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In this thesis, four problems in the control of multi-agent systems are studied. First,

a hierarchical cyclic pursuit scheme is introduced, and it is shown to yield significant

advantages over traditional cyclic pursuit. Second, the control of a heterogeneous group

of agents is explored. A global stability analysis is performed for two agents in cyclic

pursuit, where each agent has a different kinematic model. Third, the problem of adapting

curve shortening theory to the multi-agent setting is addressed. Motivated by this theory,

the agents are viewed as the vertices of a polygon, and a linear polygon shortening scheme

is proposed which exhibits several analogues to Euclidean curve shortening. Finally, the

problem of stabilizing a group of agents to a formation is analyzed. By adapting the

linear polygon shortening scheme, a local control strategy is proposed to stabilize the

agents to the vertices of an equilateral polygon.
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Chapter 1

Introduction

Suppose you have lost a valuable piece of jewelry in the park, and you must find it. You

have gathered up some volunteers to help you find the piece of jewelry, and you have roped

off the region that contains the object. You instruct the volunteers to set up a perimeter

by standing evenly spaced around the boundary of the region, as shown in Figure 1.1(a).

How should you tell the volunteers to move so that they will tighten their perimeter

around the piece of jewelry? That is, you would like the length of the boundary, and

the area inclosed, to decrease. In addition you would like the region enclosed to become

convex so that each volunteer has a clear line of sight to every point in the region. A

solution, which is developed in this thesis, is for each volunteer to pursue the centroid

of its two neighbours. The resulting paths of the volunteers, and the evolving boundary

are shown in Figure 1.1(b).

In the above example, the volunteers are agents in a multi-agent system who have

been given the task of finding the piece of jewelry. So what exactly is an agent? For

our purposes, an agent is a mobile computational system that acquires data through

sensors. It can process the data it acquires, and if given a goal, can alter its motion

based on the data to attempt to attain the goal. Through its sensors and its computing

power the agent can determine the relative positions of objects that it can sense. From

1



Chapter 1. Introduction 2

The volunteers

The piece of jewelry

The region

(a) The region which contains the piece of jewelry, and the volunteers posi-

tioned around the boundary.

(b) The dashed lines show the path of each volunteer. The solid polygons show

the evolution of the region which contains the piece of jewelry as the volunteers

tighten their perimeter.

Figure 1.1: Finding the piece of jewelry in the park.
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this definition it is clear that the volunteers are agents. A more common example of an

agent might be a four-wheeled rover with an onboard computer and an omnidirectional

camera. A multi-agent system is then simply a group of agents. Given a desired task for

a multi-agent system (such as finding the piece of jewelry), a supervisor must initialize

the agents with the information required to complete the task. From this point until task

completion the agents are to act without any supervisory intervention. In this sense the

agents are autonomous. In addition, the agents attempt to complete the task using only

local information. That is, the motion of each agent is based only on quantities that

it can compute onboard, such as the relative position of the agents and objects it can

sense. In an ideal world the supervisor would not have to provide the agents with any

information about their task: They would just do it. Hence, it is desirable to provide the

agents with the least amount of information possible before setting them off to complete

their task.

Multi-agent systems have an extremely diverse range of possible applications, includ-

ing search and rescue missions, ocean exploration, land surveying, planetary exploration,

and surveillance. It is clear that for many of these applications, the use of robotic agents

would be beneficial as it would limit the number of human lives put in danger. What

may not initially be as obvious are the advantages of using a multi-agent system over a

single agent. However, it is these advantages that provide the truly compelling argument,

since a multi-agent system

(i) is inherently robust to failure of single agents,

(ii) can be used to perform distributed sensing tasks,

(iii) can perform a search/explore task more efficiently,

(iv) generally has lower economic cost, and

(v) can achieve a larger range of tasks [28].
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Much of the research in the area of multi-agent systems, and in this thesis, has been

inspired by these very advantages. Another inspiration is that this research may yield

some insight into the social interactions between organisms, such as the way certain

organisms travel and collect in swarms. Examples of swarming behavior include schools

of fish, flocks of birds, and herds of animals. These groups are all able to achieve an overall

group behavior through only local interactions [16]. It is possible that by studying the

ways in which global behaviors can be achieved through simple local control strategies

in a multi-agent system, we will obtain a better understanding of the way these complex

biological systems operate.

1.1 Problem introduction

There have been two approaches to the study of multi-agent systems. The first approach

has focused on using artificial intelligence and behavior based techniques to achieve de-

sired group behaviors, for example [17, 29, 42]. These approaches have yielded some

very interesting behaviors, but they do not generally admit definite mathematical re-

sults [53]. The other approach has been using mathematical analysis to study the

behaviors that arise from simple local control strategies. Behaviors which have been

studied from this point of view include flocking [51, 52], foraging/searching [27], disper-

sion/deployment [10], rendezvous [25, 31, 33, 36, 37, 43] (also known as agreement or

consensus; in this behavior all agents meet at a common point), and formation stabiliza-

tion [26, 38, 39, 41, 49, 50] . The local control strategies that are used to achieve these

behaviors are generally developed in one of two ways. Either

(i) a local control strategy is known and the interest lies in what global behaviors of

the system will emerge; or

(ii) a desired global behavior is known and a local controller is chosen and analyzed in

hopes that it will achieve the behavior.
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In both cases there are unknowns. In the first, the local control strategy is known, but

the global behavior is not, and one hopes that the study will reveal some interesting

behavior. In the second case, the global behavior is known, but it is not known whether

or not the local control strategy will achieve the desired behavior. In this thesis both

approaches are taken. In Chapters 2 and 3 a local control strategy is chosen and the

emerging global behavior is studied. In Chapters 4 and 5 a desired global behavior is

known and a local controller is chosen to attempt to achieve the global behavior.

The problems addressed in this thesis all have the same structure. We consider n

agents lying in the plane. The agents do not know a common direction (i.e., they do not

know which way north is) and thus the agents are disoriented. Each agent can sense the

position of every other agent, and therefore is equipped with an omnidirectional sensor

with a range that is larger than the dimension of its environment. If agent i uses the

position of agent j to determine its behavior, we say that agent i has a communication link

to agent j. While each agent can see every other agent, we assume that communication

comes at a cost, and thus the fewer communication links the better. In addition, each

agent is given a unique number from 1 to n. This is the only unique piece of information

that each agent possesses, and can be implemented by something as simple as attaching a

uniquely colored flag to each agent. The behavior of each agent relative to its neighbours’

positions should be identical. That is, one should be able to initialize all the agents with a

single local control strategy. The strategy will be defined in terms of some index i. Each

agent then simply replaces the index i with its unique number to obtain its strategy. With

this problem structure in place, this thesis focuses on solving rendezvous and formation

stabilization problems.
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1.2 Outline of thesis and contributions

Each chapter of this thesis studies a different problem. At the beginning of each chapter

the relevant literature is reviewed and the necessary background material is introduced.

All notation is consistent throughout the chapters. The organization is as follows.

In Chapter 2 the rendezvous problem is studied, whereby a group of mobile agents

achieves convergence to a common point. A hierarchical cyclic pursuit scheme is intro-

duced, and it is shown that this scheme yields a very significant increase in the rate of

convergence to a common point when compared to traditional cyclic pursuit. A second

scheme is introduced in which there are more communication links between agents. It

is shown that this scheme produces a rate of convergence greater than the traditional

scheme but significantly less than the hierarchical scheme.

Contribution of Chapter 2: This chapter marks the introduction of the concept of

hierarchy within the sensing structure of a multi-agent system. The strategy de-

veloped is the first hierarchical local control strategy in the multi-agent systems

literature. Parts of this work originally appeared in [47] by Smith, Broucke, and

Francis.

In Chapter 3 the control of a heterogeneous group of agents is explored. Cyclic pursuit

is studied for the case of two agents, each with a different kinematic model. It is shown

that by varying the gains on the control inputs, different types of formations can be

achieved: The agents can spiral into a point, out to infinity, or converge to concentric

circles.

Contribution of Chapter 3: This is the first analytical study of a local control strat-

egy for a heterogeneous multi-agent system. A complete global stability analysis is

performed for a heterogeneous system consisting of two agents.

In Chapter 4 the problem of adapting curve shortening theory to the multi-agent

setting is addressed. Curve shortening theory can be described as follows; If a smooth,
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closed, and embedded curve is deformed along its normal vector field at a rate pro-

portional to its curvature, it shrinks to a circular point. This curve evolution is called

Euclidean curve shortening and the result is known as the Gage-Hamilton-Grayson The-

orem. Motivated by the rendezvous problem in multi-agent systems, the problem of

creating a polygon shortening flow is addressed. A simple linear scheme is proposed

which exhibits several analogues to Euclidean curve shortening. The polygon shrinks to

an elliptical point, convex polygons remain convex, and the perimeter of the polygon is

monotonically decreasing.

Contribution of Chapter 4: Inspired by the discrete affine curve shortening scheme

in [4], this is the first research to directly relate the theory on curve shortening to

multi-agent systems. This theory is used to design a simple local control strategy

and to demonstrate some interesting similarities to curve shortening evolution.

Parts of this work originally appeared in [46] by Smith, Broucke, and Francis.

In Chapter 5, the problem of stabilizing a group of agents to a formation is analyzed.

A novel local control scheme is proposed to stabilize the agents to the vertices of a

stationary equilateral polygon. That is, a polygon for which each side has the same

length. The centroid of the agents is stationary during the evolution. A full stability

analysis is performed for three agents and some interesting results are derived for the

general case.

Contribution of Chapter 5: This chapter introduces a local control strategy which

stabilizes a group of agents to a novel formation. The agents stabilize to this

formation without the use of a common orientation (i.e., a compass).

Finally, in Chapter 6 the thesis is summarized and some areas for future work are

outlined.



Chapter 2

Hierarchical cyclic pursuit

In this chapter the rendezvous problem is studied whereby a group of mobile agents

achieves convergence to a common point. A hierarchical cyclic pursuit scheme is intro-

duced, and it is shown that this scheme yields a very significant increase in the rate of

convergence to a common point when compared to traditional cyclic pursuit. A second

scheme is introduced in which there are more communication links between vehicles. It

is shown that this scheme produces a rate of convergence greater than the traditional

scheme but significantly less than the hierarchical scheme.

2.1 Introduction

Much of the current work in multi-agent systems involves the use of simple local control

strategies in order to achieve a desired global (or group) behavior. One such behavior is

the convergence of a group of agents to a common point. This is a type of rendezvous

problem, also known as an agreement or consensus problem. Some recent approaches to

solving these types of problems include [25, 31, 33, 36, 37, 46, 43, 51, 52]. As in [4, 31, 46,

51], we assume a fixed topology (i.e., a time-invariant sensor graph). Other references,

for example [25, 33, 36, 37, 43, 52], consider dynamic topologies. The approaches in

[4, 25, 31] and this paper are based on a strategy called cyclic pursuit, which can be

8
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described as follows. A group of n agents, modeled as point masses, are numbered from

1 to n. The position of each of the n agents can be described in the complex plane by

the point zi = xi + jyi, i = 1, . . . , n, where j =
√−1. The strategy is for agent i to

chase agent i + 1. The ith agent’s velocity points in the direction of agent i + 1 and the

magnitude of the velocity is equal to the distance between agent i and i + 1. The model

for cyclic pursuit is given by

żi = zi+1 − zi, i = 1, ..., n− 1

żn = z1 − zn.

(2.1)

Under this scheme the agents will converge to their stationary centroid.

The scheme above assumes that each agent is equipped with an omnidirectional sensor

with an infinite range. Lin et al. [25] consider sensors with a finite range, and directional

sensors which can see agents only within some cone of view. Based on these sensor

models, control strategies are developed to ensure convergence to a point. Marshall et

al. [31] study a similar pursuit strategy but with wheeled vehicles that are subject to

a nonholonomic constraint (kinematic unicycles). For models of this type there are two

control inputs, namely the forward and angular velocities. The strategy is to pursue

the next agent with linear velocity proportional to the distance to the next agent, and

angular velocity proportional to the difference between the desired and actual heading.

By appropriate choice of gains on the velocities, the vehicles can either spiral in to a

point, converge to a circle of some radius, or diverge. These are two examples of the

application of local control strategies to achieve a global group behavior. There are

many other results, and a more complete review of these can be found in [25] and [31].

Williams et al. [54] study the problem of achieving an overall formation with n groups

of homogeneous vehicle formations. In each group there is one leader, which is the only

vehicle that can communicate to the other groups. By using a simple linear control law,

and by modeling the vehicles as point masses, hierarchical formations, such as groups

achieving a common heading, are attained.
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Layer 1

Layer 2

Layer 3

Figure 2.1: Three layers of hierarchy in cyclic pursuit.

In this chapter, the concept of hierarchy is applied to cyclic pursuit. The simplest

hierarchical cyclic pursuit scheme, which we call a two layer hierarchical scheme, can be

described as follows. A collection of N2 agents is divided into n2 groups, each containing

n1 agents (n1×n2 = N2). The local control strategy is chosen such that the agents within

each group are in cyclic pursuit. In addition, the centroid of each group is pursuing the

centroid of the next in order (i.e., the centroids are also in cyclic pursuit). This idea

can be extended to more layers of hierarchy as shown in Figure 2.1. In Sections 2.4

and 2.5 this discussion will be formalized, and it will be shown that this scheme yields

a very significant increase in the rate of convergence of a group of vehicles to their

centroid when compared to traditional cyclic pursuit (2.1). The hierarchical scheme

requires more communication links between agents than the traditional scheme. Because

of this, in Section 2.6 the rate of convergence of the hierarchical scheme is compared

to an alternate scheme with an equal number of communication links. It is shown that

the hierarchical scheme still yields a significantly greater rate of convergence than this

alternate scheme.
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2.2 Background in circulant matrices

In order to proceed we require a few mathematical tools. This section gives a summary

of the theory of circulant matrices and is based on [12] by Davis.

Consider an n-tuple (c1, c2, . . . , cn) of real numbers. This n-tuple along with its n− 1

cyclic permutations can be used to form the rows of

C =




c1 c2 c3 · · · cn

cn c1 c2 · · · cn−1

cn−1 cn c1 · · · cn−2

...
...

...
...

...

c2 c3 c4 . . . c1




. (2.2)

This is the general form of a circulant matrix, which can be written more compactly as

C =: circ(c1, c2, . . . , cn).

There is a well-developed theory which gives a structured approach for diagonalizing

matrices of this form. Consider the n× n circulant matrix

P =




0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
...

...

1 0 0 · · · 0




= circ(0, 1, 0, . . . , 0). (2.3)

We refer to P as the permutation matrix. This matrix has the special property that

P 2 = circ(0, 0, 1, 0, . . . , 0), P 3 = circ(0, 0, 0, 1, 0, . . . , 0),

and so on. Because of this, the matrix C can be written as

C = cnP
n−1 + cn−1P

n−2 + · · ·+ c2P + c1I.

By defining the polynomial

qC(s) = cnsn−1 + cn−1s
n−2 + · · ·+ c2s + c1s

0,
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we have that C = qC(P ). In order to determine the eigenvalues of this polynomial we

will now introduce a special case of the Spectral Mapping Theorem.

Definition 2.1. The set of all eigenvalues of a matrix A is called the spectrum of A and

will be written eigs(A).

Theorem 2.2 (Spectral Mapping Theorem). For every n× n matrix A and every poly-

nomial p(s), the spectrum of p(A) is p(eigs(A)).

Based on this theorem, the eigenvalues of C are,

eigs(C) = {qC(λ) : λ ∈ eigs(P )}.

Matrix P is in companion form and its characteristic polynomial is sn−1. The eigenvalues

of P are the nth roots of unity:

eigs(P ) = {1, e2πj/n, e4πj/n, . . . , e2(n−1)πj/n}.

So, if we define ω := e2πj/n then

eigs(P ) = {1, ω, ω2, . . . , ωn−1}. (2.4)

Therefore,

eigs(C) =
{
qC(1), qC(ω), qC(ω2), . . . , qC(ωn−1)

}
. (2.5)

Now we will look at diagonalizing the matrix C. It can easily be seen that normalized

eigenvectors of P corresponding to the eigenvalues in (2.4) are given by

1√
n




1

1

1

...

1




,
1√
n




1

ω

ω2

...

ωn−1




,
1√
n




1

ω2

ω4

...

ω2(n−1)




, · · · ,
1√
n




1

ωn−1

ω2(n−1)

...

ω(n−1)(n−1)




.
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Therefore, by defining the matrices consisting of the eigenvalues and eigenvectors as

Ω =




1 0 · · · 0

0 ω · · · 0

...
. . .

...

0 · · · 0 ωn−1




and F =
1√
n




1 1 · · · 1

1 ω · · · ωn−1

...
...

...
...

1 ωn−1 · · · ω(n−1)(n−1)




,

we get

PF = FΩ or P = FΩF ∗,

where ∗ represents the complex conjugate transpose. By pre-multiplying PF = FΩ by

P we see that P 2F = FΩ2 from which it follows that P 3F = FΩ3, P 4F = FΩ4, and so

on. Since

C = cnP
n−1 + cn−1P

n−2 + · · ·+ c2P + c1I,

we have that CF = FqC(Ω) or C = FΛF ∗, where Λ is the diagonal matrix taking the

form

Λ := qC(Ω) =




qC(1) 0 · · · 0

0 qC(ω) · · · 0

...
. . .

...

0 · · · 0 qC(ωn−1)




.

In this manner all circulant matrices can be diagonalized to reveal their eigenvalues.

2.2.1 Block circulant matrices

To extend this concept to block circulant matrices we introduce an operation between

two matrices called the Kronecker product. The Kronecker product, ⊗, between an n×m

matrix A, and a matrix B, is defined as

A⊗B =




a11B · · · a1mB

...
...

an1B · · · anmB




.
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In other words, the Kronecker product replaces the ijth element of A by the block aijB.

The eigenvalues of A⊗ B are given by all possible products of the eigenvalues of A and

B.

Now consider the matrix (2.2) but with each real number entry replaced by an m×m

matrix Di:

D =




D1 D2 D3 · · · Dn

Dn D1 D2 · · · Dn−1

Dn−1 Dn D1 · · · Dn−2

...
...

...
...

...

D2 D3 D4 . . . D1




= circ(D1, D2, . . . , Dn).

The matrix D is of dimension nm×nm and has a block circulant form. This matrix can

be written in terms of the n× n circulant matrix P as

D = P n−1 ⊗Dn + P n−2 ⊗Dn−1 + · · ·+ P ⊗D2 + I ⊗D1.

The matrix D can be block diagonalized using F from above, as follows:

Λ := (F ⊗ Im)∗D(F ⊗ Im).

Here Im is the m ×m identity matrix. It can be shown that the block diagonal matrix

Λ has the following entries along its diagonal:

D1 + D2 + D3 + · · ·+ Dn

D1 + ωD2 + ω2D3 + · · ·+ ωn−1Dn

...

D1 + ωn−1D2 + ω2(n−1)D3 + · · ·+ ω(n−1)(n−1)Dn.

(2.6)

Therefore, if D1, . . . , Dn are circulant matrices, the expressions in (2.6) can be com-

bined with the expression for the eigenvalues of a circulant matrix in (2.5) to obtain the

eigenvalues of a block circulant matrix.
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2.3 Traditional cyclic pursuit

Consider n agents, modeled as point masses, numbered from 1 to n, and performing

cyclic pursuit as described by (2.1). This system can be written in vector form as

ż = A1z, (2.7)

where A1 = circ(−1, 1, 0, . . . , 0). The matrix A1 can also be written as A1 = P −I, where

P is given in (2.3). The eigenvalues of P are the nth roots of unity; thus, the eigenvalues

of A1 are the nth roots of unity shifted left by one. The following theorem describes two

main properties of cyclic pursuit.

Theorem 2.3 (Bruckstein et al. [4]). Consider the cyclic pursuit scheme in (2.7). For

every initial condition, the centroid of the agents z1(t), . . . , zn(t) is stationary and every

zi(t) converges to this centroid.

Proof. We include a proof of this theorem as it helps to demonstrate the properties of

cyclic pursuit. The eigenvector for the zero eigenvalue of A1 satisfies

A1v = 0 or Pv = v,

so all of v’s components are equal. For simplicity take them all to be 1. Denote the

corresponding one-dimensional eigenspace as E0. Let E1 denote the sum of all the other

eigenspaces. Let λ be a nonzero eigenvalue, and w ∈ E1 be a corresponding eigenvector.

So we have

A1w = λw

Pw = w + λw.

Pre-multiplying by vT and using the fact that vT P = vT we get,

vT w = vT w + λvT w.

Therefore vT w = 0 and thus E0 and E1 are orthogonal eigenspaces.
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We will now use this result to show that the agents converge to their stationary cen-

troid. Consider ż = A1z. The initial condition can be written in terms of the orthogonal

eigenspaces as

z(0) = z̃v + w(0),

where z̃ is a constant and so z̃v ∈ E0 and w(0) ∈ E1. Pre-multiplying this expression by

vT and using the fact that vT w(0) = 0 and vT v = n, we get that

vT z(0) = z̃vT v + vT w(0) = z̃n.

Hence, z̃ = (z1(0) + · · · + zn(0))/n is the centroid of the agents’ initial positions. The

trajectories of the system can be written as

z(t) = z̃v + w(t)

since the eigenvalue associated with v is the zero eigenvalue. Pre-multiplying by vT again

we see that

vT z(t) = z̃n,

which implies that the centroid of the agents, z1(t), . . . , zn(t), is stationary. Finally,

w(t) → 0 since w(t) ∈ E1 and all the eigenvalues of E1 are in the open left half-plane.

Therefore, we have z(t) → z̃v so every agent converges to the centroid z̃.

Note that the rate of convergence of the agents to the centroid z̃ will be determined

by the nonzero eigenvalue with the smallest absolute real part.

Now consider the situation where each agent follows a displacement of the next agent:

żi = (zi+1 + di)− zi, i = 1, ..., n− 1

żn = (z1 + dn)− zn.

In vector form, this can be written as

ż = A1z + d.
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Pre-multiplying by vT we obtain

vT ż = vT A1z + vT d

vT ż = vT d.

Since v is a vector of 1’s we get that

n∑
i=1

żi =
n∑

i=1

di. (2.8)

If we denote the centroid of the agents as z̃, (2.8) becomes

˙̃z =
1

n

n∑
i=1

di. (2.9)

This implies that we can control the centroid of a group of agents using the di’s. By

properly selecting the di’s we can create hierarchy within cyclic pursuit.

2.4 Two layer hierarchy

We will start by looking at the two layer hierarchical scheme, as described in Section

2.1, where N2 agents are divided into n2 groups of n1 agents (n1 × n2 = N2). Each

agent will be described by the subscripts zp,q where p = 1, . . . , n2 is the group index,

and q = 1, . . . , n1 is the agent index. Therefore, the two layer hierarchy system can be
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written as,

group 1





ż1,1 = z1,2 − z1,1 + d1,1

ż1,2 = z1,3 − z1,2 + d1,2

...

ż1,n1 = z1,1 − z1,n1 + d1,n1





...

group n





żn2,1 = zn2,2 − zn2,1 + dn2,1

żn2,2 = zn2,3 − zn2,2 + dn2,2

...

żn2,n1 = zn2,1 − zn2,n1 + dn2,n1 .





(2.10)

where the dp,q’s are the displacements. We require the centroids of the groups to be in

cyclic pursuit. Therefore, the desired equations of motion for the centroids of each group

are

˙̃zp = z̃p+1 − z̃p, p = 1, . . . , n2 − 1

˙̃zn2 = z̃1 − z̃n2 ,

(2.11)

where the centroid of the pth group is defined as

z̃p :=
1

n1

n1∑
q=1

zp,q.

The question is how to choose the displacements, dp,q’s, to achieve this motion in the

centroids. From (2.9), the dynamics of group p’s centroid is

˙̃zp =
1

n1

n1∑
q=1

dp,q.

Combining this with (2.11) we get that

n1∑
q=1

dp,q = n1(z̃p+1 − z̃p). (2.12)

Looking at (2.12) and summing over all of the dp,q’s we can see that

n2∑
p=1

n1∑
q=1

dp,q = n1

n2∑
p=1

˙̃zp = 0,
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and therefore the centroid of the N2 agents is stationary.

