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Abstract—The most widely used video encoders share a com- constraint, where the latter is generally achieved by lossy video
mon hybrid coding framework that includes block-based motion  coding technologies.
estimation/compensation and block-based transform coding. De- The widely used video coding schemes are lossy for two

spite their high coding efficiency, the encoded videos often exhibit Firstlv. Sh s th ts the limit of lossl
visually annoying artifacts, denoted as Perceivable Encoding reasons. Firstly, annons theorem sets the limit o 10ssiess

Artifacts (PEAs), which significantly degrade the visual Quality- coding, which cannot fuffill the practical needs on video
of-Experience (QoE) of end users. To monitor and improve visual compression. Secondly, the Human Vision System (H\Z$) [
QOE, it is crucial to develop subjective and objective measures js not uniformly sensitive to visual signals at all frequencies,
that can identify and quantify various types of PEAs. In this \ynich allows to suppress certain frequencies with negligible
work, we make the first attempt to build a large-scale subject- - . .
labeled database composed of H.265/HEVC compressed vide04OSS of perceptual quality. The State_'Of'the'a.rt video coding
containing various PEAs. The database, namely the PEA265, in- Schemes, such as H.264 Advanced Video Coding (H.264/AVC)
cludes 4 types of spatial PEAsi(e. blurring, blocking, ringing and  [3], H.265 High Efficiency Video Coding (H.265/HEVC}],
color bleeding) and 2 types of temporal PEAsi(e. flickering and  Versatile Video Coding (VVC) §], Google VP8/VP9 ],
floating). Each containing at least 60,000 image or video patchesm, China’s Audio-Video coding Standards (AVS/AVS2Y]]

with positive and negative labels. Based on the PEA265 database, 9 dopt th i | hvbrid vid di truct
we develop and optimize Convolutional Neural Networks (CNNs) [], adop e conventional hybrid video coding structure.

to objectively recognize different types of PEAs. Experiments This infrastructure, originated from 19805(], consists of a

show that our architecture is capable of identifying the 6 types group of standard procedures including intra-frame prediction,
of PEAs with an accuracy over 86%. To further demonstrate inter-frame motion estimation and compensation, followed
its application, we explore the relationship between collected by spatial transmission, quantization and entropy coding.

PEA intensities and subjective quality scores of compressedT facilitate th functi . id £l 4 th
videos. A quality metric is consequently proposed with superior 0 lacilitate these lunctions In videos of large sizes, the

performance in terms of correlation to Mean Opinion Score €ncoder further divides the frames into slices and coding
(MOS) values. We believe that the PEA265 database and our units. Thereby, when the bitrate is not sufficially high, the
findings will benefit the future development of video quality compressed video encompasses various types of information
assessment methods and perceptually motivated video encodersiOSS within and across blocks, slices and units, resulting in
visually unnatural structure impairments or perceptual artifacts
Index Terms—Video coding, video compression, video quality [11]. These Perceivable Encoding Artifacts (PEAs) greatly

assessment, perceptual encoding artifacts, H.265/HEVC. degade the visual Quality-of-Experience (QoE) of userg [
Re@nt developments have greatly put forward the 4K/8K
|. INTRODUCTION era and user-centric video coding and delivery has become ever

) ] ) important [L3]. Meanwhile, the advancements of computing

T HE last decade has witnessed a booming of High Definqgnetworking technologies have enabled deep investigations

nition (HD)/Ultra HD (UHD) and 3D/360-degree videosyp recognition and quantification of video artifacts. Gaetg
due to.the rapid developments of vi(_jeo captqring, tr_ansmissigp [14] presented a visual-masking-based method to estimate
and .dlsplay technologles.. According to Cisco Visual Netzgons with temporal pumping artifacts in video coding.
working Index (VNI) [1], video content has taken over 2/3y [15), ringing artifacts were detected and suppressed with
bandwidth of current broadband and mobile networks, a”§base approach in image coding. Toed al. [16] presented
will grow to 80%-90% in the visible future. To meet suchyy gmproach to detect different types of artifacts introduced by
a demand, it is necessary to improve network bandwidth agfieo coding, processing and delivery, in which the video cod-
maximize video quality under a limited bitrate or bandwidtihg artifacts were categorized as the same class for analysis.

. . . _ . Tao eliminate the negative effect of artifacts, great efforts have
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(a) Reference frame (b) Compressed frame with blurring artifact

Fig. 1: An example of blurring artifact.

(a) Reference frame (b) Compressed frame with blocking artifact

Fig. 22 An example of blocking artifact.

quality. In [28], we also utilized the Generative Adversarial (2) An objective PEA recognition approach based on CNN.
Network (GAN) to develop a PEA removal strategy in th&or each type of PEA, we construct and compare deep CNNs
post-processing of video coding. On the other hand, the identity whether it exists in an image/video patch. The
coding artifacts are also utilized to evaluate the comgetssmplemented Dense Convolutional Network (DenseN&tj [
video quality besides of conventional quality metrics sash and ResNeXt}6] achieve the state-of-the-art performances in
Sum of Absolute Differences (SAD), Sum of Squared Erroterms of PEA recognition.

