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Predictive Dead Reckoning for Online Peer-to-Peer Games
Tristan Walker, Barry Gilhuly, Armin Sadeghi, Matt Delbosc, and Stephen L. Smith

Abstract—In online peer-to-peer games, players send periodic
updates to each other and each player must locally reconstruct
the position of their opponents in between these updates. In
scenarios where players are driving cars, high speeds produce
more pronounced errors in local replication of online opponents.
In this work, we propose a new method of replicating opponents
with less data sent and up to 45% less error compared to the
state-of-the-art. We use a neural network based approach to
predict an opponent’s position, combined with a path tracking
controller from the field of mobile robotics, to produce smooth,
believable trajectories for opponents’ vehicles. We also propose a
neural network based approach to predict a replicated opponent’s
trajectory following a collision with a static obstacle.

keywords: Online multi-player game, Dead Reckoning, peer-
to-peer,

I. INTRODUCTION

Multiplayer online games are extremely popular, with titles
such as Grand Theft Auto Online (GTAV), as shown in
Figure ??, having over 100,000 concurrent players [2]. For
players to have a smooth playing experience, they must have
a reliable internet connection both in terms of bandwidth and
latency. For example, GTAV recommends players to have a
consistent upload speed of 1 Mbps [3]. However, reliable
internet connections are still not available in many parts of
the world [4]. In this work propose an approach for reducing
bandwidth requirements in Peer-to-Peer (P2P) online games
while providing an immersive and competitive experience.

A P2P networked game does not require expensive ded-
icated servers; rather, P2P games like GTAV use a peer-
hosted server, where one player operates a server instance
to which as many as 32 other players connect. Another
common P2P model uses direct connections: each player sends
state information to all other players in the session, and is
responsible for maintaining their own true state of the game.
The online mode of Watch Dogs 2 connects up to 8 players
per session using this method.

Since P2P games are player hosted, they are impacted by
asymmetrical Internet connections where the upload band-
width is typically a small fraction of that available for down-
load. As a direct consequence, P2P games can be subject to
latency and packet loss, which in turn results in a poor online
gaming experience [5].

In a car racing game, for example, a player wants the im-
mersive experience of seeing the constantly changing position
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Fig. 1. Screenshot of driving a vehicle in Grand Theft Auto Online.

of an opponent’s vehicle with respect to their own. Since
sharing updates at game rates would consume the available
bandwidth, P2P games are designed to extrapolate the current
game state from periodic updates. These extrapolations can
result in visual errors, which become more pronounced when
players are moving at high speeds.

Imagine a scenario where a player is racing against an oppo-
nent in an online game and the opponent sends their position
and velocity once every second (in practice, this happens much
more frequently, typically with a period under 100ms [6]). We
want the game to render the opponent locally in a way that is
both believable and reasonably accurate. Simply rendering the
opponent’s most recent position at one second intervals would
be neither accurate nor believable, resulting in noticeable
pauses while the game waits for the next update. Instead, we
extrapolate the opponent’s changing position from the most
recently received message: this is known as Dead Reckoning.
In our example, we can project the position forwards using
the received velocity. That is, if we received a position, r, and
velocity, v, at n seconds, we can estimate their position at n+t
seconds as v(n+t) = r(n)+v(n)t. We can see a visualization
of this example in Figure 2. The opponent starts with a known
position and velocity at time t0, with the true path curving
to the right, then at t1 the curve switches to the left. Since
the game engine has no other information, extrapolation using
the current state places the car in the incorrect prediction
at t′1. When new information is received, the car snaps to
the true position at t1 resulting in a discontinuous path. This
process is then repeated moving from t1 to t2. The resulting
discontinuities can be jarring to the player. We thus need a
method to both predict an opponent’s future positions, and
blend these predicted positions into a smooth, believable path.

This problem is further complicated when the replicated
opponent has to interact and collide with the environment
or other opponents. Small discrepancies between a player’s
estimate of an opponent’s position and the opponent’s true
position at the time of a collision can result in significantly
different post-collision trajectories. This is a difficult problem,
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Fig. 2. Extrapolating an opponent’s position from periodic updates.

and existing techniques largely aim to hide the effects of this
discrepancy without attempting to reduce the error between
the trajectories.

In this paper, we show a method of applying neural networks
to extrapolate opponent’s position in a online game, improving
on traditional Dead Reckoning techniques. Combined with a
novel application of a path-tracking algorithm, our method
results in a more believable, immersive gaming experience for
P2P players.

A. Related Work

In online games, sending data over a network introduces
significant obstacles to creating an immersive and enjoyable
experience. Noticeable latency in the network can impact en-
joyment, with one study reporting that players found latencies
over 150ms to be unacceptable [5]. Lee et al. propose Outatime
[7], a method using Markov predictions and Kalman filtering,
to predict future game states and reduce input lag in cloud
gaming applications. Savery et al. [8] examine the effect of
various lag compensation techniques on player enjoyment,
noting that techniques resulting in the best player performance
are not always the most enjoyable.