Several different dp,q’s can be chosen that will satisfy (2.12). One such choice is

dp,q = zp+1,q − zp,q. (2.13)

This means that the qth agent in the pth group chases the qth agent in the (p + 1)th

group. By substituting the expression for the dp,q’s into (2.10) it can be seen that each

agent has a communication link to two other agents (zp+1,q and zp,q+1). Therefore, with

this scheme, there is a total of 2N2 communication links. This system can be further

examined by looking at the vector form

ż = Bz + Dz,

where B is the block diagonal matrix describing the cyclic pursuit within the groups, and

is given by

B = diag(A1, . . . , A1), (n2 blocks),

and A1 = (P − I)n1×n1 as in (2.7). The eigenvalues of B are n2 sets of the nth
1 roots of

unity, shifted left by 1. The matrix D represents the dp,q’s and has the form

D = circ(−1, 1, 0, . . . , 0)n2×n2 ⊗ In1

= (P − I)n2×n2 ⊗ In1 . (2.14)

The matrix In1 =: S in (2.14) represents the sensor connections of each agent in one

group to the agents in the next group. A ‘1’ in the fgth position of the S matrix,

f, g = 1, . . . , n1, indicates that the f th agent in each group senses the gth agent in the

next group (modulo n2). Therefore, S = I indicates that the f th agent of each group

sees the f th agent in the next group.

If we compute A2 := B + D, it has the block circulant structure (with each block

being of size n1 × n1)

A2 = circ(A1 − I, I, 0, . . . , 0)N2×N2 . (2.15)
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This matrix can be block diagonalized to obtain the following matrices along the diagonal:

(A1 − I) + ωr−1I, r = 1, . . . , n2,

where ω = e2πj/n2 . The eigenvalues of A2 are the union of the eigenvalues of these

matrices. That is, we have n2 sets of n1 eigenvalues, the rth set being comprised of the

eigenvalues of A1 shifted by ωr−1 − 1. This can be written more compactly as

eigs(A2) =

n2⋃
r=1

eigs
(
A1 + (e2πj(r−1)/n2 − 1)I

)
. (2.16)

Example 2.4 (Nine agents with two layers of hierarchy). Consider 9 agents which are

split into 3 groups, each containing 3 agents. In the notation introduced above, this can

be written as n1 = n2 = 3, giving a total of n1n2 = N2 = 9 agents. The matrix A1 is

A1 =




−1 1 0

0 −1 1

1 0 −1




= circ(−1, 1, 0).

From (2.15) we have

A2 = circ(A1 − I, I, 0, . . . , 0) = circ(−2, 1, 0, 1, 0, 0, 0, 0, 0)

The trajectories generated by the nine agents are shown in Figure 2.2 for initial conditions

equally spaced around a circle.

2.4.1 Rate of convergence to the centroid

By examining (2.16) it can be seen that A2 has one eigenvalue at zero and all others lie

in the open left half-plane. The matrices on the right hand side of (2.16) are circulant,

thus when A2 is block diagonalized, each block is circulant. But since the blocks are

circulant, they can be further diagonalized, thereby fully diagonalizing A2. Therefore,

the zero eigenvalue of A2 dictates that the agents converge to their centroid rather than

to the origin. The rate of convergence of the agents to their centroid is determined by
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x

y

Figure 2.2: Trajectories of nine agents in a two layer hierarchy scheme with n1 = n2 = 3.

the nonzero eigenvalue of A2 with the smallest absolute real part. In order to simplify

the subsequent discussion the following definition is introduced.

Definition 2.5. The γ-value of a set of eigenvalues, which lie in the left half-plane, is

the nonzero eigenvalue with the smallest absolute real part.

The eigenvalues of A1 are the nth
1 roots of unity shifted left by one and can be written

as

λp = e2πj(p−1)/n1 , p = 1, . . . , n1.

If we define σ2(r) := e2πj(r−1)/n2 − 1, the real part takes values in the range

−2 ≤ <(σ2(r)) ≤ 0, ∀r = 1, . . . , n2, (2.17)

and (2.16) can be written as

eigs(A2) =

n2⋃
r=1

eigs (A1 + σ2(r)I) .

Now, looking for the γ-value of A2, we know from (2.17) that σ2(r)I shifts the rth set of

eigenvalues of A1 to the left by some amount between 0 and 2. In order to find the γ-value
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Im

Re

γ1

γ2

σ2(2) = e2πj/n2
− 1

1st set of eigenvalues,
eigs(A1), lie evenly
spaced on this circle.

2nd set of eigenvalues,
eigs(A1 + σ2(2)I), lie
evenly spaced on this
circle.

Figure 2.3: Finding the γ-value of A2. The shift of σ2(2) as well as γ1 and γ2 are shown.

of A2 we need to find the set of eigenvalues which is shifted by the smallest amount to

the left, and then we need to find the γ-value of that set.

The set of eigenvalues of A1 that is not shifted at all is the first (r = 1) set which

has the shift σ2(1) = 0. The eigenvalues of this set are simply the eigenvalues of A1.

The rightmost eigenvalue of A1 lies at zero (λ1 = 0), and thus the next eigenvalue to the

left of 0 provides the γ-value, which is λ2 = e2πj/n1 − 1 =: γ1 (or equivalently λn1). The

eigenvalues of A1 are shown in Figure 2.4.

The set of eigenvalues that is shifted to the left by the next smallest amount is given

by σ2(2) (or equivalently σ2(n2 − 1)). The rightmost eigenvalue of this set is given by

λ1 + σ2(2) = 0 + e2πj/n2 − 1,

as shown in Figure 2.3. This eigenvalue is nonzero and is therefore the γ-value of the set:

γ2 := e2πj/n2 − 1.

Both γ1 and γ2 are shown in Figure 2.5 and the process of finding the γ-value is shown
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Figure 2.4: The eigenvalues of A1 for

n1 = 4, showing λ1, . . . , λ4.
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Figure 2.5: Eigenvalue structure for

n1 = 4, and n2 = 3 showing γ1 and

γ2

in Figure 2.3.

The question arises as to which eigenvalue has a smaller absolute real part: γ1, or γ2?

We have

γ1 = e2πj/n1 − 1

<(γ1) = cos(2π/n1)− 1

and,

γ2 = e2πj/n2 − 1

<(γ2) = cos(2π/n2)− 1.

Therefore, the γ-value is given by γ1 if n1 ≥ n2, and by γ2 if n1 ≤ n2. The real part of
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the γ-value of A2 can be written as

χ := cos(2π/w)− 1, (2.18)

where

w = max {n1, n2} . (2.19)

In comparing the real part of the γ-value for the two cyclic pursuit schemes, hierarchical

and traditional, we get that the increase in the rate of convergence to the centroid when

using hierarchical cyclic pursuit is

hierarchical

traditional
=

cos(2π/w)− 1

cos(2π/N2)− 1
.

Expanding the cos terms to the first order and using the fact that N2 = n1 × n2, and

w = max {n1, n2}, we arrive at the following theorem.

Theorem 2.6 (Two layers of hierarchy). Suppose we have two layers of hierarchy in

cyclic pursuit, where N2 agents are divided into n2 groups, with each group containing n1

agents. Then the increase in the rate of convergence of the two layer hierarchy scheme,

when compared to traditional cyclic pursuit, is approximated by

R :=
hierarchical

traditional
≈ min{n1, n2}2 =: R2. (2.20)

As the total number of agents becomes large (N2 →∞), R/R2 → 1.

Thus in the special case where n1 = n2 =
√

N2, the N2 agents will converge to their

centroid approximately N2 times faster using the hierarchy scheme than using traditional

cyclic pursuit.

2.5 The generalized scheme

In the most general setting, we have L layers of hierarchy (in the previous section we had

two layers). We call the layer consisting of n1 agents the first layer. The second layer
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then consists of n2 subgroups of n1 agents, the third layer, n3 groups of n2 subgroups of

n1 agents, and so on. In total we have NL agents, where

L∏
m=1

nm = NL.

The system can be written in the form

ż = ALz, (2.21)

where z is a column vector of length NL, and AL is an NL by NL matrix. For L = 1, we

have NL = N1 = n1 and the A1 matrix is A1 = (P − I)n1×n1 . Each time we add a new

layer we would like the behavior in the layer below to remain the same. For example, with

one layer, we have traditional cyclic pursuit. When we add another layer and have several

groups, we would still like the agents within each individual group to be in cyclic pursuit.

We then add sensor connections between each of the groups to achieve cyclic pursuit at

the new level (between the centroids of the groups). In looking at the A2 matrix in (2.15)

this becomes evident. The A1 matrices along the diagonal represent the cyclic pursuit

within each group. The I’s along the off-diagonal and −I’s along the diagonal represent

the sensor connections between groups to create the new layer of hierarchy; each agent

in a group takes the position of an agent in the next group, minus its own position (as

described in (2.13)), to create the new layer.

Lemma 2.7. An L-layer hierarchy scheme can be put into the form of (2.21). The

matrix AL is given by the recursive expression

A1 = circ(−1, 1, 0, . . . , 0)

Am = circ(Am−1 − I, I, 0, . . . , 0), m = 2, . . . , L

(2.22)

where Am is composed of nm blocks of dimension Nm−1 ×Nm−1.

Notice that in order to add a layer of hierarchy, each agent must have an additional

communication link to another agent. This is described by the off-diagonal identity
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matrices in (2.22). Therefore, if the total number of agents in an L-layer hierarchy

scheme is NL, the total number of communication links in the system is LNL.

The matrix Am is block circulant and the eigenvalues are given by

eigs(Am) =
nm⋃
r=1

eigs
(
Am−1 + (e2πj(r−1)/nm − 1)I

)
.

So, the eigenvalues of Am are nm sets of the eigenvalues of Am−1, with the rth set of

eigenvalues shifted by σm(r) := e2πj(r−1)/nm − 1. In examining the expression for σm(r),

it can be seen that all nm sets of eigenvalues are shifted to the left by some amount

between 0 and 2 since,

−2 ≤ <(σm(r)) ≤ 0 ∀r = 1, . . . , nm.

In order to find the rate of convergence to the centroid we need to determine all the

possible γ-values of eigs(Am). These γ-values will come from the sets of eigenvalues with

the smallest leftward shift. The first set of eigenvalues of Am are simply the eigenvalues

of Am−1 shifted by σm(1) = 0. Therefore, the possible γ-values of this set are the γ-values

of eigs(Am−1).

The set of eigenvalues with the next smallest leftward shift is given by Am−1+σm(2)I,

(or equivalently Am−1+σm(nm)I), as is shown in Figure 2.3 for the case of m = 2. In this

set, the zero eigenvalue of Am−1 (which is the rightmost eigenvalue of Am−1) is shifted to

σm(2). Thus, this is the γ-value of this set and is given by

γm := e2πj/nm − 1.

The γ-value of eigs(Am) must be either the γ-value of eigs(Am−1) or γm. Therefore, this

is a recursive scheme. For each additional layer, another eigenvalue is added to the set

of possible γ-values (this additional eigenvalue is γm which corresponds to the set shifted

by σm(2)). This is shown in Figure 2.6.

As an example, for eigs(A1) the γ-value is given by

γ1 := e2πj/n1 − 1.
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Figure 2.6: Determining the possible γ-values for eigs(A3). For this distribution of agents,

n3 = 3 groups of n2 = 3 subgroups of n1 = 4 agents (total of 36 agents) the γ-value is γ1.



Chapter 2. Hierarchical cyclic pursuit 28

The γ-value of eigs(A2) is either the γ-value of eigs(A1), which is γ1, or

γ2 := e2πj/n2 − 1.

The γ-value of eigs(A3) is either one of the possible γ-values of eigs(A2), namely γ1 or

γ2, or

γ3 := e2πj/n3 − 1.

For eigs(Am), the γ-value is given by

γ := e2πj/w − 1 w = max
m
{nm}, m = 1, . . . , L.

The increase in rate of convergence over the traditional cyclic pursuit is given by

R =
hierarchical

traditional
=
< (

e2πj/w − 1
)

< (e2πj/NL − 1)
=

cos(2π/w)− 1

cos(2π/NL)− 1
.

Expanding the cos terms to the first order we obtain the following result.

Theorem 2.8 (L layers of hierarchy). Consider a group of NL agents, divided into L

layers of hierarchy. The increase in the rate of convergence of the L-layer hierarchy

scheme when compared to traditional cyclic pursuit is approximated by

R ≈
(

NL

maxm{nm}
)2

=: RL. (2.23)

As the number of agents becomes very large (NL →∞), R/RL → 1.

In order to determine the distribution of agents in a hierarchy which results in the

highest rate of convergence we introduce the following definition.

Definition 2.9. A distribution of nm’s satisfying
∏L

m=1 nm = NL which yields the highest

rate of convergence is an optimal distribution.

Theorem 2.10. In the case where L
√

NL is an integer, the uniform distribution of nm’s

n1 = n2 = · · · = nL =
L
√

NL, (2.24)



Chapter 2. Hierarchical cyclic pursuit 29

which yields an increase in the rate of convergence of

RL = N
2(L−1)/L
L , (2.25)

is an optimal distribution. Moreover, it is the only optimal distribution.

Proof. First we show that distribution (2.24) is optimal. Since the numerator of (2.23) is a

constant, the highest rate of convergence is obtained when the denominator is minimized.

Therefore, an optimal distribution is one which minimizes the maximum nm. Suppose

there exists a distribution which yields a rate of convergence greater than (2.25). This

implies there exists a distribution {nm}, m = 1, . . . , L, such that

max
m
{nm} =: M <

L
√

NL and
L∏

m=1

nm = NL.

Thus, M ≥ nm for all m. But then ML ≥ ∏L
m=1 nm = NL which is a contradiction, since

we assumed M < L
√

NL. Therefore maxm{nm} ≥ L
√

NL and

RL ≤ N
2(L−1)/L
L

for all distributions, and thus (2.24) is an optimal distribution.

Now suppose a distribution which is not identical to (2.24) is also optimal. This

implies there exists a distribution, {nm}, m = 1, . . . , L, where nm1 > nm2 for some

m1,m2 ∈ {1, . . . , L}, such that

max
m
{nm} = M =

L
√

NL and
L∏

m=1

nm = NL.

Thus, M ≥ nm for all m, with M > nm2 . But then ML >
∏L

m=1 nm = NL, which is a

contradiction since we assumed M ≤ L
√

NL. Therefore, for any distribution not identical

to (2.24), maxm{nm} > L
√

NL, and

RL < N
2(L−1)/L
L ,

which is not optimal. Therefore, (2.24) is the optimal distribution.
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Figure 2.7: Trajectories for 16 agents in traditional cyclic pursuit (dashed line) and 16

agents with 4 layers of hierarchy (solid line).

When L
√

NL is not an integer there may be multiple optimal distributions. For ex-

ample, if NL = 12 and L = 2, there are two optimal distributions, {n1, n2} = {3, 4} and

{n1, n2} = {4, 3}, since they both yield the highest rate of convergence.

In Figure 2.7 trajectories are shown for 16 agents in traditional cyclic pursuit and 16

agents with L = 4 (n1 = n2 = n3 = n4 = 2).

2.6 A new comparison

We have obtained a significant increase in the rate of convergence of a group of agents to

the centroid when comparing hierarchical cyclic pursuit to the traditional cyclic pursuit

scheme. However, the hierarchical scheme has more communication; each agent sees more

than one other agent, whereas in the traditional scheme each agent only sees one other
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agent. Because of this, a rate of convergence comparison will now be performed between

the hierarchy scheme and a scheme in which each agent chases the centroid of a group of

agents.

In an L-layer hierarchy scheme, each agent has a communication link to L other

agents. If there is a total of NL agents, then the entire system consists of LNL communi-

cation links. Now, consider another scheme involving a group of NL agents. The strategy

in this scheme is that agent i chases the centroid of agents i + 1 to i + L modulo NL.

This can be written as

żi =
1

L

L∑
m=1

zi+m (mod NL) − zi i = 1, . . . , NL. (2.26)

This scheme has the same number of total communication links as an L layer hierarchy

scheme (i.e., there is a total of LNL communication links). The system (2.26) can be

written in the vector form as

ż = Az,

where A is the circulant matrix given by

A =
1

L
circ(−L, 1, . . . , 1︸ ︷︷ ︸

L ones

, 0, . . . , 0).

Matrix A can be written in terms of the matrix P and the polynomial

qC(s) =
1

L
sL +

1

L
sL−1 + · · ·+ 1

L
s− s0,

as A = qC(P ). The eigenvalues of A are given by

eigs(A) = {qC(1), qC(ω), qC(ω2), . . . , qC(ωNL−1)},

where ω = e2πj/NL .

Lemma 2.11. The matrix A has one eigenvalue at zero, qC(1), and all others lie in the

open left half-plane. If NL is sufficiently large when compared to L, the γ-value of eigs(A)

is given by γ := qC(ω).
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The reason for the condition that NL be sufficiently large in comparison to L can be

better understood by looking at Figure 2.8. In Figures 2.8(a) and 2.8(b) the rightmost

nonzero eigenvalue is clearly given by γ, which is the first eigenvalue arrived upon when

following the curve counterclockwise from the zero eigenvalue. However, when looking at

Figure 2.8(c) all four nonzero eigenvalues have same real part, and in Figure 2.8(d), γ is

no longer the rightmost nonzero eigenvalue. Therefore, only when NL is sufficiently large

in comparison to L, will γ be the γ-value. However, when performing the comparison

between this scheme and the hierarchical scheme it is the limiting case when NL → ∞
that is of interest and in this case it is clear that the γ-value of eigs(A) is given by γ.

Now to compare the rate of convergence of this scheme with the hierarchical scheme

we have

qC(ω) =
1

L

(
ω + ω2 + . . . + ωL

)− 1 =
1

L

L∑
m=1

e2πjm/NL − 1

The real part of γ can be written as

<(γ) =
1

L

L∑
m=1

(cos(2mπ/NL))− 1,

If we call this new scheme “L-link”, then comparing the rate of convergence of the L-link

scheme with the L-layer hierarchy scheme we obtain

Rnew :=
hierarchical

L− link
=

cos(2π/w)− 1
1
L
(cos(2π/NL) + cos(4π/NL) + . . . + cos(2Lπ/NL))− 1

,

where w = max{n1, n2, . . . , nL}. Using this result and taking the first order expansion of

the cos terms we arrive at the following theorem.

Theorem 2.12 (Equal communication comparison). In comparing the L-layer hierarchy

scheme, which has a total of LNL communication links, to the L-link scheme which has an

equal amount of communication, the increase in the rate of convergence is approximated

by

Rnew ≈
(

L∑L
m=1 m2

)
N2

L

w2
, (2.27)

where w = max{n1, n2, . . . , nL}. As NL →∞ this approximation approaches an equality.
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(d) Eigenvalues of A with NL = 4 and L = 2. The

eigenvalue qC(ω) is no longer the γ-value, it is now

given by qC(ω2).

Figure 2.8: NL must be sufficiently large when compared to L.
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Table 2.1: Comparing the rate of convergence of an L = 3 hierarchy scheme to the

traditional and three-link schemes.

Number of agents hierarchy/trad. hierarchy/three-link

33 = 27 56 12

43 = 64 208 45

103 = 1000 9675 2075

Table 2.1 shows some comparisons between the different schemes for L = 3. The

hierarchical scheme has a much greater rate of convergence than the L-link scheme.

The trajectories of 16 agents in 4-link pursuit and in hierarchical pursuit with L = 4

(n1 = n2 = n3 = n4 = 2) are shown in Figure 2.9.

Some visually appealing images can be created by using the hierarchical cyclic pursuit

scheme. In Figure 2.10 the trajectories of 256 agents in a four layer hierarchy scheme are

shown. The initial conditions are created by placing the agents equally spaced around a

circle, and then displacing each agent in both angle and radius by some random amount.

Remark 2.13. In this chapter we have created a hierarchical structure for cyclic pur-

suit. Cyclic pursuit can be written as ż = A1z where A1 is the circulant matrix

circ(−1, 1, 0, . . . , 0). This method, however, can be applied to any system whose dy-

namics are governed by a circulant pursuit matrix. That is, a circulant matrix with one

eigenvalue at zero and all others in the open left half-plane. For example, we could create

a hierarchical version of the L-link scheme and perform a rate of convergence analysis

as was done in this chapter. As another example, a hierarchical version of the system

ż = B1z where B1 = circ(−1, 1/2, 0, . . . , 0, 1/2) can be created. This system is studied

in Chapter 4. It turns out that for this system

eigs(B1) = <{eigs(A1)}.

For an L-layer hierarchical scheme, ż = BLz, the matrix BL is given by the recursive
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Figure 2.9: Trajectories for 16 agents in 4-link cyclic pursuit (dashed line) and 16 agents

with 4 layers of hierarchy (solid line).
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Figure 2.10: Trajectories for 256 agents in a 4 layer hierarchical cyclic pursuit with

n1 = n2 = n3 = n4 = 4. The initial positions of the agents created by spacing them

equally around a circle and then displacing each agent randomly.
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expression

B1 = circ(−1, 1/2, 0, . . . , 0, 1/2)

Bm = circ(Bm−1 − I, 1/2I, 0, . . . , 0, 1/2I), m = 2, . . . , L.

The increase in the rate of convergence of the L-layer scheme over the traditional ż = B1z

scheme is given by the exact same expression as in Theorem 2.10,

R ≈
(

NL

maxm{nm}
)2

.

J

2.7 Summary

In this chapter a hierarchical cyclic pursuit scheme has been introduced. It has been

shown that this scheme yields a higher rate of convergence of a group of vehicles to their

centroid than either the traditional cyclic pursuit or the equal communication scheme.



Chapter 3

Heterogeneous multi-agent systems

In this chapter the control of a heterogeneous group of agents is explored. Cyclic pursuit

is studied for the case of two agents, each with a different kinematic model. One agent is

modeled as a point mass, and the other is modeled as a kinematic unicycle. It is shown

that by varying the gains on the control inputs, different types of formations can be

achieved: The agents can spiral in to a point, out to infinity, or converge to concentric

circles.

3.1 Introduction

A heterogeneous group of agents is simply a group in which there are differences be-

tween the agents. The differences may lie in their kinematic models, or in their sens-

ing/computing capabilities. There has been a considerable amount of applied research in

the area of heterogeneous multi-robot systems, for example [17, 29, 42]. In this research,

controllers are heuristically designed to achieve a desired group behavior, and then im-

plemented on a heterogeneous group of robots. Much of the work is focused on groups

with different sensing/computing capabilities. As an example, in [42], a group of robots is

studied in which there are sensor-rich robots that are given the role of leaders, and sensor-

limited robots who require assistance. Using a map of their environment the sensor rich

38
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robots are able to aid the sensor-limited robots in dispersing themselves throughout the

environment. Research is also being done on groups of agents with different kinematic

models. One example is the research being performed at the Center for Collaborative

Control of Unmanned Vehicles (C3UV), at UC Berkeley [21]. The center has developed

a test-bed consisting of unmanned air vehicles (UAVs) and unmanned ground vehicles

(UGVs). The agents are outfitted with GPS receivers which are used to receive waypoints

to dictate their path. The goal is for the agents to work in a self-directed and collab-

orative manner to perform tasks that would not be possible with homogeneous groups.

In terms of mathematical analysis of heterogeneous multi-agent systems, the research is

very limited. Nearly all of the literature is focused on homogeneous groups of agents.

However, one interesting study is by Tabuada et al. [50], where the feasibility of forma-

tions of heterogeneous systems is considered. In this research, formation stabilization is

studied. Nonconstructive conditions are determined on each agent, given its kinematic

model, that guarantee there exists a feasible trajectory driving the agent to a desired

formation.

In this chapter we consider two agents with different kinematic models. We prescribe

a simple local control strategy to each agent, and then study the emerging global be-

havior. We model one agent as a point mass (i.e., it can instantaneously move in any

direction), and the other as a kinematic unicycle (i.e., its motion is subject to a single

nonholonomic constraint). The local control strategy used is cyclic pursuit. For each

type of agent, a homogeneous cyclic pursuit study has previously been performed. From

Chapter 2 we know that if a group of point masses is in cyclic pursuit they will converge

to their stationary centroid. Also, as described in Chapter 2, if a group of unicycles is

in cyclic pursuit, depending on the linear and angular velocity gains, the unicycles can

either spiral in to a point, converge to a circle of some radius, or diverge [31]. For our

heterogeneous system it is discovered that the behavior is similar to cyclic pursuit for

unicycles. Depending on the gains on the velocities, the agents can either spiral in to a
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point, converge to concentric circles, or diverge.

The organization of this chapter is as follows. In Section 3.2 the problem is formalized

and a model of the two agent system is derived in local coordinates. In Section 3.3 the

cyclic pursuit control strategy is introduced and the equilibrium formations of the system

are determined. Finally, in Section 3.4 the stability of the equilibria are analyzed and

plots of the behaviors are shown.

3.2 Relative coordinates

We begin with two agents lying in the plane. We represent their positions as points in

the complex plane. The first agent’s position is given by z1 := x1 + jy1. The dynamics

of this agent is given by a simple integrator

ż1 = u,

where u is the velocity input. Due to this agent’s ability to instantaneously move in any

direction, we will call it a beetle. The second agent’s position is given by z2 := x2 + jy2.

This agent has a more complicated dynamical model which is given by

ż2 = vejθ

θ̇ = ω,

where v and ω are the linear and angular velocity inputs respectively. This is known as

the unicycle model since instantaneously the agent can move only in the direction ejθ.