(SSE), Peak-Signal-to-Noise Ratio (PSNR), and Structural(3) An objective quality metric based on PEA recognition.
SIMilarity (SSIM) index 9. In [3(], the compression artifact By summarizing PEA intensities, we obtain an overall measur
was observed to have significant impacts on H.264/Av®n a compressed video, which helps characterize the sivaiect
compressed video quality, especially for blocking, blhwgrand annoyance of PEAs caused by video coding. The opposite
color bleeding. Recently, the blocking and blurring adifa of this measure formulates a quality with high correlation t
have been exploited to develop no-reference video qualiybjective scoring, which is superior to several existiitgo
models B1]-[33. quality assessment algorithms.

The above great efforts focus on the most common PEAsThe rest of the paper is organized as follows. In Section
including blocking and blurring. In34], the authors elaborated!l, we discuss diversified PEAs in H.265/HEVC and select 6
the features and possible reasons of diversified PEAs dpges of PEAs for our database. In Section Ill, we elaborate
provided a detailed taxonomy of PEAs beyond the blockirffe details of our subjective database including video srce
and blurring artifact. To further analyze these PEAs, higireparation, subjective testing and data processing.iddect
level processing with deep neural works is strongly reqlirelV presents our deep-learning-based PEA recognition.i@ect
However, a large-scale dataset is a necessity to develgp d¥eintroduces the PEA-based measurement and explores its
infrastructure for PEA recognition. To address this issugpplication in video quality analysis. Finally, Section VI
we have developed both a PEA database and a CNN-basetcludes the paper.
recognition approach. The contributions of this work are
summarized as follows: II. PEA CLASSIFICATION

(1) A large-scale database of compressed videos with subin this section, we review the PEA classification i®/]
jectively labeled PEAs. 6 types of PEAs are selected fohert and select typical PEAs to develop our subjective database.
labelling. We utilize the H.265/HEVC to encode a group ofccording to this work, the PEAs are classified into spatial
standard sequences and recruit users to mark all types of PEa#nd temporal artifacts, where spatial artifacts includering,
Finally, we cut the marked sequences into image/video patclblocking, color bleeding, ringing and basis pattern effect
with positive and negative PEA labels. In total, there are t8mporal artifacts include floating, jerkiness and flickgriln
typical PEAs and at least 60,000 positive or negative labelss work, we select blurring, blocking, color bleedingiging
are given for each type of PEA. of spatial artifacts and floating, flickering of temporalifartts



(a) Reference frame (b) Compressed frame with ringing artifact

Fig. 3: An example of ringing artifact.

(a) Reference frame (b) Compressed frame with color bleeding artifact

Fig. 4: An example of color bleeding artifact.

in the development of our database. Basis pattern effect ghd pseudo structure may appear near strong edges (high con-
jerkiness artifacts are excluded because: 1) the basisrpattrast), which manifests artificial wave-like or ripple sttures,
effect has similar visual appearance and has similar otin denoted as ringing. A ringing example is given in the marked
the ringing effect; 2) the jerkiness artifacts are causeittage rectangular region in Fig3 (b).
capturing factors such as frame rate instead of compressiord) Color bleeding:The chromaticity information is coarse-
We summarize the characteristics and plausible reasons dfy 6quantized to cause color bleeding. It is related to the
typical types of PEAs as follows. presence of strong chroma variations in the compresseckisnag
leading to false color edges. It may be a result of inconsiste
image rendering across the luminance and chromatic ch&nnel
A color bleeding example is provided in the marked rectan-
Block-based video coding schemes create various spatjalar region in Fig4 (b), which exhibits chromatic distortion
artifacts due to block partitioning and quantization. That&l and additional inconsistent color spreading in the remdgeri
artifacts, with different visual appearances, can be ifledt result.
without temporal reference.
1) Blurring: Aiming at a higher compression ratio, the )
HEVC encoder quantizes transformed residuals discrgpanff- Temporal Artifacts
When video signals are reconstructed, high frequency gnerg Temporal artifacts are manifested as temporal information
may be severely lost, which may lead to visual blur. Percejpss, and can be identified during video playback.
tually, blurring usually appears as the loss of spatialitbeta 1) Flickering: Flickering is usually frequent brightness or
sharpness of edges or texture regions in an image. An examgéor changes along the time dimension. There are different
is shown in the marked rectangular region in Figb), which  kinds of flickering including mosquito noise, fine-granitiar
demonstrates the spatial loss of the basketball field. flickering and coarse-granularity flickering. Mosquito smiis
2) Blocking: The HEVC encoder is block-based, and akigh frequency distortion and the embodiment of the coding
compression processes are performed within non-overthpgdfect in time domain. It moves together with the objecte lik
blocks. This often results in false discontinuities acrolsEk mosquitoes flying around. It may be caused by the mismatch
boundaries. The visual appearance of blocking may be diff@rediction error of the ringing effect and the motion comgsen
ent subject to the region of visual discontinuities. In Fg. tion. The most likely cause of coarse-granulating blinkimay
(b), a blocking example of the horse tail is highlighted ie thbe luminance variations across Group-Of-Pictures (GOPs).
marked rectangular region. Fine-granularity flickering may be produced by slow motion
3) Ringing: Ringing is caused by the coarse quantizatioand blocking effect. An example is given in the marked
of high frequency components. When the high frequencgctangular region in Figh (b). Frequent luminance changes
component of oscillating structure has a quantizationrerr@n the surface of the water produce flickering artifacts.