One approach to improving latency is to reduce the amount
of data sent. Babei et al. [9] use eye tracking data to determine
where players are likely to look so that they can stream higher
quality video to only those areas. Bandwidth consumption
can also be reduced by improving the prediction of a remote
player’s position and thereby allowing the interval between
information updates to be increased. Harvey et al. [10] shows
using Dead Reckoning can reduce the number of information
packets sent and conserve energy when gaming on a phone.
However, many authors [11]–[13] have shown this to be
insufficient for immersive online gaming. A major obstacle,
note Pantel and Wolf [13], is that latency between players
can be upwards of 100ms. Aggarwal et al. [14] propose a
method of using timestamped messages to reduce the impact of
latency. Kharatinov [15] proposes an adaptive Dead Reckoning
scheme that sends more data during more complex motions,
and Almeida and Felinto [12] use the popular Unity [16] game
engine to verify that this algorithm holds up under realistic
network conditions. For car simulations specifically, Chen and
Liu [11] propose an extension to Dead Reckoning that includes
environmental cues such as roads, aiding predictions.

Kalman filtering is widely used to perform state estimations
in the presence of error. Many variations have been developed,
including applying the Kalman filter in the case of intermittent
observations [17]. Belhajem et al. [18] use neural networks

to approximate a Kalman filter in the event of GPS outages.
However, the Kalman filter and its variations require a model
of the dynamics of the system. In our scenario such a model is
difficult to obtain, as it must capture the physics and dynamics
of the full game engine. Additionally, the Kalman filter is
intended to provide optimal state estimation in the presence
of Gaussian noise. In our scenario, however, there is no error in
the measurements or state updates; instead there is uncertainty
arising from player inputs changing between updates.

Neural networks have a wide variety of applications in
the development of simulated environments. They are used
to solve the complex calculations for real-time approxima-
tions [19], cloth and fluid simulations [20], [21], turbu-
lence [22], fire behaviour [23], and in Dead Reckoning for
ships [24].

In gaming, neural networks produce infinite worlds through
procedural generation [25], [26], predict the future location of
objects [27], and model network latency [28]. A wider review
of the recent role of machine learning in video games can be
found in [29].

Developers also use neural networks in video games to
predict player behaviour. Duarte [30] uses machine learning to
learn trends in player behaviour to better predict future states.
Shi et al. [31] propose using data collected from human play
sessions to parameterize a Dead Reckoning model specific to
one game. Geisler [32] also uses neural networks to model
human behaviour and applies this to make AI opponents that
behave more realistically.

In this paper, we use machine learning to predict the
motion of player operated vehicles. A fully connected model
approximates the motion of distant opponents at a low cost,
while a deep recurrent neural network takes into account recent
player actions to more accurately predict the state of nearby
opponents.

As shown in Figure 2, extrapolation solves only part of our
problem; we must also render a smooth trajectory. Murphy
[33] describes an alternative Dead Reckoning technique called
Projective Velocity Blending (PVB), which results in smooth
predicted trajectories. Schuwerk and Steinback [34] note that
while PVB produces visually smooth paths, users did not enjoy
the high accelerations it generated when used to produce haptic
feedback. In the field of robotics many approaches use splines
to guarantee smooth trajectories; authors in [35] use cubic
splines to guarantee continuous acceleration, while authors
in [36] use trigonometric splines to guarantee continuous
jerk. Robots may also use online path tracking controllers to
smoothly follow a commanded path. Samson and Abderrahim
[37] propose a linearized feedback control method for a
wheeled robot, while Ostafew et al. [38] successfully apply
this controller to a physical robot, enabling it to traverse un-
even outdoor terrain. Another popular path tracking controller,
the Stanley controller, used in the DARPA Grand Challenge
[39], uses wheel angle to control lateral and heading error.
In this article, we propose using a similar tracking controller
to blend the predicted piecewise linear path into a believable
smooth curve.
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B. Contributions

The key contributions of this work are three-fold. First, we
present a new application of neural networks to extrapolate
opponents’ positions in an online game. Our simulation results
show that our approach improves prediction performance
under extended message conditions compared to the state-
of-the-art. Second, we propose a novel application of a path
tracking algorithm to create a smooth trajectory for believably
replicating an opponent. We show through simulation results
that our approach produces smoother, more believable trajec-
tories with approximately 45% less error than the state-of-the-
art. Third, we apply neural networks to predict the response of
an opponent to a collision with a static object. We show with
simulation results that our approach can believably predict
collisions better than the current state-of-the-art.

Organization: In Section II we introduce our player and
network models, and define the replication problem. In Sec-
tion III we present our approaches to the three parts of the
problem: predicting the position of an opponent; creating a
smooth believable opponent trajectory using path tracking
algorithms; and predicting the response of a replicated vehicle
to a collision with a static obstacle. In Section IV we present
experimental results for all parts of our solution approach.
Section V concludes this work and outlines possible future
investigations.

II. PROBLEM FORMULATION

In this section we introduce our models for the player and
network, as well as formally present the problem.

A. Player Model

In a 3-dimensional video game, a player’s state can be
described by the tuple X = (r,v,q,a,ω) containing the car’s
position vector r ∈ R3, velocity vector v ∈ R3, orientation
quaternion q, acceleration vector a ∈ R3, and angular velocity
vector ω ∈ R3.

The player interacts with the game world through the engine
in discrete timesteps corresponding to each frame that is
rendered by the game. We define the time between frames
as δt. In practice, the timesteps that the game engine uses to
update the game state do not have to correspond to frames that
are rendered to the player. However, in this work we assume
that a single frame is rendered at each timestep of the game,
and will use the two interchangeably. We view the game engine
as a black box system that uses the game physics to determine
how the player interacts with the world and other players.

