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Abstract

Today, healthcare professionals are viewing medical images in a variety of environments. The
technologies and methodologies used to acquire, process, store, transmit and display images vary,
and consequently, the ultimate visual information received by the clinicians differs significantly in
perceived quality. Visual signal distortions, such as various types of noise and artifacts arising in
medical image acquisition, processing, compression and transmission, affect the perceptual quality of
images and potentially impact diagnoses. To optimize clinical practice, we need to understand human
perception of medical image quality in practical settings, and then use what is learned to develop
useful solutions for improved image quality and better image-based diagnoses. This chapter focuses
on the methodologies used to measure the perceptual quality of medical images using magnetic
resonance (MR) image acquisition and computed tomography (CT) image compression as examples,
where modern digital image processing technologies and statistical analysis approaches play
important roles in helping with both subjective visual testing and objective quality predictions.
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Quality assessment in medical image acquisition

Quality degradation of medical images often starts at the acquisition stage. For example, magnetic
resonance (MR) imaging in practice is vulnerable to a variety of artifacts, which degrade the perceived
quality of images and, consequently, may cause inefficient and/or inaccurate diagnoses. Sources of
artifacts in MR imaging include non-ideal hardware characteristics, intrinsic tissue properties and their
possible changes during scanning, assumptions underlying the data acquisition and image
reconstruction processes, and a poor choice of scanning parameters. To minimize or eliminate these
artifacts, many correction procedures have been developed. These methods typically involve one or
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more of the following strategies: improvement of hardware and scanning protocols, optimization of
scan parameters and pulse sequences, and advanced digital post-processing. Nonetheless, reducing
artifacts in MR imaging is not straightforward, and in practice, it is still a challenge to achieve optimal
image rendering from the user’s point of view. One reason is that strategies dealing with one type of
artifact may induce another. As a consequence, optimization of these strategies requires a
comprehensive understanding of the relative annoyance of different types of artifacts to perceived
image quality.

Progress has been made in studying the causes and characteristics of artifacts in MR images. The first
step is to classify these artifacts so that they can be recognized from relevant features. In general, the
artifacts may be classified into two categories — unstructured artifact as random noise, and structured
artifact as any type of coherent artifact that represents the anisotropy of the spectral content of local
structure of the object being scanned. Ghosting, which is a cross-talk artifact generating a lower-
intensity double image, spatially shifted with respect to the original content, is one example of
structured artifact. Random noise can be further classified into white noise and colored noise,
according to its spectral density — white noise has a flat frequency spectrum, whereas the frequency
spectrum of colored noise is not flat. A similar classification can be made for structured artifacts, i.e.,
we may make a distinction between a white structured artifact and a colored structured artifact. The
example of ghosting — explained above — can be considered as a colored structured artifact with the
same distribution in the frequency spectrum as the object being scanned. “White” ghosting — referred
to as edge ghosting — can be obtained by making the frequency spectrum flatter, e.g., by adding the
gradient of the originally scanned object as a double image to the original. Based on the analysis of
the power spectral density of a thin-slice two-dimensional MR image, it can be shown that the power
spectrum of the gradient of any line of an MR image is rather flat, and thus for the purpose of our
study is approximated to be “white”. Figure 1 illustrates the four types of artifacts on an exemplary
MR image.

To what extent a given artifact presenting with a certain energy reduces the perceived image quality
is a challenging problem that may be addressed by measuring the relative impact of four types of
artifacts: a white unstructured artifact (i.e., white noise), a colored unstructured artifact (i.e., colored
noise), a white structured artifact (i.e., edge ghosting), and a colored structured artifact (i.e., ghosting).

