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Abstract—Hierarchical structures of labels usually exist in
large-scale classification tasks, where labels can be organized
into a tree-shaped structure. The nodes near the root stand for
coarser labels, while the nodes close to leaves mean the finer
labels. We label unseen samples from the root node to a leaf
node, and obtain multigranularity predictions in the hierarchi-
cal classification. Sometimes, we cannot obtain a leaf decision
due to uncertainty or incomplete information. In this case, we
should stop at an internal node, rather than going ahead rashly.
However, most existing hierarchical classification models aim at
maximizing the percentage of correct predictions, and do not
take the risk of misclassifications into account. Such risk is crit-
ically important in some real-world applications, and can be
measured by the distance between the ground truth and the
predicted classes in the class hierarchy. In this work, we uti-
lize the semantic hierarchy to define the classification risk and
design an optimization technique to reduce such risk. By defining
the conservative risk and the precipitant risk as two competing
risk factors, we construct the balanced conservative/precipitant
semantic (BCPS) risk matrix across all nodes in the semantic hier-
archy with user-defined weights to adjust the tradeoff between
two kinds of risks. We then model the classification process on
the semantic hierarchy as a sequential decision-making task. We
design an algorithm to derive the risk-minimized predictions.
There are two modules in this model: 1) multitask hierarchical
learning and 2) deep reinforce multigranularity learning. The
first one learns classification confidence scores of multiple levels.
These scores are then fed into deep reinforced multigranularity
learning for obtaining a global risk-minimized prediction with
flexible granularity. Experimental results show that the proposed
model outperforms state-of-the-art methods on seven large-scale
classification datasets with the semantic tree.

Index Terms—Deep Q-network (DQN), granular comput-
ing, hierarchical classification, multigranularity learning, risk
minimization.
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I. INTRODUCTION

W ITH THE rapid growth of the Internet and Internet of
Things, many large-scale classification tasks have been

emerging in real-world applications. Usually, there exist hierar-
chical structures in such tasks, where labels are often organized
into a tree-shaped structure. The nodes near the root stand
for coarser labels, while the nodes close to leaves mean the
finer labels. For example, the well-known ImageNet dataset
uses a semantic hierarchy WordNet to collect more than 1
million images with over 22 000 classes [1], and Amazon
designs the large hierarchies to organize billions of extensive
products [2]. Leveraging the hierarchical structure of classes,
namely, hierarchical classification, is effective and efficient for
large-scale classification tasks [3]–[5], and has been widely
used in various real-world applications [6]–[8].

In the hierarchical classification scenario, we label unseen
samples from the root node to a leaf node, and obtain multi-
granularity predictions. Sometimes, we cannot obtain a leaf
decision due to uncertainty or incomplete information. In this
case, we should stop at an internal node, rather than going
ahead rashly. However, most existing hierarchical classifica-
tion models aim at maximizing the percentage of correct
predictions, and do not take the risk of misclassifications into
account [1], [3], [9]–[12]. Such risk is critically important in
some real-world scenarios [13]–[15]. For example, some types
of dogs are visually similar to wolves, which results in difficul-
ties in identifying them. In a ranch, classifying a dog as a wolf
is a high-risk mistake, because a wolf will kill all farmyard
animals and lead to a disaster at the ranch. In this scenario, it
is reasonable to reduce the risk by stopping the uncertain sam-
ple at an internal node and reporting a coarse-grained result
carnivore for further checking (see Fig. 1).

In fact, the aforementioned classification risk describes
the risk degree that a misclassification would take, and
this is highly related to the characteristics of various tasks.
Conventionally, classification risk is designed manually by
human experts [16], [17] or is defined by simple statistical
information, for example, the degree of imbalance between
each class [18], [19]. However, the ways of defining risk
are either cost expensive or inadequate for describing risk.
Semantics is the relation between linguistic expressions and
their meanings, which reflects the knowledge of humans [20].
The semantic hierarchy can properly describe multigranular-
ity relations of different classes, and is easy to obtain and
simple to use [21]. Therefore, it can be used to measure the
classification risk. Such risk can be measured by the distance
between the ground truth and the predicted classes in the class
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Fig. 1. In a ranch, classifying a dog as a wolf results in a high risk. Given
a dog visually similar to a wolf, it is reasonable to stop the sample from
going down rashly and report it as a carnivore for further checking, instead
of making a high-risk mistake as a wolf.

hierarchy. Therefore, the key to this problem is how to make
models learn to stop the various samples at different levels of
the hierarchy to minimize the classification risk.

Several works have been dedicated to stopping uncer-
tain samples at the proper nodes in the semantic hierarchy,
and they generally use three kinds of strategies. The first
kind offers conservative predictions to avoid misclassifica-
tion by predicting the uncertain samples to the root node.
Usually, the models learn a global threshold and directly
assign the samples to the root node where probabilities of cor-
rect predictions are lower than the threshold [19], [22], [23].
Unfortunately, this strategy is often too conservative in that
it loses information provided by lower levels. The second
kind encourages samples toward the leaf nodes to make more
informative predictions [9]–[11] by optimizing the flat evalu-
ation metrics, for example, the F measure, on the leaf nodes.
However, they tend to be too precipitant to make wrong
predictions [24]. Aiming at overcoming the problems of the
above two types, the third kind takes a balance into account
to achieve a tradeoff between predicting conservatively and
informatively based on the semantic tree structure. Ceci and
Malerba [25] utilized the tree induced error (TIE) to measure
the degree of error predictions, attempting to stop the sam-
ples at the proper nodes in the tree by setting a threshold
on each node, and a predefined candidate set is used, mak-
ing it difficult to make optimal predictions in the large-scale
data. Wang et al. [24] tried to improve by optimizing TIE
in a global view. They used the generic algorithm (GA) and
achieved a better result. Deng et al. [1] tried to maximize the
information gain while ensuring the given hierarchical accu-
racy to obtain the predictions with appropriate granularity.
Recently, Lee et al. [12] used the confidence level of the clas-
sifier to determine whether the classification process should be
stopped at the current node. They jointly learn the classifier

and the confidence thresholds and show good performance in
the zero-shot learning.

