants need to select that robot and press the ‘Report
Fault’ button. This action is programmed to fix the fault, and
its camera feed is refreshed to show the robot navigating
normally again. Participants are required to report all the
faults that appear during the experiment and as soon as
possible from their appearance.

2) Fault Correction: During this secondary task, partici-
pants are shown a video feed of a potentially faulty robot and
are required to answer questions about it (see Fig. 3). This
acts as an intrinsic interruption closely related to the primary

Fig. 3: Interface for fault correction task. On the left, participants
see a robot potentially in a fault state. On the right, there are several
questions to characterize the fault.

monitoring task while not requiring any technical knowledge
about the robot operation. Once all questions are answered
correctly, the participant is taken back to the monitoring task.
For the study, videos for this task are randomly selected from
a pool of 15 videos each showing a different type of fault
(or no fault at all).

3) Messaging Task: This secondary task represents the
extrinsic interruption during which participants are required
to write a message to their colleagues. The message is
already displayed on the screen and participants need to type
it again in the space provided (see Fig. 4). Once the message
is typed, the participant can press the ‘Send message’ button
and is then taken back to the monitoring task. For the study,
messages for this task are randomly selected from a pool of
15 messages, each with 85 or fewer characters.

B. Procedure

Each participant first goes through a training session and
then completes the experiment under three different test



Fig. 4: Interface for the messaging task. On the left, participants
see a pre-written message to be sent. On the right is a text box to
type the message and the send button.

conditions, which decide the type of interruption they will
be facing. The order of these three conditions is counter-
balanced. Therefore participants see these conditions in a
different order, with a minute-long break between conditions.
The three conditions are described below.

1) Condition-0 (No interruption): In this condition,
no interruption occurs and participants work on the robot
monitoring task for the whole duration.

2) Condition-1 (Intrinsic interruption): In this condition,
participants are shown a notification after they spend certain
amount of time on the monitoring task. In this condition,
clicking a notification takes the participant to the fault
correction task screen.

3) Condition-2 (Extrinsic interruption): Under this
condition, the experiment is conducted in a similar way
as Condition-1, except that clicking notifications takes the
participant to the messaging task screen.

Under each condition, participants work on the monitoring
task for 2 minutes, during which they may receive notifica-
tions for interruptions in the form of secondary tasks. These
notifications are randomly presented after the participant
spends between 15 and 40 seconds on the monitoring task,
with the exact time sampled from a uniform distribution.
These durations were selected based on pilot testing to ensure
a balance between time spent on the primary and secondary
tasks.

C. Metrics

After a participant is finished with the assigned tasks,
they are asked to fill out the NASA-TLX questionnaire [29]
(once after each test condition). Once they complete the task
under all conditions, they fill a post-experiment questionnaire
and the procedure is finished. Additionally, the application
also records participant’s performance parameters, such as
faults reported and response time of identifying faults. If
a robot gets into fault when a participant is working on an
interruption, the response time only starts to count when they
resume the monitoring task. This allows us to avoid counting
the time a participant spends on an interruption task towards
their response time.

D. Hypotheses

This study seeks to learn how the intrinsic and extrinsic
interruptions can affect supervisor’s performance and work-
load in a multi-robot remote supervision system. However,

NASA-TLX scores are highly influenced by individual dif-
ferences especially when using the unweighted scores1 [29].
To eliminate the effects of individual differences, we analyze
change in scores of participants across test conditions.

For this study, we propose the following null hypotheses:
H0-1: Task performance does not differ across test
conditions (type of interruptions shown).
H0-2: Perceived workload does not differ across test
conditions.

IV. RESULTS

We analyze the experiment data under three categories:
users’ performance, perceived workload, and responses to
post-experiment questionnaire.

A. Results on Performance
For the presented task, we use the following metrics as

a measure of performance: First is the percentage of faults
reported, calculated as the ratio of faults reported to total
faults appeared during a task. Second is the response time,
calculated as the average time it took a user to report a fault
(time from appearance of a fault to its reporting2).

Figure 5 shows the percentage of faults reported by partic-
ipants under each test condition. From the graph, we observe
that when monitoring 4 robots, most of the participants were
able to detect majority of the faults (> 70%) under all three
test conditions. As the number of robots increases to 9,
the percentage of faults reported decreases under all three
test conditions. A 2-Way ANOVA confirms that number of
robots is a very strong predictor of percent fault reported
(F = 20.23, p = 0.0). This is expected as participants are
required to keep attention over a larger stream of information.
The conditions themselves do not show any conclusive effect
on the outcome (F = 0.21, p = 0.81).

Fig. 5: Percentage Fault Reported under different test conditions
for participants monitoring 4 robots (left) and 9 robots (right).

Figure 6 shows the average amount of time a partici-
pant took to report faults under different conditions. These

1We do not use category weights for two reasons: First, it is unclear
how using category weights affect sensitivity of the score across different
systems [29]. Second, administering ranking questions for the weighting
step requires a fair amount of effort from the participants which, in our
case, is comparable to the effort required for the task itself.

2If a participant fails to report a fault, the fault duration is considered to
be the response time for that fault.



results are similar to the case of percent fault reported,
where number of robots are a strong predictor of outcome
(F = 852, p = 0.0) while interruption type does not have
a significant effect (F = 0.05, p = 0.95). This may be
partially because the response time only starts to count
when participants resume the monitoring task. This allows
us to avoid counting the time a participant spends on an
interruption task towards their response time.