Simulation of MR Imaging Artifacts
To be able to vary the four types of artifacts — namely ghosting, edge ghosting, white noise, and
colored noise —in a controlled process, they are simulated separately at different levels of energy, and
then linearly added to the original image content, as illustrated in Figure 2. A benchmark energy level
(BEL) is defined (illustrated as the energy level L5 in Figure 2). For an original image of size MxN (height
x width) pixels with intensity of the simulated ghosting artifact I,(i, j) (i€ [1, M], j€ [1, N]), its BEL is
calculated as:

M N

BEL =) > 1, j)’

i=1 j=1
The BEL is determined separately for each original image, and is defined by the amount of energy in a
typical ghosting artifact for that particular content. As such, a ghosting artifact is always generated
first in the simulation process. Based on the BEL defined for ghosting, the other levels of energy are
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determined by reducing the BEL successively by 20%, resulting in 0.8 x BEL for energy level L4, 0.6 x
BEL for energy level L3, 0.4 x BEL for energy level L2, and 0.2 x BEL for energy level L1, respectively.

colored random noise | C°|°"f_d“955 plain (*colored”) ghosting

white random naise edge (“white") ghosting
Fig. 1. Four types of artifacts in a typical MR image. The horizontal axis indicates the “structured-
ness” of the artifact: the two left quadrants refer to the unstructured artifacts (i.e. random noise),
and the two right quadrants refer to the structured artifacts (i.e. ghosting). The vertical axis
indicates the colored-ness of the artifact: the two top quadrants refer to the colored artifacts, and
the two bottom quadrants refer to the white artifacts.

Equal-energy level (L) in artifact
hypersphere

Fig. 2. Images with the same level of energy in the artifact added to the original image constitute a
hypersphere in the image space: (a) original image, (b) image with ghosting, (c) image with white
noise, (d) image with edge ghosting, and (e) image with colored noise. Five different levels of energy,
i.e. L1, L2, L3, L4, L5, are used here.
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Subjective Experiments

The goal of the subjective experiments is to quantitatively measure how the four types of artifacts,
applied at the same energy level in the distortion, affect the perceived quality of MR images. To this
end, perception experiments have been performed with clinical application specialists (mainly
qualified clinical medical physicists). Here we investigate the relative impact of structured versus
unstructured artifacts on the perceived quality of MR images. The experiments consists of two parts:
one to compare images degraded with ghosting to those degraded with white noise, and the other to
compare images degraded with edge ghosting to those degraded with colored noise.

The source MR images used in the experiments are chosen to have high quality in terms of resolution,
artifacts and signal-to-noise ratio. Three original MR images are selected: two images of a brain (i.e.,
referred to as "brain_1" and "brain_2") and one image of a liver (i.e., referred to as “liver”). The three
source images are shown in Figure 3. Each source image is first distorted with ghosting at the energy
level BEL, and subsequently, edge ghosting, white noise and colored noise are applied at the same
energy level. The added energy (i.e. at BEL) of ghosting, edge ghosting, white noise and colored noise
is then downscaled with factors of 4/5, 3/5, 2/5, and 1/5, respectively, resulting in four new energy
levels for each artifact type. By doing so, each original image is distorted with 5 levels of simulated
ghosting, edge ghosting, white noise and colored noise, respectively. Hence, the test database existed
of 30 stimuli (i.e. 3 originals x 5 energy levels x 2 types of artifacts) per part, and so 60 stimuli in total.

(a) (b)
Figure 3. Source images: (a) “brain_1", (b) “brain_2", and (c) “liver”.

The experiments should be conducted in a controlled environment similar to a typical radiology
reading room environment with low surface reflectance and approximately constant ambient light.
No image adjustment (zoom, window level) should be allowed. The participants should be clinical
scientists or application specialists of both genders. To score perceived quality a simultaneous-double-
stimulus (SDS) method [15] may be used, for which the subjects are requested to score the quality for
each stimulus in the presence of the original image as a reference. In scoring image quality, the two
stimuli, i.e. the original at the left-hand side and the test stimulus at the right-hand side are displayed
side by side on the same screen. The scoring scale ranges from 0 to 100, and included additional
semantic labels (i.e. “Bad”, “Poor”, “Fair”, “Good” and “Excellent”) at intermediate points. Subjects
are requested to assess the quality of the test stimulus with respect to the quality of the reference by
moving the slider on the scoring scale.