Despite the progress made by recent works, two problems
remain. On the one hand, there is no simple mechanisms to
define the risks for different real-world application scenarios.
Some methods make use of the semantic hierarchy to report
results of flexible granularity, but most of them are designed
to avoid classification errors [9]–[11] or seek the informative-
ness of correct predictions [1], [12]. Moreover, all the methods
overlook the fact that risks should be adjusted for various
applications. On the other hand, effective optimization algo-
rithms and machine learning methods for risk minimization are
still open problems. Specifically, the optimization of hierarchi-
cal metrics is a nonconvex and underivative problem, which
has not been well addressed in hierarchical risk minimization
scenarios [24], [25].

In this work, we aim to solve the aforementioned problems.
First, we design a new risk matrix utilizing the semantic tree
structure to dynamically measure the risk degree in differ-
ent scenarios. Inspired by [1], we regard the prediction errors
as two types of risks: 1) the conservative risk and 2) the
precipitant risk. Predicting a sample as a more abstract and
coarse-grained label avoids misclassification but takes con-
servative risk of losing information provided by the lower
levels. In contrast, seeking an informative prediction too
aggressively takes precipitant risk of misclassification. We
propose to jointly consider both types of risks as competing
factors and define a balanced conservative/precipitant seman-
tic (BCPS) risk, where the weights of the risk factors are
adjustable. Second, we design a new model to effectively
obtain risk-minimized predictions, with two modules of multi-
task hierarchical learning and deep reinforced multigranularity
learning. The multitask hierarchical learning module jointly
learns the classification confidence in multiple levels, which
are fed into the deep reinforced multigranularity learning
to obtain a global risk-minimized prediction with flexible
granularity by the deep Q-network (DQN). By using deep
reinforcement learning, the prediction considers the risk of
the current local decision as well as the low-level decisions
under the guidance of the long-term reward. We evaluate
the proposed hierarchical semantic risk minimization (HSRM)
model on seven datasets with semantic hierarchy, and demon-
strate that it achieves state-of-the-art performance compared
with existing hierarchical models and is flexible to produce
multigranularity outputs.

The contributions of this article are summarized as follows.
1) We propose a new hierarchical classification model which

makes use of the semantic hierarchy to define and
minimize the risk in the large-scale classification task.

2) A BCPS risk is defined by leveraging the semantic hier-
archy to dynamically measure the degree of risk in
different scenarios, consisting of conservative risk and
precipitant risk serving as two competing factors.

3) We model the classification process as a sequential
decision-making task, and make use of deep reinforce-
ment learning to solve the nonconvex and underiva-
tive optimization problem of the BCPS risk and other
hierarchical metrics.
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The remainder of this article is organized as fol-
lows. Section II elaborates the definition of the problem.
Section III describes the details of the proposed HSRM model.
Experimental results on various dimensions are presented in
Section IV. Finally, we conclude our work in Section V.

II. PROBLEM DEFINITION

Hierarchical classification is the classification task which is
performed based on a class hierarchy that organizes classes
into a hierarchical structure where the granularity ranges from
coarse grained to fine grained. There are two kinds of struc-
tures in class hierarchy: 1) tree and 2) directed acyclic graph
(DAG). We focus on tree in this work since the tree structure
is the most common and widely used in semantics.

A tree hierarchy organizes class labels into a tree-like
structure to represent a kind of “IS-A” relationship between
labels [26]. Specifically, Aris et al. [27] pointed out that the
properties of the IS-A relationship can be described as asym-
metry, anti-reflexivity, and transitivity. We define a tree as a
triplet (V, E, π ) with a group of edges E between nodes in
different levels, “parent–child” relationship π , and a set of
nodes V = {VN,VL}, where VN denotes nonleaf nodes and VL

the leaf nodes. Generally, there are several types of nodes in
a tree. For a given node v, its parent node is denoted by Pv;
its child nodes are denoted by Cv, its leaf nodes are denoted
by Lv, and |Lv| is the number of leaf nodes of v. VN is the
nonleaf nodes of the tree, VL denotes the leaf nodes of the
tree, and |VL| denotes the number of all leaf nodes.

Given training samples {Xk
t }Kk=1 with labels {Yk

t }Kk=1, a
semantic tree structure (V, E, π ), our goal is to first con-
struct a risk matrix ξ which contains risks of all the possible
predictions V based on the semantic tree structure (V, E, π ),
and subsequently learn a classifier which predicts classes by
minimizing the risks according to ξ for the training samples
{Xk

t }Kk=1 within set V , that is, not only the leaf nodes VN , but
the internal nodes VL as well. The propagation process of the
samples starts from the root node, for example, node #1 in
Fig. 2, to its child, that is, nodes #2 or #3, according to the
probabilities and terminates until the risk-minimal nodes are
reached.1

III. MODEL AND SOLUTION

Before minimizing the risk of a hierarchical classification
task, we require a clear definition of the risk, a classifier to
model the multigranularity hierarchical classification process,
and an effective algorithm to solve the optimization problem
of the risk based on the performance of the classifier. In this
section, we first define a BCPS risk to measure the risk of
hierarchical classification (Section III-A), then model the hier-
archical classification process as a sequential decision-making
task between stopping at the current node or going down to
the lower level. A multitask hierarchical learning model is

1Such a sample-propagation manner is called the top-down process, and
another possible manner is the bottom-up process, where the sample starts
from the leaf nodes and propagates to its parent nodes. In this article, we
focus on the former, because it is the most common case of hierarchical
classification and can reflect the coarse-to-fine way of handling a complex
problem.

Fig. 2. Toy example for hierarchical metrics. y is the ground-truth node and
ŷ is the prediction node.

designed to jointly predict the classification confidence scores
of multiple levels (Section III-B). Finally, the scores are fed
into a subsequent DQN to learn to obtain a global optimal
prediction by minimizing the BCPS risk (Section III-C). The
framework of the proposed method is shown in Fig. 3.

A. Balanced Conservative/Precipitant Semantic Risk Matrix

Conventionally, the cost matrix in cost-sensitive learning
records the cost of misclassifying a sample to a class other
than the ground-truth class [13], [18]. But the cost matrix is
constructed by experts of domain knowledge for the specific
task, which is hard to obtain, or by using statistic information,
for example, data distribution, which is often difficult to apply
in more general real-world applications. Moreover, the con-
ventional cost matrix only contains the corresponding costs
between the ground-truth class and the candidate classes in the
sense that the predictions are only correct or wrong. Inspired
by the setting of the hierarchical classification, we believe
that it is reasonable to report a more abstract internal class
of a semantic tree without having to make a wrong decision.
Meanwhile, this coarse-grained prediction loses information
provided by the lower levels, which also has risk in the
prediction. Thus, we extend the conventional cost matrix to
a risk matrix which contains both the leaf and internal classes
based on the semantic tree.