A. Spatial Artifacts



(a) Reference frame (b) Compressed frame with flickering artifact

Fig. 5. An example of flickering artifact.

(a) Reference frame (b) Compressed frame with floating artifact

Fig. 6: An example of floating artifact.

2) Floating: Floating refers to the appearance of illusory

120 1

movements in certain areas rather than their surrounding . SN
environment. Visually, these regions create a strongidhus 100 x * Noot
as if they were floating on top of the surrounding background. g D N0
Most often, a scene with a large textured area such as wate  *°] 13 * §§§
or trees is captured with cameras moving slowly. The floating - .| 5 No.10
artifacts may be due to the skip mode in video coding, which ; v b Noaz
simply copies a block from one frame to another without 401 " TN
updating the image details further. Fig.(b) gives a floating ol . ¥ Nowr
example. Visually these regions create a strong illusioif as o I New
they were floating on top of the leaves. 0 . N
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I1l. THE PEA265 DATABASE Fig. 7. The distributions of SI and TI for all CTC sequences.

The development of the PEA265 database is composed
of four steps: preparation of test video sequences, silgect To further examine the representativeness of these video
PEA region identification, patch labeling, and formatiortttd  sequences, we also calculate their Spatial Informatiol (Sl
PEA265 database. and Temporal Information (TI) values. The Sl and TI were
defined in ITU-T P. 910 ¢ to depict the maximal spatial
gradient intensity and maximal temporal discontinuity ofeo
contents, respectively. From Fi@, the selected sequences

We develop the PEA265 database using the popular videaver a vast region of SI and Tl values,g. No. 1 video
encoder H.265/HEVC. To examine the performance of vidé®s relatively simple in spatial and temporal domains, witile
encoders, a standard encoding procedure, namely the Common 16 video is highly complex in both domains. Therefore,
Test Conditions (CTC){7], was recommended by the Jointhe 23 standard video sequences are sufficiently representa
Collaborative Team on Video Coding (JCT-VC). The CT@nd meet the requirements of the database construction.
recommends a set of standard video sequences as summarizéthe above video sequences are sampled with YUV4:2:0 for-
in Tablel, which are set as the test video sequences of auat and further compressed video with H.265 video encoder
database. These sequences are further categorized bgsclassider the settings designated by CTC. Four types of coding
according to their definitions, frame rates and contents. Bjructures, including All Intra (Al), Random Access (RA),
testing video sequences in all classes, we attempt to colzew Delay (LD) and Low Delay P (LP) are employed to show
enough types of PEAs in our database. their effects on compression and PEAs. It is noted that parts

A. Test Video Sequences
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Fig. 8 Positive/negative patch labeling for spatial PEAs.
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(a) Patch labeling in compressed video frames (b) Patch labeling in corresponding reference video frames
Fig. 9: Positive/negative patch labeling for temporal PEAs.

TABLE | : Testing sequences.

No | Class Sequence (Resolution) Frames| Frame rate| No | Class Sequence (Resolution) Frames| Frame rate
1 A Traffic (2560x 1600) 150 30fps 13 C BasketballDrill (832x480) 500 50fps
2 A PeopleOnStreef2560x 1600) 150 30fps 14 D RaceHorse4416x 240) 300 30fps
3 A NebutaFestival2560x 1600) 300 60fps 15 D BQSquare(416x 240) 600 60fps
4 A SteamLocomotivé2560x 1600) 300 60fps 16 D BlowingBubbleg416x 240) 500 50fps
5 B Kimono (1920x 1080) 240 24fps 17 D BasketballPas$416x 240) 500 50fps
6 B ParkSceng1920x 1080) 240 24fps 18 E FourPeople(1280x 720) 600 60fps
7 B Cactus(1920x 1080) 500 50fps 19 E Johnny(1280x 720) 600 60fps
8 B BQTerrace(1920x 1080) 600 60fps 20 E KristenAndSarg(1280x 720) 600 60fps
9 B BasketballDrive(1920x 1080) 500 50fps 21 F BaskeballDrill Text(832x 480) 500 50fps
10 C RaceHorse$832x480) 300 30fps 22 F SlideEditing (1280x 720) 300 30fps
11 C BQMall (832x480) 600 60fps 23 F SlideShow(1280x 720) 500 20fps
12 C PartySceng832x480) 500 50fps

of structures may not be supported for some video sequenadksubjects are asked to watch these sequences and cirdle PE
subject to the CTC configurations. For each supported pairrefjyions. The test sequences are presented in random otider. A
sequence and coding structure, four Quantization paramet®/UHD are displayed on a 5K screen while other sequences
(Qp) values of 22, 27, 32 and 37 are utilized to show the visuale watched on an HD screen. Neither zooming nor sampling
results under different information losses. For consistethe operation is involved to avoid additional artifacts. Mt

output bit depths of all videos are set to 8. In total, thedereaks are set during the formal-testing to avoid visuéd fet.