Before the start of each experiment, written instructions about the procedure of the experiment (i.e.
explaining the type of assessment, the scoring scale and the timing) are given to each subject.
Subsequently, a set of ten images covering the same range of artifact annoyance as used in the actual
experiment is presented in order to familiarize them with the impairments and the scoring scale. In a
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next step, six representative stimuli are shown one by one and the participant scores their quality on
the scoring scale. The images used in this training part of the experiment should be independent of
those used in the formal experiment. After training, the test stimuli are shown one by one in random
order in a separate session. Each stimulus is shown once, and the participants are allowed to take as
much time as they need to assess the quality of each stimulus.

Data Analysis

Data analysis is an important step in understanding the experimental results. First, a simple outlier
detection and subject exclusion procedure is applied to the raw scores. An individual score for an
image is considered to be an outlier if it is outside an interval of two standard deviations around the
mean score for that image. All scores of a subject are rejected if more than 20 percent of the scores
are outliers. After having applied the outlier removal and subject exclusion procedure, the scores of
the remaining subjects are normalized towards the same mean and standard deviation using z-scores:
N

O

z

where rj and z; indicate the raw score and z-score of the i-th subject and j-th image, respectively. p; is
the mean of the raw scores over all images scored by subject i, and o; is the corresponding standard
deviation. These scores are averaged across subjects to yield a mean opinion score (MOS) for the j-th
image, i.e.

z;

MOS | =

m‘._.

S
i=1l
where S is the total number of subjects. To make the final scores easier to interpret, the resulting
MOSs were linearly remapped to the range of [1, 10]. The MOSs and their corresponding error bars
are illustrated in Figure 4. Figure 4(a) indicates that the difference in perceived quality between
degradations with ghosting and white noise is in general small. Whether at the same energy level
either ghosting or white noise mostly affects the overall quality tends to depend on the distortion level
and image content. For the source image “liver”, the added white noise consistently results in a lower
image quality than the added ghosting (see stimuli referred to as 11-15 in Figure 4(a)). A similar
consistency, however, is not found for the two brain images, i.e. “brain_1" and “brain_2".

Figure 4(b) shows that the quality of an MR image degraded by colored noise is consistently scored
higher than that by edge ghosting. This suggests that the perceived quality is largely reduced when
changing the signal distortion from unstructured colored noise to structured edge ghosting, even for
the same level of energy in the distortion. In addition, we can observe a trend from the comparison
of the four types of artifacts that when either ghosting, white noise or edge ghosting is added to a
source image, the perceived image quality monotonously decreases with the energy in the distortion;
this, however, is not the case for colored noise, for which the resulting quality may jump up and down
as a function of distortion level.
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Figure 4. The MOS resulting from the subjective image quality assessment: (a) images degraded with
ghosting and white noise, and (b) images degraded with edge ghosting and colored noise. The
numbers on the horizontal axis refer to the stimuli: numbers 1-5 for image “brain_1" with increasing
level of distortion, numbers 6-10 for image “brain_2”, and numbers 11-15 for image “liver”. Each
number corresponds to two bars; one for ghosting (or edge ghosting) and one for white noise (or
colored noise), with each the same energy in the signal distortion. The error bars indicate the 95%
confidence interval.