The unicycle and beetle are shown in the complex plane in Figure 3.1. We define the

unit vector pointing in the direction of the unicycle’s heading as

r := ejθ.

We would like to express the beetle-unicycle system in local coordinates. To do this we

define the distance between the two agents to be

ρ := |z1 − z2|.
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Figure 3.1: A unicycle and a beetle in the complex plane.
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Figure 3.2: Relative coordinates for the unicycle and beetle.

Also, we define α to be the angle from the current heading of the unicycle to the heading

that would take it to the beetle. This is shown in Figure 3.2. If we rotate r by α and

scale it by ρ we get z1 − z2:

z1 − z2 = ρrejα.

Differentiating this expression we get

ż1 − ż2 = ρ̇rejα + ρṙejα + ρrjα̇ejα.

Using the fact that

ṙ = jθ̇ejθ = jωr,

and substituting the expressions for ż1 and ż2 we have

u− vr = ρ̇rejα + jρrωejα + ρrjα̇ejα.
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Figure 3.4: The components of u parallel and perpendicular to z1 − z2.

Bringing vr to the right side and dividing through by rejα we obtain

ue−j(α+θ) = ρ̇ + jρω + jρα̇ + ve−jα. (3.1)

Defining ψ := α + θ we can write the left-hand side of (3.1) as ue−jψ. To understand

this quantity, consider the case where ue−jψ = c ∈ R. This is shown in Figure 3.3. It

follows that u = cejψ. Therefore, ue−jψ takes on a real value if and only if u is aligned

with ejψ. But since z1 − z2 = ρejψ, we have that ue−jψ is real if and only if u is aligned

with z1 − z2. Likewise, ue−jψ is imaginary if and only if u is perpendicular to z1 − z2.

Therefore, we have

ue−jψ = u‖ + ju⊥,

where u‖ is the component of u aligned with z1 − z2, and u⊥ is the component of u

perpendicular to z1 − z2 as shown in Figure 3.4. Because of this we can rewrite (3.1) as

u‖ + ju⊥ = ρ̇ + jρω + jρα̇ + ve−jα. (3.2)
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Taking the real and imaginary parts and rearranging we get

ρ̇ = u‖ − v cos α

α̇ =
1

ρ
(v sin α + u⊥)− ω,

(3.3)

respectively. The domain of validity of (3.3) is ρ ∈ R \ {0}, α ∈ R.

3.3 Equilibrium formations

We will now apply the strategy of cyclic pursuit to the beetle and unicycle. For a group

of beetles in cyclic pursuit, the control law is

ui = kv1(zi+1 − zi),

where the constant kv1 > 0 is the gain on the velocity. Therefore, for our system we have

ż1 = kv1(z2 − z1) which can be written in relative coordinates as

u‖ = −kv1ρ and u⊥ = 0.

From [31], a group of unicycles in cyclic pursuit use the following strategy. Each unicycle

pursues the next with linear velocity proportional to the distance to the next unicycle, and

angular velocity proportional to the difference between the desired and actual heading.

In our notation this is written as

vi = kv2|zi+1 − zi| and ωi = kααi.

where kv2 , kα > 0 are constants. Hence, in relative coordinates, this can be written as

v = kv2ρ and ω = kαα.

In studies of homogeneous cyclic pursuit, it is always assumed that the linear velocity

gains, kv1 and kv2 , are the same for each agent. In this study, we will allow the possibility
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of different gains in order to remain as general as possible (i.e., kv1 is not necessarily

equal to kv2) . Substituting these control laws into (3.3) we get

ρ̇ = −kv1ρ− kv2ρ cos α

α̇ = kv2 sin α− kαα.

(3.4)

Notice that the singularity at ρ = 0 is no longer present in the α dynamics of (3.4) and

thus we can extend the domain of validity of the system to (ρ, α) ∈ R2. Since ρ is a

distance, it has physical significance only when ρ ≥ 0. Also, since α is an angle, it takes

unique values only on (−π, π] (i.e., π and −π correspond to the same physical situation).

To determine the equilibria of this system, we set ρ̇ = 0 and α̇ = 0 and get

ρ(kv1 + kv2 cos α) = 0, (3.5)

kv2 sin α− kαα = 0. (3.6)

The solutions ρ and α, to (3.5) and (3.6) depend on the values of the gains kv1 , kv2 , and

kα. The equation (3.5) is satisfied if ρ = 0 or

cos α = −kv1

kv2

. (3.7)

Notice that since −kv1/kv2 < 0 a solution to (3.7) must lie in (−π,−π/2) or (π/2, π].

The equation (3.6) can be rewritten as

sin α =
kα

kv2

α. (3.8)

We will split the study of the equilibrium formations into three cases, which are defined

by gain ranges.

Case 1 (kα ≥ kv2): Since kα/kv2 ≥ 1, the only solution to (3.8) is α = 0. We can also

see that α = 0 does not satisfy (3.7). Therefore the only solution to (3.5) is ρ = 0.

Because of this, the only equilibrium is

(ρ, α) = (0, 0). (3.9)
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Case 2 (kα < kv2 and kv1 ≥ kv2): Since kα/kv2 < 1, there are now two non-zero solu-

tions to (3.8), which we call ±α∗, where α∗ ∈ (0, π). However, since kv1/kv2 ≤ −1,

α = 0,±α∗ are not solutions to (3.7). Thus, the only solution to (3.5) is ρ = 0.

Therefore, the equilibria are (3.9) and

(ρ, α) = (0,±α∗) where α∗ ∈ (0, π) satisfies sin α∗ =
kα

kv2

α∗.

Case 3 (kα < kv2 and kv1 < kv2): The point in (3.9) is still an equilibrium in this case.

Since kv1/kv2 takes values in the range (0, 1), equation (3.7) is now satisfied for

some α = ±α∗, where α∗ ∈ (π/2, π). The gain kα can be chosen such that ±α∗

are also solutions to (3.8). Hence, there is an equilibrium point of (3.4), given by

(ρ∗,±α∗), where ρ∗ ∈ R, and α∗ and the gains kv1 , kv2 , kα satisfy

sin α∗ =
kα

kv2

α∗ and cos α∗ = −kv1

kv2

.

These two conditions can be combined using the fact that ejα = sin α + j cos α to

obtain

ejα∗ =
1

kv2

(−kv1 + jkαα∗), α∗ ∈ (π/2, π). (3.10)

Figure 3.5 shows a situation where (3.10) is satisfied. If (3.10) is not satisfied then

there does not exist an α∗ which satisfies both (3.7) and (3.8), and thus the non-zero

equilibria are

(ρ, α) = (0,±α∗) where α∗ ∈ (0, π) satisfies sin α∗ =
kα

kv2

α∗.

Thus the equilibrium formations in Case 3 are:

(i) (ρ, α) = (0, 0), and

(ii) if (3.10) is satisfied, (ρ, α) = (ρ∗,±α∗), where ρ∗ ∈ R, or

(iii) if (3.10) is not satisfied, (ρ, α) = (0,±α∗) where α∗ ∈ (0, π) satisfies sin α∗ =

kα

kv2
α∗.
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(a) A plot of cos α (solid line) and −kv1/kv2

(dashed line). The intersection points are α =

±2π/3.
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Figure 3.5: The situation in Case 3 where (3.7) and (3.8) are satisfied by the same α∗.

Here α∗ = 2π/3, and the gains are (kv1 , kv2 , kα) = (1, 2, 3
√

3
2π

).

Based on this analysis there are essentially three types of equilibrium points:

(i) ρ = 0, α = 0.

(ii) ρ = 0, α 6= 0.

(iii) ρ 6= 0, α 6= 0.

3.4 Stability of the equilibria

Introducing the notation

ξ =




ρ

α


 ,

we can linearize the system ξ̇ = f(ξ), defined in (3.4), about an equilibrium point ξ∗ as

follows:

ξ̇ =
∂f

∂ξ

∣∣∣∣
ξ∗

ξ.
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We can write this system in the form ξ̇ = Aξ, where

A :=
∂f

∂ξ

∣∣∣∣
ξ∗

=



−kv1 − kv2 cos α kv2ρ sin α

0 kv2 cos α− kα




ξ∗

. (3.11)

As can be seen from (3.4) and (3.11), the function f and the Jacobian ∂f/∂ξ are contin-

uous on R2, and therefore f : R2 → R2 is a locally Lipschitz map.

In what follows we will consider the linearization about the equilibrium points to

determine local stability for each case. We will then use nonlinear analysis to obtain

global stability results. However, first we will quickly look at the three cases from a

purely intuitive point of view.

In Case 1, kα ≥ kv2 . That is, the turning gain for the unicycle is at least as large

as the linear velocity gain. This is in essence saying that the unicycle can turn quickly

when compared to its forward velocity. Hence, a large heading error can be corrected

with a relatively small linear motion. Therefore, one might conjecture that the unicycle

will quickly turn around to face the beetle and the two will move towards each other,

asymptotically converging to a common point.

In Case 2 we have kα < kv2 and kv1 ≥ kv2 . In this case the beetle is at least as fast

as the unicycle. Also, the unicycle cannot turn very fast relative to its linear velocity.

Therefore, one might guess that the beetle will catch the unicycle, but the unicycle may

not be able to completely turn around to face the beetle before capture.

In Case 3 we have kα < kv2 and kv1 < kv2 . Here the unicycle is faster than the

beetle but the unicycle cannot turn very quickly when compared to its linear velocity.

The beetle is too slow too catch the unicycle, but the unicycle might regulate its heading

error too slowly to catch the beetle. Because of this, it is difficult to intuitively determine

whether or not the unicycle and beetle will meet at a point.

With the intuitive picture of the three cases in mind, we will now perform a stability

analysis.
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3.4.1 Case 1 (kα ≥ kv2
)

In Case 1 the only equilibrium is (ρ, α) = (0, 0), from which we get that

A =



−(kv1 + kv2) 0

0 kv2 − kα


 . (3.12)

When kα > kv2 , this matrix has two real negative eigenvalues and thus locally the equi-

librium (ρ, α) = (0, 0) is a stable node. If kα = kv2 , the A matrix drops rank and thus

the linearization tells us nothing. Since (0, 0) is the only equilibrium for this range of

gains, we can study its stability properties on the domain R2.

Theorem 3.1. Provided that kα > kv2, the origin of (3.4) is globally exponentially stable.

If kα = kv2, the origin is globally asymptotically stable.

Proof. First we will show that the α̇ subsystem of (3.4) is globally exponentially stable

(GES) when kα > kv2 . From Theorem 4.10 of Khalil [24], if we find a continuously

differentiable Lyapunov function V : R→ R such that

k1|α|a ≤V (α) ≤ k2|α|a (3.13)

V̇ (α) ≤ −k3|α|a (3.14)

for all α ∈ R, where k1, k2, k3, and a are positive constants, then, α = 0 is GES.

Consider the choice

V (α) =
1

2
α2.

Clearly by choosing k1 = k2 = 1/2 and a = 2, condition (3.13) is satisfied. Now evaluating

the Lie derivative using (3.4) we get

V̇ = αα̇ = −kαα2 + kv2α sin α

but since α2 ≥ α sin α for all α ∈ R we have

V̇ ≤ −(kα − kv2)α
2.
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If kα − kv2 > 0, then by choosing k3 = kα − kv2 condition (3.14) is satisfied. Therefore,

α = 0 is GES if kα > kv2 .

Next we will show that the α̇ subsystem of (3.4) is globally asymptotically stable

(GAS) when kα = kv2 . In this case the expression for V̇ becomes

V̇ = −kα(α2 + α sin α).

But α2 > α sin α for all α ∈ R \ {0}. Hence V̇ < 0 on R \ {0} with V̇ = 0 if and only if

α = 0. Hence, if kα = kv2 , α = 0 is GAS.

Finally we will show that for all kα ≥ kv2 , the equilibrium ρ = 0 is GES for the ρ

dynamics, provided α(t) → 0 as t → ∞. Consider rewriting the ρ dynamics from (3.4)

(adding and subtracting kv2ρ on the right hand side) as

ρ̇ = −(kv1 + kv2)ρ + kv2(1− cos α)ρ.

These dynamics can then be rewritten as the linear system

ρ̇ = [A + B(t)]ρ,

where B(t) is the continuous function

B(t) = kv2(1− cos α(t))

and A = −(kv1 + kv2) is negative. Now, since α(t) → 0 as t →∞ we can conclude that

B(t) → 0 as t →∞. (3.15)

Since A is negative, the origin of

ρ̇ = Aρ (3.16)

is GES. Finally, the perturbation term B(t)ρ satisfies the inequality

|B(t)ρ| ≤ |B(t)||ρ|. (3.17)
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(b) The corresponding phase portrait.

Figure 3.6: Case 1. In this plot (kv1 , kv2 , kα) = (1, 1, 2).

Therefore, since the nominal system is GES and perturbation is bounded and vanishing,

by Corollary 9.1 and Lemma 9.5 of Khalil [24], the origin of the ρ dynamics is GES. Since

the ρ dynamics is GES provided that α(t) → 0 as t → ∞, and the α dynamics is GES

provided kα > kv2 , system (3.4) is GES provided kα > kv2 . If kα = kv2 , the α dynamics

is GAS and the ρ dynamics is GES, which implies system (3.4) is GAS.

Figure 3.6 shows the trajectories of a unicycle and beetle as they approach the (ρ, α) =

(0, 0) equilibrium of Case 1.

3.4.2 Case 2 (kα < kv2
and kv1

≥ kv2
)

In Case 2 the equilibria are (ρ, α) = (0, 0) and

(ρ, α) = (0,±α∗) where α∗ ∈ (0, π) satisfies sin α∗ =
kα

kv2

α∗.

Linearizing the system (3.4) about the (0, 0) equilibrium we obtain (3.12). The first

diagonal term is negative, but since kα < kv2 , the second diagonal term is positive.

Therefore, the equilibrium point (0, 0) is a saddle. The other equilibrium points for Case
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2 are (0, α∗) and (0,−α∗). Linearizing about the (0, α∗) equilibrium we obtain

A =



−kv1 − kv2 cos α∗ 0

0 kv2 cos α∗ − kα


 . (3.18)

Since kv1 ≥ kv2 , and α∗ ∈ (0, π), the first diagonal term is negative. The second diagonal

term is T2 := kv2 cos α∗− kα. To see that this term is negative for all α∗ ∈ (0, π) consider

the following. Using the fact that sin α∗ = α∗kα/kv2 , we can rewrite this term as

T2 := kv2

(
cos α∗ − sin α∗

α∗

)
= kv2α

∗(α∗ cos α∗ − sin α∗) = kv2α
∗g(α∗),

where g(α) := α cos α− sin α. Since α∗ ∈ (0, π), kv2α
∗ > 0. Also, differentiating g(α) we

obtain

dg

dα
= −α sin α < 0, for all α ∈ (0, π).

since g(0) = 0, we have that g(α∗) < 0 for all α∗ ∈ (0, π). Therefore T2 < 0 for all

α∗ ∈ (0, π), and hence the equilibrium (ρ, α) = (0, α∗) is locally stable. Using the same

argument it can be shown that the equilibrium (0,−α∗) is locally stable.

If we were to study this case on the domain R2, then (0, α∗), (0, α∗+2π), (0, α∗+4π),

etc., would all be equilibrium points. However, all of these equilibria correspond to the

same physical situation. Therefore, we restrict our attention to the domain (ρ, α) ∈ D :=

R × (−π, π). This is an open and connected set and thus we can use it as a domain

for Lyapunov analysis. (Notice that the situation where the unicycle is pointing directly

away from the beetle, and thus α = ±π, is not included in this domain. This is simply

a technicality, and could be easily remedied by, for example, defining this situation as

α = +π and redefining our domain as R× (−π, π + ε), ε > 0.)

We will now study the stability properties of (3.4) on the domain D = R× (−π, π).

Theorem 3.2. For gains satisfying kα < kv2 and kv1 ≥ kv2, there are three equilibrium

points of (3.4) on D: (0, 0), (0, α∗), and (0,−α∗), where α∗ ∈ (0, π) satisfies

sin α∗ =
kα

kv2

α∗.
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The stability properties of these equilibria are

(i) (0, 0) is a saddle. The only trajectory going to this equilibrium is (ρ(0), 0).

(ii) For every ε ∈ (0, α∗), the equilibrium (ρ, α) = (0, α∗) is exponentially stable on the

domain R×(ε, π). On the domain R×(0, π), the equilibrium (0, α∗) is asymptotically

stable.

(iii) For every ε ∈ (−α∗, 0), the equilibrium (ρ, α) = (0,−α∗) is exponentially stable on

the domain R × (−π, ε). On the domain R × (−π, 0), the equilibrium (0,−α∗) is

asymptotically stable.

Proof. In order to study these equilibria, we will study the α dynamics, which is given

by

α̇ = kv2 sin α− kαα.

Both sin α and −α are anti-symmetric about α = 0, and therefore, so is α̇. Because of

this, by studying the equilibrium α∗ on the interval α ∈ (0, π), we will also determine

the behavior of −α∗ on the interval α ∈ (−π, 0). Therefore, we will simply study the

equilibrium α∗. We begin by showing asymptotic stability of the equilibrium α∗ on the

interval (0, π).

From the definition of α∗ we have kv2 = kαα∗/ sin α∗, which can be substituted into

the α dynamics in (3.4) to obtain

α̇ = kα

(
α∗

sin α

sin α∗
− α

)
.

Consider the shifted Lyapunov function

V =
1

2
(α− α∗)2.

Computing the Lie derivative we get

V̇ = kα(α− α∗)
(

α ∗ sin α

sin α∗
− α

)

= kαα(α∗ − α)

(
1− α∗ sin α

α sin α∗

)
= kαα(α∗ − α)

(
1− sinc(α)

sinc(α∗)

)
,
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1 − 1/sinc(α∗)

α

β(α)

α∗ π

1

0

Figure 3.7: The strictly increasing function β(α) on the interval α ∈ (0, π].

where sinc(a) := sin(a)/a, which is well-defined on the interval a ∈ (0, π). The function

sinc(α) is a positive, strictly decreasing, and continuous function on this interval, where

limα→0 sinc(α) = 1, and sinc(π) = 0. Defining

β(α) :=

(
1− sinc(α)

sinc(α∗)

)
,

we can see that on α ∈ (0, π), β(α) is strictly increasing and continuous, with limα→0 β(α) =

1− 1/sinc(α∗) < 0, β(α∗) = 0, and β(π) = 1. The function β(α) is shown in Figure 3.7.

Using this function we can write V̇ as

V̇ = kαα(α∗ − α)β(α).

When α = α∗, V̇ = 0. Also, when α ∈ (0, α∗), we have (α∗ − α) > 0, and β(α) < 0,

giving V̇ < 0. Similarly, when α ∈ (α∗, π), we have (α∗ − α) < 0 and β(α) > 0, giving

V̇ < 0. Therefore, the equilibrium α∗ is asymptotically stable for all α ∈ (0, π).

Now we will show exponential stability of the equilibrium α∗ for all α ∈ (ε, π), where

ε ∈ (0, α∗). Notice that on this interval, if (α−α∗) < 0 then β(α) < 0, and if (α−α∗) > 0

then β(α) > 0. Therefore, we have

V̇ = −kαα(α− α∗)β(α) = −kα|α||α− α∗||β(α)|.
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For any α ∈ (ε, π), |α| > ε. Also, since β(α) has a positive derivative at every point in

(ε, π), |β(α)| ≥ c1|α− α∗|, for some c1 > 0. Using these relations, we can write V̇ as

V̇ = −kαε|α− α∗|(c1|α− α∗|) = −c2|α− α∗|2

= −2c2V,

where c2 = kαc1ε > 0. Therefore, for every ε ∈ (0, α∗), α∗ is exponentially stable for all

α ∈ (ε, π).

Finally, we will show that when α(t) → ±α∗ as t →∞, the equilibrium ρ = 0 is GES

for the ρ dynamics. Consider rewriting the ρ dynamics in (3.4) (adding and subtracting

kv2ρ cos α∗ on the right hand side) as

ρ̇ = −(kv1 + kv2 cos α∗)ρ + kv2(cos α∗ − cos α)ρ.

These dynamics can then be rewritten as the linear system

ρ̇ = [A + B(t)]ρ,

where B(t) is the continuous function

B(t) = kv2(cos α∗ − cos α(t))

and A = −(kv1 + kv2 cos α∗) is negative (since kv1 ≥ kv2 and α∗ ∈ (0, π)). Since α(t) →
±α∗ as t → ∞, we can conclude that B(t) → 0 as t → ∞. Also, the perturbation term

B(t)ρ satisfies the inequality |B(t)ρ| ≤ |B(t)||ρ|. Therefore, again applying Corollary 9.1

and Lemma 9.5 of Khalil [24], the origin of the ρ dynamics is GES.

We have now shown (ii) and (iii) of Theorem 3.2. All that remains is to show (i).

From the above analysis we have shown that for every α ∈ (−π, π) \ {0}, α(t) → ±α∗,

as t → ∞. Hence the equilibrium (0, 0) is unstable. The only portion of the domain

that we have not explored is (ρ, α) ∈ R × {0}. If α = 0 then from (3.4), α̇ = 0. Also

from (3.4), this implies that ρ̇ = −(kv1 + kv2)ρ, and thus ρ(t) → 0 as t →∞. Therefore

(ρ(t), α(t)) → (0, 0) as t → ∞ if and only if (ρ(0), α(0)) ∈ R × {0}. Hence, (0, 0) is a

saddle.
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(b) The corresponding phase portrait.

Figure 3.8: Case 2. In this plot (kv1 , kv2 , kα) = (3, 2, 1).

Remark 3.3. For our system, ρ is a distance, and thus has physical significance only

when it is non-negative. Since there is an equilibrium point at ρ = 0, if ρ(0) is non-

negative, then ρ(t) is non-negative for all time (as would be expected).

Figure 3.8 shows the trajectories of a unicycle and beetle as they approach the (ρ, α) =

(0, α∗) equilibrium of Case 2.

3.4.3 Case 3 (kα < kv2
and kv1

< kv2
)

In Case 3 there are three types of equilibria; (ρ, α) = (0, 0); if (3.10) is satisfied, then

(ρ, α) = (ρ∗,±α∗), where ρ∗ ∈ R; and if (3.10) is not satisfied, (ρ, α) = (0,±α∗) where

α∗ ∈ (0, π) satisfies sin α∗ = kα

kv2
α∗. The equilibrium (0, 0) is again a saddle. Looking

at the equilibria (0,±α∗), the linearization yields (3.18). However, we now have that

kv1 < kv2 and so the first diagonal term is negative only if

cos α∗ > −kv1

kv2

. (3.19)

Using the argument from Case 2, the second diagonal term is negative for all α∗ ∈ (0, π).

Therefore, the equilibria (0,±α∗) are locally stable if (3.19) is satisfied. We will now
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explore the stability properties of these equilibria on the domain D = R× (−π, π).

Theorem 3.4. Consider gains satisfying kα < kv2 and kv1 < kv2, but for which (3.10)

is not satisfied. Then the equilibria of (3.4) on D are: (0, 0), (0, α∗), and (0,−α∗),

where α∗ ∈ (0, π) depends on the gains. The equilibrium (0,0) is a saddle. The equilibria

(ρ, α) = (0,±α∗) have the following stability properties provided

cos α∗ > −kv1

kv2

(3.20)

is satisfied:

(i) For every ε ∈ (0, α∗), the equilibrium (ρ, α) = (0, α∗) is exponentially stable on the

domain R×(ε, π). On the domain R×(0, π), the equilibrium (0, α∗) is asymptotically

stable.

(ii) For every ε ∈ (−α∗, 0), the equilibrium (ρ, α) = (0,−α∗) is exponentially stable on

the domain R × (−π, ε). On the domain R × (−π, 0), the equilibrium (0,−α∗) is

asymptotically stable.

If (3.20) is not satisfied, (0,±α∗) are unstable.

Proof. The proof of this is identical to that for Theorem 3.2.

Figure 3.9 shows the trajectories of the system as they approach the equilibrium

(0,−α∗), of Case 3. Figure 3.10 shows the unstable spiral that results in Case 3 when

(3.19) is not satisfied.

The other possibility for Case 3 is that (3.10) is satisfied. In this case the equilibria

are (0, 0) and (ρ∗,±α∗), with α∗ ∈ (0, π), where α∗ and the gains satisfy

sin α∗ =
kα

kv2

α∗ and cos α∗ = −kv1

kv2

.

The equilibrium (0, 0) is still a saddle. By linearizing (3.4) about (ρ∗, α∗) or (ρ∗ − α∗),

and substituting in the expression for cos α∗, the A matrix drops rank and thus the
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(b) The corresponding phase portrait.

Figure 3.9: Case 3. In this plot (kv1 , kv2 , kα) = (1, 1.5, 0.8).
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(a) A unicycle (dashed line) and a beetle (solid line)

spiraling out to infinity.

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

ρ

α

(b) The corresponding phase portrait.

