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Abstract

An apparently prevailing myth is that safety is unde-

cidable in Discretionary Access Control (DAC); there-

fore, one needs to invent new DAC schemes in which

safety analysis is decidable. In this paper, we dispel this

myth. We argue that DAC should not be equated with

the Harrison-Ruzzo-Ullman access matrix scheme [10],

in which safety is undecidable. We present an efficient

(running time cubic in its input size) algorithm for decid-

ing safety in the Graham-Denning DAC scheme [8], which

subsumes the DAC schemes used in the literature on com-

paring DAC with other access control models. We also

counter several claims made in recent work by Solworth

and Sloan [27], in which the authors present a new ac-

cess control scheme based on labels and relabelling and

assert that it can implement the full range of DAC models.

We present a precise characterization of their access con-

trol scheme and show that it does not adequately capture

a relatively simple DAC scheme.

1. Introduction

Safety analysis, first formulated by Harrison, Ruzzo,

and Ullman [10] for the access matrix model [13, 8], has

been recognized as a fundamental problem in access con-

trol. Safety analysis decides whether rights can be leaked

to unauthorized principals in future states. Safety analysis

was shown to be undecidable in the HRU scheme. Since

then, considerable research effort has gone into designing

access control schemes in which safety analysis is decid-

able [1, 2, 5, 11, 17, 19, 20, 23, 24, 25, 26, 27, 29, 30].

Safety analysis is particularly interesting in DAC [6, 7, 8,

9], in which a subject gets rights to resources at the dis-

cretion of other subjects. Recently, there appears to be re-

newed interest in the topic of safety in DAC, as evidenced

by the work by Solworth and Sloan [27], which was pub-

lished at the IEEE Symposium on Security and Privacy

in 2004. In that work, the authors assert that, in general,

safety is undecidable in DAC, and use this assertion as the

motivation for introducing a new access control scheme

based on labels and relabelling that has decidable safety

properties.

Our goals in this paper are to present a clear picture of

safety in DAC and to counter several claims in Solworth

and Sloan [27], that we demonstrate to be erroneous. The

work in Solworth and Sloan [27] is based on the premise

that safety is undecidable in DAC; therefore, one needs

to design new schemes for DAC so that safety analysis is

decidable. We assert that this premise is a myth, and con-

jecture that the basis for this myth is that DAC is some-

times erroneously equated to the HRU scheme [10] (for

instance, in work such as [18, 22]). As we discuss in

Section 3, DAC cannot be equated to the HRU scheme

for the following reasons. First, the HRU scheme can be

used to encode schemes that are not DAC schemes; there-

fore, the fact that safety is undecidable in the HRU scheme

should not lead one to conclude that safety is undecid-

able in DAC. Second, features in DAC cannot always be

encoded in the HRU scheme. For example, some DAC

schemes require that each object be owned by exactly one

subject; thus removal of a subject who has the ownership

of some objects requires the transfer of ownership to some

other subject (often times the owner of the subject being

removed) so that this property is maintained. Both the re-

moval of the subject and the transfer of ownership of ob-

jects it owns occur in a single state-change. A single HRU

command cannot capture these features, because it cannot

loop over all objects owned by a subject.

We dispel the myth that safety is undecidable in DAC

by presenting an efficient algorithm for deciding safety in

the DAC scheme proposed by Graham and Denning [8].

Our algorithm runs in time cubic in the size of the in-

put. The Graham-Denning scheme is, to our knowledge,

the first DAC scheme to have been proposed, and sev-

eral other DAC schemes proposed subsequently are ei-

ther subsumed by or are simple extensions of the Graham-

Denning scheme. Examples of such DAC schemes in-
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clude those used by Osborn et al. [21] to show that

RBAC can be used to implement DAC. The same schemes

are used by Solworth and Sloan [27] to show that the

Solworth-Sloan scheme can implement DAC. Our algo-

rithm suggests that safety in these DAC schemes can be

efficiently decided and there is no need to invent new ac-

cess control schemes with decidable safety as the primary

goal.

Some may hold the view that safety can be trivially de-

cided in DAC schemes. For instance, if the owner of an

object is untrusted, then he can grant rights over the ob-

ject to any other subject. Therefore, if such an owner ex-

ists, then the system will be unsafe for that object. While

it may be easy to identify one or two such conditions that

make a DAC system unsafe, identifying all such condi-

tions may not be trivial. To our knowledge, algorithms for

deciding safety in the Graham-Denning or other derived

DAC schemes have not appeared in the literature. The

proof that our algorithm is correct, which is in our techni-

cal report [15], was not trivial for us.

We observe that the presentation in [27] does not

clearly specify what information is maintained in a state,

how states may change, and the precise construction to im-

plement DAC in the scheme. In this paper we give a pre-

cise characterization of the Solworth-Sloan scheme and an

implementation of the SDCO scheme [21] in it. (Solworth

and Sloan [27] use the word “implement” in this context,

and therefore, we do the same. In previous work in the

comparison of different access control schemes, “simula-

tion” appears to be the preferred terminology.) We be-

lieve that a precise characterization of the Solworth-Sloan

scheme is of interest independent of an assessment of its

effectiveness in implementing other DAC schemes. The

publication of two papers [27, 28] based on this scheme

in recent major security conferences reflects that there is

interest in such a access control scheme based on labels

and relabelling.

Our precise characterization enables us to assess how

effectively the Solworth-Sloan scheme implements the

SDCO scheme. We counter several claims from Solworth

and Sloan [27], and demonstrate that the claims are erro-

neous. Solworth and Sloan [27] claim that theirs is the first

general access control model which both has a decidable

safety property and is able to implement the full range of

DAC models. We show that the proposed implementation

of DAC schemes in the Solworth-Sloan scheme has signif-

icant deficiencies. Two particular limitations that we dis-

cuss are the lack of support for removing subjects and ob-

jects and the inability to ensure that an object has only one

owner, as required by DAC schemes such as Strict DAC

with Change of Ownership (SDCO), which is a simplified

version of the Graham-Denning scheme. We observe also

that the implementation incurs considerable overhead. Es-

sentially for each new object to be created, a data structure

of the size exponential in the total number of rights needs

to be created.