Statistical analysis is performed on the observed tendencies with an ANOVA (Analysis of Variance) per
graph/part of the experiment separately. In each case, the perceived quality is selected as the
dependent variable, the image content, artifact type and energy level as fixed independent variables
and the participants as random independent variable. All 2-way interactions of the fixed variables are
included in the analysis as well. The results for images degraded with ghosting and white noise are
summarized in Table 1 (including F-statistic and its degrees of freedom and significance p-value), and
show that image content, artifact type and energy level have a significant effect on perceived quality.
On average, images affected with ghosting are scored higher in quality than images affected with
white noise (<MOS> for ghosting = 5.05, <MOS> for white noise = 4.61). The post-hoc analysis on
image content shows that the viewers score the image “brain_2"” (<M0S>=5.31) on average
statistically significantly higher than the images “brain_1" (<M0S>=4.59) and “liver” (<MQ0S>=4.59).
Also the interaction between image content and artifact type is significant, which implies that the
difference in quality between the two types of artifact is not the same for the three images.
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The results for images degraded with edge ghosting and colored noise are summarized in Table 2,
where all main effects and interactions appear to be highly statistically significant. Overall images
degraded with colored noise (<M0S>=5.37) are scored higher in quality than images degraded with
edge ghosting (<M0S>=2.59). The post-hoc analysis on the image content indicates that the image
“brain_1" (<M0S>=3.04) received statistically significantly lower quality scores than the other two
images (<M0S>=4.26 for “brain_2” and <M0S>=4.37 for “liver”). The interaction between image
content and artifact type is caused by the fact that the quality difference between images is much
larger for the colored noise artifact than for the edge ghosting artifact. The interaction between
artifact type and energy level is significant since the quality monotonically decreases with increasing
energy level for the edge ghosting artifact, but not for the colored noise. In the latter case, the
perceived quality fluctuates with increasing energy level. This phenomenon also explains the
significant interaction between image content and energy level.

TABLE |
RESULTS OF THE ANOVA FOR EXPERIMENT 1 TO EVALUATE THE EFFECT OF GHOSTING AND WHITE NOISE ON THE
DIFFERENT IMAGES

F-value Df p
Image content 5.82 2 0.003
Artifact type 18.81 1 <0.001
Energy level 50.50 4 <0.001
Participant 41.71 13 <0.001
Image content x Artifact type 3.00 2 0.051
Artifact type x Energy level 0.163 4 0.957
Image content x Energy level 0.566 8 0.806
TABLE Il

RESULTS OF THE ANOVA FOR EXPERIMENT 1 TO EVALUATE THE EFFECT OF EDGE GHOSTING AND COLORED NOISE ON THE
DIFFERENT IMAGES

F-value Df p
Image content 20.39 2 <0.001
Artifact type 386.30 1 <0.001
Energy level 38.50 4 <0.001
Participant 38.13 14 <0.001
Image content x Artifact type 12.02 2 <0.001
Image content x Energy level 10.89 8 <0.001
Artifact type x Energy level 10.74 4 <0.001
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In conclusion, by investigating the relative impact on perceived image quality of four distortion types
(i.e. ghosting, edge ghosting, white noise and colored noise), we find that the impact of the artifacts
on image quality strongly depends on the specific content of the MR image. When neglecting this
dependency (i.e. interactions with energy level and image content), in general “unstructured” artifacts
deteriorate quality less than “structured” artifacts. This study provides an example of how insights
about perceptual image quality may be gained in the context of medical image acquisition, and
findings in such studies may be embedded in real-world MR imaging systems to optimize the image
rendering to the perception of users.

Quality assessment in medical image compression

With the explosive growth of medical digital image data being acquired every day, the medical
communities have gradually recognized the need of effective methods of storing and transmitting
medical images of large volumes. There has also been a general acknowledgement that lossless
compression techniques, with low rates of data compression, are no longer enough to achieve the
adequate compression efficiency desired in practice. Therefore, it is necessary to consider
substantially higher compression rates using lossy compression methods. However, lossy compression
involves loss of information and possibly visual quality, thus it becomes essential to be able to
determine the degree to which a medical image can be compressed before its diagnostic quality is
compromised.

Currently, the radiological community has not yet accepted a single standard methodology for the
quality assessment of medical images. Recommended compression ratios (CR) for various modalities
and anatomical regions have been published. To date, these recommendations have been based on
experiments in which radiologists subjectively score the diagnostic quality of compressed images.
There are several drawbacks of such an approach. First, subjective testing is time-consuming and
expensive. As a result, only a small set of images can be properly assessed in a typical test. Second, it
is difficult to rely on subjective testing in the design and optimization of automated image
compression and transmission systems. Therefore, it is highly desirable to find computational models
and algorithms that can be used for objectively assessing the diagnostic quality of compressed medical
images.