Definition 1: Given a sample set {Xk
t }Kk=1 with label set

{Yk
t }Kk=1 and a semantic tree structure (V, E, π ) with node set

V = {VN,VL}, the risk matrix ξ has dimensions of |V| × |V|,
and the element ξ (i, j) in the risk matrix denotes the risk of
classifying class i to class j.

For the risk matrix ξ , the problem of computing each ele-
ment is transformed to a risk measurement between different
nodes of the tree structure. There are two existing metrics,
TIE [28] and hierarchical F measure (HF) [27], that describe
the error degree according to the tree structure. In hierarchical
evaluation metrics, the ground-truth class and the prediction
class are extended to the augmented ground-truth class set and
the augmented prediction class set by adding all the parent
nodes of each corresponding class

Yaug = y ∪ π(y) ∪ π(π(y)) ∪ · · · ∪ �

Ŷaug = ŷ ∪ π
(
ŷ
) ∪ π

(
π
(
ŷ
)) ∪ · · · ∪ � (1)

Authorized licensed use limited to: University of Waterloo. Downloaded on August 20,2022 at 02:18:54 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: HSRM FOR LARGE-SCALE CLASSIFICATION 9549

Fig. 3. Framework of proposed model HSRM. It constructs a BCPS risk matrix with adjustable emphasis on the conservative risk and the precipitant
risk, and then jointly trains a hierarchical multitask classifier. By considering 1 the information loss by stopping at the current node (gray circle “C”) and
2 uncertainty of going down to the lower level (gray circle “P”), the DQN makes predictions with the minimum risk according to the BCPS risk matrix.

where y denotes the ground-truth class in the tree, ŷ denotes
the prediction class in the tree, π (·) is the parent relation, and
� is the root node of the tree. Based on the augmented true
and prediction class in (1), the TIE and HF are defined.

Definition 2: Given a tree structure (V, E, π ), TIE equals
the number of edges in the link from one node to another

�
(
y, ŷ
) =

(∣∣Yaug
∣∣−

∣
∣∣Yaug ∩ Ŷaug

∣
∣∣
)

+
(∣∣∣Ŷaug

∣∣∣−
∣∣∣Yaug ∩ Ŷaug

∣∣∣
)
− 1

= ∣∣Yaug
∣∣+

∣∣∣Ŷaug

∣∣∣− 2
∣∣∣Yaug ∩ Ŷaug

∣∣∣− 1 (2)

where | · | is the cardinality of the set.
TIE can appropriately describe the error degree in the tree

in that the severeness of the wrong prediction is proportional
to the distance between the prediction node and the ground-
truth node. A toy example is shown in Fig. 2. Suppose node
4 is the ground-truth node and node 7 is the prediction node.
Basically, Yaug = {4, 2, 1}, Ŷaug = {7, 3, 1}, and this leads to
|Yaug ∩ Ŷaug| = |{1}| = 1, |Yaug| = |Ŷaug| = 3, so TIE = 4.
However, it overlooks the fact that the percentage of correct
proportion of the path in the tree may be different even if
the absolute “distance” from the ground truth is the same.
Another metric named HF overcomes this problem by adding
normalization factors, and it extends the F measure in flat
classification into a hierarchical one.

Definition 3: Given a tree structure (V, E, π ), the hierarchi-
cal precision, recall, and F measure are defined as

PH
(
y, ŷ
) =

∣∣∣Ŷaug ∩ Yaug

∣∣∣
∣∣∣Ŷaug

∣∣∣

RH
(
y, ŷ
) =

∣
∣∣Ŷaug ∩ Yaug

∣
∣∣

∣
∣Yaug

∣
∣

HF
(
y, ŷ
) = 2 · PHRH

PH + RH
(3)

where | · | is the cardinality of the set.

Although HF solves the scaling problem via set normalization,
the combination of PH and RH for HF is somewhat arbitrary and
does not provide a mechanism to adjust the balance between
the two factors for specific applications. The predictions in
the location of the parent nodes of the ground truth avoid
wrong predictions but lose information provided in the lower
levels, which results in the conservative risk for the conservative
predictions. On the other hand, those predictions not located
at any parent node of the ground truth, seek more informative
predictions at the price of possibly going to the wrong path,
resulting in precipitant risk for being too precipitant in decisions.
We define the two types of risks formally as follows.

Definition 4: Given a tree structure (V, E, π ), the conser-
vative risk RC and the precipitant risk RP are defined as

RC
(
y, ŷ
) = 1−

∣∣∣Ŷaug ∩ Yaug

∣∣∣
∣∣Yaug

∣∣

RP
(
y, ŷ
) = 1−

∣∣∣Ŷaug ∩ Yaug

∣∣∣
∣∣∣Ŷaug

∣∣∣
. (4)

We differentiate various kinds of risks by judging whether
the prediction belongs to the augmented set of the ground
truth Yaug, and add a normalization term like HF to take into
account the depths of the ground truth and prediction classes
in risk assessment. A toy example is shown in Fig. 2. For
the ground-truth node 4 and prediction node 7, RC(y, ŷ) =
RP(y, ŷ)1− (1/3) = (2/3). Furthermore, the two kinds of risks
should achieve a balance depending on real-world applications,
so we introduce a tradeoff parameter in calculating the total
risk as follows.

Definition 5: The balanced conservative/precipitant (BCPS)
risk, or the element (i, j) of the BCPS risk matrix ξ is
defined as

ξ (i, j) = λRC(i, j)+ (1− λ)RP(i, j)

= 1−
⎛

⎝λ

∣∣∣Ŷaug ∩ Yaug

∣∣∣
∣∣Yaug

∣∣ + (1− λ)

∣∣∣Ŷaug ∩ Yaug

∣∣∣
∣∣∣Ŷaug

∣∣∣

⎞

⎠ (5)
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where ξ (i, j) denotes the risk of predicting class i as class j, and
λ is a tradeoff parameter between [0, 1]. For predictions, which
report correct but abstract results, the second term equals zero,
which means that only the conservative risk exists in these
predictions. For those which report incorrect results, the first
term encourages the predictions to include more correct nodes,
and the second term penalizes too precipitant predictions. Such
a risk matrix cannot only address the issue of the risk of
reporting a more abstract result but put adjustable emphasis
on conservative and precipitant risks for different applications.
The properties of the BCPS risk matrix are listed as follows.