The remainder of this paper is organized as follows. We

discuss related work in Section 2 and give precise defini-

tions of safety analysis in DAC in Section 3. In Section 4,

we study safety analysis in the Graham-Denning scheme.

We analyze the Solworth-Sloan scheme in Section 5 and

conclude in Section 6.

2. Related Work

There is considerable work on DAC and safety anal-

ysis. To our knowledge, Graham and Denning [8] pro-

posed the first DAC scheme. Their scheme is based on the

work by Lampson on the access matrix model [13]. Sub-

sequently, Griffiths andWade proposed their DAC scheme

for relational database systems [9]. Downs et al. [7] dis-

cussed salient aspects of DAC, and their work was sub-

sequently subsumed by the NCSC’s guide to DAC [6].

Lunt [18] examined various issues in DAC as part of

broader work on issues in access control. Samarati and de

Capitani di Vimercati [22] included discussions on DAC

in their treatment of access control. Osborn et al. [21]

discussed several DAC schemes that are sub-cases or vari-

ants of the Graham-Denning scheme in their comparison

of DAC to RBAC. DAC was extended to include temporal

constructs by Bertino et al. [3, 4]. Solworth and Sloan [27]

presented a new DAC scheme based on labels and rela-

belling rules. The same schemewas also used by Solworth

and Sloan in [28].

Safety is a fundamental property that was first proposed

in the context of access control by Harrison et al. [10].

Subsequently, there has been considerable work on safety

in various contexts related to security [1, 2, 5, 11, 14, 16,

17, 19, 20, 23, 24, 25, 26, 27, 29, 30]. Recent work by

Li et al. [14, 16] perceived various forms of safety as spe-

cial cases of more general security properties, and safety

analysis is subsumed by security analysis. In this paper,

we adopt this perspective in defining safety analysis in the

next section. To our knowledge, the work by Solworth

and Sloan [27] was the first to directly address safety in

DAC. Other work on safety has been on specific schemes

such as the HRU scheme [10], the ESPM scheme [1] and

a trust management scheme [16]. Furthermore, to our

knowledge, there is no prior work on safety analysis in

the context of specific DAC schemes such as the Graham-

Denning scheme [8].

3. Defining Safety Analysis in DAC

In this section, we define access control schemes and

systems, and the general problem of security analysis in

the context of such schemes and systems. We then define
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safety analysis as a special case of security analysis. In

our definitions, we adopt the meta-formalism introduced

by Li et al. [16, 14].

Definition 1 (Access Control Schemes and Systems)

An access control scheme is a four-tuple h `i,
where is a set of states, is a set of state-change rules,

is a set of queries and `: × {true false} is the
entailment function, that specifies whether a propositional

logic formula of queries is true or not in a state.

A state-change rule, , determines how the access

control system changes state. Given two states and 1

and a state-change rule , we write 7 1 if the change

from to 1 is allowed by , and 7 1 if a sequence

of zero or more allowed state changes leads from to 1.

An access control system based on a scheme is a state-

transition system specified by the four-tuple h `i,
where is the start (or current) state, and

specifies how states may change.

We recognize that our formalism for schemes and sys-

tems is fairly abstract. Nonetheless, we need such a for-

malism to be able to represent disparate access control

schemes, such as those based on the access matrix, role-

based access control and trust management approaches.

When we specify a particular access control scheme, we

specify each component precisely, using constructs that

are well-understood.

An example of an access control scheme is the HRU

scheme [10], in which the state consists of a finite set of

subjects, a finite set of objects, and an access matrix with

a row for each subject and a column for each object. Each

cell in the access matrix is the set of the rights a subject

has over the corresponding object. Examples of queries,

1 2 in the HRU scheme are “ 1 = [ ]”
and “ 2 =

0 [ ]”. The queries 1 and 2 ask

whether the subject has the right and 0 over the object

, respectively. Given a state, , and a state-change rule,

, in an HRU system, let be the set of subjects that

exist in the state, , be the set of objects that exist,

[ ] be the access matrix, and be the set of rights in

the system. Then, ` 1 ¬ 2 if and only if

[ ] 0 6 [ ].
One of the components of our characterizations of se-

curity and safety analysis below warrants some explana-

tion. Each instance of the analysis is associated with a set

T of trusted subjects. The meaning of a trusted subject
is that we preclude state-changes initiated by any subject

from T in our analysis. The intuition is that we expect
these subjects to be “well-behaved”. That is, while such

subjects may effect state-changes, they do so in such a

way that the state that results from the state-changes they

effect satisfies desirable properties (e.g., safety). Harri-

son et al. [10] do consider trusted subjects as part of their

safety analysis. Nonetheless, as pointed out previously

by Li et al. [16], the way they deal with trusted sub-

jects is incorrect. They require that we delete the rows

and columns corresponding to trusted subjects prior to the

analysis. While a trusted subject is not allowed to initiate a

state-change, she may be used as an intermediary, and the

way Harrison et al. [10] deal with trusted subjects does

not consider this possibility. In this paper, we require only

that a member of the set of trusted subjects not initiate a

state-change. In all other ways, these subjects continue to

be part of the system.

Definition 2 (Security Analysis) Given an access con-

trol scheme h `i, a security analysis instance is of
the form h T ¤ i, where is a propositional logic

formula of queries and¤ stands for “in the current and all

future states,” and is an operator from temporal logic [12].

Given such an instance, we say that the instance is true if

for all states 0 such that 7 0, 0 ` . That is,

represents a security invariant that must be satisfied in all

states reachable from under , with no state change ini-

tiated by a user from the set T , for the instance to be true.
Otherwise, the instance is false.