We define the player’s control actions at a timestep k to
be A[k] = (h, c) with h, c ∈ [−1, 0, 1] representing a discrete
left, straight, or right control action and a discrete deceleration,
coasting, or acceleration control action respectively. We could
consider continuous control inputs without adding much com-
plexity, but for simplicity we assume players use a keyboard
for control, resulting in discrete inputs. At each timestep,
the engine takes the player’s state, the player’s actions, and
the world state, and produces the player’s state at the next
timestep. If we consider the game engine as a function F that
takes world state at timestep k as W[k] and the player’s state

and actions, we can write the evolution of the player’s state
as X [k + 1] = F(X [k],W[k],A[k]).

In order to focus on the replication problem, this work
considers only a single remote player interacting with static
elements in the environment. We assume there are no dynamic
interactions such as player to player collisions. This simplifi-
cation allows us to assume the world state is static, and can be
encapsulated in the function F . Thus, we think of the evolution
of the player’s state as simply X [k + 1] = F(X [k],A[k]).
While this work focuses on the recreation of a single player’s
trajectory, it is readily extended to multiple remote players by
repeating the techniques described for each remote player, ig-
noring interaction between players. Player to player collisions
and other dynamic interactions, such as gravity in a space
simulation game, are the subject of future research.

B. Network Model

This work is written from the perspective of the player
receiving information from another player, whom we refer
to as the opponent. They are not necessarily competing with
each other in the game and simply represent two human agents
playing on a network. Each player periodically broadcasts their
state and control actions over the network to the other player.
This broadcast of information is referred to as a message,
defined as s[k] = (X [k],A[k], k) where k is the timestep the
message is sent. To help address potential delays due to latency
and packet loss, each message is time stamped and timesteps
are globally synchronized across all players. This is difficult in
practice, and messages would usually include a time t instead
of a timestep k. However, we use k to avoid extra conversions
from continuous time to discrete timesteps. Additionally, we
define the following network parameters: message interval T ,
as the number of milliseconds the player waits before sending
another message; latency d, as the number of milliseconds it
takes for the message to reach the other player; and packet
loss p, as the percentage of messages that fail to reach the
other player.

Figure 3 shows latency and message interval when a player
is receiving messages from an opponent over a network. In this
figure, the number of timesteps or frames between messages
is i = b Tδtc. In our investigation, we are primarily concerned
with making our solution robust to larger values of T . Current
games typically use message intervals around 100ms or less
[6]; we are interested in developing a replication scheme that
is robust to message intervals of up to 300ms or greater.
Being able to predict the state of players with infrequent
updates reduces the required network bandwidth and gives
the game the opportunity to render more players in the same
environment with a richer experience. Our algorithm should
also be robust to moderate latency up to 100ms and packet loss
of up to 10%, but we leave further study of these conditions
for future work. The model of the game engine for the two
player scenario is shown in Figure 4.

C. Replication

When playing a networked game, we do not know the
ground truth of our opponent’s states at all times. We only
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Fig. 3. Every i frames, representing T seconds, the opponent transmits their
state information to the player, arriving after a delay of d seconds.
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Fig. 4. Block diagram of the two player scenario.

receive periodic messages of our opponent’s state, which is
subject to latency and packet loss, and leaves many frames
in between for which we have no new information. Thus we
wish to create a believable estimate of our opponent from
these periodic messages. We will call our local estimate of
our opponent a replica. This replica must appear to be a real
player, meaning that it must appear to obey the established
physics of the game, and its position should be reasonably
close to the true position of the opponent to ensure that we
have an accurate image of the state of the game. Formally, we
can define the problem as follows:

Problem II.1 (Replication Problem). Given an opponent that
sends a message with a period of T , subject to latency d
and packet loss p, generate a series of states X̂ [0], X̂ [1], ... to
accurately and believably replicate the motion of the opponent.

In order to generate a smooth and believable trajectory
for the replica, we break the problem into three parts. The
first component is the prediction problem, where the goal
is to predict the future state of the opponent given their
most recently received message. The second component we
refer to as blending, where we must move our replica of the
opponent towards this predicted position in a smooth manner
that appears believable to the player. Believability is difficult
to quantify, and is a combination of factors. A believable
trajectory should have no discontinuities and appear to obey
the dynamics of the vehicle. The predicted states do not need
to form a smooth trajectory, but the trajectory formed by the
blended states should appear realistic to the player. The third
component of the problem is handling collisions that may
occur on replicated opponents. These problems will be defined
in more detail later, but we will introduce the convention here
of using X̂ to denote predictions and X̄ to denote the state of
the blended replica.

III. SOLUTION APPROACH

In this section we provide our solutions to the three parts
of the replication problem, i.e., 1) prediction of future states,
2) prediction of future collisions, and finally 3) smoothing the
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Fig. 5. Proposed framework for motion prediction. Given a message, first
we check if we are currently in a collision state and if so use the collision
network. Otherwise, based on the proximity to the player we use either the
FC or LSTM networks. If a collision is predicted, the collision network is
used instead. The motion prediction then passes through the blending network
before returning to the game engine.

trajectory. Figure 5 shows the proposed framework. Solutions
must be computationally efficient as they need to be calculated
separately for each opponent at every timestep. Our solution
should approximate the dynamics of the vehicle as well as
account for potential changes in opponents’ inputs between
messages. The dynamics may change for different vehicles,
and our solution should not require manual tuning for each
vehicle.