In the literature of image processing and image compression, the quality of an image are characterized
objectively in several ways. Practitioners most often employ the mean squared error (MSE) and its
close relative, peak signal-to-noise ratio (PSNR), even though MSE and PSNR are known to correspond
poorly to visual quality. A more recent image fidelity measure, the structural similarity index (SSIM),
measures the similarity between two images by combining three components of the human visual
system —luminance, contrast and structure. Assuming one of the images being compared is of pristine
quality, the SSIM result has been shown to be a much more reliable prediction of perceived image
quality of the other image in a wide range of applications. While SSIM is becoming popular in many
other image processing fields, its accuracy and reliability in assessing medical images are yet to be
thoroughly tested.
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In this section, we discuss a study that examines whether compression ratio (CR), MSE, quality factor
(QF, the input parameter to JPEG compression algorithm), and SSIM actually serve as reliable
indicators of the diagnostic quality of medical images. This is done by comparing the quality
predictions of these metrics with subjective tests that involve radiologists.

Subjective Experiment

A subjective experiment is designed in order to assess the quality prediction performance of the image
quality assessment being examined. The experiment employs five neurological and five upper body
slices extracted from the Cancer Imaging Archive. These images are first windowed according to their
default settings to reduce their bit-depth from 16 to 8 bits per pixel (bpp). Each of the resulting 512 x
512 pixel, 8 bpp images are compressed at five compression ratios using both the JPEG and JPEG2000
compression algorithms. Preliminary visual observations are used to select the compression ratios
employed in the experiment. An image viewer software is constructed specifically for this study in
order to provide an easy-to-use graphical interface for the radiologists. The viewer displays a
compressed image beside its uncompressed counterpart. The compressed images are presented in
random order. During the course of the experiment, each compressed image is presented twice to
each radiologist, but without the radiologists' knowledge. The subjects are not made aware of the
compression ratios or quality factors used to generate the compressed images. Two buttons were
placed at the bottom of the user interface: acceptable and unacceptable. In the experiment, the
radiologist subjects are instructed to flag an image as unacceptable in the case they believe there is
any noticeable distortion that could have any impact on diagnostic tasks. The experiment is designed
to last about one hour for each radiologist subject.

Objective Quality Metrics
Let f denote an M x N digital image and g its compressed counterpart. The standard measure of error
between f and g is the Mean Squared Error (MSE), defined as

M N
1 . Cog2
MSE (f,g)=—— fd,jp-gd, ,
(f.9)=—1 21;[ (i, -9, )
where M and N are the height and width of the images, respectively. The MSE essentially defines a
distance between fand g. The more distortion there is in the compressed image g, the higher the MSE
value (If f and g are identical, then MSE = 0). The SSIM index between two images f and g is obtained

by computing the following three terms, including the mean

the variance

and the covariance
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These terms are combined as follows to compute the SSIM index between images f and g:

2 +C 2 +C +C
SSIM (f,g) = ;Uflug2 1 20'f0'gz 2 O 1q 3|
ui +ug+Cy lof+og+Cy |0ty +Cy

The SSIM index ranges between -1 and 1. It measures the similarity between f and g. The closer f and

g are to each other, the closer SSIM is to the value 1. If f and g are identical, then SSIM = 1. The (non-
negative) parameters C;, C; and C; are stability constants of relatively small magnitude. For natural
images, there are some recommended default values, and the question of optimal values for medical
images is still an open one. The smaller the values of these constants, the more sensitive the SSIM
index is to small image textures such as noise. Note that in the special case C; = C;/2, the following
simplified, two-term version of the SSIM index is obtained:

SSIM (f,g):[ 2ppg +C J( 2014 +C, J

,u%+,ué+C1 O'%+G§+C2

When structural fidelity is of the main concern, one may focus on only the second term, i.e., the
structure term. Note that MSE is an error measure (the lower the better quality) while SSIM is a
similarity measure (the higher the better quality). In order to be able to compare their results more
conveniently, we define the following quantity,

SMSE (f’g)zl_wl

D
where D is a constant. Using this definition, we now have that if f and g are “close”, then both SSIM
and SMSE are near 1.

