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ABSTRACT

Surface reconstruction from measurements of spatial gradient is
an important computer vision problem with applications in pho-
tometric stereo and shape-from-shading. In the case of morpho-
logically complex surfaces observed in the presence of shadowing
and transparency artifacts, a relatively large number of gradient
measurements may be required for accurate surface reconstruction.
Consequently, due to hardware limitations of image acquisition de-
vices, situations are possible in which the available sampling density
might not be sufficiently high to allow for recovery of essential
surface details. In this paper, the above problem is resolved by
means of derivative compressed sensing (DCS). DCS can be viewed
as a modification of the classical compressed sensing (CS), which
is particularly suited for reconstructions involving image/surface
gradients. We demonstrate that using DCS results in substantial
data savings as compared to the standard (dense) sampling, while
producing estimates of higher accuracy and smaller variability, as
compared to CS-base estimates. The results of this study are further
supported by a series of numerical experiments.

Index Terms— Photometric stereo, shape-from-shading, 3-
D surface reconstruction, derivative compressed sensing, Poisson
equation

1. INTRODUCTION

The notions of photometric stereo (PS) and shape-from-shading
(SFS) [1] are standard in computer vision, with their practical
applications ranging from video surveillance to surface quality as-
sessment. In both PS and SFS, a 3-D surface of interest is recovered
from the measurements of its spatial gradient. In particular, under
some reasonable assumptions on the light source and the object
reflection properties, the unit normal to such a surface can be calcu-
lated from its grey-scale representation. Consequently, the normal
can be used to recover its corresponding partial derivatives, followed
by reconstructing an approximation of the original surface through
the solution of a Poisson equation.

A practical difficulty in implementation of the above-mentioned
techniques stems from the necessity to deal with relatively large sets
of gradient data. Typically, such dense data sets are required to al-
low for accurate reconstruction of fine surface details, which are of-
ten occluded due to shadowing and transparency artifacts. In such
cases, improving the acquisition requirements of the hardware in use
through reducing the sampling density would unavoidably produce
aliasing artifacts. Fortunately, recent advances in computational har-
monic analysis offer a means to overcome the above limitation, while
allowing for accurately recovering digital signals from their sub-
Nyquist measurements. This method - known as compressed sensing
(CS) [2,3] - has already revolutionized vast areas of applied sciences,
and computer vision in particular [4].

The original CS framework, however, does not incorporate ar-
bitratry a priori information on the interrogated signals, apart from
their being sparsely representable in a predefined basis. In partic-
ular, at the case at hand, it seems to be natural to reconstruct the
surface gradient using the fact that the latter forms a potential vec-
tor field. When subjected to such side information, the classical CS
setup transforms into its specific instance - known as derivative com-
pressed sensing (DCS) [5] - which is in the heart of the present study.
Specifically, in this paper, we introduce a novel method for recon-
struction of 3-D surfaces from the sub-critical (incomplete) measure-
ments of their spatial gradients. In addition to detailing a computa-
tionally efficient algorithm for DCS [6], it is shown how the latter
can be used to improve the reconstruction quality of the standard
CS [2, 3], while resulting in substantial reduction in sampling den-
sity.

2. COMPRESSED SENSING IN GRADIENT FIELD

Compressed sensing (CS) is a mathematical technique [2] which
provides a tool for sparse reconstruction of signal sources from their
sub-Nyquist measurements. A principal result of the CS theory
states that a K-sparse signal z ∈ Rn can be recovered from as few
as m = O(K log(n/K)) of its linear measurements y ∈ Rm [2,3],
which are assumed to be acquired according to

y = Ψz + n, (1)

where Ψ ∈ Rm×n denotes a sensing matrix (with n > m) and n is
included to account for measurement noise.

Due to the overcompleteness of Ψ, the problem of recovering
z from its noisy measurements y is ill-posed. However, if Ψ obeys
the restricted isometry property (RIP) [2,3] with respect toK-sparse
signals, the classical CS framework suggests that a useful approxi-
mation of z can be obtained by solving

z = arg min
z′

{
‖z′‖1 | ‖Ψz′ − y‖22 ≤ ε

}
, (2)

where ε > 0 is a user-defined parameter, which controls the level of
noise. Note that the problem (2) is strictly convex, and hence admits
a unique minimizer. Several algorithms, using the convex analysis
and optimization, have been developed in the literature for solving
(2).

Let z(x, y) represent an original surface. For the sake of conve-
nience, z(x, y) is assumed to be defined over a finite-dimensional,
uniform, rectangular lattice in R2, so that its partial derivatives zx
and zy can be concatenated into two column vectors by means of lex-
icographic ordering. The observed versions bx and by of vectors zx
and zy , respectively, are obtained as bx = Ψx zx and by = Ψy zy ,
where Ψx and Ψy are subsampling matrices which account for the
effect of partial observation. Finally, it is also assumed that the par-
tial derivatives zx and zy admit sparse representations with respect
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to a linear transformation W , which implies the existence of two
(sparse) vectors of representation coefficients cx and cy such that
zx = W cx and zy = W cy .