Harrison et al. [10] informally characterize safety as

the condition “that a particular system enables one to keep

one’s own objects ‘under control’ ”. This informal char-

acterization seems to be appropriate as a security property

of interest in DAC systems, as the very purpose of DAC

is that subjects should be able to keep objects that they

own, under their control. More formally, safety analysis is

a special case of security analysis, where the invariant is

that an unauthorized subject should not have a particular

right to a given object.

Definition 3 (Safety Analysis) Given an access control

scheme h `i, let the set of subjects that can exist
in a system based on the scheme be S, let the set of objects
beO, and let the set of rights beR. Assume that there ex-
ists a function hasRight: S×O×R {true false} such
that hasRight( ) returns true if in the current state,
and exist, is a right in the system, and has the right

over , and false otherwise. A safety analysis instance has

the form h T ¤¬hasRight( )i for some S,
O and R. That is, safety analysis is security anal-

ysis with instantiated to ¬hasRight( ). The safety
analysis instance is true if hasRight( ) is false in ev-
ery reachable state, with no state change initiated by a user

from T , and false otherwise.

What is DAC? The NCSC guide titled ‘A Guide To Un-

derstanding Discretionary Access Control in Trusted Sys-

tems’ [6], portions of which were published as a research

paper [7], states that “the basis for (DAC) is that an in-

dividual user, or program operating on the user’s behalf,
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is allowed to specify explicitly the types of access other

users (or programs executing on their behalf) may have to

information under the user’s control.” We point out two

specific properties from this characterization of DAC: (1)

The notion of “control” – there is a notion that users ex-

ercise control over resources in that a user that controls

a resource gets to dictate the sorts of rights other users

have over the resource, and (2) the notion of initiation of

an action by a user to change the protection state – such

state changes occur because particular users initiate such

changes. A representation of a DAC scheme needs to cap-

ture both these properties.

Some literature (for example, [18, 22]) appears to

equate DAC with the HRU scheme [10]. This is incorrect,

as there exist many systems based on the HRU scheme

that are not DAC systems. For instance, consider an HRU

system in which there is only one command, and that com-

mand has no condition. This system is not a DAC sys-

tem as it does not have the first property from above on

the control of resources by a subject. In addition, there

are DAC schemes that do not have natural representa-

tions as HRU schemes. For instance, the Graham-Denning

scheme [8] (see Section 4.1) is a DAC scheme in which

a subject may be ‘owned’ or ‘controlled’ by at most one

other subject. A system based on the HRU scheme cannot

capture this feature in a natural way.

4. Safety Analysis in the Graham-Denning

Scheme

In this section, we study safety analysis in the Graham-

Denning DAC scheme [8]. We first present a description

of the scheme in the following section. Our description

clearly describes the states and state-change rules in the

scheme. In Section 4.2, we present an algorithm to de-

cide safety in the scheme, and show that the algorithm is

correct. We also assert that the algorithm is efficient.

4.1. The Graham-Denning Scheme

In this section, We present a precise representation for

the Graham-Denning scheme. We define what data are

stored in a protection state, and how a state-change rule

changes a state.

Assumptions We postulate the existence of the follow-

ing countably infinite sets: O, the set of objects; S, the set
of subjects (S O); andR, the set of rights.
Note that the set of objects (or subjects) in any given

state in the Graham-Denning scheme is finite; however,

the number of objects that could be added in some future

state is unbounded. Similarly, the set of rights in any given

access control system is finite; however, different access

control systems may use different sets of rights. There-

fore, we assume S, O, andR are countably infinite.
We assume a naming convention so that we can de-

termine, in constant time, whether a given object, , is a

subject (i.e., S) or not (i.e., O S). There
exists a special “universal subject” u S; the role of u
will be explained later. The set of rights R contains two
special rights, own and control , a countably infinite set

R of “basic” rights, and a countably infinite set R of

basic rights with the copy flag denoted by , i.e., R =
{ | R }. In other words,R = {own control} R
R . The meaning of the copy flag is clarified when we

discuss the state-change rules for the scheme. An access

control system based on the Graham-Denning scheme is

associated with a protection state, and a state-change rule.

States, A state in the Graham-Denning scheme, , is

associated with the tuple h [ ]i, where O
is a finite set of objects that exist in the state , S is
a finite set of subjects that exist in , and is a subset of

. [ ] is the access matrix, and [ ]: × 2R.
That is, [ ] R is the finite set of rights the subject

has over the object .

Every state, = h [ ]i, in the Graham-
Denning scheme satisfies the following seven properties.

1. Every object must be owned by at least one subject,

i.e., (own [ ]).

2. Objects are not controlled, only subjects are, i.e.,

( ) (control 6 [ ]).

3. The special subject u exists in the state, is not owned

by any subject, and is not controlled by any other

subject, i.e., u (own 6 [ u])
{u}(control 6 [ u]).

4. A subject other than u is owned by exactly one other

subject, i.e., for every {u}, there exists
exactly one 0 such that 0 6= and own

[ 0 ];

5. Every subject controls itself, i.e., (control
[ ]).

6. A subject other than u is controlled by at most one

other subject, i.e., for every {u}, there exists
at most one 0 such that 0 6= and control

[ 0 ].

7. There exists no set of subjects such that they form

a “cycle” in terms of ownership of each other (and

in particular, a subject does not own itself), i.e.,

¬( { 1 } (own [ 2 1] own

[ 3 2] · · · own [ 1] own

[ 1 ])).