Another variation in the computation of SSIM is the local SSIM, for which one can employ any or all of
the above formulas to compute SSIM values between corresponding local windows of two images.
When such local windows slide pixel by pixel across the image, one obtain an SSIM quality map
between two images f and g on a pixel-by-pixel basis — the map reveals local image
similarities/differences between images f and g. A total SSIM score may then be computed by
averaging over all the local SSIM values.

Data Analysis

Data analysis here mainly aims to examine how well different “image quality indicators”, e.g.,
compression ratio, MSE, quality factor, SSIM, compare to the subjective assessments of image quality
by radiologists. The receiver operating characteristic (ROC) curve is a common tool for assessing the
performance of a classifier in medical decision making. ROC curves illustrate the trade-off of true
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positives versus false positives as the discriminating threshold is varied. For our purpose, we perform
ROC analysis by assuming the “ground truth” as whether or not a compressed image is acceptable or
unacceptable by radiologists, and by defining the following terms:

e P (total positive) = FP + TP and N (total negative) = TN + FN: These refer to radiologists’
subjective opinions, which represent the True class. On the other hand, PO and NO belong to
the Hypothesis class which, in our experiment, corresponds to a given quality assessment
method, i.e., SSIM, MSE, quality factor, and compression ratio.

e TP (true positives): images that are acceptable to both radiologists and a given quality
assessment method.

e TN (true negatives): images that are unacceptable to both radiologists and a given quality
assessment method.

e FN (false negatives): images that are acceptable to radiologists but unacceptable to a quality
assessment method.

e FP (false positives): images that are unacceptable to radiologists but acceptable to a given
quality assessment algorithm.

The values of all these terms are determined by a discrimination threshold that vary between 0 and 1.
Each threshold value generates a point on the ROC curve which corresponds to a pair of specificity (SP)
and sensitivity (SE) values given by

FPR (false positive rate) = FP/N = 1 - SP (specificity)
TPR (true positive rate) = TP/P = SE (sensitivity)

Let the threshold value changes from 0 to 1, we obtain an ROC curve for each image quality model
being tested. Performance measures are then computed based on the ROC curves.

Area Under Curve (AUC) Test: The AUC can be computed by integrating the ROC curve using the
trapezoidal rule. Larger AUC values correspond to better performance. It is possible that two ROC
curves cross. In this special situation, one method might demonstrate better performance for some
threshold values whereas another method behaves better for other values. In this case, a single AUC
may not be the best performance predictor.

Kolmogorov-Smirnov (KS) Test: Given two cumulative probability distributions P1(x) and P,(x), their KS
statistic is defined as

KS (P, Py) =sup | P (X) =Py (X)].

In our study, P; and P, are the cumulative distributions of positive and negative radiologists’ responses,
respectively. The larger the difference between the two distributions, the better the performance of
a given model. For a given threshold s’ in [0, 1], we have the following relations:

Cumulative Probability Distribution of negatives = TN/(TN + FP) = 1 — FPR;
Cumulative Probability Distribution of positives = FN/(FN +TP) = 1 - TPR.
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Thus, the KS statistic translates to

KS =sup | TPR(X)— FPR(X)]|.
X

A related idea is the Youden index. For a given discriminating threshold s, the Youden index is given
by Y(s) = TPR(s) — FPR(s). Now suppose that the maximum value of Y(s) occurs at s = so. Then we have

KS =Y (s,) .

The data points accumulated in the subjective experiment include the two image types (brain CT and
body CT) and the two compression methods (JPEG and JPEG2000). Table Ill shows the AUC comparison
results of QF, CR, MSE and SSIM for all images as well as the breakdown results for JPEG images only,
JPEG2000 images only, brain CT images only, and body CT images only. Such analysis in terms of image
types is particularly important since different classes of images compressed by different compression
algorithms possess different characteristics which may yield different types and levels of compression
artifacts. In all cases, the highest AUC values correspond to the SSIM index quality measure. In Table
IV, the analysis is further split into four cross-cases of JPEG-Brain CT images, JPEG-body CT images,
JPEG2000-brain CT images, and JPEG2000-body CT images, respectively. Once again, the SSIM index
quality measure consistently yields the highest AUC values. This suggests that of the four quality
measures under comparison, SSIM performs the best in modeling radiologists’ subjective assessments
of compressed images when the AUC is used as a performance indicator.