Properties of the Proposed BCPS Risk Matrix ξ :
Lemma 1: ξ is non-negative, that is, ξ ≥ 0.
Lemma 2: The value of the BCPS risk is between 0 and 1,

that is, ∀ξ (i, j) ∈ [0, 1].
Lemma 3: ξ is asymmetric if λ �= 0.5 and the tree (V, E, π )

is unbalanced.
Lemma 4: An arbitrary TIE �(y, ŷ) is an element without

normalization in ξ if the tree (V, E, π ) is balanced.
Lemma 5: The HF is the special case for the proposed risk

matrix ξ with arbitrary structure of the tree (V, E, π ).

B. Multitask Hierarchical Classification

In the conventional hierarchical classification process, a
local classifier is trained using the extracted features on each
nonleaf node of the tree structure, and the sample starts from
the root node and is assigned to the child node with max-
imum confidence score recursively until it reaches a leaf
node [9], [29]. The method requires buiilding a large number
of local classifiers after the features are extracted in advance.
Recently, a few studies address the problem and use a con-
volutional neural network (CNN) to jointly learn the features
and level-wise classifier in a multitask way [3]. However, they
force the samples to reach a leaf node, so a hyperparameter
has to be put in each task as a measurement of influence for
the current level on the leaf node level, which is difficult to
use especially for those tree structures with many levels, for
example, ImageNet.

In this work, we discard the hyperparameter, and leverage
the idea of multitask learning to simultaneously train classifiers
for different levels. Specifically, we denote the input training
mini-batch samples {Xk

t , Yk
t }Kk=1, where t in Xk

t or Yk
t represents

the samples of the training set, Xk
t is the kth raw samples,

and Yk
t is the corresponding ground-truth labels. Assume the

semantic tree structure (V, E, π ) has H levels, the ground-truth
label Yk

t of sample Xk
t can be extended to YH

k
t , which contains

H labels of all the levels. Inspired by the network architecture
proposed by Ma et al. [30], we modify the current CNN model
by sharing the convolutional features for all H tasks to enhance
the ability of more discriminative feature learning for the CNN
model. In each task, we use the same fully connected layers
and softmax layer. In optimization, the loss function in each
layer is set as empirical cross entropy loss

lh

({
Xk

t

}K

k=1
; Wh

)
= −

K∑

k=1

C∑

i=1

pi
k log p̂i

k

({
Xk

t

}K

k=1
; Wh

)

(6)

where W is the model parameters. The overall loss function
of the multitask hierarchical classification is defined as

l

({
Xk

t

}K

k=1
; W
)
=

H∑

h=1

ζhlh (7)

where ζh is the balance weight to account for the scale
difference between the two terms.

C. Deep Reinforced Multigranularity Learning

Given the confidence scores of different levels obtained by
multitask hierarchical classification, the model should make the
risk-minimized predictions with flexible granularity by mini-
mizing the BCPS risk. We consider the prediction process as
a sequence of stopping or going down decisions from the root
node toward the leaf nodes. At each step, we measure the local
uncertainty, including information loss by stopping at the current
level and uncertainty of going down to the lower level. Since
the BCPS risk is underivative, we leverage the deep reinforce-
ment learning method, specifically DQN [31] in this work, to
approach the global optimum solution and take into account the
lower level decisions for the current decision.

1) Measuring the Local Uncertainty:
a) Information loss by stopping:Recall that the conser-

vative risk defined in Definition 4 is the information loss
due to more abstract and coarse-grained predictions, because
choosing to stop at the current level will lose information pro-
vided by the next level. To measure the information loss, we
develop from the concept of information gain introduced by
Deng et al. [1], which is described as the decrease in number
of leaf nodes when taking an action in comparison to stay-
ing at the root node. Specifically, for an arbitrary node v, its
information gain of node v corresponding to the root node is
calculated as

I(v) = log|VL| − log|Lv| (8)

where |VL| is the number of leaf nodes in the tree and |Lv| is
the number of leaf nodes corresponding to node v. In our case,
the information loss by stopping is defined as the information
gain from the current node to its child node.

Definition 6: Given a tree structure (V, E, π ) with a set of
nodes V , let VL be the set of leaf nodes, Lv be the set of leaf
nodes corresponding to the current nonleaf node vN , VN =
V − VL be the set of nonleaf nodes, and C(vN) be the child
nodes of node vN ∈ VN . The information loss by stopping
from the level of vN to the level of ith child nodes C(vN)i is

RLC
vN
= I(C(vN))− I(vN)

= log
∣
∣LvN

∣
∣− log

∣
∣LC(vN )i

∣
∣. (9)

Equations (8) and (9) show that deeper prediction nodes con-
tain more information gain than the shallow ones. Predictions
at the root node have no information gain, while the
information gain reaches the maximum at the leaf nodes.

b) Uncertainty of going down:We can encourage all the
samples to go down to the leaf node if only the information
loss by stopping is taken into consideration. Unfortunately,
misclassification may occur at some nodes, especially if the
uncertainty in the lower level is large. Previous works [12]

Authorized licensed use limited to: University of Waterloo. Downloaded on August 20,2022 at 02:18:54 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: HSRM FOR LARGE-SCALE CLASSIFICATION 9551

and [24] show that errors usually occur when the classifier is
not sure about which node to assign in the lower level. In this
article, we not only include this factor to model the uncertainty
but also take into account if the classifier is reliable to produce
the correct result.

We leverage the information entropy to account for how
confident the classifier is for its prediction. Given a dis-
crete variable M with possible values {m1, m2, . . . , mn}, the
information entropy is explicitly written as

H(M) =
n∑

i=1

−pilogpi

where pi is the probability of the value mi. At each nonleaf
node vN , it is straightforward to measure the risk of misclas-
sification by using the confidence of the multitask output for
all the child nodes C(vN)

Pc
vN

(x) =
|C(vN )|∑

i=1

−pci(x) log pci(x) (10)

where vN is an arbitrary nonleaf node, |C(vN)| is the number
of child nodes of vN and pci (x) is the confidence score of
assigning sample x to the ith child node of vN .