These state invariants are maintained by the state-

change rules.
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State-Change Rules, Each member, , of the set of

state-change rules, , in the Graham-Denning scheme,

is a set of commands parameterized by a set of rights,

. These commands are shown in Figure 1. Where

possible, we use the syntax for commands from the HRU

scheme [10], but as we mention in Section 3, we can-

not represent all aspects of DAC schemes using only con-

structs for commands in the HRU scheme. We use some

additional well-known constructs such as and in these

commands. A state-change is the successful execution of

one of the commands. We assume that the state subse-

quent to the execution of a command is 0. We denote

such a state-change as 7 ( )
0, where is the initiator

of the command. We point out that for each command,

unless specified otherwise, 0 = , 0 = , and
0 [ ] = [ ] for every and . We

use to denote assignment, i.e., means that the

value in is replaced with the value in . The commands

in the Graham-Denning scheme are the following. The

first parameter to each command is named , and is the

subject that is the initiator of the execution of the com-

mand.

• transfer r( ) This command is used to grant the
right by an initiator that has the right over .

There is one such command for every R .

The initiator, , must possess the right over , and

the subject must exist for this command execution

to succeed.

• transfer r ( ) This command is used to grant the
right by an initiator that has the right over .

There is one such command for every R .

The initiator, , must possess the right over , and

the subject must exist for this command execution

to succeed.

• transfer own( ) This command is used to trans-
fer ownership over from to . For this command

to succeed, must have the own right over , must

exist, and the transfer of ownership must not violate

invariant (7) from the list of state invariants we dis-

cuss above. After the execution of this command,

will no longer have the own right over (but will).

• grant r( ) This command is used to grant the
right over by the owner of . There is one such

command for every R . For this command

execution to succeed, must have the own right over

, and must exist.

• grant r ( ) This command is very similar to the
previous command, except the the owner grants

R .

• grant control( ) This command is used to grant
the control right over by its owner. For the exe-

cution of this command to succeed, must have the

right control over , must exist, must be a subject,

and another subject must not already have the right

control over . These checks are needed to maintain

the state invariants related to the control right that we

discuss above.

• grant own( ) This command is used to grant
the own right over . This is different from the

transfer own command in that in this case, retains

(joint) ownership over . For the execution of this

command to succeed, must have the right own over

, must not be a subject, and must exist.

• delete r( ) This command is used to delete a
right a subject has over . There is one such com-

mand for every R . For the execution of

this command to succeed, must have the right own

over , and must exist.

• delete r ( ) This command is similar to the pre-
vious command, except that a right R is

deleted.

• create object( ) This command is used to create
an object that is not a subject. For the execution of

this command to succeed, must exist, and must be

an object that is not a subject, that does not exist. An

effect of this command is that gets the own right

over in the new state.

• destroy object( ) This command is used to destroy
an object that exists. For the execution of this com-

mand to succeed, must have the right own over ,

and must be an object that is not a subject.

• create subject( ) This command is used to create
a subject. For the execution of this command to suc-

ceed, must exist, and must be a subject that does

not exist. In the new state, has the own right over ,

and has the control right over itself.

• destroy subject( ) This command is used to de-
stroy a subject. For the execution of this command to

succeed, must have the own right over . An effect

of this command is that ownership over any object

owned by is transferred to .

4.2. Safety analysis

An algorithm to decide whether a system based on the

Graham-Denning scheme is safe is shown in Figure 2. A

system based on the Graham-Denning scheme is charac-

terized by a start-state, , and state-change rule, (which

is a set of commands). The algorithm takes as input ,

, a triple, = h i S × O × R, and a finite set,
T S, of trusted subjects. The algorithm outputs “true”
if the system satisfies the safety property with respect to

the subject , object and right , and “false” otherwise.

We first discuss the algorithm, and then its correctness and

time-complexity.

In lines 5-10 of the algorithm, we check the cases for

which we do not have to consider potential state-changes
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command transfer r( ) command transfer r ( )
if [ ] then if [ ] then

0 [ ] [ ] { } 0 [ ] [ ] { }

command transfer own( ) command grant r( )
if own [ ] then if own [ ] then

if @ { 1 } such that 0 [ ] [ ] { }
own [ 1 ] own [ 2 1]
· · · own [ 1]
own [ ] then command grant r ( )

0 [ ] [ ] {own} if own [ ] then

0 [ ] [ ] {own} 0 [ ] [ ] { }

command grant control( ) command grant own( )
if own [ ] then if own [ ] 6
if @ 0 such that then
0 6= control [ 0 ] then 0 [ ] [ ] {own}

0 [ ] [ ] {control}

command delete r( ) command delete r ( )
if (own [ ] ) if (own [ ] )
control [ ] then control [ ] then

0 [ ] [ ] { } 0 [ ] [ ] { }

command create object( ) command destroy object( )
if 6 O S then if own [ ] 6 then

0 { } 0 { }
0 [ ] own

command create subject( ) command destroy subject( )
if 6 S then if own [ ] then

0 { } if own [ ] then
0 { } 0 [ ] [ ] {own}
0 [ ] {own} 0 { }
0 [ ] {control} 0 { }

Figure 1. The set of commands that constitutes the state-change rule, , for a system based on

the Graham-Denning scheme. Each command has a name (e.g., transfer own), and a sequence of

parameters. The first parameter is always named , and is the initiator of the command, i.e., the

subject that executes the command. There is one transfer r, grant r, and delete r command for each

R , and one transfer r , grant r , and delete r command for each R .
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1 Subroutine isSafeGD( T )
2 /* inputs: = h i T S */
3 /* output: true or false */
4 if R then let
5 else if 6= own 6= control then let
6 else let invalid /* No copy flags for own or control */
7 if 6 then return true
8 if = control O S then return true
9 if [ ] then return false

10 if [ ] then return false
11 if T then return true
12 if 6 then return false
13 if b T such that [b ] then return false
14 for each sequence U 2 1 such that
15 own [ 1 ] · · · own [ 1] own [ ] do
16 if { 1 } such that T then return false
17 return true

Figure 2. The subroutine isSafeGD returns “true” if the system based on the Graham-Denning

scheme, characterized by the start-state, , and state-change rule, , satisfies the safety property

with respect to and T . Otherwise, it returns “false”. In line 6, we assign some invalid value to ,

as there is not corresponding right with the copy flag for the rights own and control . In this case,

the algorithm will not return in line 10 or 13. The subject u appears in line 15 only to emphasize

that the “chain” of ownership is terminal.

before we are able to decide whether the system is safe or

not. In lines 5-6, we consider the case that a subject may

have (or acquire) the right with the copy flag. For this, we

need to exclude own and control from consideration, as

those rights do not have counterparts with the copy flag.