are 324 outputs with different contents, resolutions, r©gdi 30 subjects participated in the subjective experimentyding

structures and/or Qps. 14 males and 16 females-aged between 20 to 22. We divide
the 30 subjects into 6 groups in order to respectively mark
the six types of PEAs. In each group, 5 subjects are asked
to go through all sequences to circle out the same type of

In order to identify all PEAs, we ask subjecise(testees) PEA with an ellipse shape. A region is marked by either

to label all video sequences. Our testing procedure followsbject is considered a PEA region. To avoid mislabelling, a
the ITU-R BT.500 B9 document with two phases. In the pretutor is responsible to double-check the results of all scisj

training phase, all subjects are told about our testing @roaand exclude incorrect labels. We are pleased to observe a
dures and trained to identify PEAs. In the formal-testinggeh

B. Subjective PEA Region Identification



promisingly high accuracy of labelling. TABLE Il : The number of samples in PEA265.

Types Positive samples| Negative sampleg

C. Patch Labeling Blocking 26750 41600

During the subjective test, PEA regions were marked and Blurring 35268 42336
saved in binary format. Based on the marks, we derived Color bleeding 27033 33816
p(;?lititve aTddpegativsl patchels li)n IIr_ectangular or cuboideshap Ringing 26325 41333
whilst excluding ambiguous labelling. —

1) Spatial agr]tifacts:g For spatial %rtifacts, we label the F“Cke_”ng 26783 37250
patches by a sliding window of 222. In a compressed Floating 27000 35668

video, if at least half of the pixels within the sliding windo
belong to this circled region, it is labeled as positive guttise
negative. Patches belonging to the corresponding frame of IV. CNN-BASED PEA RECOGNITION
uncompressed video are randomly selected and categoszed
negative, whether or not they are co-located within theleitc d
region. The ratio between the numbers of the two types
negative patches is 1:2. The labeling process is illusdrate
Fig. 8.
2) Temporal artifacts:Temporal PEAs appear in a group o
successive video frames. Therefore, a few successive rame
are extracted when_a subj(_act pauses video playback W.dThe Proposed PEA Recognition Models
marks a temporal artifact region. With a tradeoff between th
minimum reaction delayi.e. the human reaction speed sets a We exploit the popular CNN architectures of DenseNet
delay between the first glance of temporal PEA and the PERd ResNeXt to the detection and identification of PEAs.
marking) and the maximum video fragmene(a unified and These architectures are also further improved to aim atla hig
small size of video patch for easy processing of deep neuf@€ognition accuracy.
works), we utilize the current and its 9 previous frames to 1) ResNeXt networkAs an improved version of popular
formulate the temporal PEA patch. Considering the temporaesidual Network (ResNet){], the ResNeXt was proposed
PEA lasts for frames, the most probable temporal PEA regiby He et al. in 2017 [36]. Based on a repeated topology
will be involved. After that, the video fragment is furtherof blocks, this network architecture successfully incesas
checked by a spatial sliding window of %Z2: if at least the accuracy of image classification with reduced compfexit
half of the pixels in this window are within the circled regio in hyper-parameters. Due to its advantage, the ResNeXt has
then the corresponding cuboid is labeled as positive, aiiser been widely applied in processing of various types of images
negative. Similar to spatial artifacts, negative temppedthes including face, gesture and medical images.
are also obtained from co-located region in the uncompeesse In this work, we have tuned the parameters of ResNeXt
sequences. This process is illustrated in Big. to adapt to the PEA recognition problem. Besides, we also
In summary, considering the temporal PEAs are only visiblsptimize the ResNeXt architecture to identify various PEAs
when the frames are displayed, it is impossible to ask tith complex features. This leads to a ResNeXt for PEA
human testees to track them frame-by-frame and pixel-bRecognition (ResNeXt-PR) model. Squeeze and Excitation
pixel. Instead, we utilize a careful patch labeling strgteg (SE) Block [1] is embedded to obtain decent feature ex-
mentioned above to ensure that only the most probable p@sitiraction. Batch Normalization (BN)[] is deployed after the
and negative clips/patches are included in our database. Tonvolutions to exclude the impacts of internal covariance
ambiguous data are naturally excluded to eliminate ostiier shifts. Rectified Linear Unit (ReLU) is performed right afte

3 this section, we explore the utility of our PEA265
tabase by developing CNN-based PEA recognition methods.
Bﬁe to the high-level syntax in the characteristics of PEAS,

is preferable to utilize deep learning for PEA detectionr Ou
fdatabase provides training and testing sets for this task.

our database. each BN. Finally, the output of ResNeXt-PR is expressed as
follows:
D. Formation of the PEA265 Database y = h(z) + F(x, W), (1)
After marking all types of PEAs, we segmented the la-
beled sequences into image/video patches with positive and X1 =f(n), 2

negative PEA labels. A manually examination was performed

for random samples to ensure the quality of patch labellingherex; is the input of theth residual modulel (z;) refers