TABLE 11l
AUC PERFORMANCE COMPARISON OF CR (COMPRESSION RATIO), QF (QUALITY FACTOR, FOR JPEG
COMPRESSION ONLY), MSE AND SSIM

Quality Model JPEG JPEG2000 Brain CT Body CT All
QF 0.9401 - - - -
CR 0.8372 0.7573 - - -
MSE 0.9101 0.8691 0.8524 0.9226 0.8900
SSIM 0.9485 0.9330 0.9447 0.9389 0.9471
TABLE IV

BREAKDOWN AUC PERFORMANCE COMPARISON OF CR (COMPRESSION RATIO), QF (QUALITY
FACTOR, FOR JPEG COMPRESSION ONLY), MSE AND SSIM

Quality Model | JPEG-Brain CT | JPEG-Body CT | JPEG2000-Brain CT JPEG2000-Body CT
QF 0.7424 0.9332 - -
CR 0.6818 0.8926 - -
MSE 0.7424 0.8749 0.8859 0.8750
SSIM 0.7828 0.9492 0.9204 0.9577

Table V reports the KS analysis results when all applicable images are used for evaluation. As expected,
the KS statistical results, i.e. the degree of separation between acceptable and unacceptable images
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to radiologists, are consistent with those of the AUC analysis. The largest KS value is achieved by SSIM
(81%), followed by JPEG QF (78%) and MSE (64%), and CR yields the lowest KS value (60%). Notice that
CR and QF are applied to JPEG compressed images only, while MSE and SSIM are applied to all images
employed in the subjective test.

TABLEV
KS PERFORMANCE COMPARISON OF CR (COMPRESSION RATIO), QF (QUALITY FACTOR, FOR JPEG
COMPRESSION ONLY), MSE AND SSIM

Quality Model | Test Images K-S Statistics
QF JPEG only 77.65%
CR JPEG only 59.68%
MSE All 64.40%
SSIM All 81.09%

In summary, using both the AUC (area under ROC curve) and the KS (Kolmogorov-Smirnov) analyses,
the current results indicate that compression ratio (CR) demonstrates the poorest performance of the
four quality measures being examined. Quality factor (QF) provides moderately reasonable quality
predictions on JPEG images, but since it is a parameter used to control JPEG compression, it is
applicable to JPEG compressed images only and will not generalize to other compression methods or
other types of image distortions. Furthermore, MSE performed inconsistently as an indicator of
visual/diagnostic quality. Finally, among the four image quality measures, SSIM shows the best
performance, i.e. SSIM provides the closest match to the subjective assessments by the radiologists.

Summary and Remarks

With the rapid growth of digital image acquisition, processing, transmission and display technologies
in medical imaging field, it has become ever more important to understand how such technologies
affect the perceived image quality, which may have strong impact on the diagnostic values of these
images. This chapter provides a basic introduction of the methodologies that have been used to
measure the perceptual quality of medical images using image acquisition and image compression as
examples. The processing and measurement of medical images are often different from those of
typical natural images, because medical imaging applications often involve significant domain
knowledge that needs to be fully understood and taken into consideration in both the quality
assessment and data analysis processes. These are clearly exemplified in the MR image acquisition
and CT image compression applications elaborated in the current chapter.

Quality assessment of medical images is still at a fast evolving stage, and by no means has this chapter
provided a comprehensive coverage of all the problems and methodologies in the field. It is worth
noting that promising technologies, such as the SSIM index as a novel objective image quality model
discussed in this chapter, is gaining significant attention recently. The potential benefits of developing,
validating and deploying such objective image quality assessment methods are not limited to
monitoring the acquisition, storage, communication, processing, and display of medical images for
quality control purposes, but also to the optimal design of novel medical imaging methods and
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systems that could deliver even better image quality in more cost-effective ways than what we have
in the current systems.
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