We use the mnemonic invalid to indicate this. In line 7,

we check that the right is indeed in the system. In line

8, we check whether we are being asked whether can

get the control right over , where is an object that is

not a subject (we know does not have and cannot get the

right, by property (2) of the seven properties we discuss

in the previous section). In line 9, we check whether the

right has already been acquired by over . In line 10,

we check that if the right has already been acquired by

over (the check in line 10 is needed when R ,

as then, the possession of implies the possession of ;

in the case that R , the lines 9 and 10 are identical).

When = own or = control , the condition of line 10
will never be true, and we will not return from that line.

In the remainder of the algorithm, we consider those cases

in which a state-change is needed before can get over

(if it can at all). In line 11, we check whether there is

at least one subject that can initiate state-changes, and if

not, we know that the system is safe. In line 12, we check

whether exists, and if it does not, given that there exists

a subject that can create (from our check in line 11), the

subject can then grant to over . In line 13, we check

whether there is a subject that can initiate state-changes,

and that has with the copy-flag (or itself, if R ).

If = own or = control , the condition of line 13

cannot be true. In lines 14-16, we check whether there is a

sequence of subjects with the particular property that each

owns the next in the sequence, and the last subject in the

sequence owns . If any one of those subjects can initiate

state-changes, then we conclude that the system is not safe

and return false. In all other cases, we conclude that the

system is safe, and return true.

The following lemma asserts that the algorithm is cor-

rect. Theorem 2 summarizes our results with respect to

safety analysis in the Graham-Denning scheme.

Lemma 1 A system based on the Graham-Denning

scheme, that is characterized by the start-state, , and

state-change rule, , is safe with respect to =
h i and T S (where T is finite) if and only if

isSafeGD( T ) returns true.

Proof. Sketch: the proof is quite lengthy, and we present

it in [15]. We present a sketch of the proof here. For

the “if” part, we need to show that if the system is not

safe with respect to and T , then isSafeGD returns false
on input ( T ). If the system is not safe, then we
know that there exists a state-change sequence 7 ( 1)

1 7 ( 2) · · · 7 ( ) , such that [ ]. If
such a sequence exists with = 0, then this can only be
because already has the right, and we show that in this

case the algorithm returns false. If = 1, then the right
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has to appear in
1
[ ] in only one state-change, and

we show that in this case as well, the algorithm returns

false. For the general case, we use induction on , with

= 1 as the base case.
For the “only if” part, we need to show that if the algo-

rithm returns false, then the system is not safe with respect

to and T . We consider each case in which the algorithm
returns false (lines 9, 10, 12, 13 and 16). In each case,

we construct a state-change sequence such that in the final

state of the sequence, 0, 0 [ ].

Theorem 2 Safety is efficiently decidable in a system

based on the Graham-Denning scheme. In particular,

isSafeGD runs in time at worst cubic in the size of the

components of the start state and the set of rights in the

system.

Proof. We make the following observations about the

running time of isSafeGD in terms of its input, namely,

, [ ], and T , by considering each line in
the algorithm as follows. Each of the lines 5-10 runs in

time at worst linear in the size of the input. In partic-

ular, as we mention in the previous section, we adopt a

naming convention for subjects and objects that enables

us to perform the check O S in line 8, in constant
time. Line 11 runs in time at worst quadratic in the size

of the input (| | × |T |), line 12 runs in time at worst
linear (| |), and line 13 runs in time at worst quadratic
(| |× | |). As each subject is owned only by one other
subject, each sequence to which line 14 refers is of size

at most | |. Furthermore, there are at most | | such se-
quences. Therefore, lines 14-16 run in time at worst cubic

in the size of the input. The fact that isSafeGD( T )
runs in time polynomial in the size of the input in conjunc-

tion with Lemma 1 proves our assertion. .

We observe that cubic running time is only an upper-

bound, and is not necessarily a tight upper-bound on the

time-complexity of the algorithm. It may be possible, for

instance, to store the “chains” of owners in some auxiliary

data structure to get a faster running time.

5. The Solworth-Sloan Scheme, Revisited

Solworth and Sloan [27] present a new DAC scheme

based on labels and relabelling rules, and we call it the

Solworth-Sloan scheme. While the presentation in [27]

does not clearly specify what information is maintained in

a state and how states may change, we were able to infer

what is intended after considerable effort.

In this section, we give a precise characterization of

the Solworth-Sloan scheme as a state transition system.

Our objective in doing so is to represent the Solworth-

Sloan scheme sufficiently precisely to enable comparisons

to other DAC schemes. In particular, our intent is to as-

sess the mapping of DAC schemes to the Solworth-Sloan

scheme that is discussed by Solworth and Sloan [27]. Sol-

worth and Sloan [27] refer to the DAC schemes discussed

by Osborn et al. [21] and assert that they present a gen-

eral access control model which is sufficiently expressive

to implement each of these DAC models. In this section,

we show that this claim is incorrect.

We reiterate that the DAC schemes discussed by Os-

born et al. [21] are either subsumed by, or are minor ex-

tensions of the Graham-Denning scheme that we discuss

in Section 4. We have shown in Section 4.2 that safety is

efficiently decidable in the Graham-Denning scheme, and

our algorithm can be used with relatively minor modifica-

tions to decide safety in these schemes. Thereby, Solworth

and Sloan’s [27] other assertion in reference to the DAC

schemes discussed by Osborn et al. [21], that “. . . every

published general access control model. . . either is insuf-

ficiently expressive to represent the full range of DACs or

has an undecidable safety problem. . . ”, has been rendered

invalid.