Figure 3.10: Case 3. In this plot (kv1 , kv2 , kα) = (0.5, 2, 1) and thus cos α∗ < −kv1/kv2 .
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linearization tells us nothing about the stability of the equilibrium. However, by studying

the α dynamics we arrive upon the following result.

Theorem 3.5. Suppose kv1, kv2, kα, α∗ satisfy kα < kv2, kv1 < kv2, and

ejα∗ =
1

kv2

(−kv1 + jkαα∗), α∗ ∈ (π/2, π).

The resulting equilibria (ρ∗,±α∗), ρ∗ ∈ R, of (3.4) have the following stability properties:

(i) For every ε ∈ (0, α∗), the equilibrium (ρ, α) = (ρ∗, α∗) is exponentially stable on the

domain R× (ε, π).

(ii) For every ε ∈ (−α∗, 0), the equilibrium (ρ, α) = (ρ∗,−α∗) is exponentially stable on

the domain R× (−π, ε).

In addition, if ρ(0) ∈ R+ then ρ(t) → c ∈ R+ as t →∞.

Proof. We begin by looking at the α dynamics which are given by α̇ = kv2 sin α − kαα.

We know from Theorem 3.4 that if α(0) ∈ (0, π) then α(t) → α∗ as t → ∞, and if

α(0) ∈ (−π, 0) then α(t) → −α∗ as t →∞. Since the α dynamics is anti-symmetric, we

can again determine the behavior of both α∗ and −α∗ by studying the equilibrium α∗.

When α converges to α∗, ρ̇ → 0 since

ρ̇(α∗) = −ρ(kv1 + kv2 cos α∗) = 0.

It remains to be shown that this implies that ρ tends to a constant (i.e., ρ does not tend

to infinity). We begin by fixing ε as some value in the set (0, α∗). Using the definition of

α∗, we have kv1 = −kv2 cos α∗, and the ρ dynamics in (3.4) can be written as

ρ̇ = kv2ρ (cos α∗ − cos(α(t))) .

Solving for ρ(t) we obtain

ρ(t) = C exp

(
kv2

∫ t

0

(cos α∗ − cos(α(τ)))dτ)

)
, C ∈ R.



Chapter 3. Heterogeneous multi-agent systems 59

Therefore, as t →∞, ρ(t) → c ∈ R, if

∫ ∞

0

|cos α∗ − cos(α(τ))| dτ < ∞. (3.21)

That is, ρ(t) tends to a constant if cos α∗ − cos(α(τ)) is L1-integrable. From Theorem

3.4, we know that for every ε ∈ (0, α∗), and for every α(0) ∈ (ε, π), α(t) converges to α∗

exponentially. That is, there exist positive constants k1 and λ such that

|α∗ − α(t)| ≤ k1|α∗ − α(0)|e−λt, ∀ α(0) ∈ (ε, π).

Therefore α∗ − α(t) is L1-integrable which implies that

∫ ∞

0

|α∗ − α(τ)|dτ < ∞.

But, this implies that cos(α∗) − cos(α(t)) must also be L1-integrable, since there exists

a positive constant k2 such that | cos α∗ − cos α| ≤ k2|α∗ − α|, ∀α ∈ (ε, π) (In fact, since

α∗ ∈ (0, π), we can choose k2 = 1). This is shown in Figure 3.11. Therefore, (3.21)

is satisfied, and so ρ(t) converges to a constant. In addition, since (3.21) is satisfied, if

ρ(0) ∈ R+ then ρ(t) → c ∈ R+ as t →∞.

In Theorem 3.5 we have shown that if (3.10) is satisfied, ρ(0) is positive, and α(0) is

non-zero, then the agents converge to concentric circles. Figure 3.12 shows the trajectories

of the beetle-unicycle system as they approach the equilibrium (ρ∗, α∗) of Case 3.

3.5 Summary

In this chapter we have analyzed a beetle and unicycle in cyclic pursuit. A global stability

analysis has been performed based on the selection of the linear velocity gain of the beetle

and the linear and angular velocity gains of the unicycle. By varying these gains several

interesting phenomenon can be achieved. The agents can spiral in to a point, out to

infinity, or converge to concentric circles.
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Figure 3.11: The dashed line shows the function f(α) = |α∗ − α|, and the solid line,

f(α) = | cos α∗ − cos α|. It is clear that | cos α∗ − cos α| ≤ |α∗ − α|, ∀α ∈ [0, π]. In this

plot α∗ = 2π/3.
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(b) The corresponding phase portrait. Notice

that all trajectories go the horizontal lines at

+2π/3 and −2π/3.

Figure 3.12: Case 3. In this plot (kv1 , kv2 , kα) = (1, 2, 3
√

3
2π

), and the final angle is α∗ =

2π/3.



Chapter 4

Curve shortening applied to

multi-agent systems

If a smooth, closed, and embedded curve is deformed along its normal vector field at a

rate proportional to its curvature it shrinks to a circular point. This curve evolution is

called Euclidean curve shortening and the result is known as the Gage-Hamilton-Grayson

Theorem. Motivated by the rendezvous problem in multi-agent systems, we address the

problem of creating a polygon shortening flow. A simple linear scheme is proposed which

exhibits several analogues to Euclidean curve shortening. The polygon shrinks to an

elliptical point; convex polygons remain convex, and; the perimeter of the polygon is

monotonically decreasing.

4.1 Introduction

The rendezvous problem addressed in this chapter can be stated as follows; given a

group of n agents whose positions are represented in the complex plane by zi = xi + jyi,

i = 1, . . . , n, j =
√−1, and whose dynamics are given by żi = ui, find a local control

strategy that will ensure convergence of all zi’s to a point. Some approaches to this

problem, as well as a new solution based on hierarchy, were presented in Chapter 2. In

61
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kN

kN

kN

Figure 4.1: The Euclidean curve shortening flow.

this chapter we propose a strategy which solves this problem with a fixed communication

topology. The strategy is motivated by the theory of curve shortening. Because of this,

the formation of the group of agents as they converge to a common point has properties

which are analogous to the curve shortening theory.

Consider a family of smooth, closed curves x(p, t) lying in the plane. Here, p parame-

terizes the points along each individual curve, and t parameterizes the family of curves

(i.e., the initial curve x(p, 0) evolves as a function of time to x(p, t)). The Euclidean

curve shortening flow is given by

∂x

∂t
(p, t) = k(p, t)N(p, t), (4.1)

where k(p, t) is the Euclidean curvature, and N(p, t) is the inner Euclidean normal.

Hence, if a curve evolves according to (4.1), it is deformed along its normal vector field

at a rate proportional to its curvature. Intuitively, the curvature at a point on a curve is

the inverse of the radius of the largest tangent circle to the curve (on the concave side) at

the point. The Euclidean curve shortening flow is depicted in Figure 4.1. We also define

L(t) to be the length of the curve at time t, and A(t) the area enclosed by the curve.

The isoperimetric inequality [40] states that

L(t)2

A(t)
≥ 4π.

Equality is achieved if and only if the curve is a circle. Therefore, the ratio L2/A gives

a measure of “how circular” the curve is. In 1983, Gage [13] showed that when a convex
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curve evolves according to (4.1), A(t) → 0, and the ratio L2/A is decreasing. In 1984,

Gage [14] showed that under (4.1), if the curvature does not blow up prematurely (i.e.,

a cusp does not form) then for a convex curve L2/A → 4π and the curve shrinks to a

circular point. The term “circular point” means that the curve is collapsing to a point,

and if we zoom in on the curve as it is collapsing, the curve is becoming circular. In

1986 Gage and Hamilton [15] showed that for convex curves evolving according to (4.1)

the curvature does not blow up prematurely, and in 1987, Grayson [18] showed that any

embedded (non-self-intersecting) curve shrinks to a circular point. The Euclidean curve

shortening flow also has the property that it shrinks the length of the curve L(t) as fast

as possible using only local information [19]. The notion of shrinking “as fast as possible”

will be clarified later.

The Euclidean curve shortening flow is defined in terms of the Euclidean curvature and

the Euclidean normal. These quantities are invariant under Euclidean transformations

(i.e., rotations, translations, and reflections). In application, curve shortening can be

used to smooth an image. However, the image may have undergone a geometric viewing

transformation in the capturing process. Because of this, there has been interest in flows

which are invariant under various groups of viewing transformations. We say that a flow

is invariant under a transformation if the flow and transformation commute. One such

transformation is called an affine transformation. Sapiro and Tannenbaum [45] create

a new curve shortening flow which is defined in terms of quantities that are invariant

under affine transformations. This flow is called the affine curve shortening flow. In [45]

it is shown that if a smooth convex curve evolves according to the affine curve shortening

flow, the curve shrinks to an elliptical point. In [1] this result is extended to smooth

embedded curves (not necessarily convex). For a complete account of many of the results

of curve shortening see [9].

The elegant results obtained in the curve shortening literature have motivated research

in creating discrete analogues of the flows; that is, to create a shortening flow for polygons
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which exhibits similar attributes to the Euclidean (or affine) curve shortening flow. This

research has been driven by both theoretical interest [4, 22, 34], and by applications such

as crystal growth [44]. In [4], the evolution of planar polygons is studied in discrete

time. An affine polygon shortening scheme is proposed and it is shown that it shrinks

polygons to elliptical points. This means that the vertices are collapsing to a point,

and if we zoom in on the polygon as it is collapsing, the vertices are converging to an

ellipse. In addition, two Euclidean polygon shortening schemes are proposed. In [22] a

polygon shortening scheme based on the Menger-Melnikov curvature [32] is studied. It

is shown that under this scheme most quadrilaterals shrink to circular points. In [34] a

discrete curve shortening equation is developed which tends to (4.1) as the number of

points tends to infinity. The main results in this paper are that the area inclosed by the

polygon vanishes in finite time, and the perimeter monotonically decreases.

There are two contributions of this chapter. The first is to introduce the problem

of polygon shortening as it relates to multi-agent systems and the rendezvous problem.

The second is to study a polygon consisting of vertices z1, . . . , zn as it evolves according

to

żi =
1

2
(zi+1 − zi) +

1

2
(zi−1 − zi). (4.2)

Intuitively, when a polygon evolves according to (4.2), each vertex chases the centroid of

its two neighboring vertices. This scheme is studied in discrete time in [4], where it is

referred to as an affine polygon shortening scheme. In this chapter we show the following

properties of this scheme: 1) Polygons shrink to elliptical points, 2) Convex polygons

remain convex, 3) If vertices are arranged in a star formation about their centroid, they

will remain in a star formation for all time (i.e, the vertices (agents) will not collide) 4)

The perimeter of the polygon is a monotonically decreasing function of time.

This chapter is organized as follows. In Section 4.2 we give a more detailed devel-

opment of Euclidean and affine curve shortening including a review of pertinent topics

in geometry and differential geometry. In Section 4.3 we give two polygon shortening
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schemes, shortening by Menger-Melnikov curvature, and linear scheme (4.2). In Sections

4.4 and 4.5 we show that under (4.2) star formations are invariant and that convex poly-

gons remain convex. Finally, in Section 4.6 we derive the optimal direction for perimeter

shortening and show that under (4.2) the perimeter of the polygon is monotonically

decreasing.

4.2 Background

In this section we will give some background on Euclidean and affine geometry and

derive the Euclidean and affine curve shortening flows. The sections on Euclidean and

affine geometry follow the development of [3], and the proofs of the theorems can be

found within. The section on Euclidean curve shortening follows [20]. A more thorough

treatment of affine differential geometry and affine curve shortening can be found in

[5, 35, 45].

4.2.1 Euclidean geometry

A Euclidean transformation of R2 is a function L : R2 → R2 of the form

L(x) = Ux + a,

where U is an orthogonal 2×2 matrix and a ∈ R2. Recall that a matrix U is orthogonal if

U−1 = UT (where T denotes transpose), which is equivalent to saying that the columns of

U are orthonormal. The set of all Euclidean transformations of R2 is denoted E(2) and is

the set of all rotations, translations, and reflections of a figure in R2. Roughly speaking,

Euclidean geometry is the study of properties of figures which remain unchanged by

Euclidean transformations. These properties are called Euclidean properties, and include

distance, angle, curvature, and collinearity of points. From this we will now introduce

the concept of congruence.
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Definition 4.1. A figure F1 is Euclidean-congruent to a figure F2 if there is a Euclidean

transformation which maps F1 onto F2.

A few examples of sets of figures which are Euclidean-congruent to each other are:

The set of all line segments of a fixed length, and the set of all squares of a fixed area. It

can easily be verified that Euclidean-congruence is an equivalence relation, and thus the

previous sets are equivalence classes.

4.2.2 Euclidean curve shortening

Consider a family of smooth closed curves x(p, t) : [0, 1] × [0, τ ] → R2, where p ∈ [0, 1]

parameterizes the curve, and t ∈ [0, τ ] the family. For now we fix t and study a single

curve x(p). The tangent vector to the curve is given by dx/dp =: ẋ and thus we define

the unit tangent as T(p) := ẋ/‖ẋ‖. Introducing coordinates in R2 we can write x(p) =

(x1(p), x2(p)). The unit tangent is (ẋ1, ẋ2)/‖ẋ‖ and the unit normal is then given by

N(p) := (−ẋ2, ẋ1)/‖ẋ‖. When T runs in the counterclockwise direction around the

curve, N is the inner unit normal.

It is convenient and customary to use arc-length to describe distance around the

curve instead of p. The Euclidean arc-length s is defined via ds := ‖ẋ‖dp. We can

re-parameterize the curve by s as x(s) = (x1(s), x2(s)). The unit tangent and normal

vectors can be written in terms of s as

T(s) = (x′1, x
′
2), and N(s) = (−x′2, x

′
1),

where ′ denotes differentiation with respect to s. Using column vector notation we define

A(s) :=



TT

NT


 =




x′1 x′2

−x′2 x′1


 .

The matrix A(s) is a rotation matrix which rotates the standard basis to the coordinate

frame T,N attached to the curve. Differentiating A(s) we get

A′ = A′A−1A =: C(s)A. (4.3)
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Now, since A is a rotation matrix it is orthogonal and so AT A = AAT = I. Using this, we

can show that C(s) is skew-symmetric as follows. Differentiating the expression I = AAT

we obtain

0 = (AAT )′ = A′AT + A(AT )′ = A′A−1 + (A−1)T (A′)T = A′A−1 + (A′A−1)T ,

which implies that C(s) = −C(s)T . Computing C(s) and using the fact that it is a skew

symmetric matrix we get

C(s) =




0 k(s)

−k(s) 0


 , (4.4)

where the curvature k(s) is given by

k(s) := x′1x
′′
2 − x′′1x

′
2 = det(x′,x′′),

and det(·, ·) denotes the determinant of the 2×2 matrix created by the two 2×1 vectors.

Since ds = ‖ẋ‖dp we can also write k in terms of the parameter p as k(p) = (ẋ, ẍ)/‖ẋ‖3.

From (4.3) and (4.4) we obtain the Frenet equation:

dT

ds
= kN

dN

ds
= −kT.

The curvature of the curve x(s) is given by k(s) and the radius of curvature is defined

to be 1/|k(s)|.
In the Euclidean curve shortening flow the curve x(p, t) is deformed along its unit

normal vector N(p, t) at a rate proportional to its curvature k(p, t). This can be written

as

∂x

∂t
(p, t) = k(p, t)N(p, t).

Using the Frenet equation we have kN = dT/ds = d2x/ds2. Therefore the Euclidean

curve shortening flow can be written as

∂x

∂t
(p, t) =

∂2x

∂s2
(p, t). (4.5)
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The equation (4.5) is called the heat equation or diffusion equation. (Note: in this

equation, on the right hand side, p is a function of s.)

To clarify the concepts introduced on the Euclidean curve shortening flow, we will

carry out a calculation of the curve shortening flow for a very simple example. It should

be noted that since the governing equation is a partial differential equation, completing

an example for a generalized curve is a very difficult task.

Example 4.2 (Euclidean curve shortening). Consider a circle which is fixed at the origin

and whose parametric equation is given by

x(p, t) = a(t) (cos(2πp), sin(2πp)) , p ∈ [0, 1], (4.6)

where a(0) > 0 is the radius of the circle at t = 0. We will compute the curve shortening

flow for this circle using two methods; first using the parameter p ∈ [0, 1], and then

using the arc-length s, where ds = ‖ẋ‖dp. We begin by using the parameter p and the

expression for the curve shortening flow in (4.1). We have

∂x

∂p
= 2πa(t)(− sin(2πp), cos(2πp)),

and thus

‖ẋ‖ =

∥∥∥∥
∂x

∂p

∥∥∥∥ = 2πa(t). (4.7)

The tangent vector is given by

T(p) =
1

‖ẋ‖
∂x

∂p
= (− sin(2πp), cos(2πp)),

and thus the inner normal is given by

N(p) = (− cos(2πp),− sin(2πp)).
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The curvature k(p, t) is given by

k(p, t) = det(ẋ, ẍ)/‖ẋ‖3

=
1

(2πa)3

∣∣∣∣∣∣∣
−2πa sin(2πp) −(2π)2a cos(2πp)

2πa cos(2πp) −(2π)2a sin(2πp)

∣∣∣∣∣∣∣

=
1

a
(sin2(2πp) + cos2(2πp)) =

1

a(t)
.

Therefore, from (4.1) we have

∂x

∂t
(p, t) = k(t)N(p)

da(t)

dt
(cos(2πp), sin(2πp)) =

1

a(t)
(− cos(2πp),− sin(2πp))

And therefore the flow is given by

da(t)

dt
= − 1

a(t)
.

Solving this we obtain

a(t) = (a(0)2 − 2t)1/2, (4.8)

and so the circle will collapse to a point in finite time.

Equation (4.8) can also be calculated by using (4.5) and the Euclidean arc-length s.

To begin, we would like to calculate s(p). Using the relation ds = ‖ẋ‖dp, the expression

in (4.7), and letting s(0) = 0, we have

s(p) = 2πa(t)p.

Combining the expression for s(p) and (4.6) we can write the curve as

x(s, t) = a (cos(s/a), sin(s/a)) , s ∈ [0, 2πa].

The tangent vector is given by

T(s, t) =
∂x(s, t)

∂s
= (− sin(s/a), cos(s/a)) .
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Differentiating T(s, t) we obtain

∂2x(s, t)

∂s2
=

1

a(t)
(− cos(s/a),− sin(s/a)) .

Finally we can write this in terms of p as

∂2x(p, t)

∂s2
=

1

a(t)
(− cos(2πp),− sin(2πp)) .

Combining this with the curve shortening flow in (4.5) we again obtain (4.8). J

4.2.3 Shrinking the length optimally

In [19] it is stated that the length, L(t), of a curve which is evolving according to the

Euclidean curve shortening flow is shrinking as fast as possible using only local informa-

tion. To see why and in what sense this is true, consider the following. We can write the

perimeter at a fixed time t as

L(t) =

∫ L(t)

0

ds =

∫ 1

0

∥∥∥∥
∂x

∂p

∥∥∥∥ dp, (4.9)

since the arc-length element is ds = ‖ẋ‖dp. In order to take the time derivative of this

expression, first consider taking the time derivative of ‖∂x/∂p‖2:

∂

∂t

∥∥∥∥
∂x

∂p

∥∥∥∥
2

=
∂

∂t

〈
∂x

∂p
,
∂x

∂p

〉
= 2

〈
∂x

∂p
,

∂

∂p

∂x

∂t

〉
,

where 〈· , ·〉 is the inner product (for u, v ∈ Rn, 〈u, v〉 = uT v). We also have that

∂

∂t

∥∥∥∥
∂x

∂p

∥∥∥∥
2

= 2

∥∥∥∥
∂x

∂p

∥∥∥∥
∂

∂t

(∥∥∥∥
∂x

∂p

∥∥∥∥
)

.

Therefore, combining these expressions and using the notation ‖∂x/∂p‖ = ‖ẋ‖, we have

∂

∂t

(∥∥∥∥
∂x

∂p

∥∥∥∥
)

=
1

‖ẋ‖
〈

∂x

∂p
,

∂

∂p

∂x

∂t

〉
,

and thus using (4.9)

dL

dt
=

∫ 1

0

1

‖ẋ‖
〈

∂x

∂p
,

∂

∂p

∂x

∂t

〉
dp.
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Now,

1

‖ẋ‖
∂x

∂p
=

1

‖ẋ‖
∂s

∂p

∂x

∂s
=

∂x

∂s
,

since ds = ‖ẋ‖dp. This gives us

dL

dt
=

∫ 1

0

〈
∂x

∂s
,

∂

∂p

∂x

∂t

〉
dp.

Integrating by parts we obtain

dL

dt
=

〈
∂x

∂s
,
∂x

∂t

〉∣∣∣∣
1

0

−
∫ 1

0

∂

∂p

(
∂x

∂s

)T
∂x

∂t
dp.

The first term on the right hand side is zero, since the curve is smooth and x(0, t) =

x(1, t). Then, since

∂

∂p
=

∂s

∂p

∂

∂s
,

we get

dL

dt
= −

∫ L

0

(
∂2x

∂s2

)T
∂x

∂t
ds.

Finally, since ∂x/∂s = T and ∂T/∂s = kN, we have

dL

dt
= −

∫ L

0

〈
kN,

∂x

∂t

〉
ds (4.10)

Therefore, the direction of ∂x/∂t in which L(t) is decreasing most rapidly is ∂x/∂t = kN,

which is Euclidean curve shortening (see (4.1)). Note that this flow is optimal in the sense

that the velocity of the curve at each point always points in the direction which maximizes

the rate of decrease of L(t). However, the magnitude of the velocity of the curve at each

point is not in general the speed which maximizes the rate of decrease of L(t).

4.2.4 Affine geometry

The following sections provide an introduction to affine geometry, affine differential geom-

etry, and affine curve shortening. While the results of these sections are not directly

applied in this chapter, there are two reasons for their inclusion. The first is that the

work in [4], which was a motivation for the work in this chapter, is based on affine curve



Chapter 4. Curve shortening applied to multi-agent systems 72

shortening. The second is that limiting shape for both the linear scheme proposed in this

chapter, and the affine curve shortening flow, is an elliptical point.

A general affine transformation of R2 is a function L : R2 → R2 of the form

L(x) = Ax + b, (4.11)

where A is a real invertible 2 × 2 matrix and b ∈ R2. Notice that every Euclidean

transformation of R2 is an affine transformation of R2 since every orthogonal matrix is

invertible. Affine transformations

(i) map straight lines to straight lines;

(ii) map parallel straight lines to parallel straight lines;

(iii) preserve ratios of lengths along a given straight line.

Another interesting property of affine transformations is stated in the following theorem.

Theorem 4.3. Let p, q, r and p′, q′, r′ be two sets of three non-collinear points in R2.

Then

(i) there is an affine transformation L which maps p, q, r to p′, q′, r′, respectively;

(ii) the affine transformation L is unique.

An immediate corollary of this theorem is that all triangles are affine-congruent (in

analogy with Definition 4.1). That is, given a triangle, the set of all possible triangles

can be created by affine transformations of the original triangle.

Yet another interesting feature of affine transformations is their effect on non-degenerate

conic sections. Conic is the name given to a shape that is obtained by taking a plane

slice of the double cone. Non-degenerate conic sections are parabolas, hyperbolas, and

ellipses (note that a circle is just a special case of an ellipse). Some properties of conics

are:
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(i) Every ellipse is affine-congruent to the unit circle with equation x2 + y2 = 1.

(ii) Every hyperbola is affine-congruent to the rectangular hyperbola with equation

xy = 1.

(iii) Every parabola is affine-congruent to the parabola with equation y2 = x.

(iv) Affine transformations map ellipses to ellipses, parabolas to parabolas, and hyper-

bolas to hyperbolas.

From this description we can see that Euclidean properties are not preserved (or invariant)

under a general affine transformation. For example, the distance between two points after

an affine transformation can become larger or smaller, or the angles between the sides

of a triangle can change (since all triangles are affine-congruent). Also note that the

Euclidean curvature is not invariant since an ellipse, whose curvature at a point (x, y)

on the ellipse is a function of x and y, is affine-congruent to a circle, which has constant

curvature.

The final result that we require from affine geometry is stated in the following theorem:

Theorem 4.4. Let L be an affine transformation, and let T be a tangent to a conic C.

Then L(T) is a tangent to the conic L(C).

It turns out that this result holds for any smooth curve. The importance of this

result can be seen when considering the Frenet frame attached to a smooth curve x. This

frame consists of the tangent vector T, and a perpendicular normal vector N. Consider

transforming x via an affine transformation L, to L(x). From the previous result, L(T)

will be a tangent to L(x). However, L(N) will not, in general, be perpendicular to L(T)

because an affine transformation does not, in general, preserve the angle between vectors.

The Euclidean curve shortening flow is invariant under Euclidean transformations.