Moreover, we split a subvalidation set of samples {Xq
sv}Qq=1

to model if the classifier (multitask output) is reliable to
produce the correct result using

Pr
l = exp

(
1− εl

({
Xq

sv

}Q
q=1, W

))
(11)

where l is the level, εl is the generalized accuracy in lth level.
Then, we define the uncertainty of going down as follows.

Definition 7: Given the sample x at node v, the trained mul-
titask hierarchical classifier W, the uncertainty of going down
RP at node v is defined as

RP
v (x) = Pc

v · Pr
l(v)

=
⎛

⎝
|C(vN )|∑

i=1

−pci (x) log pci (x),

⎞

⎠

× exp
(

1− εl

({
Xq

sv

}Q
q=1, W

))
(12)

where l(v) is the level of the node v in the semantic tree. It is
worth noting that there are two main properties of (12).

Lemma 6: Given a sample x at node v, RP
v (x) is decided by

the first term Pc
v if the value of the second term Pr

l(v) is small.
Lemma 7: Given a sample x at node v, RP

v (x) is large if the
value of the second term Pr

l(v) is large.
2) Risk Minimization With Deep Q-Network: A local deci-

sion may be made to reduce the BCPS risk by weighting
information loss by stopping and uncertainty of going down.
However, optimal local decisions may not necessarily lead to
global optimum in terms of total BCPS risks, for which we
should consider the interdependent relations between different
local decisions, where a certain local decision should take the
results of later local decisions into account. For example, given
a certain sample, the local decision at the first level is not sure
about whether to stop or go down, but the local decision at the
second level is confident to go down to the third level. In this

Fig. 4. Sample in PASCAL VOC experiment. The confidence scores given by
multitask hierarchical model are difficult to differentiate between 4-wheeled
and Train, but can be easily recognized as Bus in the lower level. DQN is
capable of capturing this long-term interdependent task relationship to predict
in a global view.

scenario, the low-level decision helps the high level to make
a decision of going down instead of stopping at the first level
by its own local decision. In this regard, any local decisions
at a certain level should consider information from lower lev-
els, aiming for a global total rewards as measured by the total
BCPS risks. The effect has been verified by our experiment,
and an example is given in Fig. 4. Since this is analogous to
a reinforcement learning problem, we resort to the DQN [31]
to lay out the framework and to train the decision-making NN
for global risk minimization.

a) Action:The action space A is a set of all possible
actions that the agent could make. In our case, the actions
contain stopping at the current node or going down to the
child node with maximum confidence score.

b) State:The state S contains information that the agent
could observe. Learning a good and stable policy is challeng-
ing in general [32]. Mao et al. [33] used high-dimensional
text features for hierarchical text classification, but have to
apply supervised pretraining to help learn a good policy. We
generalize the state as a 2-D input with the information loss
by stopping and uncertainty of going down corresponding to
various samples at different nodes, which significantly helps
learn a good policy for DQN.

c) Rewards:The reward R(s, a) given by the environment
guides the agent and trains it by learning to maximize the
cumulative reward. With the designed risk matrix ξ computed
in (5), the proposed model can capture the reward with var-
ious predictions on all nodes of the semantic tree. Motivated
by the idea of Mao et al. [34], we give intermediate rewards
to the local decision of each step to help improve the learn-
ing process. The intermediate reward is set as the difference
between the current step and the last step, which encour-
ages the sample to go down if it is positive or stop if it
is negative serving as an indicator. On the other hand, the
cumulative reward from the current step to the end of an
episode would cancel the intermediate rewards and thus reflect
whether the current action improves the overall prediction
process [34]. Specifically, given a sample x at node v, we
set the intermediate reward Rit

v (x) = Rv − Rπ (v), where
Rv = [1/(ξ (yx, v))] (yx is the ground-truth class of x). The
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episode is ended if a stopping decision is made or a leaf
node is reached. As a result, the agent can learn to make
risk-minimized predictions with a long term and global view.

d) Training:In DQN, upon taking an action a at the cur-
rent state s, the agent receives a reward R(s, a) and reaches
a new state s′, determined from the probability distribution
P(s′|s, a). A policy π specifies for each state which action the
agent will take. The goal of the agent is to find the policy
π mapping states to actions that maximizes the expected dis-
counted cumulative reward over the agent’s lifetime. The value
Q(s, a) of a given state-action pair (s, a) is an estimate of the
expected future reward that can be obtained from (s, a) when
following policy π . The optimal value function Q∗(s′, a′) pro-
vides maximal values in all states and is determined by solving
the Bellman equation

Q∗(s, a) = E

[

R(s, a)+ γ
∑

s′
P
(
s′|s, a

)
max Q∗

(
s′, a′

)|s, a

]

.

(13)

The optimal policy π is then π (s) = arg maxa∈A Q∗(s, a).
In our scenario, assuming the sample x on node v, s =
[RLC

v (x), RP
v (x)], a = [0, 1], s′ = [RLC

Ch(v)(x), RP
Ch(v)(x)], where

Ch(v) is the child node of v with them maximal confidence
score.

During the learning, we follow the method in [31] for
Q-learning update. First, mini-batches of experience are uni-
formly drawn from the pool of stored samples. At each
iteration i, the loss function used is

Li(θi) = Ew

[(
R(s, a)+ γ max

a′
Q
(
s′, a′; θ−i

)− Q(s, a; θi)

)2
]

(14)

where w = (s, a, r, s′) ∼ U(D) denotes a sample of experience
with a tuple of state, action, reward and the next state drawn
uniformly from the experience pool; γ is the discount factor;
θi are the parameters of the Q-network at iteration i and θ−i
are the parameters used to compute the target at iteration i.
In the process of learning, the target network parameters
θ−i are updated every G steps with the Q-network parame-
ters θi. The optimal target values R(s, a) + γ max Q∗(s′, a′)
are substituted with the approximate target values R(s, a) +
γ maxa′ Q(s′, a′; θ−i ) for the well-defined optimization, which
has been proved to be stable and efficient [35].

With different discount factor γ s, the agent will take vari-
ous emphases on the future rewards into account. In our case,
the global risk-minimized problem is degenerated to a local
supervised learning problem by only making local decisions
of stopping or going down based on the local risks (λ = 0).
Our experiment shows the global risk minimization performs
better than the local one, by considering information of lower
levels.