In total, the PEA265 database covers 6 types PEAs thatan identity map,J¥; denotes a set of weights associated
includes 4 types of spatial PEAs (blurring, blocking, rimgi with [ residual modulesF (x;,W;) represents the residual
and color bleeding) and 2 types of temporal PEAs (flickerinfynction. f (y;) is the ReLU activation function. Therefore,
and floating). As shown in Tablé, each type of PEAs containsh (x;) and f (y;) are all equally mapped in ResNeXt-PR,
at least 60,000 image or video patches with positive amédmelyh (z;) = x; and f (y;) = y. Then, in the forward
negative labels, respectively. All types of PEAs are stared direction of training and backpropagation phase, signafs c
binary format and of size #272. Each PEA patch is indexedbe passed directly from one unit to another, which simplifies
by its video name, frame number, and coordinate position.the training process.
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ig. 10 DenseNet for PEA Recognition (DenseNet-PR).

I

2) DenseNet networkAnother deep CNN architecture ex-
amined in this work is the popular DenseNet, which was pr
posed by Huangt al.in 2017 [35]. With a similar basic idea

T
30% 50%
0

[y
T

to ResNet, the new network aims to build dense connecti ~ £°8 ]
between layers in a feed-forward fashion. It strengthees t 8, ——reoae sampes] |
feature propagation while alleviating the vanishing-geats. 5
In the framework, each layer obtains additional inputs froi %0-4’

o)

all preceding layers and passes on its own feature-maps
all subsequent layers. Consequently, telayer receives the
feature maps of all preceding layets,...;z;—1, as input:

o
[N
T

o
T
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Number of PEA samples

Xo= Hi ([0, 21, 21-1]) ©) Fig. 11: Threshold distribution of PEAs.

where H,(.) is defined as a composite function of thre?s determined as follows:
consecutive operations: BN, ReLU and & 3 convolution. '
[0, %1, ...,m—1] refers to the concatenation of the feature- X, = Facate (7, 5)
maps produced in layefs ..., 1 — 1. NG

The DenseNet is also optimized to adapt to our PEA recog- c
nition problem, resulting in a DenseNet for PEA Recognition - Z 03 % Xl/s‘| ~
(DenseNet-PR) in Figl0. First of all, we introduce a deep =1

separable convolution and SE block to the original botit&ne H W

To learn the characteristics of feature channel in a deepel,| o | Wao b Z Z e (i, §) Wi 7

the 3x3 standard convolution in the Dense Block is split into HW — =

a 3x3 and a k1 pointwise convolution. Then, we embed an )

SE Block between each Dense Block and the transition layer.

The squeeze and excitation operations enhance the importgRere § refers to the ReLU function}V; € R$*C and
features of the training samples. It also reuses importamt, ¢ RC*% . 5 andr denote sigmoid activation and reduction
features of the transition layer to increase the recogniti@atio, respectivelyz, represents the output from the multipath
accuracy. The transition layers consist of a BN layer andFense Blocks via the squeeze operatieris the output of
1x1 convolutional layer followed by a’22 average pooling the expansion operation, which takes the result0és input.
layer. Finally, the softmax classifier is applied to returfisa ¢, denotes theth convolution core. H and W are the spatial
of probabilities. dimensions of feature maps in the SE Block.

The label with the largest probability is chosen as the final
classification. Through a series of nonlinear transforamsi g | gss Function for PEA Recognition

h f single Dense Block i fin follows: L
the output of single Dense Block is defined as follows In subjective test, the users are unable to mark all PEAs

pixel-by-pixel due to the huge amount of data and charac-
X, = Hy ([z0, Ty (x0) , Ty (z1) - -+, Ty (w1—3) , Ty (21-2)]) , teristics of perception artifacts. Instead, we ask the suser
(4) present a coarse labelling to video patches, as discussed in
Section lll. The imperfect dataset leads to a high negative
labelling and thus decrease PEA recognition accuracy.dn Fi
where T} (x,—1) denotes the input ofith inverted residual 11, we randomly select 10,000 samples and observe their
block, which is the nonlinear transformed output(ef— 1)th  thresholds in classification. 50% of positive samples arfh 70
layer feature connections. Finally, the output of the SEcBIlo of negative samples have high prediction accuracies close t
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Fig. 12 Cross Entropy Loss Function for PEA Recognition (LF-PR).

TABLE Il : Traning/testing accuracies of ResNeXt, DenseNet andropraved models.