The curve may be rotated or translated, but the evolution of the curve will remain the

same. However, if the curve undergoes a general affine transformation, the curvature of
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x(p, 0)
flow−−−→ x(p, t)yL

yL

L(x(p, 0))
flow−−−→ L(x(p, t))

Figure 4.2: A flow which is invariant under a transformation L.

the curve will change, the normal vector will no longer be normal to the curve, and thus

the evolution will be drastically changed. The goal of affine curve shortening is to find a

flow which is invariant under affine transformations. See Figure 4.2. We will look at this

in more depth in the next section.

4.2.5 Affine differential geometry

For affine curve evolution we will restrict ourselves to equiaffine geometry, also called the

group of special affine motions, in which the matrix A of (4.11) satisfies det(A) = 1 (that

is, A ∈ SL2(R)). What this restriction means is that under any equiaffine transformation,

the unit square will be transformed into a parallelogram with area 1. Therefore, equiaffine

transformations are area preserving. With this in mind, consider a smooth closed curve

x(p, t) : [0, 1] × [0, τ ] → R2, where p ∈ [0, 1] parameterizes the curve. We would like to

attach two vectors to the curve, which create a coordinate system, such that there exists

a relationship between the vectors that is invariant under equiaffine transformations. The

Euclidean tangent and normal vectors will not suffice since the relation T ·N = 0 is not

preserved under a general equiaffine transformation. Since we know that tangent vectors

remain tangent, we can choose one vector, a1(p), to be ẋ = dx/dp. We then look for a

second vector a2(p) which along with a1(p) spans the unit area: det(a1(p), a2(p)) = 1.

Since equiaffine transformations are area preserving, these vectors are related by an

invariant property. The only problem is that we don’t have an expression for computing

a2(p). To solve this problem, we introduce a new parameter ν for the curve, such that

det(x′,x′′) = 1, (4.12)
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where ′ now denotes the derivative with respect to ν. We then define the affine tangent

to the newly parameterized curve as Ta := x′ and the affine normal as Na := x′′.

These vectors span the unit area and thus are related by an invariant property (hence,

det(Ta,Na) = 1 although in general Ta ·Na 6= 0). The parameter ν is called the affine

arc-length. We can write it in terms of the old parameter p as

det(x′,x′′) = det

(
∂x

∂p

∂p

∂ν
,
∂2x

∂p2

(
∂p

∂ν

)2
)

= 1

⇒
(

dν

dp

)3

= det

(
∂x

∂p
,
∂2x

∂p2

)
(4.13)

⇒ ν(p) =

∫ p

0

det(ẋ, ẍ)1/3dp.

In order for this re-parametrization p 7→ ν to exist, we require that det(ẋ, ẍ) 6= 0 for

every p. This is essentially requiring that the curve have no points of inflection.

Differentiating the expression in (4.12) we get

det(x′,x′′′) = 0,

and hence the two vectors x′ and x′′′ are linearly dependent. This implies that

x′′′ + µx′ = 0, (4.14)

for some scalar quantity µ(ν). Multiplying both sides of (4.12) by µ we get

µ = det(µx′,x′′) = − det(x′′, µx′),

and from (4.14) we obtain

µ = det(x′′,x′′′).

The scalar µ is invariant under equiaffine transformations and is called the affine cur-

vature. To clarify, consider a curve x(ν) in the plane with affine arc-length parameter

ν and curvature µ(ν), which is transformed under an equiaffine transformation, L, to

L(x(ν)). The new curve L(x(ν)) still has ν as its affine arc-length parameter and the

affine curvature of x(ν) is equal to the affine curvature of L(x(ν)) at each value of ν. In
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Ta(p1)

Ta(p2)

Na(p1)

Na(p2)

Area = 1

Area = 1

Figure 4.3: The affine normal and tangent at two points x(p1) and x(p2) on a curve x(p).

this sense the affine quantities ν and µ are analogous to the Euclidean quantities s and

k.

The important quantities introduced in this section are: (1) the affine arc-length,

which is chosen such that det(x′,x′′) = 1; (2) the affine tangent Ta := x′, which is

collinear with the Euclidean tangent at each point on a curve, but is not in general a

unit vector; and (3) the affine normal Na := x′′, which is not in general perpendicular to

Ta but is chosen such that the area of the parallelogram created by x′ and x′′ is 1. The

affine tangent and normal are shown in Figure 4.3.

4.2.6 Affine curve shortening

In affine curve shortening we deform the curve x(p, t) along the affine normal Na = x′′

at a rate proportional to the length of the affine normal. This can be written as

∂x

∂t
(p, t) =

∂2x

∂ν2
(p, t) = Na(p, t). (4.15)

If an embedded curve evolves according to (4.15), the curve shrinks to an elliptical point.

In order to get a better feeling of what this curve evolution is doing, we would like to

express the affine normal vector, x′′, in terms of Euclidean quantities. Consider the case

where the parameter p, the original parameter of the curve, is the Euclidean arc-length.
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Then we have

∂x

∂p
= ẋ = T and

∂2x

∂p2
= ẍ = kN.

Now, from (4.13) we have

dν

dp
= det

(
∂x

∂p
,
∂2x

∂p2

)1/3

= det(T, kN)1/3

= k1/3 det(T,N)1/3

= k1/3

(since T and N are orthonormal vectors). Now we are ready to write the affine normal

in terms of Euclidean quantities: From the chain rule

Na =
∂2x

∂ν2
=

∂2x

∂p2

(
dp

dν

)2

+
∂x

∂p

d2p

dν2

= kN

(
1

k

)2/3

+
dp

dν

∂

∂p
(k−1/3)T

= k1/3N− ∂k

∂p

1

3k5/3
T.

Defining kp := ∂k/∂p we can write the affine curve evolution as

∂x

∂t
= k1/3N− kp

3k5/3
T.

From (4.10) we can see that only the component of ∂x/∂t in the normal direction, N,

contributes to shrinking the curve. The component of ∂x/∂t in the tangential direction

T gives a rotation of the curve and thus only affects the parametrization of the family of

curves. Because of this the affine curve shortening flow is geometrically equivalent to

∂x

∂t
(p, t) = k1/3(p, t)N(p, t).

Therefore, geometrically, the only difference between Euclidean and Affine curve short-

ening is kN versus k1/3N. However the affine curve shortening flow has a component of

∂x/∂t which is parallel to the curve and which induces a rotation. In terms of shortening
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the perimeter of a curve, this rotation is an unwanted motion, and therefore the affine

curve shortening flow is not as “efficient” at shortening the perimeter as the Euclidean

curve shortening flow.

4.3 Polygon shortening

With the beautiful results of Euclidean and affine curve shortening in mind, we now turn

our attention to multi-agent systems. We can consider a group of n agents lying in the

plane to be the vertices of an n-sided polygon. By creating a polygon shortening scheme

analogous to that of curve shortening, the vertices, and thus the agent’s positions, will

converge to a point. In addition, the shape of the polygon as it shrinks to a point will

have properties which are analogous to the curve shortening theory. In this section we

will formally define a polygon and introduce two polygon shortening schemes.

4.3.1 n-gons

We begin by formally defining a polygon and a non-self-intersecting polygon in R2 (or

equivalently C), which we will refer to as an n-gon and a simple n-gon respectively [11].

Definition 4.5. An n-gon (n-sided polygon) is a (possibly intersecting) circuit of n line

segments z1z2, z2z3, . . . , znz1, joining consecutive pairs of n distinct points z1, z2, . . . , zn.

The segments are called sides and the points are called vertices.

Definition 4.6. A simple n-gon is a non-self-intersecting n-gon.

We denote the counterclockwise internal angle between consecutive sides zizi+1 and

zi−1zi of an n-gon as βi, where i = 1, . . . , n modulo n. For a simple n-gon these angles

satisfy
n∑

i=1

βi = (n− 2)π.
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Figure 4.4: The circumcenter for three points on the curve x(p).

Definition 4.7. An n-gon is convex if it is simple and its internal angles satisfy

0 < βi ≤ π, ∀i = 1, . . . , n.

Definition 4.8. An n-gon is strictly convex if it is simple and its internal angles satisfy

0 < βi < π, ∀i = 1, . . . , n.

4.3.2 Shortening by Menger-Melnikov curvature

To introduce the polygon shortening scheme studied in [4, 22], consider the case where we

know only discrete points x(pi), i = 1, . . . , n, along a smooth curve x(p). By connecting

these points we create an n-gon. As n →∞ the n-gon becomes the smooth curve x(p).

The idea is to create a polygon shortening scheme such that as n →∞, and the polygon

tends to a smooth curve, the scheme becomes Euclidean curve shortening.

There exists a unique circle (the circumcircle) which passes through any three non-

collinear points, x(pi−1), x(pi), x(pi+1), where pi−1 < pi < pi+1, on the curve x(p). We

will denote the radius of the circle R(pi), and the center of this circle, which is called

the circumcenter, C(pi), as shown in Figure 4.4. The quantity 1/R(pi) is called the

Menger-Melnikov curvature and has the property that

lim
pi−1,pi+1→pi

1

R(pi)
= |k(pi)|.
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In addition, as the points x(pi−1) and x(pi+1) approach x(pi), the quantity (C(pi) −
x(pi))/R(pi) approaches N(pi) if k(pi) > 0 and −N(pi) if k(pi) < 0. Therefore, multi-

plying this quantity by the Menger-Melnikov curvature we have

lim
pi−1,pi+1→pi

C(pi)− x(pi)

R(pi)2
= k(pi)N(pi).

Hence, a discrete analogue to Euclidean curve shortening can be created using this

method.

Consider the situation in which we have n agents, z1, . . . zn, lying in the complex

plane, which form an n-gon. For any three consecutive vertices zi−1, zi, zi+1 define the

function

ci := c(zi−1, zi, zi+1) =

(
zi−1 − zi

zi−1 − zi

− zi+1 − zi

zi+1 − zi

)
1

zi−1 − zi+1

,

where zi−1 − zi denotes the complex conjugate. In [22] it is shown that |ci| is the Menger-

Melnikov curvature of the three vertices, zi−1, zi, zi+1, and the circumcenter of the three

vertices is given by zi + ci/|ci|2. Therefore, the normal vector for zi is approximated by

ci/|ci|. Hence, the Menger-Melnikov flow described above can be written as

żi = c(zi−1, zi, zi+1). (4.16)

The polygon evolution given by (4.16) is studied in [4, 22]. However, due to the com-

plexity of the system the results are quite limited. In fact, in [4] the author’s point out

the difficulty in obtaining analytical results for this scheme. It has been shown that a

simple n-gon collapses to a point in finite time, and for n = 4 most quadrilaterals tend

to regular polygons as they shrink to a point. However when n is small, the scheme in

(4.16) may yield a very poor approximation of the normal vector. This is depicted in

Figure 4.5. In fact, for a convex n-gon, there may be a żi which does not point into

the interior of the n-gon. Finally, as the polygon collapses, the velocity of the vertices

becomes infinitely large, which is not ideal for a multi-agent (vehicle) system. Because

of these points we propose a simple linear scheme for polygon shortening.
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Figure 4.5: The normal vector, and the Menger-Melnikov approximation, when the num-

ber of points n is small. The approximation to N(pi) is very rough.

4.3.3 Linear scheme

The linear polygon shortening scheme that we propose can be described as follows. A

group of n agents, modeled as point masses are numbered from 1 to n. The position of

each agent can be described in the complex plane by the point zi = xi + jyi, i = 1, . . . , n.

These agents make up the vertices of an n-gon. The strategy is for agent i to chase the

centroid of agents i− 1 and i + 1. The ith agent’s velocity points in the direction of the

centroid of its neighbors and the magnitude of the velocity is equal to the distance from

agent i to the centroid. This is described in (4.2) as

żi =
1

2
(zi+1 − zi) +

1

2
(zi−1 − zi),

where all indices are evaluated modulo n. This system can be written in the form ż = Az

where the matrix A is given by

A = circ

(
−1,

1

2
, 0, . . . , 0,

1

2

)
.

The matrix A can be written in terms of the polynomial

qA(s) =
1

2
sn−1 +

1

2
s− 1,
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and the matrix P = circ(0, 1, 0, . . . , 0), as A = qA(P ). By the Spectral Mapping Theorem

we obtain

eigs(A) = {qA(1), qA(ω), qA(ω2), . . . , qA(ωn−1)},

where ω = e2πj/n. Therefore, denoting λi := qA(ωi−1), we have eigs(A) = {λi : i =

1, . . . , n}. Evaluating λi we get

λi =
1

2
e2πj(n−1)(i−1)/n +

1

2
e2πj(i−1)/n − 1

= cos(2π(i− 1)/n)− 1,

where i = 1, . . . , n. Hence, the eigenvalues of A are real, with one eigenvalue at zero,

and all others lie on the negative real line. The zero eigenvalue dictates that the agents

converge to their stationary centroid rather than to the origin. The rightmost nonzero

eigenvalue of A gives the rate of convergence of the agents to their centroid [47]. This

eigenvalue, which we will denote as γ, is given by i = 2 (or equivalently i = n), and is

γ := λ2 = cos(2π/n)− 1. (4.17)

The following theorem describes the geometrical shape of the points zi(t) as they converge

to their centroid. This theorem is proved for discrete time in [4]. The following result,

which was inspired by [4], was proved by Laura Krick. Joshua Marshall [30] proved this

result for a general circulant pursuit matrix.

Theorem 4.9. Consider n points, z1(t), . . . , zn(t) evolving according to (4.2). As t →∞
these points converge to an ellipse. That is, z1(t), . . . , zn(t) collapse to an elliptical point.

Proof. The matrix A can be diagonalized by the matrix

F =
1√
n

[f1, . . . , fn],

where

fi =
[
ω0, ω(i−1), ω2(i−1), . . . , ω(n−1)(i−1)

]T
, (4.18)
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and ω = e2πj/n. We have A = FΛF ∗ where Λ is a diagonal matrix consisting of the

eigenvalues of A. Because of this, we can write

z(t) = F eΛtF ∗z(0).

This can equivalently be written as the modal decomposition

z(t) =
1

n

n∑
i=1

eλitfif
∗
i z(0)

=
1

n
e0t




1

...

1




[
1 · · · 1

]
z(0) +

1

n

n∑
i=2

eλitfif
∗
i z(0)

z(t) = z̃1 +
1

n

n∑
i=2

eλitfif
∗
i z(0),

where

z̃ :=
1

n

n∑
i=1

zi(0)

is the agents’ centroid, and 1 is the n × 1 vector of 1’s. As t → ∞ the terms in the

summation tend to zero and thus the agent’s converge to their centroid. The rate of

convergence is dictated by γ in (4.17). Since γ is the rightmost nonzero eigenvalue, the

modes corresponding to all the other eigenvalues will die away more quickly. Therefore,

by subtracting off the vector of centroids, and dividing by γ we can scale the system by

the slowest eigenvalues and thus study the shape as t →∞. Define

w(t) :=
1

ejγ
(z(t)− z̃1) =

1

nejγ

∞∑
i=2

eλitfif
∗
i z(0).

Taking the limit of w(t) as t →∞ we obtain

lim
t→∞

w(t) =: w∞ =
1

n
(f2f

∗
2 + fnf

∗
n)z(0).

The vector w∞ gives the final shape of the points. Defining the complex numbers, which

are independent of i,

aejα :=
1

n
f ∗2 z(0) and bejβ :=

1

n
f ∗nz(0),
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we can write w∞ as

w∞ = f2aejα + fnbe
jβ.

Using the definition of f2 and fn from (4.18) we can write the components of w∞ as

w∞
i = aejαe2πj(i−1)/n + bejβe2πj(i−1)(n−1)/n,

= aejαe2πj(i−1)/n + bejβe−2πj(i−1)/n.

Letting θi = 2π(i− 1)/n, we can write this as

w∞ = aejαejθi + bejβe−jθi .

Finally, defining

ψ =
α + β

2
and ψ̄ =

α− β

2
,

we have α = ψ + ψ̄ and β = ψ − ψ̄ and thus

w∞
i = aejψejψ̄ejθi + bejψejψ̄e−jθi

= ejψ(aej(ψ̄+θi)be−j(ψ̄+θi))

= ejψ
(
(a + b) cos(ψ̄ + θi) + j(a− b) sin(ψ̄ + θi)

)
. (4.19)

Since the variables a, b, ψ, ψ̄ depend only on the initial condition z(0), (4.19) describes an

ellipse which is parametrized by θi ∈ [0, 2π]. The quantity ejψ gives the rotation of the

semimajor axis of the ellipse relative to the positive real axis, and ψ̄ defines the starting

point θ1 = 0 of the ellipse relative to the semimajor axis.

4.4 Star formations

In this section we will show that a group of agents, arranged in a star formation about

their centroid (see Figure 4.7), remain in a star formation for all time. We require some

preliminary tools which are introduced in the following lemmas. In what follows, z̄

denotes the complex conjugate of the complex number z.
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Figure 4.6: The setup for the definition of the function F .

Lemma 4.10 (Lin et al. [25]). Let z1, z2, and z3 be three points in the complex plane,

as shown in Figure 4.6. Let r1 := |z1 − z2|, r2 := |z3 − z2| and

F = ={(z1 − z2)(z3 − z2)}.

Then

(i) 0 < α < π, r1 > 0, and r2 > 0 if and only if F > 0.

(ii) π < α < 2π, r1 > 0, and r2 > 0 if and only if F < 0.

(iii) the points are collinear if and only if F = 0.

Proof. Introduce the polar form

z1 − z2 = r1e
jθ1 , z3 − z2 = r2e

jθ2

where θ1, θ2 are the angles of the line segments in the global coordinate system. Then

F = ={(z1 − z2)(z3 − z2)} = ={r1e
−jθ1r2e

jθ2} = r1r2 sin(α).

Thus, 0 < α < π, r1 > 0, and r2 > 0 iff F > 0; and π < α < 2π, r1 > 0, and r2 > 0 iff

F < 0. Also, the points are collinear iff F = 0.
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Figure 4.7: A counterclockwise star formation.

Now consider our system of n agents, whose positions, not all collinear, are denoted

by z1, . . . , zn. Let z̃ be the centroid and ri be the distance from the centroid to zi. Let αi

denote the counterclockwise angle from z̃zi to z̃zi+1 for i = 1, . . . , n − 1, and αn denote

the counterclockwise angle from z̃zn to z̃z1.

Definition 4.11 (Lin et al. [25]). The n points are said to be arranged in a counter-

clockwise star formation if ri > 0 and αi > 0, for all i = 1, . . . , n, and
∑n

i=1 αi = 2π.

They are said to be arranged in a clockwise star formation if ri > 0 and αi < 0, for all

i = 1, . . . , n, and
∑n

i=1 αi = −2π.

This formation is shown in Figure 4.7. In what follows we will only consider counter-

clockwise star formations, since the treatment for clockwise star formations is analogous.

Also, the case where n = 2 is trivial, so it is omitted.

Lemma 4.12 (Lin et al. [25]). Suppose that n distinct points, z1, . . . , zn, with n > 2 are

in a counterclockwise star formation. Then αi < π, ∀i.

Proof. Suppose by way of contradiction and by renumbering the points, if necessary, that

α1 ≥ π. Fix a coordinate system centered at z̃ with the positive real axis given by the
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ray from z̃ passing through z1. Then we have ={z1} = 0, ={z2} ≤ 0 and ={zk} < 0, for

k = 3, . . . , n. Therefore, ={z̃} =
∑n

i=1={zi} < 0, a contradiction.

Lemma 4.13 (Lin et al. [25]). If n points, z1, . . . , zn, which are evolving according to

(4.2), are collinear at some time t1, then they are collinear for all t < t1 and t > t1.

Proof. Suppose n points are all collinear at t = t1. Reorient the coordinate system such

that all points lie on the real axis, R. Since

żi =
1

2
(zi+1 + zi−1)− zi,

and zi ∈ R, ∀i, it follows that żi ∈ R, ∀i. This means that Rn is an invariant subspace

of Cn under the dynamics (4.2). Hence, zi(t) ∈ R for all time, implying the points are

collinear for all time.

We will now use these tools to prove the main theorem of this section.

Theorem 4.14. Suppose that n distinct points, with n > 2, are initially arranged in a

counterclockwise star formation. If these points evolve according to (4.2) they will remain

in a counterclockwise star formation for all time.

Proof. We begin by considering the function

Fi(t) = ={(zi(t)− z̃(t))(zi+1(t)− z̃(t))}

= riri+1 sin(αi).

By the definition of a counterclockwise star formation we have ri(0) > 0, and 0 < αi(0) <

π, ∀i. Hence by Lemma 4.10, Fi(0) > 0, ∀i. We want to show that Fi(t) > 0, ∀t, which

by Lemma 4.10 shows that the vertices are in a counterclockwise star formation for all

time.

Suppose by way of contradiction that t1 is the first time that an Fi becomes zero. We

can select i = m such that Fm(t1) = 0 and Fm+1(t1) > 0, for if all the Fi’s are zero at t1,
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then the points are collinear, which by Lemma 4.13 is a contradiction. Hence, we have

Fi(t) > 0 ∀ t ∈ [0, t1), i = 1, . . . , n,

Fm(t1) = 0,

Fm+1(t1) > 0.

Taking the derivative of Fm along the trajectories of the system ż = Az, and noting

that ˙̃z = 0, we have

Ḟm = ={żm(zm+1 − z̃) + (zm − z̃)żm+1}.

Substituting in the expressions for żm and żm+1 we get

Ḟm =
1

2
=

{
(zm+1 − zm)(zm+1 − z̃) + (zm−1 − zm)(zm+1 − z̃)

+ (zm − z̃)(zm+2 − zm+1) + (zm − z̃)(zm − zm+1)
}

Adding and subtracting z̃ from each of the 4 terms and simplifying we obtain

Ḟm = −2Fm + Gm, (4.20)

where

Gm =
1

2
={(zm−1 − z̃)(zm+1 − z̃) + (zm − z̃)(zm+2 − z̃)}. (4.21)

We can equivalently write Gm as

Gm =
1

2
(rm−1rm+1 sin(αm−1 + αm) + rmrm+2 sin(αm + αm+1)) .

Now, if Fm(t1) = 0, by Lemma 4.10, one of the four following conditions must be satisfied.

(i) αm(t1) = π and rm(t1), rm+1(t1) > 0.

(ii) αm(t1) = 0 and rm(t1), rm+1(t1) > 0.

(iii) rm(t1) = 0.
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(iv) rm+1(t1) = 0.

Condition (iv), in which rm+1(t1) = 0, cannot be satisfied since Fm+1(t1) > 0. Condition

(i) cannot be satisfied since αi(t1) ≥ 0, ∀i, and so all the points lie on, or to one side of,

the line formed by zm+1 and zm, a contradiction by either Lemma 4.12 or 4.13. Assume

that condition (ii) is satisfied. Then αm(t1) = 0, and from (4.21) we obtain

Gm(t1) =
1

2
(rm−1rm+1 sin(αm−1) + rmrm+2 sin(αm+1))

=
1

2

(
rm+1

rm

Fm−1(t1) +
rm

rm+1

Fm+1(t1)

)
.

Since rm(t1), rm+1(t1) > 0, Fm+1(t1) > 0, and Fm−1(t1) ≥ 0, it follows that Gm(t1) > 0.

By continuity of Gm there exists 0 ≤ t0 < t1 such that

Gm(t) > 0 ∀ t ∈ [t0, t1].

Also, by assumption, Fm(t) > 0 for t ∈ [0, t1). Therefore

Ḟm(t) = −2Fm + Gm > −2Fm, t ∈ [t0, t1).

Integrating this we obtain

Fm(t) > e−2(t−t0)Fm(t0), t ∈ [t0, t1).

By continuity of Fm,

Fm(t1) ≥ e−2(t1−t0)Fm(t0) > 0,

which is a contradiction.

Finally, suppose condition (iii) is satisfied and rm(t1) = 0. This condition implies that

zm(t1) is positioned at the centroid, z̃. Assume without loss of generality that z̃ = 0.

Notice that if zi(t1) = 0, the angle θi(t1) is not defined. We will now establish the fact

that if zi(t1) = 0 and żi(t1) 6= 0, then limt↑t1 θi(t) is well defined. The expansion for zi

about t1 is defined as

zi(t1)− zi(t1 − h) = hżi(t1)−O(h),
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where O(h)/h → 0 as h → 0. If zi(t1) = 0 then

zi(t1 − h) = −hżi(t1) +O(h).

Hence, limh→0 zi(t1 − h)/h = −żi(t1). Therefore the limiting motion of zi(t) as t ↑ t1 is

along the ray defined by −żi(t1). Because of this, limt↑t1 θi(t) is well defined and is given

by the angle of this ray, as shown in Figure 4.8. Therefore we can define

θi(t1) :=





θi(t1) if ri(t1) > 0,

arctan

(={−żi(t1)}
<{−żi(t1)}

)
if ri(t1) = 0.

(4.22)

With this definition we can talk about θi(t1), and αi(t1), when ri(t1) = 0.