We formulate the above process in Algorithm 1. First, we
build the BCPS risk matrix with adjustable emphasis on the
conservative risk and precipitant risk. Then, a multitask hier-
archical learning classifier is trained without hyperparameter
on weighted effect on the leaf node level. Subsequently, the
DQN takes information loss by stopping and uncertainty of

Algorithm 1: HSRM

Input: Training samples {Xk
t , Yk

t }Kk=1, subvalidation
samples {Xq

sv, Yq
sv}Qq=1, validation samples

{Xm
v , Ym

v }Mm=1, and semantic tree structure
(V, E, π ).

Output: Multitask hierarchical classifier W, deep
Q-network WR.

1 RC(y, ŷ)← 1− |Ŷaug∩Yaug|
|Yaug| , RP(y, ŷ)← 1− |Ŷaug∩Yaug|

|Ŷaug| ;

2 ξ (i, j)← λRC(i, j)+ (1− λ)RP(i, j);
3 for mini-batch b = 1:Bt do
4 W←

−∑H
h=1

∑K
k=1

∑C
i=1 ζhpi

k log p̂i
k({Xk

t (b)}Kk=1; Wh);

5 Pr
l ← exp(1− εl({Xq

sv}Qq=1, W));
6 for mini-batch b = 1:Bv do
7 while v /∈ VL && stop == False do
8 RLC

vN
← log |LvN | − log |LC(vN )i |,

9 Pc
vN

(Xm
v (b))←∑|C(vN )|

i=1 −pvi
c
(x) log pvi

c
(Xm

v (b)),

10 RP
v (Xm

v (b)))←
(∑|C(vN )|

i=1 −pvi
c
(x) log pvi

c
(x)
)
·

exp(1− εl({Xq
sv}Qq=1, W)),

11 WR ← (RLC
vN

, RP
v (Xm

v (b)), ξ ),
12 if WR(Xm

v (b))==stop then
13 stop = True;

14 else
15 v← C(v)max;
16 stop = False;

17 return W, WR.

going down as input state to make an action with the rewards
based on the BCPS risk matrix, and finally, we obtain global
risk-minimized predictions.

The computations of the proposed hierarchical classifica-
tion system are mainly on the multitask hierarchical learning
module, so the analysis of computational complexity focuses
on this part. Concretely, the computational complexity of this
module is O(Mi ·Ni ·D2 ·KH ·KW+H ·Mf ·Dfin ·Dfout ), where Mi

is the spatial width of the input map; Ni is the spatial height
of the input map; D is the depth of the previous and current
layer; KW is the width of the kernel; KH is the height of the
kernel; Dfin is the number of input of the fully connected layer;
Dfout is the number of output of the fully connected layer, and
Mf is the number of the fully connected layers. The proposed
model only has several more fully connected layers according
to number of the hierarchy, so its computational complexity is
comparable with traditional CNN models, and hence can be
scaled well to various hierarchies with different levels.

IV. EXPERIMENTS

A. Experimental Setups

1) Implementation Details: In the training phase of both
multitask learning and DQN, the Adam optimization algorithm
is applied with a mini-batch of 128. The learning rate used is
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TABLE I
DATASET DESCRIPTION

α = 10−4 or α = 10−5 with different datasets. Other param-
eters in Adam optimization are set by default. The balance
parameters ζ are set following the setting in [3] which are
various in different datasets. All the datasets are split into train-
ing set, subvalidation set, validation set, and test set by 50%,
10%, 20%, and 20%, respectively. The training set is used to
train multitask hierarchical classifier, the subvalidation set is
applied to obtain the accuracy score in the reliability part (11),
the validation set is utilized to train the DQN, while the test
set is applied to obtain the test results. All the results shown
are the average of ten trails of random splitting.

2) Datasets: We perform experiments on seven datasets
with the semantic tree structure (see Table I), which are com-
monly used in hierarchical classification problems, including
PASCAL VOC [36], ILSVRC65 [1], Stanford Cars [37], Cifar-
100 [38], Caltech256 [39], SUN [40], and ImageNet 1K [21].
For the SUN dataset, we modify it by leaving out the cat-
egories that have more than one parent labels and samples
with multiple labels. Finally, the SUN dataset turns into 324
classes with at least 100 images per category. It is worth
mentioning that these datasets can test all the models in vari-
ous perspectives. For example, the PASCAL VOC dataset has
some images of multiple objects but with a single label. For
example, a person is leading a horse in an image, but the
ground truth given of this image is only Person. The Stanford
Cars dataset consists of various cars in fine-grained classes,
which is challenging to differentiate. The SUN and ImageNet
datasets have massive labels, and the latter has a very compli-
cated semantic tree structure with 19 levels. We use all these
datasets to provide a comprehensive testing.

3) Evaluation Metrics: To evaluate the performance, flat
accuracy is a common used metric in classification tasks. But
it calculates at the leaf nodes and does not take into account the
varying degrees of classification risks. Therefore, we use clas-
sic hierarchical evaluation metrics TIE [28], HF [27], and the
proposed BCPS risk to measure the performance for intuitive
understanding and fair comparison.

B. Results on Classification Tasks

1) Experimental Settings: We compare the proposed model
with classic and state-of-the-art algorithms of hierarchical

TABLE II
RESULTS OF ALL ALGORITHMS ON SEVEN DATASETS IN TERMS OF TIE

AND HF (%). (a) CIFAR 100. (b) PASCAL VOC. (c) ILSVRC 65.
(d) STANFORD CARS. (e) CALTECH 256. (f) SUN. (g) IMAGENET

(a)

(b)

(c)

(d)

(e)

(f)

(g)

methods which assign samples to arbitrary nodes of the seman-
tic tree, including TSS [25], DARTS [1], TDKL [12], and
RMGA [24]. We also compare the cost-sensitive learning
method [18], which is the conventional way for the risk
minimization classification. We extend it to the hierarchical
classification version by adding all the internal nodes and using
the BCPS risk building the cost matrix. Moreover, the flat
VGG net, which is used in this article in the multitask hier-
archical classification, is carried out in the experiment as a
flat baseline against the hierarchical classification models. To
comprehensively compare the performance of all the models,
we show the results of TIE, HF, and BCPS risk with dif-
ferent λ values on seven datasets (see Table II and Fig. 5).
Furthermore, TSS, DARTS, and RMGA are developed under
the condition that a local classifier is trained on each nonleaf
node in the semantic tree, while TDKL can jointly optimize
the tree classifier and the confidence thresholds which are used
to stop the samples at the internal nodes. For fair comparison,
we use multitask hierarchical output for the first three models
to replace the local classifiers in the tree, and utilize the fea-
tures generated in the last convolutional layer in the multitask
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Fig. 5. Results of BCPS risk (%) curve on seven datasets. (a) Caltech 256. (b) ImageNet. (c) PASCAL VOC. (d) Cifar 100. (e) ILSVRC 65. (f) SUN.
(g) Stanford Cars.

hierarchical learning module for TDKL. For the cost-sensitive
method CSMSE [18], we implement the end-to-end version
by using the mean-square error (MSE) loss in the article.