A. Predictions

Neural networks are well suited for prediction because they
sufficiently address the challenges stated above. They are able
to model unknown functions given enough training examples,
which is the scenario presented by this problem: we are trying
to approximate the game engine, and we can easily record the
opponent states within the engine to obtain ample amounts
of training data. Moreover, a neural network should be able
to learn some patterns in player behaviour. Training of the
neural network can be easily automated since we have full
access to both the player actions and resulting future states to
produce labelled data. With new data and game parameters,
the neural network can be easily reconfigured to accommodate
other vehicles. Additionally, making predictions with a neural
network is a very inexpensive operation.

We take two approaches to making predictions. Fast pre-
dictions can be made in a Markov manner, based on the last
known state and the number of timesteps since it was received.
This network is constructed as a simple deep neural network
with three fully connected layers and Rectified Linear Unit
(ReLU) activations as shown in Figure 6. This is our Fully
Connected (FC) network; it is useful for an opponent located
far from the player, where accuracy is less critical. For more
accurate predictions of nearby opponents, we replace the fully
connected layers of the FC network with a recurrent deep
neural network consisting of two layers of Long Short-Term
Memory (LSTM) cells, followed by a single fully connected
layer that serves as the output. We refer to the recurrent version
as the LSTM network.

The input to the FC network is a reduced form of the
opponent state. We translate all state information from world
reference into the coordinate frame of the opponent’s last
received message. This reduces the dimensionality of the
problem, requiring the network to predict only a simple
displacement from the opponent’s last position. It is then a
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Fig. 6. Overview of the FC prediction network. For the LSTM network, the
fully connected network is replaced with two layers of LSTM cells.

straightforward task to translate the displacement back to a
world reference for calculation and display purposes. Note that
since cars slip, velocity is not necessarily straight ahead in the
car’s coordinate frame, and must be represented as a vector.
As illustrated in Figure 6, the inputs to the FC network are
the velocity and angular velocity vectors in R3, the actions
(steering and brake), and the time ahead to predict. The LSTM
network accepts the last three reduced states in temporal
order, all translated into the most recent opponent frame of
reference. The output from both networks is the predicted
displacement in R3. Since the displacement calculation is
relative to the last known position, the opponent’s current
position is not required. Although cars primarily operate in
a two dimensional plane, all three dimensions are included to
allow this network to be applied to a wider variety of scenarios.
Training is accomplished using mean squared error and the
Adam optimizer.

B. Blending

Blending adjusts the path output from the prediction net-
work towards the most recent update in a smooth and dynam-
ically feasible manner. We leverage the fact that the motion
we are trying to replicate is based on a car’s dynamics and
borrow the concept of a path tracking controller from mobile
robotics. Path tracking is widely used to allow wheeled robots
to follow a specified path in the presence of error from sen-
sors, actuators, or the environment. Applying a path tracking
controller ensures that the resulting path is smooth and obeys
the dynamics of a wheeled vehicle. However, blending also
introduces a small delay as it is a form of linear interpolation:
the error between the opponent’s currently displayed position
and the most recent update is corrected over time. The amount
of delay introduced affects how much smoothing is applied
and is a configurable parameter. The path tracking controller
also has the advantage of using feedback control to ensure the
system is stable.

Formulation: We leverage the controller proposed in [38]
and give a brief derivation of the controller below. We model
the opponent as a unicycle robot whose velocity and heading
we freely control. The longitudinal, lateral, and heading errors
at time k are given by ε[k] = [εX [k], εL[k], εH [k]]T respec-
tively, and are calculated using the Euclidean distance to the
predicted state at time k, X̂ [k]. With the linear and angular

velocities at time k as v[k] and ω[k] respectively, and the time
between frames as δt, the resulting error dynamics are[

εL[k + 1]
εH [k + 1]

]
=

[
εL[k]
εH [k]

]
+ δt

[
v[k] sin εH [k]

ω[k]

]
,

where v[k] and ω[k] are inputs and ω[k] is given by the
controller. If we assume the velocity v[k] is constant, and
let z1[k + 1] := εL[k], z2[k] := v[k] sin εH [k], and η[k] :=
v[k] cos εH [k]ω[k], the system becomes:[

z1[k + 1]
z2[k + 1]

]
=

[
1 δt
0 1

] [
z1[k]
z2[k]

]
+ δt

[
0

v[k] cos εH [k]ω[k]

]
=

[
1 δt
0 1

] [
z1[k]
z2[k]

]
+ δt

[
0
η[k]

]
.

We choose a proportional controller with the form η[k] =
−γ1z1[k]−γ2z2[k] with γ1, γ2 > 0, which yields the following
stable, closed-loop system:[

z1[k + 1]
z2[k + 1]

]
=

[
1 δt

−δtγ1 1− δtγ2

] [
z1[k]
z2[k]

]
Solving for ω[k] gives the following relation to govern the
heading:

ω[k] =
−γ1εL[k]− γ2v[k] sin εH [k]

v[k] cos εH [k]
. (1)

This formulation does not control velocity, so we must
introduce another equation to govern our opponent’s velocity.
We introduce a third parameter, γ3, to govern the velocity. We
define εtotal = εX [k] + εL[k], which lets us write

‖v[k]‖ = ‖εtotal‖/γ3. (2)

This effectively results in the replica of the opponent running
γ3 seconds behind the predicted position, introducing damping
to reduce oscillations.