PEAS ResNeXt ResNeXt-PR DenseNet DenseNet-PR
Training | Testing | Training | Testing | Training | Testing | Training | Testing
Blocking 0.9501 | 0.9320 | 0.9423 | 0.9358 | 0.9503 | 0.9369 | 0.9679 | 0.9568
Blurring 0.9491 | 0.8811 | 0.9307 | 0.8845 | 0.9457 | 0.9265 | 0.9551 | 0.9387
Ringing 0.8682 | 0.8929 | 0.9040 | 0.8863 | 0.9135 | 0.8879 | 0.9063 | 0.8976
Color bleeding| 0.9412 | 0.9232 | 0.9306 | 0.9230 | 0.9432 | 0.9385 | 0.9589 | 0.9403
Flickering 0.8621 | 0.8426 | 0.8552 | 0.8516 | 0.9167 | 0.8956 | 0.9193 | 0.9068
Floating 0.8398 | 0.8225 | 0.8595 | 0.8396 | 0.8683 | 0.8413 | 0.8852 | 0.8606

1, thus they are considered as easy samples; the othersvarere the valueil varies from 1 to 5 to dynamically scale
hard samples. The dominated easy samples would overwhelan entropy loss, as shown in Fig2 (a). To observe the
training process and inevitably result in degenerate nsodel impact of LF-PR, a positive example is given in Fitj2
common solution to this problem is hard example miniag [ (b) where its loss curve is compared with that of LF-CE.
that samples hard examples during training or more compl€ke valueb = 0.6 indicates a separatrix that the minimum
sampling/reweighing schemegZ]. However, this approach loss function is different on its both sides. Through refigc
has a drawback that hard examples are over emphasized FaCE by LF-PR, the losses of examples are differentiated
PEA recognition. Thus, a more effective alternative is regfl in order to automatically down-weight the contribution of
to the state-of-the-art approaches for hard examples. easy examples and focus on hard examples. Therefore, the

In this work, we propose to reshape the standard Crdégiction improves the recognition of hard examples without
Entropy Loss Function (LF-CE) such that it down-weightsignificantly depressing the labelling performance of easy
the loss assigned to well-classified examples. The LF-CE wexamples. Experiments show an optinsalvalue of 3 in PEA
designed for binary classification: recognition.

LF—CE = —ylogé(z) — (1 —y)logé(—z),  (6) . PEA Recognition with CNNs

For each type of PEAs, we randomly select 50,000 ground-
truth samples from the PEA265 database. These samples
are further split to 75:25 training/testing sets. The Bg#i
of ResNeXt and DenseNet are unified for fair comparison.
Stochastic Gradient Descent (SGD) is utilized with a mini-
%qjtch size of 256. The momentum is 0.9, and the weight decay

easy sample. To adjust the importances of different typesI fQ'OOOL The initial valge of Iearnipg rate is set to Q'ld an
examples, we also introducefa value, that shapes our Loss vided by 10 for three times following the schedule iff]}

; - . The weight initialization of {(] is adopted. In ResNeXt and
Function for PEA Recognition (LF-PR) as: o
g ( ) ResNeXt-PR, the depth and cardinality values are set to 80 an
Cbp B B 32, respectively. In DenseNet and DenseNet-PR, the widih an
LF=PR = — 2y5(K (b — p)log () depth are set to 10 and 46, respectively. We utilize the LF-FR
2(1 = y)d(K(p — a))logd(—z), (") as the loss function in all networks.

whered(x) represents activation functiog,e (0,1) denotes
the true labels. The LF-CE can be seen in Hig.(b). After
classification, the predicted probabilipywould lay between
0 and 1. Here we set two thresholds,andb (0 < a <

b < 1), instead of one threshold 1/2. The probabilitye
(a,b) indicates a hard sample; otherwise the test sample is



TABLE 1V : Computational complexity of CNN models. Param
and FLOPs represent the numbers of CNN network parameters
floating-point operations, respectively.

R Comparison with Other Benchmarks
In order to better illustrate the advantages of the proposed

recognition, we compare it with the floating PEA detection

CNNs | Params {0%) | FLOPs (07) method in 4], in which the low-level coding features were
ResNext 25.00 42.00 extracted to estimate the spatial distribution of floatiRig.
ResNeXt-PR 25.00 42.00 13 (a) and (e) are two original frames, respectively, and Fig.
DenseNet 0.20 0.98 13 (b) and (f) are their compressed frames, coded by HEVC
DenseNet-PR 260 1.28 with Qp = 42, where the visual floating regions are marked

manually. Fig.13 (c) is the floating map generated by/],
where black regions indicate the floating artifacts. Eigj(d) is

the result of the proposed PEA recognition model. In thigcas
both methods perform reasonably well in floating detection.

TABLE V : Floating detection accuracy.

Algorithms | Fig. 13 (b) | Fig. 13 (f) | Image3000 | 4 /
Ref 2] 96.10% 54.92% 65.17% However, the_algorlthm in J4] requires content—depenglent

- - - parameter adjustment and does not generalize consistently
Proposed | 97.36% | 81.08% | 85.69% For example, Fig.13 (g) fails to detect the actual floating

region. Compared Figl3 (g) with Fig. 13 (h), the proposed
floating PEA recognition algorithm performs clearly better

By training the recognition model of each type of PEAsThe floating detection accuracy is given in Table
we aim to detect the existence of PEAs in an image/videg
. . V. THE APPLICATION OFPEA RECOGNITION IN VIDEO

patch. Note here we do not utilize a multi-target classifcat

o ) ) CODING
because of the non-exclusivity of PEAse( different types The PEA recognition has a wide application in lossy video

of PEAs coexist within one patCh) Based on the two abovgc-)ding, in which the PEA is inEVitably produced with hlgh-
mentioned architectures, we individually train 6 types BAP frequency information loss. Recently, the PEA elimination
identification models. The training and testing accuracy & in-loop filter and post-processing have been extensively
defined as follows. studied, in order to further enhance the visual quality oea
coding 24]-[2]. In the above cases, the PEA recognition
could provide measurements of their performances. By sum-
marizing all types of PEAs, we also propose two PEA-based
metrics in this work: PEA pattern and PEA intensity, which

where TP, FP, TN and FN denote the true positive, fal§@n be further employed in vision-based video processing an
positive, true negative, and false negative rates, relspct coding.