Suppose that by a rotation of the coordinate system, if necessary, that

zm+1(t1) + zm−1(t1)

2
= −r, where r > 0. (4.23)

This is possible since if r = 0 then zm−1(t1), zm(t1), zm+1(t1) all lie on a line through the

centroid, and all other points must lie either on or to one side of this line, implying that 0

is not the centroid, or all the points are collinear, both contradictions. Since zm(t1) = 0,

we have żm(t1) = −r, as shown in Figure 4.9. If n = 3 then zm(t1) = 0 and the centroid

of zm+1(t1) and zm−1(t1) is at −r, implying that 0 is not the centroid of the three points,

a contradiction. Therefore we need only consider n > 3. Since żm(t1) = −r, from (4.22)

we obtain

θm(t1) = 0. (4.24)

To obtain a contradiction for n > 3 we will show that (4.23) and (4.24) cannot both be

satisfied. To do this we will consider the two cases, rm−1(t1) = 0 and rm−1(t1) > 0. Since

the points are in a star formation until t1, we know that ∀i, αi(t) ∈ (0, π) for t ∈ [0, t1).

Hence, if θi(t1) and θi+1(t1) are defined via (4.22), then by continuity αi(t1) ∈ [0, π].

If rm−1(t1) = 0 then from (4.23) we have zm+1(t1) = −2r. Therefore θm+1(t1) = π

and from (4.24), θm(t1) = 0. However this implies that all other θi(t1)’s which are defined
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Figure 4.8: The limiting θi(t) as t ↑ t1

when zi(t1) = 0.
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Figure 4.9: The position of the points

zm−1, zm, and zm+1 at t = t1.

must lie in [−π, 0]. Hence ={zi(t1)} ≤ 0 ∀i, which implies that all points are collinear,

or that 0 is not the centroid, both contradictions.

If rm−1(t1) > 0 then from (4.24), and since αm(t1), αm−1(t1) ∈ [0, π], we have that

θm+1(t1) ∈ [0, π] and θm−1(t1) ∈ [−π, 0]. This means that ={zm+1(t1)} ≥ 0 and

={zm−1(t1)} ≤ 0. Because of this, as can be verified in Figure 4.10, for (4.23) to be satis-

fied either zm−1(t1) and zm+1(t1) are both real, in which case θm+1(t1)− θm−1(t1) = π, or

they are not real and θm+1(t1)− θm−1(t1) > π. But this implies that all points lie on, or

to one side of the line formed by zm−1(t1) (or equivalently, the line formed by zm+1(t1)).

Thus all points are collinear, or 0 is not the centroid, both contradictions.

Figure 4.11 shows the evolution of a polygon which is in a star formation about its

centroid. Notice that the polygon remains in a star formation, becomes convex, and

collapses to a point.
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Figure 4.10: The required geometry such that θm−1(t1) ∈ [−π, 0], θm+1(t1) ∈ [0, π], and

zm+1(t1) + zm−1(t1) = −2r. All points lie either on or to one side of the dotted line.

Figure 4.11: The evolution of a polygon whose vertices are in a star formation about

their centroid ∗. The solid lines show the trajectories of each vertex.
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Figure 4.12: The setup for the definition of the function H.

4.5 Convex stays convex

In this section we will show that as a convex n-gon evolves according to (4.2), it remains

convex. To do this we require a function similar to that in Lemma 4.10, but which

measures the counterclockwise internal angle between two sides of a n-gon.

Lemma 4.15. Consider a simple n-gon lying in the complex plane, whose vertices zi are

numbered counterclockwise around the n-gon. Let z1, z2, and z3 be three vertices of the

n-gon as shown in Figure 4.12. Let β2 denote the counterclockwise angle from the side

z2z3 to the side z1z2, and define ρ1 = |z1 − z2|, ρ2 = |z3 − z2| and

H = ={(z1 − z2)(z3 − z2)}.

Then

(i) 0 < β2 < π, ρ1 > 0, and ρ2 > 0 if and only if H > 0.

(ii) π < β2 < 2π, ρ1 > 0, and ρ2 > 0 if and only if H < 0.

(iii) the points are collinear if and only if H = 0.

Proof. We introduce the polar form:

z1 − z2 = ρ1e
jγ1 , z3 − z2 = ρ2e

jγ2 ,
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where γ1, γ2 are the angles shown in Figure 4.12. Then

H = ={(z1 − z2)(z3 − z2)} = ={ρ1e
jγ1ρ2e

−jγ2} = ρ1ρ2 sin(β2)

Thus, 0 < β2 < π, ρ1 > 0, and ρ2 > 0 iff H > 0; and π < β2 < 2π, ρ1 > 0, and ρ2 > 0 iff

H < 0. Also, the points are collinear iff H = 0.

Lemma 4.16. If an n-gon is convex, with its vertices zi, i = 1, . . . , n, numbered counter-

clockwise around the n-gon, then these vertices are in a counterclockwise star formation

about their centroid.

Proof. Denote the centroid of the n vertices as z̃. The centroid must lie in the interior

of the n-gon for if it lies on the boundary or in the exterior, we could draw a separating

line through the centroid for which all vertices lie either on the line or to one side of it,

a contradiction by Lemma 4.12 or 4.13. Since the centroid is in the interior, and the

polygon is convex, we must have that
∑n

i=1 αi = 2π.

Since the n-gon is convex, we can draw a line from the centroid, z̃, to any vertex

without exiting the interior of the n-gon. Consider an arbitrary vertex, zm. Fix a

coordinate system centered at z̃ with the positive real axis given by the ray from z̃

passing through zm. The internal angle from the side zmzm+1 to the side zm−1zm is

βm ∈ (0, π]. The real axis divides βm into two angles, ζ1, ζ2 > 0 where ζ1 + ζ2 = βm as

shown in Figure 4.13. The angle ζ1 is the counterclockwise angle between the real axis

and the side zm−1zm, and ζ2 is the counterclockwise angle between zmzm+1 and the real

axis. But since ζ1, ζ2 ∈ (0, π), we have that ={zm−1} < 0, ={zm} = 0, and ={zm+1} > 0.

Hence, αm−1 > 0, and αm > 0. Since this can be performed for each vertex, we have that

αi > 0, ∀i and thus the n-gon is in a counterclockwise star formation.

With the use of these two lemmas, and the main result from Section 4.4, we will now

prove the main result of this section.
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Figure 4.13: A convex n-gon whose vertices are therefore in a star formation about their

centroid z̃.

Theorem 4.17. Consider a strictly convex n-gon at time t = 0 whose vertices zi,

i = 1, . . . , n, are numbered counterclockwise around the n-gon. If these vertices evolve

according to (4.2) the n-gon will remain strictly convex for all time.

Proof. We begin by considering the function

Hi(t) = ={(zi−1(t)− zi(t))(zi+1(t)− zi(t))}.

= ρi−1ρi sin(βi)

By the definition of a strictly convex n-gon we have that ρi(0) > 0, and 0 < βi(0) < π,

∀i. Hence by Lemma 4.15, Hi(0) > 0, ∀i. We want to show that Hi(t) > 0 for all t,

which by Lemma 4.15 shows that the n-gon remains strictly convex for all time.

Suppose by way of contradiction that t1 is the first time that an Hi becomes zero.

We can select i = m such that Hm(t1) = 0 and Hm+1(t1) > 0, for if all the Hi’s are zero

at t1, then the points are collinear, which by Lemma 4.13 is a contradiction since the
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points started in a convex n-gon formation. Hence, we have

Hi(t) > 0 ∀ t ∈ [0, t1), i = 1, . . . , n,

Hm(t1) = 0,

Hm+1(t1) > 0.

Taking the derivative of Hm along the trajectories of (4.2), we have

Ḣm = ={(żm−1 − żm)(zm+1 − zm) + (zm−1 − zm)(żm+1 − żm)}.

Substituting in (4.2) for żm−1, żm, żm+1, we have

Ḣm =
1

2
=

{
(zm − zm−1)(zm+1 − zm) + (zm−2 − zm−1)(zm+1 − zm)

− (zm+1 − zm)(zm+1 − zm)− (zm−1 − zm)(zm+1 − zm) + (zm−1 − zm)(zm+2 − zm+1)

+ (zm−1 − zm)(zm − zm+1)− (zm−1 − zm)(zm+1 − zm)− (zm−1 − zm)(zm−1 − zm)
}

.

The imaginary part of the 1st, 4th, 6th, and 7th terms are each equal to −Hm. The 3rd

and 8th terms are equal to −ρ2
m+1 and −ρ2

m−1 respectively, which have zero imaginary

part. Therefore we have

Ḣm = −2Hm + Gm, (4.25)

where

Gm =
1

2
={(zm−2 − zm−1)(zm+1 − zm) + (zm−1 − zm)(zm+2 − zm+1)} (4.26)

Now, if Hm(t1) = 0, by Lemma 4.15, one of the following four conditions must be

satisfied.

(i) βm(t1) = π and ρm−1(t1), ρm(t1) > 0.

(ii) βm(t1) = 0 and ρm−1(t1), ρm(t1) > 0.

(iii) ρm(t1) = 0.
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(iv) ρm−1(t1) = 0.

Condition (iii), in which ρm(t1) = 0, cannot be satisfied since Hm+1(t1) > 0. Also, since

the n-gon is initially convex, by Lemma 4.16 it is in a counterclockwise star formation.

By Theorem 4.14 the vertices remain in a star formation for all time and thus remain

distinct. Therefore, condition (iv) in which ρm−1(t1) = 0, cannot be satisfied.

Assume condition (i) is satisfied. Then βm(t1) = π, ρm−1(t1), ρm(t1) > 0 and Hm(t1) =

0, Hm+1(t1) > 0. Since βm(t1) = π, we have that

zm+1(t1)− zm(t1)

ρm

= −zm−1(t1)− zm(t1)

ρm−1

.

Combining this with the expression for Gm we have

Gm(t1) =
1

2
={− ρm

ρm−1

(zm−2 − zm−1)(zm−1 − zm)− ρm−1

ρm

(zm+1 − zm)(zm+2 − zm+1)}

=
1

2

(
ρm

ρm−1

Hm−1(t1) +
ρm−1

ρm

Hm+1(t1)

)
. (4.27)

Since ρm−1(t1), ρm(t1) > 0, Hm+1(t1) > 0, and Hm−1(t1) ≥ 0, it follows that Gm(t1) > 0.

By continuity of Gm there exists 0 ≤ t0 < t1 such that Gm(t) > 0 ∀t ∈ [t0, t1]. Also, by

assumption, Hm(t) > 0 for t ∈ [0, t1). Therefore

Ḣm(t) = −2Hm + Gm > −2Hm, t ∈ [t0, t1).

Integrating this and using the continuity of Hm, we obtain

Hm(t1) ≥ e−2(t1−t0)Hm(t0) > 0,

which is a contradiction.

Finally, assume condition (ii) is satisfied. Then βm(t1) = 0 and ρm−1, ρm > 0. The

angle βm is the interior angle between the edges zm−1zm and zmzm+1. For all t ∈ [0, t1),

we have βi(t) ∈ (0, π) and ρi(t) > 0 for all i. Moving zm to the origin, we can define the

(positive) cone created by the edges of the n-gon zm−1zm and zmzm+1, as

cone{zm−1zm, zmzm+1} := {a(zm−1 − zm) + b(zm+1 − zm)|a, b ≥ 0}.
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Figure 4.14: The convex n-gon lying within the boundaries of the shaded cone.

The n− 3 vertices which are not involved in creating the cone must lie in the interior of

this cone for all t ∈ [0, t1). This is shown in Figure 4.14. By continuity of the zi’s, at

time t1 the vertices must lie either in the interior or on the boundary of this cone. But

we have βm(t1) = 0, implying that zm−1zm and zmzm+1 are collinear and the cone is a

line. Hence all the vertices are collinear, a contradiction by Lemma 4.13.

Corollary 4.18. Consider an n-gon which is convex at t = 0. If the vertices evolve

according to (4.2), then for any t > 0, the n-gon will be strictly convex.

Proof. Consider a vertex m for which βm(0) = π, and thus Hm(0) = 0. We can choose

this vertex such that Hm+1(0) > 0 since if Hi(0) = 0, ∀i, then the n-gon is not initially

convex. From the proof of Theorem 4.17 we have

Ḣm(t) = −2Hm(t) + Gm(t).

But Hm(0) = 0 and we have shown in (4.27) that Gm(0) > 0. Therefore, Ḣm(0) > 0.

By continuity of Ḣm there exists a t0 > 0 such that Ḣm(t) > 0 for t ∈ [0, t0]. Thus,

Hm(t) > 0, for all t ∈ (0, t0] and by Theorem 4.17, Hm(t) > 0 for all t > t0.

Figure 4.15 shows the evolution of a convex n-gon. Notice that the polygon remains

convex and collapses to a point.
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Figure 4.15: The evolution of a convex n-gon. The solid lines show the trajectories of

each vertex.

4.6 Optimal control law for perimeter shortening

Given a polygon with vertices z1, . . . , zn and sides z1z2, . . . , znz1 we can write the perime-

ter of the polygon as

P (t) =
n∑

i=1

|zi+1 − zi|. (4.28)

We would like to compute an expression for Ṗ (t) analogous to that in Section 4.2.3. In

order to take the time derivative of P (t) consider taking the derivative of |zi+1 − zi|2 =

〈zi+1 − zi, zi+1 − zi〉 (for u, v ∈ Cn, 〈u, v〉 = u∗v, where ∗ denotes complex conjugate

transpose). This yields

d

dt
|zi+1 − zi|2 =

d

dt
〈zi+1 − zi, zi+1 − zi〉

= 2<{〈zi+1 − zi, żi+1 − żi〉} .

But also,

d

dt
|zi+1 − zi|2 = 2|zi+1 − zi| d

dt
|zi+1 − zi|.
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Letting żi = ui for i = 1, . . . , n and rearranging we have

d

dt
|zi+1 − zi| = <

{〈
zi+1 − zi

|zi+1 − zi| , ui+1 − ui

〉}
.

Therefore

Ṗ (t) =
n∑

i=1

<
{〈

zi+1 − zi

|zi+1 − zi| , ui+1 − ui

〉}

=
n∑

i=1

<
{〈

zi+1 − zi

|zi+1 − zi| , ui+1

〉
−

〈
zi+1 − zi

|zi+1 − zi| , ui

〉}
.

Since all indices are evaluated modulo n this can be rewritten as

Ṗ (t) =
n∑

i=1

<
{〈

zi − zi−1

|zi − zi−1| , ui

〉
−

〈
zi+1 − zi

|zi+1 − zi| , ui

〉}

= −
n∑

i=1

<
{〈

zi−1 − zi

|zi−1 − zi| +
zi+1 − zi

|zi+1 − zi| , ui

〉}
. (4.29)

To maximize the rate of decrease of P (t) the two vectors in the inner product must point

in the same direction. This implies that ui should point in the direction of

zi−1 − zi

|zi−1 − zi| +
zi+1 − zi

|zi+1 − zi| .

That is, ui should point in the direction which bisects the internal angle βi of the polygon.

In general, neither the linear scheme (4.2) nor the shortening by Menger-Melnikov cur-

vature points in this direction. However, this direction does not ensure that the polygon

becomes circular (or elliptical); in simulation, adjacent vertices may capture each other

and the polygon may collapse to a line. An example is shown in Figure 4.16.

Using (4.29) and the linear scheme (4.2) we can determine Ṗ (t). For Ṗ (t) to be

defined we require that adjacent vertices be distinct. This is ensured, for example, if the

vertices start in a star formation about their centroid.

Theorem 4.19. Consider an n-gon whose distinct vertices evolve according to (4.2).

If adjacent vertices remain distinct, the perimeter P (t) of the n-gon (defined in (4.28))

monotonically decreases to zero.
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(a) A polygon evolving in the optimal direction.

Notice that the polygon collapses to a line.

(b) The same initial polygon evolving according to

the linear curve shortening scheme.

Figure 4.16: Evolving in the optimal direction.

Proof. Substituting (4.2) into (4.29) we have

Ṗ (t) = −1

2

n∑
i=1

<
{〈

zi−1 − zi

|zi−1 − zi| +
zi+1 − zi

|zi+1 − zi| , (zi+1 − zi) + (zi−1 − zi)

〉}
.

Expanding this expression we obtain

Ṗ (t) =
1

2

n∑
i=1

<
{
−|zi − zi−1| − |zi+1 − zi|+

〈
zi − zi−1

|zi − zi−1| , zi+1 − zi

〉

+

〈
zi+1 − zi

|zi+1 − zi| , zi − zi−1

〉}
.

Each term in this summation has the form <{−|u| − |v|+ 〈u/|u|, v〉+ 〈v/|v|, u〉}. From

the Cauchy-Schwarz inequality we have <{〈u/|u|, v〉} ≤ |v|, <{〈v/|v|, u〉} ≤ |u|, and thus

<{−|u| − |v| + 〈u/|u|, v〉 + 〈v/|v|, u〉} ≤ 0. Therefore, Ṗ (t) ≤ 0. Equality is achieved if

and only if u/|u| = v/|v| for each term in the summation; that is, if and only if

zi − zi−1

|zi − zi−1| =
zi+1 − zi

|zi+1 − zi| , ∀i. (4.30)

However, assume by way of contradiction that (4.30) is satisfied. Rotate the coordinate

system such that z1 and z2 lie on the real axis and z2 − z1 > 0. Setting i = 2 in (4.30)

we have z3 − z2 > 0, setting i = 3 we have z4 − z3 > 0, and so on. Hence zi+1 − zi > 0,
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∀i = 1, . . . , n − 1, which implies that zn > z1. But setting i = n in (4.30) we have

z1−zn > 0, a contradiction. Therefore (4.30) cannot be satisfied, Ṗ (t) < 0, and since the

vertices converge to their stationary centroid, P (t) monotonically decreases to zero.

4.7 Limitations of the linear scheme

There are two ways in which the linear scheme does not mimic Euclidean curve shortening.

First of all, if an embedded curve is evolved via Euclidean curve shortening, its area is

monotonically decreasing. However, for the linear scheme, in general, the area of a simple

polygon is not monotonically decreasing. This is shown in Figure 4.17.

Remark 4.20. If a convex polygon evolves according to (4.2), its area is monotonically

decreasing. To see this, consider a convex polygon at time t = 0 with vertices zi, i =

1, . . . , n, evolving according to (4.2). For each i, żi(0) is either zero, or points into

the interior of the polygon, with żi(0) 6= 0 for some i. Therefore, the area is initially

decreasing. By Corollary 4.18 the polygon is strictly convex for all t > 0, and thus żi(t)

points into the interior of the polygon for all i and for all t > 0. Therefore, the area

decreases for all time. J

Second, if an embedded curve evolves according to the Euclidean curve shortening

flow, it remains embedded. In contrast, a simple polygon can become self-intersection

under the linear scheme, as is shown in Figure 4.18. However, this is to be expected since

the vertices in Figure 4.18(a) are not equally spaced around the polygon. The regions of

the polygon with smaller spacing between adjacent vertices will move more slowly than

the regions where the spacing is large. This is why, in Figure 4.18(b), the outer edge of

the boomerang has intersected the inner edge.

These two limitations show that in some respects, the linear scheme does not mimic

the curve shortening flows. However, as shown throughout this chapter, their are many

striking similarities between these two schemes. For a simple linear scheme, (4.2) does a
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(a) The evolution of a simple polygon. The

dashed lines show the trajectories of the vertices.
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Figure 4.17: An embedded polygon for which the area initially increases.

   

(a) A simple polygon. The vertices are marked

by ∗’s.

  

(b) The initial polygon evolves to the self-

intersecting polygon shown by the thick solid line.

Figure 4.18: A simple polygon becomes self-intersecting.
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remarkable job of mimicking the behavior of the curve shortening flows.

4.8 Summary

Motivated by the rendezvous problem in multi-agent systems we reviewed the theory of

curve shortening. We proposed a simple linear scheme for polygon shortening and showed

that it exhibits several properties similar to the curve shortening theory.



Chapter 5

Stabilizing to an equilateral polygon

In this chapter, the problem of stabilizing a group of agents to a stationary formation is

analyzed. A local control scheme is proposed to stabilize the agents to the vertices of an

equilateral polygon (a polygon for which every side has equal length). The centroid of

the agents is stationary during the evolution. For three agents a full stability analysis is

performed: If three agents start distinct and non-collinear, they converge to the vertices

of a stationary equilateral triangle, while maintaining a stationary centroid.

5.1 Introduction

There has been a considerable amount of work on formation stabilization in the multi-

agent systems literature. The two main types of formation stabilization that are studied

are stabilization to a moving formation, and stabilization to a stationary formation. Much

of the work was been on stabilizing a group of agents (most commonly unicycles) to a

moving formation. For example, Justh and Krishnaprasad [23] develop a control law to

stabilize two unicycles moving at constant speed to a common heading. In [41] by Paley

et al., the same problem is approached by using potential functions to maintain spacing

between unicycles. Marshall et al. [31] create a control strategy based on cyclic pursuit

in which the unicycles can converge to a circle formation. In formation the unicycles are

105
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moving around the circle, equally spaced. In [51, 52] by Tanner et al., moving formations

are studied in the context of flocking. The agents are modeled as double integrators (i.e.,

the control input is the acceleration) and the stability of a flocking control law is studied

for both fixed and dynamic communication topologies.

In the area of stabilization to a stationary formation there are some interesting results.

Sugihara and Suzuki [48] propose a heuristic distributed algorithm to stabilize a group of

agents (modeled as point masses) to stationary positions, equally spaced around a circle.

Each agent adjusts its position based on the position of the nearest agent and the farthest

agent. Through simulation, it is shown that the agents form a rough approximation of

a circle. The formation stabilization problem has also been studied using graph theory,

as in, for example, [38, 39]. In this work a formation is viewed as a rigid graph, where

the links on the graph represent the distance constraints between agents. Problems such

as determining the best way to split a large rigid formation into smaller rigid formations

are studied in this framework.

An interesting scheme for formation stabilization of point masses is given by Lin et

al. [25]. This scheme requires that each agent be equipped with a compass, so that they

share a common direction. If the agents have this property then a local control strategy

can be designed to stabilize to any stationary formation. This scheme will be described

in detail in the next section. In [26] this idea is extended to unicycles.

In this chapter we look at the problem of stabilizing a group of agents to a stationary

formation. As in the previous chapters, we model the agents as point masses, and we

uniquely identify each of the n agents with a number between 1 and n. The position

of the ith agent is given by the vector zi = (xi, yi) in R2. The input to each agent is a

velocity vector ui:

żi = ui.

The agents’ positions can also be represented as points in the complex plane zi = xi+jyi,

i = 1, . . . , n. The agents are not equipped with a compass, and thus they do not share a
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common heading (i.e., the agents are disoriented). The fact that the agents are disoriented

makes formation stabilization significantly more complicated then when the agents are

oriented. The problem we address is to find a local control strategy such that for each i,

agent i is stabilized to a distance b > 0 from agents i + 1 and i− 1.

The organization of this chapter is as follows. In Section 5.2 we explore the strategy in

[25] in more detail and discuss the limitation of working in the complex plane. In Section

5.3 we introduce the control strategy, which is based on the linear polygon shortening

scheme of Chapter 4, and analyze the system for n agents. Finally, in Section 5.4 we

study the special case of three agents and show that they stabilize to an equilateral

triangle.

5.2 Background

We will briefly explore the scheme for formation stabilization in [25]. We will also briefly

talk about the limitations of representing the positions of the agents as points in the

complex plane.

5.2.1 Formation stabilization with a compass

Consider the strategy, as introduced in Chapter 2, where each agent pursues a displace-

ment of the next

żi = (zi+1 + di)− zi, i = 1, ..., n,

where the index i is evaluated modulo n and
∑n

i=1 di = 0. In vector form, this can be

written as ż = A1z + d, where A1 = circ(−1, 1, 0, . . . , 0). A result from [25] is that the

centroid of z1(t), . . . , zn(t) is stationary, and there exists a unique vector h orthogonal to

ker A1 such that A1h + d = 0. Every zi(t) converges to the stationary centroid displaced

by hi.
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By appropriate choice of d, a group of agents can be stabilized to a formation about

their centroid. For example, let

di = e2πij/n.

Notice that
∑n

i=1 di = 0 and therefore the centroid of the n points is stationary. In

equilibrium zi+1− zi = e2πij/n. Therefore, this stabilizes a group of agents to the vertices

of a regular polygon centered at the centroid. However, notice that in order to implement

this scheme, each agent must be able to calculate the vector e2πij/n. This vector resides

in the global coordinate system, which in this case is a global complex plane. Therefore,

in order to implement this scheme, each agent must agree on a real and imaginary axis.

Hence, each agent must be equipped with a compass. In this chapter, the agents are not

equipped with compasses. This makes the problem considerably more difficult.