5.1. The Solworth-Sloan Scheme

Overview There exists the following countably infinite

sets of constants:

• a set S of subjects

• a setO of objects

• a setR of rights

• a set G of groups

• a set T of object tags

• a set T of group tags

An object label is a pair h i, where S is a subject
and T is a object tag.

Which rights a subject has over a particular object are

determined indirectly in the following three steps.

1. There is a labelling function label that assigns an ob-

ject label to each object.

An object’s label may be changed by object rela-

belling rules, which determine whether an action

rewriting one object label into another succeeds or

not. For example, when the object label 1 = h 1 1i
is relabelled to 2 = h 2 2i, all objects that origi-
nally have the label 1 now have the label 2.

2. There is an authorization function auth that maps

each object label and each right to a group. For each

object label and each right , members of the group

identified by auth( ) have right over objects that

are assigned the label .
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3. Which subjects are members of a group is determined

by native group sets (NGS’s), which are complicated

structures that we describe below. We define a func-

tion members that maps each group to a set of sub-

jects.

We schematically illustrate the steps to determine whether

a subject can access an object or not as follows.

objects
label

object labels
auth

groups
members

subjects

States, A state, , is characterized by a 9-tuple

h label auth ORS i.

• is the set of subjects in the state ; is the set

of objects in the state ; is the set of rights in the

state , and is the set of groups in state .

There is a distinguished right wr, which exists in ev-

ery state, i.e., wr . The role of wr is explained

in our discussion of the state-change rules.

• × T is the finite set of object labels in the

state .

• label : assigns a unique object label to

each object in the current state.

• auth : ( × R ) maps each pair of an

object label and a right to a group. For example,

auth [ re] = 1 means that the group 1 has the

re right over all objects labelled .

• ORS is an ordered sequence of object relabelling

rules, each rule has the form of rl( 1 2) = , where

rl is a keyword, and 1 2 are object patterns. An

object pattern is a pair, where the first element is a

subject in S or one of the three special symbols , u,
and w, and the second element is an object tag in T
or the special symbol . In the rule rl( 1 2) = ,

is a group, a subject, or one of the four following sets:

{} { } { u} { w}. When is { u} (resp., { w}),
{ u} (resp., { w}) must appear in 1 or 2.

For example, the following is an ORS , in which 1

is a subject, 1 is an object tag, and 1 is a group:

rl(h u 1i h 1 i) = 1

rl(h 1 i h u 2i) = { }
rl(h u i h u i) = { u}
rl(h u i h w i) = {}

• is a finite set of native group sets

(NGS’s) that exist in the state, . Each

is characterized by the 7-tuple

h gtag nt admin patterns

GRSi.

– is the set of groups that are defined

in this NGS.

– T is the set of group tags that are used

in this NGS.

– The function gtag : assigns a

unique tag to each subject in the current state.

– nt is a group tag in ; it determines when

a new subject is added to the state, which tag is

assigned to that subject. That is, if a subject

is added, then gtag[ ] would be set to nt .

– admin points to one NGS in ; it identifies

an NGS in the current state as the administrative

group set of the NGS ; admin could be , in

which case is the administrative group set for

itself.

– patterns is a function mapping each group in

to a (possibly empty) set of group patterns.

Each group pattern is a pair where the first ele-

ment is either a subject in the current state or a

special symbol u, and the second element is a

group tag in . In other words, the set of all

group patterns that can be used in , denoted by

, is ( { u})× , and the signature

of patterns is 2 , where 2
denote the powerset of .

For any group , patterns[ ] gives a
set of patterns for determining memberships of

the group. Intuitively, the label h u i is in
patterns[ ] means that any subject who is as-
signed (via the e.gtag function) the group tag

is a member of the group; and the label h i
is in patterns[ ] means that the subject is a

member of the group if it is assigned the group

tag .

– GRS is a set of group relabelling rules, each

has the form Relabel( 1 2) = , where

Relabel is a keyword, 1 2 are two

group tags used in this NGS, and is a group

defined in the administrative group set admin

(i.e., admin ). The role of a mem-

ber of GRS is explained in the following dis-

cussion of state-change rules in the context of

group tag relabel.

An additional constraint on the state is that each

group is defined in exactly one NGS and each group

tag can be used in at most one NGS, i.e.,

1 2 ( 1 2 =

1 2 = )

We define the following auxiliary function

members [ ] : such that members [ ]
gives the set of all subjects that are members of the

group . To determine whether a subject is in
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members [ ], we first determine the unique NGS ,

such that . Now, members [ ] if and
only if the tag assigned to (via gtag) satisfies

the condition that at least one of the two group labels

h i and h u i are in the patterns for , i.e.,

( gtag( ) =
( h i patterns[ ]
h u i patterns[ ] ) )

As an example, consider an NGS where

= { emp mgr exe }
= { Boss Worker }

gtag[ 1] = Boss

gtag[ 2] = Boss

gtag[ 3] = Worker

= Worker

admin =
patterns[ exe ] = { h 1 Bossi }
patterns[ mgr ] = { h u Bossi }
patterns[ emp ] =

{ h u Bossi h u Workeri }
GRS =

{Relabel( ) = mgr

Relabel( ) = exe }

In this NGS, three groups are defined: executives

( exe), managers ( emp), and employees ( mgr ).

There are two tags: Boss and Worker . There are

three subjects; 1 and 2 are assigned the tag Boss

and 3 is assigned the tagWorker . The new subject

tag isWorker , so each newly added subject will au-

tomatically be assigned the tagWorker . The admin-

istrative NGS is itself. According to the patterns,

members of the three groups are as follows:

members [ exe ] = { 1}
members [ mgr ] = { 1 2}
members [ mgr ] = { 1 2 3}

The group relabeling rules are such that managers

can change a subject’s tag fromWorker to Boss and

executives can change a subject’s tag from Boss to

Worker .