The classification performances of all aforementioned net-
works are summarized in Tablé. Three major conclusions ™ The PEA Pattern
can be drawn. Firstly, the DenseNet has shown its superi-We utilize a binary value to represent whether a type of PEA
ority in the PEA classification, as compared with ResNeXis found within a video patch. For a video slice or frame, all
Secondly, our optimizations on both architectures, RegNeXdeo patches are examined and then visualized as a map to
and DenseNet, have further improved the accuracy of recatgmonstrate the distribution of this type of PEA. Examples
nitions. Finally, the DenseNet-PR structure outperforitigeo of the PEA pattern can be observed in Flg, in which the
architectures in all types of PEAs. The proposed blockirfijstributions of six types of PEAs are given in the subfigures
and color bleeding recognition models yield a higher testi{b)-(9). The example frame is from the video PO of LIVE
accuracy of around 95%. The blurring recognition accura¢yobile datbase 5], in which the floating artifact has the
is nearly 5.77% higher than that of ResNeXt-PR. In additiofargest coverage.
the temporal PEA recognitions based on DenseNet-PR alsd-or an area with multiple PEA patterns, another method is
lead to a higher accuracy over 86%. Compared to ResNexXgveloped to show a combination of PEA patterns. We utilize a
PR, the flickering recognition accuracy increases by neafiybinary value to label whether all types of PEAs are inctiide

6.09%. Therefore, DenseNet-PR delivers a higher recagnitiwithin a video patch. Each bin in sequence marks the existenc
accuracy. of blurring, blocking, ringing, color bleeding, flickeringnd

The DenseNet-PR also brings a low computational Corﬂgating;; artifacts. An example of combined pattern is giv&_en i
plexity, as shown in TabldV. Lower complexity in terms Fi9: 14 (). As a conclusion, the PEA pattern makes available
of parameter complexity and floating-point operations p& intuitive demonstration of PEA distribution. It also s
second (FLOPs) can be observed for DenseNet and Densef2{he computer vision tasks by providing patch-level acif
PR, compared with ResNet and ResNeXt. With a tradedfielling.
between complexity and accuracy, we choose the DenseNet-

PR for its high accuracy and relatively low complexity. Thi$- The Intensity of PEAs
model is further utilized in the following section to expoits In addition to a map of PEA patterns, we can also measure
applications in visual quality measurement. the overall intensity of PEA or PEAs for a video sequence.

TP TN ) 7 (8)

TP+FP + FN4+TN

Accuracy = £(
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(e) Original frame (f) The compressed frame of (e) (g) The floating map of{4] (h) Our PEA recognition result
Fig. 13 An example of floating PEA detection.
(a) A compressed frame (b) Blocking artifact (c) Blurring artifact (d) Ringing artifact

(e) Color bleeding artifact (f) Flickering artifact (g) Floating artifact (h) Combined artifacts

Fig. 14 The individual and overall PEA distributions of a frame.

The intensity of a type of PEA is obtained as the percentage corresponding PEA exists; otherwiseREA; refers to the
of non-overlapped patches with a positive PEA recognitidPEA existence in théth image/video patchV..) represents
for this type of PEA. The intensity of a set of PEAs.. the number of non-overlapping patches of a video sequence.
spatial or temporal PEASs) is obtained as the percentagersf no Based on the above metrics, we investigate the CTC se-
overlapped patches with positive PEA recognition for eithguences and present their PEA intendity: 2, as well as the

type of PEA in this set. Correspondingly, the overall intBns intensities for spatial and temporal PEAs in Fid. Several
of PEAS, or PEA intensityIpga), is calculated as follows: conclusions can be drawn here.

PEA; =PEA;; |[PEA;;|PEA;3|PEA|PEA;5|PEAs, (9) Firstly, the Ipga is, in general, positively correlated to the
Neoear Qp value. For almost all types of PEAs and videos, tbga
>im1 " PEA; (10) 9grows with a higher Qp. This fact highlights the importan€e o
Niotal ’ guantization and information loss in the generation meisiman
where PEA;; to PEA;g represent the existence of blurringof PEAs. As discussed before, the potential origin of spatia
blocking, ringing, color bleeding, flickering and floatingia artifacts are interpreted as the loss of high frequencyasign
facts within an image/video patch, respectively. We set it if chrominance signals and inconsistency of information loss

Ippa =
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Fig. 15 Average PEA intensities of the CTC sequences.