5.2.2 Limitations of the complex plane representation

Throughout this thesis we have been dealing with problems consisting of n agents lying

in the plane. To simplify the analysis it is often convenient to represent the agents’

positions as points in the complex plane. However, there are limitations to working in the

complex plane, most if which occur when differentiating. As an example let v = (vx, vy)

be a vector in R2. Consider the function f : R2 → R2, defined as f(v) = (vx,−vy).

This function is continuous and ∂f/∂v is a real matrix. However, if we introduce the

notation z = vx + jvy, we can write f : C → C, as f(z) = z̄, where z̄ is the complex

conjugate of z. However f(z) is not holomorphic and thus is not differentiable at any

point in C. Therefore, in this case the complex representation of f cannot be used when

differentiating with respect to v.
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5.3 Adapting linear polygon shortening

Consider a group of n agents, numbered from 1, . . . , n, lying in the plane. The ith agents’

position is given by (xi, yi), which we can represent in the complex plane as zi = xi + jyi.

We can view the group of agents as the vertices of an n-gon by joining consecutive pairs

of points z1, z2, . . . , zn to create the sides z1z2, z2z3, . . . , znz1. In this section we will

introduce a control scheme for stabilizing the agents to an equilateral n-gon and study

the stability of its equilibria.

5.3.1 The z dynamics

In order to stabilize a group of agents to an equilateral polygon, consider the following

control strategy:

żi = ui =
1

2
(zi+1−zi)

(
1− b2

|zi+1 − zi|2
)

+
1

2
(zi−1−zi)

(
1− b2

|zi−1 − zi|2
)

, i = 1, . . . , n,

(5.1)

where b is a positive constant. In this expression all indices are evaluated modulo n (i.e.,

n+1 = 1 and 0 = n). To better understand the motivation behind this scheme, consider

the first term on the right-hand side of (5.1). If |zi+1− zi| > b then 1− b2/|zi+1− zi|2 > 0

and thus the agent moves towards zi+1. Similarly, if |zi+1−zi| < b then 1−b2/|zi+1−zi|2 <

0 and the agent moves away from zi+1. Therefore, the effect of this term is to stabilize

zi to a distance b from zi+1. We add the second term to the right hand-side of (5.1)

(which stabilizes zi to a distance b from zi−1) so that the centroid will remain stationary

throughout the evolution.

Notice that if b = 0 we simply have the linear polygon shortening scheme of Chapter

4. Also notice that the system is undefined if |zi+1 − zi| = 0 for some i. Letting z ∈ Cn

denote the n× 1 vector of positions, (z1, . . . , zn), the system (5.1) is defined on the set

T := {z ∈ Cn : |zi+1 − zi| > 0, ∀i}.
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The system (5.1) has been chosen to stabilize to the configuration |zi+1 − zi| = b, ∀i.
However, it is difficult to study the stability of this formation in the z dynamics, since

zi+1 and zi could be going off to infinity together, and yet |zi+1− zi| could be converging

to b. Because of this, we introduce the notation ei = zi+1 − zi and study the stability of

the e dynamics with respect to the equilibrium |ei| = b, ∀i. From this analysis we will

be able to infer the stability of the z dynamics.

5.3.2 The e dynamics

We introduce the notation

ei = zi+1 − zi.

Notice that by the definition of ei,

n∑
i=1

ei = 0. (5.2)

Let e ∈ Cn denote the n × 1 vector (e1, . . . , en). Then, by introducing the permutation

matrix P = circ(0, 1, 0, . . . , 0), and the matrix A1 := P − I = circ(−1, 1, 0, . . . , 0), we

have

e = A1z.

We can rewrite (5.1) in terms of e as

ui =
1

2
ei

(
1− b2

|ei|2
)
− 1

2
ei−1

(
1− b2

|ei−1|2
)

, i = 1, . . . , n. (5.3)

We can also write the dynamics ėi = żi+1 − żi as

ėi =
1

2
ei+1

(
1− b2

|ei+1|2
)
− ei

(
1− b2

|ei|2
)

+
1

2
ei−1

(
1− b2

|ei−1|2
)

, i = 1, . . . , n. (5.4)

Notice that both (5.3) and (5.4) have a singularity if ei = 0 for some i, and thus (5.3)

and (5.4) are defined on the set

S := {e ∈ Cn : |ei| > 0, ∀i}.
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The topology of S is inherited from the topology of R2n. The system (5.4) on the set S
can be viewed as a completely separate system from (5.1). If we impose condition (5.2)

on the ei’s and hence relate the system to (5.1), then (5.4) evolves on the set S0 ⊂ S:

S0 := {e ∈ Cn : |ei| > 0, ∀i,
n∑

i=1

ei = 0}.

Note that with the relation e = A1z, e ∈ S0 if and only if z ∈ T .

We can rewrite the equations (5.1) and (5.4) in vector form as follows. First, we

introduce the function φ : C \ {0} → C

φ(s) =
1

2
s

(
1− b2

|s|2
)

. (5.5)

Using this function we can write (5.3) as

ui = φ(ei)− φ(ei−1). (5.6)

We can extend this function up to vectors by defining Φ : S → Cn as

Φ(e) = (φ(e1), . . . , φ(en)).

Noting that

−A1
T = circ(1, 0, . . . , 0,−1) =




1 0 · · · 0 −1

−1 1 · · · 0 0

...
...

...
...

...

0 0 · · · −1 1




,

we can write (5.1) as

ż = −A1
T Φ(A1z) = −A1

T Φ(e). (5.7)

Finally, writing (5.4) as

ėi = φ(ei+1)− 2φ(ei) + φ(ei−1),

and using the fact that

−A1A1
T = circ(−2, 1, 0, . . . , 0, 1),
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we can write the e dynamics as

ė = −A1A1
T Φ(e). (5.8)

Remark 5.1. In the development of (5.8) we have taken ei as a point in the complex

plane. However, we can equivalently let ei be a vector in R2, and thus e ∈ R2n. The set

S can be written as S = {e ∈ R2n : ‖ei‖ > 0, ∀i}. The function φ : R2 \ {0} → R2 is

then defined as

φ(ei) = ei

(
1− b2

‖ei‖2

)
,

and Φ : S → R2n is defined as before. Finally, (5.8) becomes

ė = − (
A1A1

T ⊗ I2

)
Φ(e),

where ⊗ is the Kronecker product and I2 is the 2× 2 identity matrix. J

This chapter will proceed in the following manner. We will study the stability of the

system (5.8) on the set S. From this study we will be able to determine the stability of

the system (5.8) on S0. This is performed through an application of LaSalle’s Theorem.

In Lemmas 5.2 to 5.9 we will establish the results required to apply LaSalle’s Theorem,

and in Theorem 5.11 we state the main result for the system (5.8). From this result

we will be able to infer the stability of system (5.1) on the set T . This takes place in

Theorem 5.13.

In order to perform a stability analysis of the system (5.8) on the set S, we need to

establish that S is open and connected. We say that an open and connected set is a

domain [24].

Lemma 5.2. The set S is a domain.

Proof. It is clear that the set S is open. We will show that S is path-connected, which

implies that S is connected. Consider a point e ∈ S. This point consists of n complex

numbers e1, . . . en, which satisfy ei 6= 0, ∀i. That is, no component ei of e ∈ S, can lie
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at the origin of the complex plane. Consider two arbitrary points p, p′ ∈ S. The set S
is path-connected if there exists a function σ(t) : [0, 1] 7→ S, such that σ(0) = p and

σ(1) = p′. Consider the ith component of p and p′:

pi := |pi|ejθi and p′i := |p′i|ejθ′i .

We would like to find a function σi(t) : [0, 1] 7→ C/{0}, such that σi(0) = pi and

σi(1) = p′i. We can simply let σi(t) be any smooth function that satisfies the boundary

conditions, and does not pass through the origin. For example, σi(t) could be a function

which rotates and scales pi to p′i. Hence, letting σi(t) be any such function, and defining

σ(t) = [σ1(t), . . . , σn(t)], we obtain the result that S is path-connected. This implies that

S is connected. A set which is open and connected is a domain.

In order to talk about a solution of the system (5.8), we must ensure local existence

and uniqueness of solutions. A sufficient condition for this is that the right-hand side

(RHS) of (5.8) is locally Lipschitz on S. To show this we must compute the Jacobian of

the RHS. This is an instance where the complex representation has its limitations. We

will therefore show this using e ∈ R2n as developed in Remark 5.1.

Lemma 5.3. The right hand side of (5.8) is locally Lipschitz on S.

Proof. From Remark 5.1, we can let e ∈ R2n and write (5.8) as ė = − (
A1A1

T ⊗ I2

)
Φ(e) =:

f(e). From Lemma 3.2 of Khalil [24], f is locally Lipschitz on S if f(e) and ∂f/∂e are

continuous on S. Letting ei = (eix, eiy), we can see that the function

φ(ei) = ei

(
1− b2

‖ei‖2

)
=




eix

eiy




(
1− b2

e2
ix + e2

iy

)

is continuous for all ‖ei‖ > 0 (i.e., on the set R2 \ {0}), and thus f(e) is continuous on

S. Therefore, it remains to be shown that ∂f/∂e is continuous on S. We have

∂f

∂e
= − (

A1A1
T ⊗ I2

) ∂Φ

∂e
.
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The matrix ∂Φ/∂e is a block diagonal matrix with the 2× 2 blocks ∂φ(ei)/∂ei along the

diagonal. By computing the Jacobian ∂φ(ei)/∂ei, it can easily be verified that each block

is continuous on R2 \{0}. Therefore, ∂Φ/∂e is continuous on S which implies that ∂f/∂e

is continuous on S.

Note that at this point in the development we are not saying that S is positively

invariant with respect to the dynamics (5.8). Later this will be shown to be true. In the

following three lemmas we will establish some properties of the systems (5.1) and (5.8).

Lemma 5.4. Under the dynamics (5.8), if the trajectory e(t) lies entirely in S, the

centroid of e1, . . . , en is stationary. In particular, if a trajectory contained in S starts in

S0, it remains in S0 for all time.

Proof. Defining the n× 1 vector of 1’s as 1, the centroid of e1, . . . , en is given by

ẽ :=
1

n
1T e.

From (5.8) we have

ė = −A1A1
T Φ(e).

Pre-multiplying this by 1T we have

n ˙̃e = −1T A1A1
T Φ(e) = −1T (P − I)A1

T Φ(e) = −(1T P − 1T )A1
T Φ(e).

But, 1 is an eigenvector of P T with eigenvalue 1, so P T1 = 1 and thus 1T P − 1T = 0.

Therefore ˙̃e = 0, and the centroid of the ei’s is stationary.

Consider a trajectory e(t) ∈ S, ∀t ≥ 0. If e(0) ∈ S0 then by the definition of S0,

1T e(0) = 0. Since the centroid is stationary, 1T e(t) = 0 and thus e(t) ∈ S0, ∀t.

Similarly, the centroid of the z dynamics is stationary.

Lemma 5.5. Under the dynamics (5.1), if the trajectory z(t) lies entirely in T , the

centroid of z1, . . . , zn is stationary.
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Figure 5.1: The evolution of a triangle. The initial triangle is given by the dashed line

and the final triangle by the solid line. The stationary centroid is denoted by the ∗.

Proof. The centroid of the n points is given by z̃ := 1
n
1T z. From (5.7) we have ż =

−A1
T Φ(e). Pre-multiplying this by 1T we have

n ˙̃z = −1T A1
T Φ(e) = −1T (P − I)T Φ(e) = −(1T P T − 1T )Φ(e) = 0,

since 1T P T = 1T . Therefore ˙̃z = 0, and the centroid of the n points is stationary.

In Figure 5.1 the evolution of a triangle is shown. Notice that the centroid is stationary

and the triangle evolves to an equilateral triangle.

Lemma 5.6. Consider a trajectory e(t) of (5.8) which lies entirely in S. If the compo-

nents e1, . . . , en are collinear at some time t1, then they are collinear for all t < t1 and

t > t1.

Proof. Let x := <{e} ∈ Rn. If the points e1, . . . , en are all collinear at t1, then we can

rotate the coordinate system such that they all lie on the imaginary axis. Then x(t1) = 0.
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Therefore, defining the function ψ(x) = x, and the set

L := {x ∈ Rn : ψ(x) = 0},

we have x(t1) ∈ L. Notice that ∂ψ/∂x = In, where In is the n × n identity matrix.

Therefore, if Lẋψ(x(t1)) = 0 for all x(t1) ∈ L, then L is an invariant set. We have

Lẋψ(x) =
∂ψ

∂x
ẋ = ẋ.

From (5.8) we have ẋ = −A1A1
T<{Φ(e)}. However, notice that from (5.5) we can write

φ(ei) = eik(ei) where

k(ei) :=
1

2

(
1− b2

|ei|2
)
∈ R.

Therefore, defining K(e) = diag(k(e1), . . . , k(en)) we have Φ(e) = K(e)e and thus

<{Φ(e)} = K(e)x. Hence

Lẋψ(x(t1)) = −A1A1
T K(e)x(t1) = 0,

since x(t1) = 0. This implies that L is an invariant set and if the points are collinear at

some time t1, they are collinear for all time.

Note that this implies that the same collinearity property holds for the z dynamics.

In the following lemma we prove two properties of φ which will be useful for the upcoming

analysis.

Lemma 5.7. The function φ : C \ {0} → C

φ(s) =
1

2
s

(
1− b2

|s|2
)

,

has the following properties:

(i) φ(s) = 0 if and only if |s| = b, and

(ii) the restriction of φ to R+ is one-to-one.
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Proof. To show (i), set φ(s) = 0. Then clearly |φ(s)| = 0. Hence

|φ(s)| = 1

2

∣∣∣∣s
(

1− b2

|s|2
)∣∣∣∣ =

1

2
|s|

∣∣∣∣1−
b2

|s|2
∣∣∣∣ = 0.

Since |s| > 0 we must have that

1− b2

|s|2 = 0 ⇒ |s| = b.

For (ii), let q be a positive real number. Then

φ(q) =
1

2

(
q − b2

q

)
.

Taking the derivative of φ(q) with respect to q we obtain

dφ

dq
=

1

2
+

b2

2q2
> 0, ∀q ∈ R+.

Therefore φ is monotonically increasing on R+ which implies that the restriction of φ to

R+ is one-to-one.

In general, the function φ is not one-to-one. For example, let s1 = b/
√

2 and s2 =

−b
√

2. Then φ(s1) = φ(s2) = −b/
√

2.

We will now characterize the equilibria of the system (5.8) on the set S. To keep the

notation compact we introduce the set

I := {1, 2, . . . , n}.

We also introduce the unit vector notation

êi :=
ei

|ei| . (5.9)

Lemma 5.8. The equilibria of the system (5.8) on the set S are given by

E := {e ∈ S : Φ(e) ∈ ker A1
T} = {e ∈ S : φ(ei) = φ(ej), ∀i, j ∈ I}.
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Proof. From (5.8), at equilibrium we have

A1A1
T Φ(e) = 0.

Pre-multiplying both sides by Φ(e)T we have that

Φ(e)T A1A
T
1 Φ(e) = 0 ⇒ ‖AT

1 Φ(e)‖2 = 0.

Therefore, in equilibrium, Φ(e) ∈ ker A1
T . Since A1

T = circ(−1, 0, . . . , 0, 1), this implies

that all components of Φ(e) are equal.

Now we will characterize the equilibria of (5.8) on the set S0 ⊂ S.

Lemma 5.9. Let e ∈ S0 be an equilibrium of (5.8). If the components e1, . . . , en are not

all collinear, then e lies in the set

E1 := {e ∈ S0 : |ei| = b, ∀i}.

If the components are collinear, then e lies in

E2 :=

{
e ∈ S0 : ei = ej or ei = −ej

b2

|ej|2 , ∀i, j ∈ I
}

.

Proof. From Lemma 5.8, at equilibrium all components of Φ(e) are equal. If Φ(e) = 0,

then φ(ei) = 0, ∀i, which from Lemma 5.7 implies that |ei| = b, ∀i.
If Φ(e) 6= 0, then φ(ei) must take the same nonzero value in the complex plane for

every i. That is,

φ(ei) = φ(ej) ∀i, j ∈ I. (5.10)

From (5.9), we can write this as

êiφ(|ei|) = êjφ(|ej|), ∀i, j ∈ I, (5.11)

and so ei and ej must be collinear, for all i, j ∈ I. For simplicity, rotate the coordinate

system so that ei points along the positive real axis. Then we have êi = 1 and êj = ±1,
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where the sign depends on ej’s orientation relative to ei. Therefore, from (5.11) we have

φ(|ei|) = ±φ(|ej|).
If êj = 1 then φ(|ei|) = φ(|ej|). From Lemma 5.7, this is satisfied only if |ei| = |ej|.

Combining this with the fact that êi = êj we obtain that (5.10) is satisfied if ei = ej.

The other option is that êj = −1, in which case φ(|ei|) = −φ(|ej|), and thus

|ei| − b2

|ei| = −
(
|ej| − b2

|ej|
)

.

Solving this we obtain |ei||ej| = b2. Combining this with the fact that êi = −êj we obtain

ei = −ejb
2/|ej|2.

So the equilibria fall into two categories. If the points are not all collinear then they

lie in the set

E1 := {e ∈ S0 : |ei| = b, ∀i}.

If they are collinear, they lie in the set

E2 :=

{
e ∈ S0 : ei = ej or ei = −ej

b2

|ej|2 , ∀i, j ∈ I
}

.

Notice that if e ∈ S0, ei = ej cannot be satisfied for all i, j ∈ I, for if it were then

e1 = e2 = · · · = en, and
∑n

i=1 ei = ne1 6= 0, which implies that e /∈ S0. Also, the sets

E1 and E2 are not disjoint if n is even. If an even number of points are in equilibrium

and are non-collinear, they must lie in E1. However, if they are collinear, they can lie

in both E1 and E2. An example is shown in Figure 5.2. Figure 5.3 shows three possible

equilibrium formations for n = 5 agents on the set S0. In Figures 5.3(a) and 5.3(b),

e ∈ E2, and in Figure (5.3(c)) we have e ∈ E1.

With these preliminary results in place, we will now introduce two functions which

will be used in the application of LaSalle’s Theorem. First we introduce the function

g : R+ → R:

g(q) =
q2

2
− b2 ln(q)− C, (5.12)
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e1
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e4

Figure 5.2: An equilibrium for n = 4 which is in both E1 and E2. Here the points are

collinear and |ei| = b, ∀i.

e1 e2 e3 e4

e5

1 2 3 4 5

(a) collinear: |e1|, |e2|, |e3|, |e4| = b/
√

6, |e5| = 5|e1|.

e1

e2

e3 e4

e5

1 23 4 5

(b) collinear: |e1|, |e3|, |e4| = b
√

2/3, |e2|, |e5| = b
√

3/2

e1

e2

e3
e4

e5

1 2

3

4

5

(c) non-collinear: |ei| = b, ∀i.

Figure 5.3: Example equilibrium formations for n = 5 agents.
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Figure 5.4: The function g(q) with b = 2. Notice that g(b) = 0 is the minimum of the

function.

where C = b2/2 − b2 ln(b). Using this function we define the continuously differentiable

function V : S → R:

V (e) :=
n∑

i=1

g(|ei|). (5.13)

Taking the derivative of g(q) with respect to q we obtain:

dg

dq
= q − b2

q
= 2φ(q). (5.14)

From Lemma 5.7 we have that φ(q) is monotonically increasing and φ(q) = 0 if and only

if q = b. Therefore g(q) takes its minimum at g(b) = 0, as shown in Figure 5.4. This

implies that V (e) ≥ 0 with V (e) = 0 if and only if |ei| = b, ∀i. A plot of the level sets of

V for n = 2 is shown in the |e1|, |e2| space in Figure 5.5.

Lemma 5.10. If the derivative of V (e) is taken with respect to the dynamics (5.8), then

V̇ ≤ 0 on S, with V̇ = 0 if and only if e ∈ E (where E is defined in Lemma 5.8).

Proof. Taking the Lie derivative of V in (5.13) we have

V̇ =
n∑

i=1

dg

dei

dei

dt
=

n∑
i=1

dg

d|ei|
d|ei|
dei

dei

dt
=

n∑
i=1

dg(|ei|)
d|ei|

d|ei|
dt

.
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Recall from Section 4.6 in Chapter 4 that

d

dt
|ei| = d

dt
〈ei, ei〉1/2 =

1

|ei|<{〈ei, ėi〉} = <{〈êi, ėi〉}.

From (5.14) we also have that

dg(|ei|)
d|ei| = 2φ(|ei|).

Therefore, we can write V̇ as

V̇ = 2
n∑

i=1

φ(|ei|)<{〈êi, ėi〉} = 2
n∑

i=1

<{〈φ(|ei|)êi, ėi〉}.

However, using the fact that φ(|ei|)êi = φ(ei), we can write this as

V̇ = 2
n∑

i=1

<{〈φ(ei), ėi〉} = 2<{〈Φ(e), ė〉}.

From (5.8) this becomes

V̇ = −2<{〈Φ(e), A1A1
T Φ(e)〉} = −2<{Φ(e)T A1A1

T Φ(e)} = −2‖A1
T Φ(e)‖2 ≤ 0.

Therefore, V̇ ≤ 0 on S, with equality if and only if Φ(e) ∈ ker A1
T . That is, V̇ = 0 if

and only if e ∈ E (where E is defined in Lemma 5.8).

We say that a trajectory e(t) approaches a set M as t →∞ if

lim
t→∞

dist(e(t),M) = 0,

where

dist(e(t), M) = inf
v∈M

‖e(t)− v‖.

Theorem 5.11. Consider the system (5.8). For any initial condition e(0) ∈ S, the

solution e(t) approaches E (defined in Lemma 5.8) as t →∞. Moreover, for any initial

condition e(0) ∈ S0, e(t) → E1 ∪ E2 (defined in Lemma 5.9) as t →∞.

Proof. From (5.12) we have

g(|ei|) = |ei|2/2− b2 ln(|ei|)− C,
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Figure 5.5: A few level sets of the function V . In this plot b = 2 and so as V decreases,

the level sets approach |e1| = |e2| = b.

and thus

lim
|ei|→∞

g(|ei|) = ∞, and lim
|ei|→0

g(|ei|) = ∞.

Therefore, from the definition of V in (5.13),

lim
‖e‖→∞

V (e) = ∞,

implying that V (e) is radially unbounded, and

lim
e→Cn\S

V (e) = ∞,

implying that V (e) is proper. We define the set

Ωc = {e ∈ Cn : V (e) ≤ c}, c > 0.

Since V (e) is radially unbounded, Ωc is compact, for all c > 0. Also, since V (e) is

proper, no level set of V (e) contains a point in Cn \ S (i.e., no level set of V (e) contains
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a singularity). Hence, Ωc ⊂ S, for all c. Finally, since V̇ ≤ 0 on S, we have that Ωc is

positively invariant with respect to the dynamics (5.8).

Therefore, we have a dynamical system (5.8) which is locally Lipschitz (Lemma 5.3)

on the domain S (Lemma 5.2). We have a set Ωc ⊂ S which is compact and positively

invariant with respect to (5.8). Finally, we have a continuously differentiable function

V : S → R such that V̇ ≤ 0 on Ωc. The set of all points in S where V̇ = 0 is given by

E = {e ∈ S : Φ(e) ∈ ker A1
T}.

From Lemma 5.8, E is an invariant set under (5.8). Therefore, By LaSalle’s Theorem

(see Theorem 4.4 of [24]), for every initial condition e(0) ∈ Ωc, the solution e(t) of (5.8)

approaches E ∩ Ωc as t → ∞. In addition, for any initial condition e(0) ∈ S, we can

choose c such that e(0) ∈ Ωc. Therefore, for every e(0) ∈ S, e(t) → E as t →∞.

If e(0) ∈ S0 then by Lemma 5.4, e(t) ∈ S0, ∀t > 0. Therefore, e(t) must converge to

a point in the set S0 ∩E as t →∞. From Lemma 5.9, S0 ∩E = E1 ∪E2. Therefore, for

every e(0) ∈ S0, e(t) → E1 ∪ E2 as t →∞.

From this theorem the we have determined that the sets S and S0 are positively

invariant under the dynamics (5.8). Therefore, a trajectory which starts in one of these

sets is contained in that set for all time.

Corollary 5.12. Let e(t) be a trajectory of (5.8). If e(0) is in S0, and its components

e1(0), . . . , en(0) are collinear, then e(t) → E2 as t →∞.

Proof. From Theorem 5.11 we have that if e(0) ∈ S0, e(t) → E1 ∪ E2 as t → ∞. From

Lemma 5.9 the collinear equilibria on the set S0 are given by E2. Also, from Lemma

5.6, if e1, . . . , en are collinear at some time, they are collinear for all time. Therefore, if

e(0) ∈ S0 and e1(0), . . . , en(0) are collinear, then e(t) → E2 as t →∞.