State-Change Rules, There is a single state tran-

sition rule in this scheme; consists of six actions

that can result in state changes. These actions are men-

tioned in Section 3.4 of [27] without precise definitions.

(We break up the “Relabel an object” operation in [27]

into two relabelling actions.) We describe the actions

and their effects when applying them to a state =
h label auth ORS i. We use
0 to denote the state after the change.

1. create object( = h 1 1i): the subject cre-

ates the object and assigns the object label to the

object .

This action succeeds when , 6 ,

and the subject has the distinguished rightwr on the

object label , i.e., members [auth ( wr)].

Effects of the action are 0 = { } and
the function label is extended so that label 0( ) =
h 1 1i.

2. create label( = h 1i 1 2 · · · ), where
= | | is the number of rights in : the subject

creates the new object label , and assigns the groups

1 2 · · · to have the rights over , .

This action succeeds when , 6 , the sub-

ject in is , and 1 · · · .

The effects of this action are follows. Let

1 2 · · · be the rights in . Then 0 =
{ } and the function auth is extended such that

auth 0( ) = for 1 .

3. create subject( 0): the subject creates a new sub-
ject 0.

This action succeeds when and 0 6 .

The effects of this action are 0 = { 0} and for
every NGS , gtag is extended so that in 0,

gtag( 0) = nt .

4. object relabel( 1 = h 1 1i 2 = h 2 2i): the
subject relabels objects having label 1 to have the

label 2.

This action succeeds when the first relabelling rule

in the object relabelling rule sequence ORS that

matches ( 1 2) is rl( 1 2) = and value[ ]
(the function value[ ] is defined below). The rule
rl( 1 2) = matches ( 1 2) when 1 matches 1

and 2 matches 2 at the same time. When the pat-

tern h u imatches the label h 1 1i, we say that u
is unified with the subject 1. Note that when u oc-

curs more than one times in 1 2, they should be

unified with the same subject.

Recall that maybe a group , a subject 0, or

one of the four sets: {} { } { } { }. The

function value is defined as follows: value[ ] =
members [ ]; value[ 0] = { 0}; value[{}] = ,

value[{ }] = ; value[{ u}] is the subject that is
unified with u.

Consider the following ORS .

rl(h u 1i h 1 i) = 1

rl(h 1 i h u 2i) = { }
rl(h u i h u i) = { u}
rl(h u i h w i) = {}

The action object relabel( h 2 1i h 1 2i) would
match the first relabelling rule, and it would suc-

ceed when is a member of the group 1.
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The action object relabel( h 1 1i h 2 2i) would
match the second relabelling rule and always suc-

ceeds. The action object relabel( h 2 2i h 2 1i)
would match the third relabelling rule and fail,

because u is unified with 2. The action

object relabel( h 2 2i h 1 1i) would match the
fourth relabelling rule and fail.

The effect of the relabel action is in the function

label. For every object such that label [ ] = 1,

in the new state, label 0 [ ] = 2.

5. group tag relabel( 0

1 2): the subject relabels

the group tag for the subject 0 from 1 to 2.

This action succeeds when there is an NGS

such that 1 and 2 are used in , the subject
0 has the

group tag 1 in , there is a corresponding group rela-

belling rule in GRS, and is a member of the group

that can use the relabelling rule. More precisely, the

action succeeds when

( gtag[ 0] = 1

“Relabel( 1 2) = ” GRS

members [ ] )

Note that the tags 1 and 2 can appear only in one

NGS and they must appear in the same NGS for the

action to succeed. The effect of this action is such

that the function gtag is changed such that in 0,

gtag[ 0] = 2.

6. create ngs( ): the subject creates a new NGS .

To perform this action, one must provide the com-

plete description of a new NGS , i.e., the 7-

tuple h gtag nt admin patterns

GRSi. For this action to succeed, the groups de-
fined in and the group tags in must be new, i.e.,

they do not appear in any existing NGS’s in .

The effects are that 0 = and 0 =
.

Given the above state transition rule, we make the

following observations. No removal of subjects, ob-

jects, labels, or groups is defined. Given a state

h label auth ORS i, (the

set of subjects), (the set of objects), and (the

set of groups) may change as a result of create subject,

create object, and create label, respectively. , the set

of rights, is fixed for the system and does not change. ,

the set of groups, may change when a new NGS is added

by the create ngs action. The function label :
is extended when a new object is added and is changed

when an object relabelling action object relabel happens.

The function auth is extended when a new object label

is created; existing assignments do not change. ORS , the

object relabelling rule sequence, always stay the same.

is extended when a new NGS is added.

5.2. Encoding a simple DAC scheme in the
Solworth-Sloan scheme

In this section, we encode a relatively simple DAC

scheme in the Solworth-Sloan scheme. The DAC scheme

we consider is a sub-scheme of the Graham-Denning

scheme. It is called Strict DAC with Change of Owner-

ship (SDCO) and is one of the DAC schemes discussed

by Osborn et al. [21]. Our construction is based on com-

ments by Solworth and Sloan [27] on how various DAC

schemes can be encoded in the Solworth-Sloan scheme.

As the presentation in that paper is not detailed, we of-

fer a more detailed construction. Our construction lets us

assess the utility of the Solworth-Sloan scheme in encod-

ing SDCO. After we present the encoding, we discuss its

deficiencies from the standpoints of correctness, and the

overhead it introduces.

Strict DAC with Change of Ownership (SDCO) As

we mention above, SDCO is a sub-scheme of the Graham-

Denning scheme (see Section 4.1). In SDCO, there is a

distinguished right, own, but no control right. Also, there

are no rights with the copy flag. The state-change rules

in SDCO are the commands grant r (for each ),

delete r (for each ), grant own, create object and

create subject. We do not consider commands to destroy

subjects or objects as their counterparts are not specified

for the Solworth-Sloan scheme.