Implementation: Suppose the opponent is at timestep k with
state X̄ [k] and we receive a new message s[k]. There are i
timesteps until we expect to receive the next message, i.e,
i = T

δt . We implement our blending algorithm as shown below
in Algorithm 1. To use the heading and velocity equations
described to generate a single blended velocity v̄[k + j], we
rotate the previous blended velocity v̄[k + j − 1] by ω[k]δt
and set its magnitude as ‖v̄[k + j]‖ = ‖εtotal‖/γ3.

Two edge cases need to be accounted for during imple-
mentation of this algorithm. First, with our choice of velocity
control, we need to consider the case where our blended
position is ahead of the predicted position, which can happen
in cases of extreme deceleration. If this case is unaccounted
for, the opponent will accelerate away from the predicted
position indefinitely. In our implementation we handle this
case by simply halving the speed of the opponent, allowing
time for the predictions to catch up. A second edge case occurs
if the heading error is outside of ±90◦, causing the opponent
to track the path in the opposite direction, converging to 180◦

of heading error. To remedy this, we clamp the heading error to
±80◦, which also helps avoid numerical errors from dividing
by 0 or close to 0 in the heading equation.
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Algorithm 1: BLENDING ALGORITHM

1 while replicating do
2 s[k] = LATEST MESSAGE
3 i = bT/δtc
4 r̂[k + i], q̂[k + i] = PREDICT(s[k], i)
5 j = 1
6 while no new message do
7 v̄[k + j] =

BLEND(v̄[k], r̂[k+i]−r̄[k], v̂[k+i]−v̄[k], j·δt)
8 r̄[k + j] = r̄[k + j − 1] + v̄[k + j] · δt
9 j + +

10 if j > i then
11 i = i+ bT/δtc
12 r̂[k + i], q̂[k + i] = PREDICT(s[k], i)

C. Collision Response Prediction

The problem of predicting an opponent’s path may be
complicated by interactions with static objects. The current
approach is to allow the local physics engine to handle position
updates; however, this can lead to synchronization problems
as the local engine doesn’t support prediction. Instead, we im-
plement a prediction network to smoothly blend an opponent’s
position towards the predicted collision response rather than
let the collision play out. If our replica is offset from where
it should be, the collision may not even occur locally, leading
to a less desirable result compared to predicting the collision
and blending as new updates arrive. In this situation, the
model is still X [k + 1] = F(X [k],A[k]), except the function
F also encompasses static collisions. Player actions are not
considered in the collision model as they little have impact on
the collision response for many timesteps after the collision.

Neural Network: We use a fully connected neural network
similar in structure to the FC prediction network shown in
Figure 6 with the following changes. Since player actions are
ignored during a collision event, they are no longer included as
an input. In the Unity engine, collisions are calculated based on
a collision point, a collision normal and the collision velocity
These parameters, all in R3, are inputs to the collision network.
Vehicle parameters, such as mass and friction coefficients are
also necessary for calculating a collision response, but in our
case these will be captured implicitly within the network. We
must also include a time from the collision that we wish to
predict. The orientation of the car is important in creating
a believable trajectory and cannot be easily estimated from a
given path. Therefore, we output displacement and orientation,
in R3 and R4 respectively.

For a collision at timestep k, letting the collision point be
ck and the collision normal be nk, we may format our inputs
as (v[k], ck,nk,∆t). Our outputs are (∆r̄[k], q̄[k+ i]), where
the displacement ∆r̄[k] = r̄[k+i]−r̄[k], orientation is q̄[k+i],
and i = ∆t

δt .
Training: To train and test collisions, a cylindrical obstacle

was placed in the Unity game engine environment. To automat-
ically generate collision data, we ran a script that repeatedly
launches a car at the obstacle at random angles, directions, and

Fig. 7. Screenshot of a collision with a cylindrical obstacle in Unity.

velocity, within the typical range of the car. Since collisions
are resolved using a point and a normal, the overall shape of
the obstacle is not important. We use a circular obstacle to
capture all collision angles. Figure 7 shows the car colliding
with the cylinder, with the path of the car shown in yellow.
The disconnect in the path near the impact point is due to the
car rotating slightly in relation to the ground plane, causing
the trail left by the car to clip into the ground. During this
process we are able to record the state of the car at every
timestep, as well as whether or not a collision is occurring
in a given frame, and the point and normal of any detected
collisions. As with the previous networks, a maximum desired
time to predict Tmax must be specified, presenting the same
tradeoff between generality and accuracy.

Immediately, we observe two potential challenges. First,
note that after the collision, the car is facing backwards. Given
the parameters of the vehicle and the collision surface, this is
how most collisions look: the car will rotate away from the
collision surface and its momentum will carry it through as
it slides and rotates, until eventually the wheels will grip and
it rolls slowly backward. Second, Figure 7 reveals that the
car impacts the the cylinder twice before settling into rolling
backwards. This is problematic for collision prediction, as our
model is trained only for single impacts and therefore may
make erroneous predictions when a second occurs during the
same event. Thus, in our implementation we must account for
these additional impacts. As before, the network was trained
using mean squared error and the Adam optimizer.

D. Framework

A block diagram of the combined framework is illustrated in
Figure 5. The trajectory of the opponent is replicated using one
of the prediction networks, either FC or LSTM, depending on
the opponent’s proximity to the player. If, on any timestep, the
planner detects a collision between the opponent and another
object, the planner switches to a collision prediction state, and
remains in that state for an interval of time. The blending
network is used to construct a smooth path from any prediction
state.