In the previous corollary we have shown that if the ei’s start collinear, then e(t) con-

verges to a collinear equilibrium. Unfortunately, if the points start non-collinear, we have

not determined whether they will converge to a collinear or non-collinear equilibrium.
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Theorem 5.13. Let z(t) be a trajectory of (5.7). If z(0) is in T , then:

(i) z(t) converges to a stationary equilibrium,

(ii) if the components of z(0) are non-collinear, then in the limit as t →∞, |zi+1−zi| =
b, ∀i, or the components are collinear,

(iii) if the components of z(0) are collinear, they remain collinear.

Proof. If z(0) ∈ T , then e(0) = A1z(0) ∈ S0. From Theorem 5.11 we have that e(t) →
E1 ∪ E2 as t → ∞. On the set E1 ∪ E2, Φ(e) ∈ ker A1

T . From (5.7) we have that

ż = −A1
T Φ(e), and so on E1 ∪ E2, ż = 0. Therefore, z(t) converges to a stationary

equilibrium.

Since e(t) → E1 ∪ E2 as t →∞, either |ei| → b, ∀i, which implies |zi+1 − zi| → b, ∀i,
or e(t) → E2 which implies that z(t) converges to a collinear equilibrium.

Finally, if z1, . . . , zn are collinear, then e1, . . . , en are collinear. By Corollary 5.12,

e(t) converges to a collinear equilibrium point, which implies that z(t) converges to a

collinear equilibrium.

In Figure 5.6 the evolution of a ten sided polygon is shown. The length of each side

of the polygon converges to the value b.

5.4 Special case of a triangle

In simulation it appears that if the points start non-collinear, they converge to a non-

collinear equilibrium. However, through the prior analysis we have not been able to show

this for n agents. In this section we will prove it for three agents. To do this we will

begin by determining the equilibria of the e dynamics on the set S0 for three agents.

Lemma 5.14. For n = 3, the collinear equilibria of (5.8) on the set S0 are given by
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Figure 5.6: The evolution of a ten-sided polygon. The initial polygon is given by the

dashed line, and the final polygon by the solid line. The length of each side converges to

the value b.

C1 ∪ C2 ∪ C3, where

Ck :=

{
e ∈ C3 : |ek| = b√

2
, ek = ek−1, ek+1 = −2ek

}
, k = 1, 2, 3.

Proof. From Lemma 5.6, the collinear equilibria on the set S0 are given by

E2 :=

{
e ∈ S0 : ei = ej or ei = −ej

b2

|ej|2 , ∀i, j ∈ I
}

With n = 3, we have that e ∈ E2 if
∑3

i=1 ei = 0, and for each i,

(i) ei = ei−1, or

(ii) ei = −ei−1
b2

|ei−1|2 .

To determine the equilibria we introduce the index k ∈ {1, 2, 3}. Notice that (i) cannot

be satisfied for both i = k and i = k + 1 for if it were, then ek−1 = ek = ek+1 and so

either
∑3

i=1 ei 6= 0, or ei = 0 ∀i, both of which imply that e /∈ S0. Therefore, we have

three possible equilibria cases:
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Case 1: (i) is satisfied for i = k, (ii) is satisfied for i = k + 1.

Case 2: (i) is satisfied for i = k + 1, (ii) is satisfied for i = k.

Case 3: (ii) is satisfied for i = k and i = k + 1.

First consider Case 1. From (i) we have ek = ek−1. Substituting this into (5.2) we have

ek+1 = −2ek. From (ii) we have

ek+1 = −ek
b2

|ek|2 ,

which, when combined with ek+1 = −2ek, gives |ek| = b/
√

2. Therefore, from Case 1 we

obtain

|ek| = b√
2
, ek = ek−1, ek+1 = −2ek.

Case 2 is similar. From (i) we have ek+1 = ek and thus from (5.2), ek−1 = −2ek. Setting

i = k in (ii) and combining that with ek−1 = −2ek we obtain |ek| = b/
√

2. Therefore,

from Case 2 we obtain

|ek| = b√
2
, ek+1 = ek, ek−1 = −2ek.

Finally, from Case 3 we have

ek = −ek−1
b2

|ek−1|2 and ek+1 = −ek
b2

|ek|2 . (5.15)

From this we have êk = −êk−1 and êk+1 = −êk which implies that êk−1 = êk+1. Taking

the magnitude of the expressions in (5.15) we obtain |ek||ek−1| = b2 = |ek+1||ek|, and thus

|ek−1| = |ek+1|. Therefore, ek−1 = ek+1. From (5.2), we obtain ek = −2ek−1. Combining

this with (5.15) we have |ek−1| = b/
√

2. Therefore, from Case 3 we obtain

|ek−1| = b√
2
, ek+1 = ek−1, ek = −2ek−1.

Notice that the equilibria obtained from the three cases are simply cyclic index shifts of

each other. Therefore, the collinear equilibria of the system for n = 3 are given by

Ck :=

{
e ∈ C3 : |ek| = b√

2
, ek = ek−1, ek+1 = −2ek

}
, k = 1, 2, 3.
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e1e2

e3

Figure 5.7: Three agents in collinear equilibrium with |e1| = |e2| = b/
√

2, |e3| = 2|e1|.

In Figure 5.7 an equilibrium for n = 3 agents is shown. It is interesting to note that

Ck ∩Ck+1 = ∅, ∀k. This can be seen by noting that in equilibrium the magnitudes of the

ei’s satisfy

|ek−1| = |ek| = b√
2
, |ek+1| =

√
2b.

For Ck ∩ Ck+1 to be nonempty, we require that b/
√

2 =
√

2b, which is satisfied only if

b = 0.

We would like to show that if the points start non-collinear, the converge to a non-

collinear equilibrium point. To do this we require a known result in planar geometry.

For completeness, we will prove it here.

Lemma 5.15. Consider a simple n-sided polygon lying in the complex plane whose ver-

tices, z1, . . . , zn, are numbered counterclockwise around the polygon. The area inclosed by

the polygon is given by

A =
1

2

n∑
i=1

={〈zi, zi+1〉}.

Proof. Consider a simple closed curve in R2, x(p) = (x1(p), x2(p)). Here p ∈ [0, 1]

parameterizes the points on the curve in the counterclockwise direction (i.e, as p increases,

x(p) runs counterclockwise around the curve). Green’s Theorem states that the area

enclosed by the simple curve is

A =
1

2

∫
(x1ẋ2 − x2ẋ1)dp,
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where ẋi = dxi/dp. We can write this as

A =
1

2

∫ (
x1

dx2

dp
− x2

dx1

dp

)
dp

=
1

2

∫
(x1dx2 − x2dx1)

=
1

2

∫
(x1(x2 + dx2)− x2(x1 + dx1)) .

This can be written as the infinite summation

A =
1

2

∞∑
i=1

(x1(pi)x2(pi+1)− x2(pi)x1(pi+1)),

where pi+1 > pi and thus (x1(pi+1), x2(pi+1)) is an infinitesimal distance counterclockwise

around the curve from (x1(pi), x2(pi)). Therefore, the area of a simple n-sided polygon

can be written as the finite summation

A =
1

2

n∑
i=1

(x1(pi)x2(pi+1)− x2(pi)x1(pi+1)),

where (x1(pi), x2(pi)) denotes the position of the ith vertex of the polygon. Letting

zi = x1(pi) + jx2(pi) we have

〈zi, zi+1〉 = {x1(pi)x1(pi+1) + x2(pi)x2(pi+1)}+ j{x1(pi)x2(pi+1)− x2(pi)x1(pi+1)}

and thus

A =
1

2

n∑
i=1

={〈zi, zi+1〉}.

Because of system (5.8)’s nonlinear circulant structure, the dynamics of the system

are invariant under an index shift. To see this consider the shift ě := Pe where P is the

permutation matrix. From (5.8), we have ė = −A1A1
T Φ(e). Hence

˙̌e = P ė = −PA1A1
T Φ(P−1ě).

But Φ(P−1ě) = (φ(ěn), φ(ě1), . . . , φ(ěn−1)) = P−1Φ(ě) = P T Φ(ě), where the last step

comes from the fact that P−1 = P T . Therefore,

˙̌e = −PA1A1
T P T Φ(ě) = −(AT

1 P T PA1)
T Φ(ě) = −(AT

1 A1)
T Φ(ě) = −A1A1

T Φ(ě).
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Therefore, if e(t) evolves according to (5.8) then ě(t) also evolves according to (5.8).

Also, notice that if e ∈ C1 then ě = Pe ∈ C2 and P 2ě ∈ C3. Hence, by studying the

stability of, say C2, we are studying the stability of all three collinear equilibrium sets.

By exploiting this fact, and using the two previous lemmas, we are now able to prove the

main result of this section.

Theorem 5.16. Let e(t) be a trajectory of (5.8) starting in S0 (and thus always lying

in S0). If the components e1, e2, e3 of e start non-collinear, then the components of

limt→∞ e(t) are not collinear.

Proof. Since e(0) ∈ S0, from Theorem 5.11, e(t) → E1 ∪ E2 as t → ∞. For n = 3,

the collinear equilibria are given by E2 := C1 ∪ C2 ∪ C3. Since e1(0), e2(0), e3(0) are

non-collinear, by Lemma 5.6, they are non-collinear for all time. Assume by way of

contradiction that e(t) → C1 ∪ C2 ∪ C3 as t →∞. Because of the circulant structure of

(5.8), this is equivalent to assuming that e(t) → C2 as t →∞, where

C2 =

{
e ∈ C3 : |e1| = b√

2
, e2 = e1, e3 = −2e2

}
.

We can write e(t) = A1z(t), where z(t) ∈ T . Since the ei’s are non-collinear, the zi’s

are also non-collinear. Therefore, the zi’s define the vertices of a triangle as shown in

Figure 5.8. We assume without loss of generality that the vertices are initially numbered

counterclockwise around the triangle. This implies that that they are numbered counter-

clockwise for all time; otherwise the vertices would become collinear at some finite time,

a contradiction by Lemma 5.6. From Lemma 5.15, we can write the area of the triangle

as a function of time as

A(t) =
1

2

3∑
i=1

={〈zi(t), zi+1(t)〉}.

Since we have assumed that e(t) → C2 as t → ∞, it must also be that A(t) → 0 as

t →∞. Also, since the points are non-collinear for all time, A(t) > 0, ∀t.
Evaluating the time derivative of A, and using the fact that for u, v ∈ Cn, ={〈u, v〉} =
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−={〈v, u〉}, we obtain

Ȧ =
1

2

3∑
i=1

={〈ui, zi+1〉+ 〈zi, ui+1〉} = −1

2

3∑
i=1

={〈zi+1, ui〉 − 〈zi−1, ui〉}

= −1

2

3∑
i=1

={〈zi+1 − zi−1, ui〉}.

However, notice that for n = 3, zi+1 − zi−1 = −ei+1. Therefore, we have

Ȧ =
1

2

3∑
i=1

={〈ei+1, ui〉}.

From (5.6) we have ui = φ(ei) − φ(ei−1) = φ(|ei|)êi − φ(|ei−1|)êi−1. Substituting this in

we obtain

Ȧ =
1

2

3∑
i=1

={φ(|ei|)〈ei+1, êi〉 − φ(|ei−1|)〈ei+1, êi−1〉} .

In order to simplify the presentation we let φi := φ(|ei|). Introducing this notation we

can write Ȧ as

Ȧ =
1

2

3∑
i=1

={φi|ei+1|〈êi+1, êi〉 − φi−1|ei+1|〈êi+1, êi−1〉} .

Expanding this expression we get

Ȧ =
1

2
={φ1|e2|〈ê2, ê1〉 − φ3|e2|〈ê2, ê3〉+ φ2|e3|〈ê3, ê2〉 − φ1|e3|〈ê3, ê1〉

+ φ3|e1|〈ê1, ê3〉 − φ2|e1|〈ê1, ê2〉} .

Collecting inner products we obtain

Ȧ = −1

2
={(φ1|e2|+ φ2|e1|)〈ê1, ê2〉+ (φ3|e2|+ φ2|e3|)〈ê2, ê3〉+ (φ1|e3|+ φ3|e1|)〈ê3, ê1〉} .

Recall from Lemma 4.15 in Chapter 4 that we defined the function:

Hi := ={(zi−1 − zi)(zi+1 − zi)} = ρi−1ρi sin(βi),

where βi is the counterclockwise internal angle from the side zizi+1 to the side zi−1zi of

a polygon. We can write ={〈êi−1, êi〉} in terms of this function as:

={〈êi−1, êi〉} =
1

|ei−1||ei|={(zi − zi−1)(zi+1 − zi)} = − 1

ρi−1ρi

={(zi − zi−1)(zi+1 − zi)}

=
1

ρi−1ρi

={(zi−1 − zi)(zi+1 − zi)} =
1

ρi−1ρi

Hi = sin(βi).
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Figure 5.8: The triangle for sufficiently large t, showing the three internal angles.

The angles are shown in Figure 5.8. Using this, and the fact that sin(β2) = sin(π− β1 −
β3) = sin(β1 + β3) we obtain:

Ȧ = −1

2
((φ1|e2|+ φ2|e1|) sin(β1 + β3) + (φ3|e2|+ φ2|e3|) sin(β3) +(φ1|e3|+ φ3|e1|) sin(β1)) .

To simplify the following presentation we introduce µ := b/
√

2. Multiplying Ȧ by 2, and

dividing by µβ3 > 0 we obtain

2

µβ3

Ȧ = − 1

µ

(
(φ1|e2|+ φ2|e1|)sin(β1 + β3)

β3

+ (φ3|e2|+ φ2|e3|)sin(β3)

β3

+ (φ1|e3|+ φ3|e1|)sin(β1)

β3

)
(5.16)

As t →∞, e(t) → C2. From the definition of C2 we have that,

lim
t→∞

|e1| = µ, lim
t→∞

|e2| = µ, lim
t→∞

|e3| = 2µ. (5.17)

This implies that

lim
t→∞

φ1 = φ(µ) = −µ, lim
t→∞

φ2 = φ(µ) = −µ, lim
t→∞

φ3 = φ(2µ) = µ. (5.18)

Also from C2, as t → ∞, ê1(t) → ê2(t) → −ê3(t), which implies that β1(t), β3(t) → 0.

Finally, since |e1(t)| → |e2(t)| as t → ∞, it follows that the triangle is becoming an

isosceles triangle and thus β1(t) → β3(t) → 0 (that is, β1 and β3 approach each other as

they approach zero). Therefore, we also have the limits

lim
t→∞

sin(β3)

β3

= 1, lim
t→∞

sin(β1)

β3

= 1, lim
t→∞

sin(β1 + β3)

β3

= 2. (5.19)
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Taking the limit of (5.16) as t → ∞, and using the expressions in (5.17), (5.18), and

(5.19) we obtain

lim
t→∞

2

µβ3

Ȧ = − 1

µ
{(−µµ− µµ)(2) + (µµ− µ(2µ))(1) + (−µ(2µ) + µµ)(1)}

= 6µ > 0.

This implies that as t → ∞, Ȧ(t) ↓ 0. Therefore, there exists a time t1 such that,

Ȧ(t) > 0, ∀t ≥ t1. But, A(t1) > 0, and thus

A(t) =

∫ t

t1

Ȧ(s)ds + A(t1) > A(t1), ∀t > t1,

a contradiction with our assumption that e(t) → C2 as t → ∞ (and thus A(t) → 0).

Therefore, e(t) does not converge to C2. This implies that Pe(t) does not converge to

C3 and P 2e(t) does not converge to C1. Thus, e(t) does not converge to a collinear

equilibrium point.

Corollary 5.17. Let e(t) be a trajectory of (5.8) starting in S0. If the components,

e1, e2, e3, of e start non-collinear, then e(t) → E1 as t →∞.

Proof. From Theorem 5.11 we know that for every e(0) ∈ S0, e(t) converges to the

equilibrium set E1 ∪E2. In Theorem 5.16 we have shown that e(t) does not converge to

the set of collinear equilibria E2 = C1 ∪ C2 ∪ C3. Therefore e(t) → E1 as t →∞.

Theorem 5.18. Let z1(0), z2(0), z3(0) be distinct, non-collinear points. Under the dy-

namics of (5.1), z1(t), z2(t), z3(t) converge to a stationary equilateral triangle with side

length equal to b. In addition, their centroid is stationary throughout the evolution.

Proof. Since the points are initially distinct, from Theorem 5.13, they converge to a

stationary equilibrium. Also, since z ∈ T , this implies that e = A1z ∈ S0. Since z1, z2, z3

start non-collinear, e1, e2, e3 are also initially non-collinear. Therefore, from Corollary

5.17, |ei| → b, ∀i as t → ∞. This implies that |zi+1 − zi| → b, ∀i as t → ∞. Therefore,

z1, z2, z3 converge to the vertices of an equilateral triangle, with side length b. From

Lemma 5.4 the centroid of the three points is stationary.



Chapter 5. Stabilizing to an equilateral polygon 134

Figure 5.9: The evolution of a triangle. The initial triangle is given by the dashed line

and the final triangle by the solid line. The stationary centroid is denoted by the ∗.

The evolution of a triangle is shown in Figure 5.9. Even when the vertices start close

to being collinear, they converge to an equilateral triangle.

5.5 Summary

In this chapter a local control scheme was proposed to stabilize the agents to the vertices

of an equilateral polygon. The centroid of the agents is stationary during the evolution.

For n agents, we have shown that the agents converge either to the desired formation, or

to a collinear equilibrium. In simulation, if the points start non-collinear, they converge

to a non-collinear equilibrium. However, this could not be determined from our analysis.

For three agents, a full stability analysis was performed. If three agents start distinct

and non-collinear, they converge to the vertices of a stationary equilateral triangle, while

maintaining a stationary centroid.



Chapter 6

Conclusions

Several interesting problems in multi-agent systems have been addressed in this thesis.

In Chapter 2 the idea of creating a hierarchy within the sensing structure of a multi-

agent system is introduced. A hierarchical cyclic pursuit scheme is created which yields

a very significant increase in the rate of convergence of a group of vehicles to a common

point. It is shown that this hierarchical structure can be applied to any linear circulant

pursuit scheme. In Chapter 3 the stability analysis of a beetle and a unicycle in cyclic

pursuit is completed. The stability analysis is global, and considers all possible values

for the controller gains on the linear velocity of the beetle and the linear and angular

velocities of the unicycle. Depending on these gains, the agents can either spiral in to a

point, converge to concentric circles, or diverge. In Chapter 4, curve shortening theory

is adapted to the multi-agent setting. A simple linear scheme is developed for polygon

shortening and it is shown to yield some interesting parallels to curve shortening. The

polygon shrinks to an elliptical point; convex polygons remain convex; and, the perimeter

of the polygon monotonically decreases to zero. Finally, in Chapter 5 a control strategy

is introduced to stabilize a group of agents to the vertices of an equilateral polygon. For

the case of three agents, the analysis shows that the agents will converge to a stationary

equilateral triangle while keeping their centroid stationary.

135
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6.1 Summary of contributions

Chapter 2 introduced the novel concept of hierarchy within the sensing structure of

a multi-agent system. The local strategy developed is the first hierarchical local

control strategy in the multi-agent systems literature.

Chapter 3 is the first analytical study of a local control strategy for a heterogeneous

multi-agent system. A complete global stability analysis is performed for a two

agent heterogeneous system.

Chapter 4 is the first research to directly relate the curve shortening theory to multi-

agent systems. The theory is used to design a simple local control strategy and

reveal some of its interesting properties.

Chapter 5 introduced a novel local control strategy for stabilizing a multi-agent system

to a vertices of a stationary equilateral polygon. The control strategy does not

require that the agents have a common orientation (i.e., they are not equipped

with compasses).

6.2 Future research

The work in this thesis has created several areas for future research. A few of these areas

will be briefly described here.

6.2.1 Heterogeneous cyclic pursuit

There are two areas for future work on the subject of cyclic pursuit for heterogeneous

groups of agents. The first is to perform a stability analysis for a constant speed beetle

and unicycle. In this case we have

u‖ = −1 and v = 1.
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(b) The corresponding phase portrait.

Figure 6.1: A unicycle and a beetle in cyclic pursuit at constant speed. Here kα = 1.

The dynamics of the system becomes

ρ̇ = −1− cos α

α̇ =
1

ρ
sin α− kαα.

Notice that the α dynamics is undefined if ρ = 0. Through simulation it appears that

the system converges to the point (ρ, α) = (0,±π). This is shown in Figure 6.1. In this

figure, the agents are moving around a circle defined by the maximum turning rate of

the unicycle, with the beetle positioned an infinitesimal distance behind the unicycle.

Another area of future work would be to extend the heterogeneous analysis to a group

of n > 2 agents. A good starting point would be to analyze a system of alternating

beetles and unicycles. That is, given an even number of agents which we call n, agents

1, 3, 5, . . . , n− 1 are beetles and 2, 4, 6, . . . , n are unicycles.

6.2.2 Polygon shortening

In Chapter 4 we developed a linear polygon shortening scheme which “mimics” some of

the important properties of curve shortening. There are a few limitations to this scheme.
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We have shown that a polygon collapses to an elliptical point rather than a circular

point. In addition, for a simple polygon, the area enclosed may initially increase, and

the polygon may become self-intersecting.

Another approach to this problem would be to design a controller ui for each agent

(vertex) based on the isoperimetric inequality

L(t)2

A(t)
≥ 4π.

That is, we would like to find a controller such that

lim
t→∞

P (t)2

A(t)
= 4π, (6.1)

where P (t) is the perimeter of the polygon. Differentiating the left hand-side of this

inequality we have

d

dt

(
P (t)2

A(t)

)
=

P

A

(
2Ṗ − P

A
Ȧ

)
.

But in Chapter 4 we derived that

Ṗ (t) = −
n∑

i=1

<
{〈

zi−1 − zi

|zi−1 − zi| +
zi+1 − zi

|zi+1 − zi| , ui

〉}
.

Also, from Chapter 5 we can write

Ȧ = −1

2

n∑
i=1

={〈zi+1 − zi−1, ui〉}.

Therefore, the problem becomes finding the control input ui such that the right hand

side of

d

dt

(
P 2

A

)
= −P

A

(
2

n∑
i=1

<
{〈

zi−1 − zi

|zi−1 − zi| +
zi+1 − zi

|zi+1 − zi| , ui

〉}

− P

2A

n∑
i=1

={〈zi+1 − zi−1, ui〉}
)

,

is negative and (6.1) is satisfied. This analysis would ideally follow along the lines of [13]

and [14].
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6.2.3 Stabilizing to an equilateral polygon

For n > 3 agents, the analysis in Chapter 5 simply shows that the agents converge to an

equilibrium point. This point could be a collinear equilibrium. However, in simulation,

the agents do not converge to a collinear equilibrium point if they start non-collinear.

A proof is needed to show that for general n, the collinear equilibria are unstable. This

could be done by extending the result for n = 3 or by using a different technique.

6.2.4 Primary assumptions

Throughout this thesis we have used the assumption that the agents are not anonymous;

they are each given a unique number between 1 and n. However, the agents do not know

a common direction (they are disoriented), and they base their movements on a small

number of other agents. In some research, the agents are anonymous (they do not have

a unique number) but they are oriented (they have a compass). In other research the

agents are anonymous and disoriented, but each agents’ motion is based on the positions

of every agent that it can sense. In the latter case, each agent must have sufficient

computational power onboard to be able to compute a real-time heading based on the

positions of, possibly, five or ten other agents. An interesting question is, how does one

determine the “cost” of each of these assumptions.

It would be beneficial for the entire field of research in multi-agent systems to have

an unbiased way of comparing these different schemes. This comparison would ideally

be performed in terms of a cost function. The cost function would depend in some way

on three criteria:

(i) How much information is required to initialize the system for a task,

(ii) How complex is the system (i.e., how complex is the hardware installed on each

agent), and

(iii) How efficient is the system at completing the task.
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The ideal system minimizes (i) and (ii) and maximizes (iii).

6.3 Concluding remarks

Throughout this thesis we have approached the control of multi-agent systems from a

completely analytic point of view. We have devised local control strategies and at-

tempted to prove their global outcomes. After seeing the difficulty and complexity of

this approach, one might wonder why we didn’t consider heuristic, or behavior-based

techniques. After all, humans are constantly performing distributed and coordinated

tasks: They flock on the sidewalks, avoid collisions on the roads, and line-up at the cash

register. By definition, the strategies they employ are behavior-based. But there is a

lack of precision in these behaviors: People bump into each other on the sidewalk; there

are car crashes on the roads; and the line at the cash register can become a complete

mess. What is so powerful about a multi-agent system based purely on analytic strategies

(strategies with provable outcomes) is that the agents never “mess up.” Their flocking is

flawless, the collisions on the road just don’t happen, and their line is perfectly straight

every time. The power of a multi-agent system is not in emulating the behavior of hu-

mans, it is in doing things that humans cannot. It is in providing a degree of reliability

and precision that is not possible through human behaviors. And it is my belief that the

only way to achieve this is through the analytic approach of designing local strategies

which result in provable global outcomes.
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