Fig. 6: Average response time (time from fault appearance to fault
reporting) for all users under different conditions.

Given these results, the null hypothesis H0-1 cannot
be rejected: task performance does not differ with test
conditions (type of interruptions shown).

B. Results on Workload

Figure 7 shows the participants’ perceived workload dur-
ing different test conditions, measured as NASA-TLX scores.

From the figure, we observe that participants reported
higher workload, on average, under Condition-2 (extrinsic
interruptions) on most of the workload categories followed
by Condition-1 and then Condition-0, regardless of the
number of robots they monitored.

Fig. 7: Average Rating for TLX Questions for different conditions
for 4 and 9 robots.

Since we are using unweighted scores, it is more relevant
for the study to compare change in scores between test con-
ditions for individual participants rather than taking average.
Therefore, we present pairwise comparison of participants’
scores for each workload category.

Figure 8 shows how individual participant’s workload
scores changed between conditions. These are shown as the

Fig. 8: Fraction of participants who reported higher/lower/same
scores between two conditions. For example, for pair 1-0, blue
represents that participants’ reported higher workload in condition-
1, orange means scores were same for both conditions and yellow
means a higher workload reported in condition-0.

percentage of participants who reported higher, lower, or the
same workload score. Comparisons are performed in going
from Condition-0 to 1, Condition-0 to 2, and Condition-1
to 2. A one sample t-test reveals that differences between
most of the test conditions are significantly different from
a zero-mean distribution, except for the difference between
condition-1 and condition-0 for the 9-robot case. Table I
shows the result of these t-tests.

TABLE I: One-sample t-test p-values for different pairwise com-
parison of TLX scores.

Conditions 1-0 Conditions 2-0 Conditions 2-1

4 robots 0.0299 0.0009 0.0011

9 robots 0.1150 0.0109 0.0419

Overall 0.0071 0.0000 0.0001

To provide a more comprehensive analysis, we also present
the distribution of changes in workload scores for partici-
pants across all workload categories and pairwise compar-
isons in Figures 9 and 10. The results indicate that a ma-
jority of participants reported higher workload scores under
condition-2 compared to both condition-0 and condition-1.

These findings lead us to reject the null hypothesis H0-
2, i.e., perceived workload differs with test conditions (type
of interruptions).

C. Post-Experiment Questionnaire

Besides measuring performance and workload of the par-
ticipants, we also asked them some further questions regard-
ing their perception of different tasks they performed during
the whole experiment. This post-experiment questionnaire is
shown in Table II, and participants’ agreement with each
statement was recorded on a 20-point scale (1 being Strongly
Disagree and 20 being Strongly Agree).

From participants’ responses, we observe that majority
of participants found the interruption tasks disruptive while
monitoring the robots, with higher average score among
participants who monitored 9 robots (Question 1). Partic-
ipants also reported more difficulty while switching from



Fig. 9: Difference in TLX scores between different conditions for
4 robots. For example, the Condition 1-0 plots show distribution of
condition 1 minus condition 0 scores for individual participant.

TABLE II: Prompts used in post-experiment questionnaire.

1 I found the fault correction tasks and messaging tasks disrup-
tive while monitoring the robots.

2 I found it difficult to switch from the robot monitoring task
to the correction task.

3 I found it difficult to switch from the robot monitoring task
to the messaging task.

4 I found it difficult to resume the robot monitoring task after
the correction task.

5 I found it difficult to resume the robot monitoring task after
the messaging task.

monitoring task to the messaging task compared to the fault
correction task, with mean difference µ̄ = 2.79 (Ques-
tions 2,3). A one sample t-test confirms the significance
of difference (p = 0.015). We note similar results on
perceived difficulty for resuming the monitoring task after
an interruption (Questions 4,5) (µ̄ = 3.20, p = 0.001).

V. CONCLUSION AND DISCUSSION

The study reveals some interesting features of multi-
robot supervision systems where users monitor a number of
independent mobile robots. From the results, we observe that
while working on the robot monitoring task, any interruption,
be it intrinsic (fault correction) or extrinsic (messaging), will
result in an increase of user workload. The effects of extrinsic
interruptions on workload are more severe than those of
intrinsic ones for both four and nine robots cases.

Fig. 10: Difference in TLX scores between different conditions for
9 robots.

However, the impact of these interruptions on the task
performance is found to be insignificant. The number of
robots being monitored is observed to be the major factor
in a change of performance. One possible reason for this
observation is that the monitoring task in our system requires
a short working memory as faults in the system are deter-
mined solely based on the current state/short-term behaviour
of the robots. Even though the type of interruptions does not
significantly affect performance, participants reported them
to be disruptive while monitoring the robots. Participants also
reported that switching to the extrinsic task and resuming
the monitoring task afterwards is more difficult than for the
intrinsic task.

These findings suggest that when designing such multi-
robot supervision systems, it is important to prevent interrup-
tions from extrinsic tasks while working on robot monitoring.
It may be helpful to postpone such interruptions towards
the end of the task. It may also be helpful to distribute the
responsibility of robot monitoring and fault correction tasks
among different operators to limit supervisors switching
between the two tasks. In future, we would like to expand
this study to further characterize the effects of intrinsic and
extrinsic interruptions by controlling interruption frequency,
changing task difficulty, and having a larger number of robots
to monitor. It is also interesting to explore how the results
will change if the secondary tasks are introduced in a multi-
tasking scenario instead of being separate interruption tasks,
where users try to work on different tasks simultaneously.
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