After entering the collision state, the planner remains in
that state for two seconds, approximately the time required to
establish grip again and settle into smooth, controlled motion.
During this interval, the opponent’s inputs can be safely ig-
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Fig. 8. RMS Prediction error for different message send rates. For longer
intervals the neural network methods have significantly less error.

Fig. 9. Maximum RMS Prediction errors. Both of the neural networks have
a much smaller deviation from the desired path with the LSTM network
performing slightly better.

nored as they have no effect on the trajectory. Once the interval
completes, control returns to the predictive network. In this
simple model, false detection of collisions can occur resulting
in some artifacts while the planner attempts to reconcile the
predicted collision path with the opponent’s updated position.
Adding error handling to detect both false positive and false
negative collision predictions as well as the completion of the
collision state would improve the overall performance, but is
not addressed here.

IV. RESULTS

In the following section, we present our simulation results1

based on data collected from the Unity game engine [16].

A. Predictions

The baseline prediction algorithm we compare to is a
discrete-time Dead Reckoning algorithm that uses velocity
and angular velocity, a method widely used in industry [40].
Given position r[k], velocity v[k] and angular velocity ω[k] at
timestep k, the position at the next timestep can be predicted
by extrapolating from the current position using the current

1Training models and code are available at https://github.com/Ubisoft-
LaForge/ubisoft-laforge-PredictiveDeadReckoning

velocity, rotated by the given angular velocity. We can define
a rotation operator q such that qθ(v) rotates v by the Euler
angles given by θ ∈ R3. Then we have r̂[k + 1] = r[k] +
qω[k]δt(v[k]δt), where δt is the time between frames. To
predict further into the future, this process is repeated for each
frame, i.e. r̂[k+ 2] = r̂[k+ 1] +qω[k]2δt(v[k]δt). This means
that the predicted trajectory from one known state will be a
piece-wise linear arc.

The FC network was constructed with three fully connected
layers of 100 perceptron cells. The LSTM network used two
layers of 128 LSTM cells. The relatively small layer sizes were
found empirically to produce accurate results while being as
small as possible to minimize computation costs.

B. Training and Testing

Our prediction data sets were generated in an empty Unity
environment, using feasible randomly generated paths. No
context queues are taken from the environment in the predic-
tion process. Using available map information would likely
contribute to the predictions; however, this is not considered
here. While incorporating the environment states can be help-
ful in racing games where the environment greatly dictates
player actions [11], in open world games the actions of the
players and the roads/rules of the environment are only loosely
correlated.

The training data for trajectory prediction consists of sam-
ples drawn from the trajectory data combined with the control
inputs that generated them. First the recorded trajectories are
separated into training and testing data. The process starts
by sampling an initial position and player control from a
trajectory. Then, stepping forward along the trajectory in 50ms
steps, a new training/test entry is created by combining the
position, control, time since position occurred, and the current
true position at the current step. For example, to create training
data for a 400ms interval test, an initial state and control is
selected from the data at time t. Then, at times t + 50ms,
t+100ms, ... the car’s position is read from the trajectory and
a new training entry is created. This creates eight samples with
inputs of starting state, a control input, step time, and a ground
truth position. For the LSTM network, we simply extend the
number of position and control samples required, separated
by the desired training interval. For the model described in
this paper, we require three samples of input data drawn at
400ms intervals prior to the target state data that follows the
last sample. Using this method, samples were generated with
message intervals from T = 100ms to T = 400ms, much
higher than the typical message interval used in online games.
The process can be entirely automated, making the support of
self-supervised learning straightforward.

Note that the model is trained on data that incorporates
the dynamics of the player vehicle and the environment.
Complex behaviour, such as a changing model, requires a
larger prediction network and training for each vehicle type,
or additional parameters to capture vehicle characteristics.

In the training stage, the data set is randomly sampled,
drawing an input state, controls, time since the last update,
and the paired ground truth. Each state, input, and prediction
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time interval is provided to the network and the resulting
output compared to the ground truth. The error is then back-
propagated through the network to correct any error. For
testing, the samples are passed through the network and the
result compared with the ground truth using L2 distance.

One of the challenges with predicting the opponent’s posi-
tion is the subjective nature. Every player has a different toler-
ance for visual artifacts; thus, we’ve found the best approach is
focus on minimizing the visual error as an analog for belief. To
this end, we evaluate the quality of the reconstructed trajectory
by comparing the RMS displacement error from the ground
truth trajectory. The opponent’s orientation is assumed to be
preserved. The distribution of mean RMS displacement errors
over trajectories for all three methods is shown in Figure 8.
The coloured boxes indicate the range of values that capture
from 25% to 75% of the trajectories, with the overall mean
being the solid line in the middle. The whiskers show the full
distribution, giving a notion of the spread of the data. We also
show the distribution of maximum error values observed for
each trajectory in Figure 9.

While the smaller errors at lower intervals (< 200ms)
may be barely noticeable, above 300ms, the errors start to
become significant. At 400ms, the maximum error for Dead
Reckoning can result in a jump of the opponent’s position by
almost 2m on average, roughly half the body length of a 4.7m
car. The LSTM network is the best performing at our target
interval of 300− 400ms. All of the algorithms have very low
error for message intervals at or below 200ms, though the FC
network does not perform quite as well. This may be improved
with a training focus on shorter intervals; however, we didn’t
investigate further as intervals of 100ms and below are well
served by existing methods.