2) Experimental Results: Table II shows the results on all
the datasets in terms of TIE and HF, respectively. The proposed
HSRM model outperforms others in all the datasets, which
demonstrates the effectiveness of the proposed model. Cost-
sensitive method CSMSE obtains the second best performance
in small scale datasets, such as PASCAL VOC, CIFAR 100,
and ILSVRC 65, but it does not perform well comparing
with hierarchical methods in larger scale datasets with more
classes or deeper tree structure, such as Caltech 256, SUN, and
ImageNet. Hierarchical methods, TKDL, RMGA, and DARTS,
perform better than CSMSE, and the reasons come from three
aspects. First, cost-sensitive learning performs good in data
with a few classes but not good in large-scale tasks because
of the instability of optimizing the cost matrix [18]. Second,
hierarchical classification is good at handling tasks with many
classes by dividing a hard problem into several easier subprob-
lems [5]. It is difficult for cost-sensitive training to handle a
large number of classes and a deep semantic tree. For exam-
ple, the ImageNet dataset has 1000 classes originally, but it
expands to 1860 classes if the nonleaf nodes of the seman-
tic tree are considered. It also has a 19-layer semantic tree,
much deeper than the other datasets. On the other hand, HSRM
outperforms other hierarchical methods. State-of-the-art mod-
els DARTS and TDKL focus on making predictions more
informative provided the predictions are correct. The over-
all performance is influenced by the level of risk of wrong
predictions but not the informativeness of correct samples.
TSS and RMGA aim to optimize TIE. TSS selects a thresh-
old at each node based on a limited and static candidate set,
where finding the proper threshold is difficult. RMGA opti-
mizes the TIE in a global view using GA which is sensitive
to initial guesses of the parameters. By leveraging the DQN,
HSRM quickly obtains the solution in a global view, and

achieves better performance. Fig. 5 shows the performance
of all the models on BCPS risk with various emphases on
the conservative and precipitant risks, where the lower curve
represents the better performance. We set the λ value to be
{0.1, 0.2, . . . , 0.9}, and obtain the BCPS risk curve of all the
methods. The results demonstrate that HSRM achieves the best
or competitive performance across all seven datasets and all λ

values. The conventional flat classification model VGG only
classifies samples to the leaf nodes whose predictions have
high precipitant risk (the value of λ is small), while the hierar-
chical methods have relatively higher conservative risk than the
flat one, so their curves increase in general when λ increases.
It is worth noting that HSRM and RMGA, CSMSE are the
only three models which can optimize BCPS risk with dif-
ferent λs, so their curves are not monotonically increasing or
decreasing. CSMSE treats the hierarchical problem as a flat
one and have less power than hierarchical methods to predict
samples at the proper internal nodes.

To further explore whether the observed differences are
statistically significant, we carry out the Friedman test for
multiple comparisons together with the Bonferroni–Dunn post
hoc test to identify pairwise differences [41]. In Friedman test,
given k compared algorithms and N datasets, let rj

i be the rank
of the jth model on the ith dataset, and Ri = (1/N)

∑N
i=1 rj

i
be the average rank of model i among all datasets. The null
hypothesis of Friedman test is that all the models are equiv-
alent in terms of both of the hierarchical metrics. Under null
hypothesis, the Friedman statistic is distributed according to
χ2

F with k − 1 degrees of freedom

χ2
F =

12N

k(k + 1)

(
k∑

i=1

R2
i −

k(k + 1)2

4

)

FF = (N − 1)χ2
F

N(k − 1)− χ2
F

(15)
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Fig. 6. Hierarchical metrics comparison of different models with the
Bonferroni–Dunn test.

Fig. 7. Hierarchical metrics comparison of three models with the Bonferroni–
Dunn test.

where FF follows a Fisher distribution with k − 1 and (k −
1)(N−1) degrees of freedom. The average rank is calculated by
the rank across all the datasets in Table II, and the value FF =
16.057 is computed according to (15). With seven models and
seven datasets, the critical value for α = 0.05 of F((7−1), (7−
1) × (7 − 1)) is 2.3638, so the null hypothesis is rejected.
Thus, all the models are not equivalent in terms of both of
the hierarchical metrics, and there exist significant differences
between them.

The Bonferroni–Dunn post-hoc test is leveraged to
detect if the proposed model is better than the exist-
ing ones. Specifically, the performance of the two mod-
els are significantly different if the distance between the
average ranks exceeds the critical distance (CD): CDα =
qα

√
[(k(k + 1))/6N], where qα is given in [41, Table 5].

Note that q0.1 = 2.394 with k = 7, so CD0.1 =
q0.1
√

[(7× 8)/(6× 7)] = 2.750. Fig. 6 visually shows the
CD diagrams in terms of the hierarchical metrics, and the
lowest (best) ranks on the axis are to the right. We can con-
clude that in terms of both of the hierarchical metrics, HSRM,
RMGA, and TKDL perform statistically better than the others,
but there is no consistent evidence to indicate statistical differ-
ences between these three models. We further conduct another
Bonferroni–Dunn post-hoc test for the three models on all
the datasets. In this case, CD0.1 = 1.96

√
[(3× 4)/(6× 7)] =

1.048 with k = 3, the results are shown in Fig. 7. The test
results vary with the averaged rank of each model across all
the datasets. The results of such averaged ranks are the same
under both metrics, so the results of Bonferroni–Dunn test,
that is, Figs. 6 and 7, are the same. We can see that HSRM
is statistically better than the other two models, which verifies
the effectiveness of the proposed model.

To gain more insights of the behaviors of the proposed
model against other models, we perform a test using sam-
ples that are of challenge to typical classification methods.