between boundaries, while the temporal artifacts are plyssiwhere( represents the PEA-based Video Quality Metric (P-
produced by inconsistent information loss between frame&QM).
Therefore, the fact that Qp influencks: o complies the above o verify its performance, it is evaluated on the LIVE Video
Interpretations. Quality Database]. The LIVE database is a popular video
Secondly, thepga is content-dependent, as it varies subjegfuality database with standard subjective scores. It aunita
to video contents. For example, the sequeBaeketballDrive 10 reference videoBlue Sky (217 frames at 25fpsPedes-
(1920x1080, No.9),RaceHorseg832x480, No.10),Basket- trian_Area (250 frames at 25fps)River Bed (250 frames at
ballDrill (832x480, No0.13) andBasketballPasg416x 240, 25fps),Rush_Hour (250 frames at 25fps):ractor (250 frames
No.17) have severe PEA intensities while the sequeéMiele- 4t 25fps) Station(250 frames at 25fpsEunflowe(250 frames
utaFestival (2560)( 1600, N03) is with low intensities. Al- at 25fps)’ andshields(500 frames at 50fpsMobi|e_Ca|ender
though some sequences.q, ParkScene 1920<1080, No. (500 frames at 50fpsPark_Run (500 frames at 50fps). Four
6 andBlowingBubbles416x240, No. 16) have similar spa-types of distortions are presented with video data and the
tial/temporal PEA intensities, their individual PEA instles Mean Opinion Score (MOS). Among them, the distortion of
are distinct from each other. This fact Implles that the Uid%ompression is generated by H.264 encoder at bitrates from
characteristics, including texture and motion, might have 200 kbps to 5 Mbps, resulting 40 outputs. This subset is
impact on thelpga When being compressed. It may alsqitilized here to evaluate the performance of P-VQM.

provide useful instructions to content-aware video coding The method of P-VQM is also compared with typical video
optimization. _ _ _ quality metrics including PSNR, SSIN{], MS-SSIM [47],
Thirdly, the frequencies of PEAs can be different subject IIDEO [4€], SPEED-QA [:9] and AMB-VQM [37] to show
its type. For example, the frequencies of blocking, blgring yerformance. In addition, the Pearson Linear Corati
and flickering PEAs are higher than other three PEAS efficient (PLCC) and Spearman Rank-order Correlation
this database. Meanwhile, the intensities of temporal PERS,efficient (SROCC) are utilized as the performance indica-
are significant compared with spatial PEAs. Furthermore, thy ¢ The results summarized in Tablé have validated the
impact on visual quality changes for different types of PEAg nerjor performance of our method when being utilized as a
All types of PEAs do not have the same impact on HVS ange s rement of compressed video quality. In other wores, th
the visual quality of users may be dominated by parts of PEASq it also demonstrate a fact that the existence of PEAS is

as concluded in4). We put this in future work to explore ; yominant factor to degrade the state-of-the-art comedess
how PEA detection should be combined to best evaluate th@?&eo quality, especially for low resolution videos. THere

impact on visual quality. to eliminate the intensity of PEAs is an effective approazh t
optimize video quality during video compression.
C. PEA-based Video Quality Metric The high performance of P-VQM supports its application as

In this section, we utilize the aforementioned PEA intgnsi@ testing tool 5] in the state-of-the-art video coding. On the

to propose a quality metric for compressed videos. Inspir@f1€r hand, this metric, as well as most of other video gualit
by the conclusions of Section V.B, the video quality is sijnplm€asures, are not recommended be utilized as an optintizatio

measured by a negative value of PEA intensity: tool of video coding due to their high computational complex
ity. The numerously repeated calculation during video egdi
Q = —Ipga, (11) optimization requires a quality measure of extremely low



TABLE VI : Average PLCC and SROCC of P-VQM compared witl

existing metrics on LIVE database. lhz]

Methods PLCC | SROCC [13]
PSNR 0.5735 | 0.4146
SSIM [29] 0.6072 | 0.5677
MS-SSIM [47] | 0.6924 | 0.7343 14]
VIIDEO [48] 0.6829 | 0.6593
SpEED-QA 9] | 0.7933 | 0.7895 [15]
AMB-VQM [33 | 0.4916 | 0.5189
P-VQM 0.8653 | 0.8278 [16]

. . e[19
computational overhead. In such a case, we still recommen
using PSNR and SSIM for video coding optimization.

[18]
VI. CONCLUSION

We construct a PEA265 database, a first-of-its-ki
large-scale subject-labeled database of PEAs produced by
H.265/HEVC video compression. This database contains 6
spatial and temporal PEA types, including blurring, blocki [20]
ringing, color bleeding, flickering and floating, each with a
least 60,000 samples with positive or negative labels. @ase [21]
this database, we optimize popular CNNs to develop effectiv
PEA recognition, in which the improved DenseNet provides
high accuracy with a relatively low complexity. We also defin[22]
qualitative and quantitative measures based on the retmgni
of PEAs. The proposed P-VQM model shows comparable
performance with typical video quality metrics. This worklw [23]
benefit the future development of video quality assessment
algorithms. It can also be used to optimize hybrid videps
encoders for improved perceptual quality and perceptually

motivated video encoding schemes. [25]
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