More importantly, in the range between 200ms and 400ms,
we see significant improvement from the network imple-
mentations. The LSTM prediction network has considerably
lower average error during this portion, as well as smaller
spread. The difference in spread is perhaps more apparent
in Figure 9 where the mean worst case error shows almost
a meter decrease. Note that although our networks are only
trained for message intervals up to 400ms, they maintain
superior performance beyond this range, up to message in-
tervals of 600ms. These results show that our approach offers
consistent predictions for higher message intervals, indicating
the possibility of saving bandwidth.

C. Execution Time

In terms of execution time, the Dead Reckoning and FC
networks are very similar, both taking 6 seconds to complete
100,000 tests. The LSTM network is approximately seven
times slower, requiring 43 seconds for the same task when
run on nVidia 3090 hardware, or about 0.5ms per iteration.

D. Path Tracking Results

The state-of-the-art we compare to initially is a discrete
linear blending approach that replicates the opponent at a
set delay behind the current prediction. This has the effect
of smoothing the predicted path, at the cost of introducing

Fig. 10. Results of path tracking blending with untuned parameters and a
message interval of 300 ms.

error from the delay. Suppose we have a replica of our
opponent at timestep k − 1 with a position r̄[k − 1], and we
wish to move it smoothly toward our predicted position r̂[k].
Mathematically, we can find the current position of our replica
as r̄[k] = r̄[k− 1] + (r̂[k]− r̄[k− 1])δt/λ, where λ represents
the replica’s time delay from the prediction. In our results we
will compare to this linear blending approach using λ = 0.4
which was found to be the best-performing value.

We define the controller parameters of Equations (1) and (2)
in Section III.B as γ1 = 80, γ2 = 20, γ3 = 0.2 obtained
through trial and error. The results are promising, showing
much smoother paths than the state-of-the-art with consider-
ably less error. These results are shown in Figure 10. The
direction of the master path is indicated with an arrow, and a
point is marked on each path at a timestep where a message
was sent from the master. From the marked point we see that
a γ3 of 0.2 corresponds to roughly half the delay of the state-
of-the-art algorithm.

We evaluate the blending algorithms using positional error,
considering both the absolute error, as well as what we call the
adjusted error. The adjusted error is calculated by comparing
the error between blended position r̄[k] and the actual time
shifted position r[k − λ/δt], or in the case of path tracking
blending, r[k − γ3/δt]. The adjusted error minimizes impact
of the different delay values used, allowing the comparison of
the algorithms independent of delay. The averages of these two
errors are shown in Table I. While the path tracking blending
is expected to have lower absolute error due to running with
a smaller delay, it also has significantly lower adjusted error.
This suggests that it also does a better job of following the
master car’s original path. While this metric is not precise by
any means, its results combined with the visual smoothness
of the path are encouraging for the potential of path tracking
blending.

Parameter Tuning: While the initial results with manually
selected parameters are promising, further improvements are
possible by tuning γ1, γ2, and γ3. During the manual experi-
mentation phase, we found that lower values of γ1 and γ2 were
desirable as they produced smoother paths, but setting these
too low resulted in greater error. A lower value of γ3 is desired
as it directly correlates to less delay in the blending algorithm.
However, for higher message intervals there was a firm lower
limit for how low γ3 could be while maintaining stability.
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TABLE I
AVERAGE ERRORS FOR DISCRETE LINEAR BLENDING AND PATH

TRACKING BLENDING.

100ms 300ms 500ms

mean std dev mean std dev mean std dev

Error

Linear 5.3 3.0 6.2 2.3 5.5 3.2
Path Tracking 2.7 1.5 3.3 1.2 3.0 1.7

Adjusted Error

Linear 1.2 1.0 1.8 1.1 1.5 1.2
Path Tracking 0.3 0.2 0.6 0.3 0.7 0.6

Thus we select γ3 based on our desired message interval. In
our case, for a desired message interval of 250 − 300ms, we
selected γ3 = 0.1. By simulating our path tracking blending
algorithm with different values of γ1 and γ2 we calculate the
average errors of each combination. A simple grid search then
gives our tuned values. We want values of γ1 and γ2 that
both result in a lowest error and are low values. Therefore
we selected the pair with the lowest sum whose average error
was within 20% of the minimum, yielding tuned values of
γ1 = 130, γ2 = 10, and γ3 = 0.1.

The tuned algorithm is then compared to both the discrete
linear blending approach, and PVB [33]. Note that PVB
performs both the prediction and blending steps. Given the
current estimated state of the replica X̄ and a message with
its last known state X , the algorithm uses Dead Reckoning to
predict future states for both. A linear interpolation between
the two future states yields the blended position. In practice,
this works best when the projection of the current state uses a
linear interpolation of the current velocity and the last known
velocity. We are not considering acceleration when making
projections.

Figure 11 shows the algorithms performing with a message
interval of 300ms and no packet loss or latency. The master
vehicle is traveling from right to left, and a point has been
marked on the path of each replica at the same timestep where
a message was received from the master. This point shows the
differences in how delayed each replica is: the discrete linear
blending approach causes noticeable delay, while the PVB
replica runs next to the master, with our approach running
slightly behind. These results illustrate the tradeoff between
delay of the replica and smoothness of the trajectory. The
discrete linear blending approach runs significantly behind,
but maintains a very smooth trajectory; its trajectory is even
too smooth, filtering out some of the detail of the master
path. The PVB approach on the other hand, has no delay
behind the master car at the cost of some irregularities in
the path where it must double back when its extrapolation
is incorrect. Our approach sacrifices a small amount delay
for considerably better replication of the master path. Under
more difficult network conditions, with higher packet intervals,
the flaws of all the replication algorithms are magnified. At
this message interval, even the conservative discrete linear
blending approach shows jarring changes in direction. Our
blending approach shows some divergence from the master

Fig. 11. Results of path tracking blending with tuned parameters and a
message interval of 300ms. Notice the bumps that occur in the PVB path,
leading to unrealistic motion of the opponent vehicle.

path, but it is masked to a much better degree than the PVB
approach. At even higher message intervals and with message
loss, our algorithm still performs adequately, while the other
two algorithms show significant issues. The effect of latency
is not compared here, as it affects all algorithms identically,
and including it as a variable would only obfuscate the results.