Under the above conditions, CS-based reconstruction of the rep-
resentation coefficients cx and cy can be performed according to

c∗x = arg min
c′

x

{
1

2
‖ΨxWc′x − bx‖22 + λ‖c′x‖1

}
(3)

and

c∗y = arg min
c′

y

{
1

2
‖ΨyWc′y − by‖22 + λ‖c′y‖1

}
. (4)

Moreover, by allowing c = [cx, cy]T , b = [bx,by]T , and A =
diag{ΨxW,ΨyW}, one can solve both (3) and (4) simultaneously
as

c∗ = arg min
c′

{
1

2
‖Ac′ − b‖22 + λ‖c′‖1

}
. (5)

This formulation is equivalent to (2) and hence the CS solver algo-
rithms can be used to handle this optimization problem.

The DCS algorithm of [5] extends the CS approach by using the
fact that, for twice differentiable surfaces z(x, y), ∂2z

∂x ∂y
= ∂2z

∂y ∂x
.

This fact can be incorporated as an additional, cross-derivative con-
straint as follows. Let Dx and Dy denote the matrices of discrete
partial differences in the direction of x and y, respectively. Then,
the cross-derivative constraint suggests that

Dxzy = Dyzx. (6)

Consequently, the DCS approach recovers the optimal c∗ as a solu-
tion to the following constrained problem

c∗ = arg min
c′

{
1

2
‖Ac′ − b‖22 + λ‖c′‖1

}
, (7)

s.t. Bc′ = 0

where B := DyTx −DxTy , with Tx and Ty being the operators of
coordinate projections, defined as cx = Tx c and cy = Ty c.

A solution to (7) can be found by means of the Bregman algo-
rithm [7], in which case c∗ is computed iteratively as given by

c(t+1) = arg minc′

{
1
2
‖Ac′ − b‖22+

+λ‖c′‖1 + δ
2
‖Bc′ + p(t)‖22

}
p(t+1) = p(t) + δBc(t+1),

(8)

where p(t) is a vector of Bregman variables and δ > 0 is a user-
defined parameter. Given the optimal solution c∗, the dense partial
derivatives are recovered as zx = W Tx c and zy = W Ty c, fol-
lowed by reconstructing an approximation of the surface z via solu-
tion of a Poisson equation [6]. All the proposed algorithmic steps
are summarized in Algorithm 1 below.

3. SURFACE RECONSTRUCTION IN GRADIENT FIELD

Gradient space is the 2-D space of all (zx, zy) points. It is convenient
to represent surface orientation in this space. In practice the gradient
field is determined via the reflectance map R(zx, xy) [8], which in
turn is measured empirically. The reflectance map can be viewed as
a 2-D image i(x, y), where the image intensity is a function of zx
and zy .

Algorithm 1: Derivative Compressive Sampling

1. Data: bx, by , and λ > 0

2. Initialization: For a given transform matrix W and
matrices/operators Ψx, Ψy , Dx, Dy , Tx and Ty , preset the
procedures of multiplication by A, AT , B and BT .

3. Gradient field recovery: Starting with an arbitrary c(0) and
p(0) = 0, iterate (8) until convergence to result in an optimal c∗.
Use the estimated (full) partial derivatives WTxc

∗ and WTyc
∗ to

recover the values of zx and zy .

4. Source recovery: Use a Poisson solver to reconstruct the original
source from its gradient field

For Lambertian surfaces [8], the light is reflected in a given di-
rection only based on the surface orientation. If the the measuring
camera is placed at infinity (a single distant point source), the re-
flectance map based on Lambertian shading rule is given as [8],

R(zx, zy) =
ρ(1 + zxps + zyqs)√

1 + z2
x + z2

y

√
1 + p2

s + qsy
(9)

where ρ is a reflectance factor.
The idea for both PS and SFS is to vary the viewing direction for

measuring the x and y components of the gradient field of a surface,
z(x, y), at discrete points. Although the surface orientation is fixed,
this will affect the reflectance map. For known ρ at least two views
are required for determining zx and zy . But due to the nonlinearity
in (9), more than on solution may exist. To emit such extra solutions,
at least three measurements with three different light directions are
required to solve uniquely for zx and zy . In practice, for improv-
ing the measurements, N images i(x, y) = R(zx, zy) may be used
(N > 3). These images result in the following equation for each
point (xi, xj), i1(j, i)

...
iN (j, i)

 =

d1x d1y d1z

...
...