TABLE III
COMPARISON OF DIFFERENT OPTIMIZATION METHODS. GA IS THE GA
APPLIED IN [24], WHILE DL IS THE DEEP REINFORCEMENT LEARNING

METHOD USED IN THIS ARTICLE. THE NAME OF THE DATASETS IS

SHORTEN FOR SPACE. (a) TIE ↓. (b) HF (%) ↑.
(c) WEIGHTED BCPS (%) ↓

(a)

(b)

(c)

TABLE IV
COMPARISON OF DIFFERENT RISK MEASUREMENT. THE NAME OF THE

DATASETS IS SHORTEN FOR SPACE. (a) TIE ↓. (b) HF (%) ↑.
(c) WEIGHTED BCPS (%) ↓

(a)

(b)

(c)

All the models are trained on the PASCAL VOC dataset.
All test samples are classified based on the semantic tree
structure of PASCAL VOC. Fig. 8 shows the results by all
models. It appears that HSRM provides more risk-minimized
predictions with better balance between mistaken and too
abstract predictions. Fig. 9 shows pairs of samples of high sim-
ilarities but belonging to different classes. It is difficult for any
classifiers to make accurate predictions with high confidence.

It is thus interesting to observe the behaviors of different
risk minimization algorithms on such cases. For example, in
the first sample pair, the top one is a bird while the bottom one
is an aeroplane that imitates the shape of a bird. HSRM reports
them as the least common ancestor node Objects to avoid
misclassification. The samples in the second pair are not the
bicycles and motorbikes we see often, and even humans can-
not easily predict them correctly. HSRM gives abstract answer
of 2 − Wheeled vehicles. Samples in the last pair look very
similar in shape, but the one on the top is a locomotive that is
not seen separated from train wagons in the training samples.
HSRM predicts it as Vehicles to avoid the mistakes.

3) Ablation Study: To explore the influence of different
modules, we perform ablation test on the proposed model, in
terms of the optimization method and the risk measurement.
In all the tests, we use the TIE, HF and the Weighted BCPS
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Fig. 8. Predictions on some challenging samples using semantic tree of the PASCAL VOC dataset.

Fig. 9. Predictions on sample pairs of high similarities but belonging to different classes from the PASCAL VOC dataset.

as evaluation metrics, where the Weighted BCPS is the aver-
age results of different λ values of {0.1, 0.2, . . . , 0.9} in (5).
In the test on optimization methods, we compare the deep
reinforcement learning based method (DL) in this article with
the GA used in [24] by optimizing the same output of the
network, that is, the output in the hierarchical multitask mod-
ule. The results are shown in Table III and demonstrate that
the DL method is better than the GA method over all the
datasets. The main reason is that the GA method requires a
good initialization to obtain a approximate local optimum [24],
while the DL method searches in the solution space more effi-
ciently. In addition, the DL method considers the influence of
the low-level decisions by leveraging long-term reward, which
is important in the hierarchical classification problem [25]. In
the test on risk measurement, we compare the proposed con-
servative/precipitant risk with the confidence KL divergence
of [12], which regards the output distribution of predictions

similar to the uniform distribution as high risk predictions.
The results can be seen in Table IV and demonstrate that the
proposed risk measurement is better than the confidence KL
divergence one over all the datasets. The main reason is that
the proposed conservative/precipitant risk considers not only
the output distribution but also the reliability of the classifier
in the sense that the output of an unreliable classifier is not a
solid evidence to tell the uncertainty of the prediction.

V. CONCLUSION

We propose a novel hierarchical classification model to
define and minimize the risk in large-scale classification tasks.
First, we leverage the semantic hierarchy to define the bal-
anced conservative/precipitant semantic risk. The BCPS risk
adjusts the balance between the competing factors of conserva-
tive and precipitant risks. Second, we use deep reinforcement
learning to solve the nonconvex and underivative optimization
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problem of BCPS risk and other hierarchical metrics. We con-
sider the hierarchical classification as a sequence of stopping
and going down decisions. Hierarchical multitask learning is
designed to obtain the confidence scores of different granular-
ity, which gets rid of the hyperparameters in previous works.
Then, these scores are fed to the deep reinforced multigran-
ularity learning network to obtain a global risk-minimized
prediction with flexible granularity. By considering various
uncertainty factors, the information loss by stopping and
uncertainty of going down are computed at each step. By tak-
ing into account the long-term rewards, the proposed method
demonstrates clear advantages in minimizing the global risks.
Experimental results on seven datasets with the semantic tree
structure show that the proposed HSRM method achieves
superior performance based on all evaluation criteria.

The proposed method have two limitations. For one thing, it
currently cannot well addressed multilabel classification sce-
narios. Although thresholding the output to make the model
output multiple predictions is straightforward to handle the
multilabel classification problem, the number of predictions
varies from different samples, and this makes it difficult to
make predictions with a proper number. In the future, a pos-
sible way is to learn a powerful deep reinforced agent that
can learn to not only make multigranularity prediction but
also predict an adequate number of labels. For another, the
proposed method cannot handle the DAG structure. Although
the semantic risk can be measured by simply computing the
risk as the shortest or longest path between the prediction node
and ground-truth node for DAG, there is no sensible explana-
tions for some prediction nodes with multiple parents. Also,
it is promising to extend the current method to classification
problems with other relation structures like graph, where the
class relationship could be bidirectional [42].

REFERENCES

[1] J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei, “Hedging your bets:
Optimizing accuracy-specificity trade-offs in large scale visual recogni-
tion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Providence,
RI, USA, 2012, pp. 3450–3457.

[2] S. Gopal and Y. Yang, “Hierarchical Bayesian inference and recursive
regularization for large-scale classification,” ACM Trans. Knowl. Discov.
Data, vol. 9, no. 3, p. 18, 2015.

[3] T. Zhao et al., “Embedding visual hierarchy with deep networks for
large-scale visual recognition,” IEEE Trans. Image Process., vol. 27,
no. 10, pp. 4740–4755, Oct. 2018.

[4] H. Zhao, Q. Hu, P. Zhu, Y. Wang, and P. Wang, “A recursive regu-
larization based feature selection framework for hierarchical classifi-
cation,” IEEE Trans. Knowl. Data Eng., early access, Dec. 23, 2019,
doi: 10.1109/TKDE.2019.2960251.
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