E. Collision Response Prediction

We constructed the collision network with 100 cells per fully
connected layer, opting again for the smallest size of network
that still produced reasonable results. We compare the output
from our collision network with the state-of-the-art discrete
linear blending approach described in the previous section.

With no considerations made for collisions, this scheme
results in the replica overshooting the obstacle or jittering
around the point of collision as the game engine attempts
to reconcile the replica collision and the blending algorithm,
trying to force the replica to a prediction inside the obstacle.

A summary of our algorithm’s performance for message
intervals of 100ms, 250ms, and 500ms is shown in Figure 12.
To characterize the average performance, around 100 random
collisions were simulated using the same method that was
used to generate training data. For consistency in these trials,
the first message after the collision was forced to be sent T
milliseconds after the collision for each message interval T .
This way, these results can be seen to loosely represent the
worst-case performance for a given message interval.

In Figure 12, the mean error is plotted as a solid line, and
the shaded region represents the 5th and 95th percentiles of
error. At low message intervals, i.e., 100ms, both algorithms
have low positional and rotational error, but the discrete linear
blending approach performs very well in both categories. At
higher message intervals, in which we are more interested,
our approach shows some advantages over the discrete linear
blending approach. At message intervals of 250ms and above,
the discrete linear blending approach starts to show the over-
shooting that was mentioned earlier, as evidenced by the high
peaks in the 95th percentile of positional error. At message
intervals of 250ms and 500ms, our approach has lower peak
positional error for both the 95th percentile and the mean. At
message intervals of 500ms, our approach also shows lower
rotational error. This is an extreme interval that would not be
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Fig. 12. Position and Rotation error after a collision for message intervals of 100ms, 250ms and 500ms. Both methods perform well at 100ms; however, at
higher message intervals the neural network is much more consistent.

used in practice, but could arise if packet loss occurs during a
collision at a lower message interval. Overall, our approach
demonstrates much more consistent replication, with fewer
immersion-breaking jumps and overshooting.

During simulation, we experienced some implementation
issues with our approach that were unrelated to our solution.
Occasionally, the game engine’s collision detection system
would fail to report a collision. Another source of issues
was an occasional delay of one or two frames between the
Python server running the neural network and Unity engine.
This delay resulted in the simulation using the predicted state
of the previous collision. Roughly 25% of trials experienced
these issues, and were not included in these results.

Examining the paths of the replicas during a collision with
a send rate of 500ms demonstrates the advantages of our
algorithm, while also revealing some shortcomings. Figure 13
shows the paths of the linear replica and our replication
scheme as compared to the master car during a collision. The
most obvious advantage is that our algorithm does not suffer
the same overshooting problem as discrete linear blending. The
close up view also shows how our algorithm better matches
the orientation of the master throughout the collision response.
One issue that was not addressed is the return transition from
the collision network to the prediction network. In the post-
collision path of our replica, there is a sharp point where
the replica backtracks for a timestep when it switches. In a
fast-moving collision, this is nowhere near as noticeable as

(a) Collision Paths (b) Close up view

Fig. 13. Effect of a collision on predictions(500ms interval). a) The full path
after collision – the Linear method is unable to reconstruct a reasonable copy
of the master path. b) In the close up, Our method can be seen to closely
predict the orientation of the Master.

the overshooting of the discrete linear blending, but it is still
undesirable. In practice, there are many ways that this could
be addressed, and we leave this investigation for future work.

V. CONCLUSIONS

Replicating player positions from state information updates
is one of the most bandwidth consuming components of
operating online P2P games. We have shown how neural
networks can be used to improve the prediction of opponent
actions, allowing for a lower data transmission rate between
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players and possibly allowing more players per session. We
applied a path tracking algorithm from robotics to create a
smooth, believable reconstruction of a remote player’s trajec-
tory. Finally, we demonstrated the use of a small neural net
in the prediction of collision responses to render a trajectory
that closely reproduces the true trajectory.

Our goal with this work was to establish a proof of concept
for predicting future motion and collision responses using
a neural network. To do so, we captured some aspects of
the problem, notably the physical properties of the objects
involved, implicitly in the neural networks. We leave the
problem of creating a generalized model for future work. We
also note that while our approach maintains lower error for
much higher message intervals, further research is required
into packet loss and delay.

Our simplified environments did not make use of map
information. As noted in [11], road maps can be used as a
prior over a player’s future trajectory. Adding some notion
of the upcoming road information to the model inputs may
further improve predictions of future actions.

Finally, our investigation of collisions omitted player-to-
player impacts and did not consider methods to detect the
point at which the player regains control. Expanding the
research to dynamic events and improving the transition from
the collision network back to the prediction network where
player controls are responsive again, are likely to be additional
valuable contributions.
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