...
dnx dny dnz


n̂xn̂y
n̂z

 (10)

where (dkx, dky, dkz) is the kth light ray direction and n̂T =
[n̂x, n̂y, n̂z]

T is the surface normal vector. This equation in matrix
form can be written as:

I = Dn̂, (11)

and the least square solution is given by

n̂ = D+I, (12)

where D+ denotes Moore pseudo-inverse of D. Having the surface
normal vector, the x and y components of the gradient field can be
computed: zx = n̂x/n̂z and zy = n̂y/n̂z . Consequently, over the
whole surface the following measurements are obtained:

Zx(j, i) =
∂z

∂x
|(x,y)=(xi,yj)

Zy(j, i) =
∂z

∂y
|(x,y)=(xi,yj)

(13)

For accurate surface reconstruction a high sampling density for the
gradient field is required [8]. The sampling density is limited by the
measuring device and there may be situations in which the sampling



Table 1. Comparisons of surface recovery results
Image Sphere Peak-Valley Ramp-Peak
SNR (dB) 10 15 20 25 10 15 20 25 10 15 20 25

MSE comparison
DS 0.0017 0.0017 0.0017 0.0017 0.0027 0.0013 0.0002 0.0001 0.0443 0.0139 0.0051 0.0033
CS 0.0057 0.0056 0.0055 0.0055 0.0210 0.0114 0.0103 0.0091 0.3773 0.2239 0.1201 0.0786
DCS 0.0022 0.0019 0.0018 0.0017 0.0071 0.0023 0.0006 0.0002 0.2464 0.0633 0.0157 0.0053

density is not sufficient for recovery of the surface details. This limi-
tation may be resolved by applying DCS to this reconstruction prob-
lem. Having the partial measurements of matrices Zx and Zy , one
can obtain vectors bx and by via lexicographical column-stacking
and use Algorithm 1 to solve for zx and zy . Analogously this is
equivalent with increasing the sampling density of the gradient field
without improving the hardware device.

In the final stage of Algorithm 1, it is required to solve a
Poisson equation to yield the original source (the surface). Sev-
eral approaches such as least square (LS) [9], algebraic [10], and
l1-minimization [11] have been proposed in the literature for this
purpose. We use LS approach [9] in the current study for solving the
Poisson equation.

4. EXPERIMENAL RESULTS

Simulated surfaces from [9] were used to assess the performance of
the proposed method. The algorithm was tested over three surfaces
known as Sphere, Peak-Valley, and Peak-Ramp. The surface lattices
size is chosen 64 × 64, δ = 0.5, and λ = 0.001. The subsam-
pling matrices Ψx and Ψy were obtained from an identity matrix I
through a random subsampling of its rows by a factor, r, resulting in
a required partial sampling ratio. Fore sparse representation basis,
W was selected to be a four-level orthogonal wavelet transform us-
ing the nearly symmetric wavelets of Daubechies with five vanishing
moments.

For the purpose of comparison we have compared our algorithm
with standard dense sampling (DS) and classical CS approaches in
terms of MSE. The results of this comparison are summarized in
Table 1 for different levels of noise and partial sampling ratio of
r = 0.5 for classical CS and DCS. As expected, one can see that
DCS results in substantially lower values of MSE as compared to
classical CS, which implies a higher accuracy of surface reconstruc-
tion. As expected DS outperforms both methods but the performance
of DCS is comparable and confirms the possibility of simplifying the
hardware device using our approach without substantial reduction in
reconstruction quality. The reconstruction result for Peak-Ramp sur-
face is given in Fig. 1 for SNR = 20dB. Visual inspection on
images, specially at the surface edges, confirms that DCS provides
a result comparable with that of DS reconstruction. As it can be
detected CS reconstruction results in smoothed edges in the ramp
part of the surface, manifesting severe reduction of high frequency
energy, which, by contrast, is well preserved in DCS reconstruction.

In another set of experiment we studied robustness of the pro-
posed method towards noise addition. The cross-derivative con-
straints exploited by DCS effectively restricts the feasibility region
for an optimal solution. Moreover, as explained in [5], the constraint
Bc′ = 0 in (7), can be considered as extra measurements of the
sparse source. These measurements are noise free and consequently
one can conclude that if we use this constraint, the reconstruction
algorithm will become more robust towards the noise power. To
investigate the robustness of the proposed algorithms towards mea-

surement noises, its performances has been compared for a range of
SNR values (as a measure for noise power) with classical CS. The
results of this comparison are summarized in Fig. 2. As expected in
both cases the reconstruction quality degrades by decreasing SNR,
but this dependency is more critical for classical CS, which results in
steeper graph in Fig. 2. This fact represents another advantage of in-
corporating the cross-derivative constraints in the process of surface
recovery.

5. CONCLUSION

In the present paper, the applicability of DCS to the problem of sur-
face reconstruction is studied. To simplify the measuring devices
a CS-based approach has been proposed. The proposed method
applies CS for surface reconstruction subject to an additional con-
straint, which stems from the property of a gradient field. Experi-
ments confirm the source estimates by DCS have better quality as
compared to the case of classical CS and comparable as to the case
of dense sampling. One direction for future work is applying the
algorithm in designing the sampling devices for surface reconstruc-
tion. Applying the algorithm in the sampling device structure will
improve the capability of reconstructing surface details in presence
of low density measurements.
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