For simplicity, we consider an SDCO scheme that

has only three rights own re wr. In the Solworth-Sloan

scheme, if two objects 1 and 2 have the same label,

then 1 and 2 always have the same access characteris-

tics. That is, in every state, the set of subjects having a

right over 1 is the same as the set of subjects having the

right over 2. In SDCO, one can reach states in which

1 and 2 have different access characteristics. Therefore,

each object needs to be assigned a distinct label.

Therefore, before creating an object, one has to create

a new label. When creating a new label , one has to as-

sign a group to auth( own) and a group to auth( re);
and a group to auth( wr). Each pair h i determines a
unique access class. Therefore, a distinct group needs to

be created. We use ( ) to denote the group that will be
assigned to have the right over object .

In order to keep track of which subset of rights a sub-

ject has over an object, we need 8 group tags, one corre-
sponding to each subset of {own re wr}, we use ( ),
where is a 3-bit string to denote these tags.

In order for a subject to create an object , needs to

do the following:

1. Create an NGS = h gtag nt

admin patterns GRSi as follows.

• = { ( own) ( re) ( wr)}
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• = { ( 000) ( 001) ( 010)
( 011) ( 100) ( 101) ( 110)
( 111)}.

• gtag[ ] = ( 100) and gtag[ 0] =
( 000) for every 0 s.t. 0 6= .

• nt = ( 000)

• admin =

• patterns[ ( own)] =
{h ( 100)i h ( 101)i
h ( 110)i h ( 111)i}
patterns[ ( re)] =
{h ( 010)i h ( 011)i
h ( 110)i h ( 111)i}
patterns[ ( wr)] =
{h ( 001)i h ( 011)i
h ( 101)i h ( 111)i}

That is, in each tag, the first bit corresponds to

own, the second to re, and the third towr. In the

set of patterns for the group that corresponds to

own, the first bit is always set in each tag, and

similarly for the groups that correspond to re

and wr respectively.

• GRS =
{Relabel( ( 1 2 3) ( 0

1
0
2
0
3)) =

( own)
| 1 2 3

0
1
0
2
0
3 {0 1}3 1 2 3 and

0
1
0
2
0
3

differ in exactly one bit }

2. Use create label( h ( )i ( re) ( wr)) to

create the label ( ).

3. Use the action create object( h ( )i) to create
the object and label it with ( ).

To grant or revoke a right, one uses group relabelling.

For instance, suppose is a subject, and for the NGS,

, gtag[ ] = ( 000). Then, we know that is not

a member of any of the groups ( own), ( re) or
( wr). The subject would be granted the right re by rela-
belling h ( 000)i to the label h ( 010)i. The ex-
ecution of this relabelling results in the subject becoming a

member of the group ( re), thereby giving him the right
re over the object . Similarly, the subject would have the

right re revoked by relabelling h ( 010)i to the label
h ( 000)i. These operations can be carried out only
by a subject that is a member of the group ( own).
We make the following observations about the above

mapping.

• The above mapping does not capture the state invari-
ant in SDCO that in every state, there is exactly one

owner for every object that exists. In the Solworth-

Sloan system that results from the above mapping,

one can perform relabelling operations and reach

states in which there are mutiple owners for an ob-

ject, or no owner for an object. For instance, sup-

pose that there already exists a subject such that

members [ ( own)]. Given the above rela-
belling rules, there is nothing that precludes another

subject from also becoming a member of the group

( own) while continues to maintain membership

in that group. It is also possible to remove the mem-

bership of in the group ( own) thereby leaving
the object with no owner. It is unclear how we would

prevent such situations from occuring in a system

based on the Solworth-Sloan scheme.

• We are unable to capture destruction of subjects and
objects as such constructs have not been specified for

the Solworth-Sloan scheme. Destruction of subjects

and objects is generally considered to be an impor-

tant component of any access control system. We

point out that a state-change rule to destroy a subject

or an object in the Solworth-Sloan scheme must be

carefully designed, as there are several components

of the state (such as tags) of which we must keep

track. Therefore, adding such state-change specifica-

tions does not appear to be a trivial task. In particu-

lar, it is unclear how and with what overhead we can

capture in the Solworth-Sloan scheme, the notion of

transfer of ownership over objects owned by a subject

that is being destroyed.

• There is considerable overhead in implementing
a relatively simple DAC scheme (SDCO) in the

Solworth-Sloan scheme. For each object, we need

to create a set of labels whose size is linear in the

number of the subjects in the state. We also need to

create a set of tags whose size is exponential in the

number rights in the system. These tags are used to

define groups, and the therefore, the number of en-

tries in all the sets of patterns is also exponential in

the number of rights in the system. This is consid-

erable overhead considering the simplicity of SDCO,

and the fact that one can “directly” implement it, with

efficiently decidable safety.

Our conclusion is that several of the claims made by

Solworth and Sloan [27] are incorrect. In particular, not

only is the motivation (decidable safety) for the creation

of the new scheme invalid, but it is also not effective in

implementing relatively simple DAC schemes.

6. Conclusions

The focus of this paper is to provide a clear picture of

safety analysis in DAC. We have used a state-transition-

system-based meta-formalism to precisely model access
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control schemes and systems and have studied safety anal-

ysis in a general DAC scheme from the literature, the

Graham-Denning scheme [8]. We have presented an al-

gorithm for deciding safety with running time ( 3) in
the Graham-Denning scheme, and proved that the algo-

rithm is correct. We have also countered several claims

made by Solworth and Sloan [27]. In particular, we have

countered the claim that the mapping presented there en-

codes all DAC schemes by considering a relatively simple

DAC scheme and demonstrating that the mapping has sev-

eral deficiencies. We conclude by asserting that safety in

existing general DAC schemes is decidable and there is no

need to invent new DAC schemes with decidable safety as

the primary goal.
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