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Abstract— In practical media distribution systems, visual
content usually undergoes multiple stages of quality degradation
along the delivery chain, but the pristine source content is rarely
available at most quality monitoring points along the chain
to serve as a reference for quality assessment. As a result,
full-reference (FR) and reduced-reference (RR) image quality
assessment (IQA) methods are generally infeasible. Although no-
reference (NR) methods are readily applicable, their performance
is often not reliable. On the other hand, intermediate references
of degraded quality are often available, e.g., at the input of
video transcoders, but how to make the best use of them in
proper ways has not been deeply investigated. Here we make
one of the first attempts to establish a new paradigm named
degraded-reference IQA (DR IQA). Specifically, by using a
two-stage distortion pipeline we lay out the architectures of
DR IQA and introduce a 6-bit code to denote the choices
of configurations. We construct the first large-scale databases
dedicated to DR IQA and have made them publicly available.
We make novel observations on distortion behavior in multi-stage
distortion pipelines by comprehensively analyzing five multiple
distortion combinations. Based on these observations, we develop
novel DR IQA models and make extensive comparisons with a
series of baseline models derived from top-performing FR and
NR models. The results suggest that DR IQA may offer significant
performance improvement in multiple distortion environments,
thereby establishing DR IQA as a valid IQA paradigm that is
worth further exploration.

Index Terms— Image quality assessment, multiple distortions,
degraded-reference, distortion behavior analysis, image quality
databases.

I. INTRODUCTION

THE goal of objective Image Quality Assessment (IQA)
methods is to predict the quality of images as perceived

by human eyes. Based on the accessibility to pristine reference
content, they are traditionally classified into three paradigms,
namely full-reference (FR), reduced-reference (RR) and no-
reference (NR) or blind IQA (BIQA) [1], [2], as illustrated in
Fig. 1. In the literature, FR, RR, and NR IQA algorithms are
usually tested and at times trained on image databases where
each distorted image has undergone a single (often simulated)
stage of distortion. This is in clear contrast to real-world
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Fig. 1. General framework of FR, RR and NR IQA.

Fig. 2. The framework of practical media distribution systems.

visual content distribution scenarios, as illustrated in Fig. 2,
where visual content undergoes multiple stages of distortions
before reaching its destination. For example, most consumer
cameras and camcorders, including mobile phone cameras,
store captured content using lossy compression standards such
as JPEG and H.264. When these images and videos are
uploaded to a social networking or video-sharing website,
they usually undergo further rounds of lossy transcoding
[3], [4] for onward delivery to viewers. This means two stages
of compression. For another example, an image or video
maybe contaminated by noise or blur during acquisition. The
camera will store this content in compressed form which may
be followed by further compression during its distribution.
This essentially means blur or noise contamination followed
by compression. Compressed medical images provide another
example of content afflicted by multiple distortion stages. It is
known that magnetic resonance (MR), computed tomography
(CT), and ultrasound images are affected by different types of
noise [5], [6], [7]. With the rapid increase in the resolution
and volume of medical images and with the emergence of
tele-medicine, it is now desirable to largely reduce the data
rate by lossy image compression as long as it does not affect
the diagnostic quality [8], [9]. This leads to a distortion
combination of noise followed by compression. Compressed
astronomical images provide yet another example of noise
followed by compression since such images are contaminated
by noise [10]. Thus, even if we start with a pristine reference
image, it may be affected by multiple stages of distortions
by the time it reaches the end user. The requirement for IQA
methods capable of handling multiple simultaneous distortions
is not new [11], but remains a major challenge [12].

In practical media delivery systems, access to pristine
reference images in the middle of the delivery chain is either
extremely rare or altogether nonexistent. This, coupled with
the multiple distortion nature of such systems, makes the
use of FR and RR IQA infeasible. While NR IQA methods
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are readily applicable, most NR methods are trained and
tested on databases that have images with a single stage
of distortion, and their performance lags behind that of FR
IQA methods [13]. Efforts have been made recently to design
NR IQA methods that handle multiply distorted images.
SISBLIM [14] is a training-free metric designed for singly and
multiply distorted images through the fusion of estimates of
noise, blur, JPEG compression, and joint effects. BoWSF [15]
selects features sensitive to different distortion types, which
are encoded through a Bag-of-Words model and mapped to
a quality score. LQAF [16] uses Support Vector Regression
(SVR) to map features such as phase congruency, gradient
magnitude, gray level gradient co-occurrence matrix and the
contrast sensitivity function to quality scores. An enhanced
and multi-scale version of LQAF, called MS-LQAF is
proposed in [17]. The training-based GWHGLBP [18] uses
the gradient-weighted histogram of the local binary pattern
(LBP) generated on the gradient map of the distorted image
to capture the effects of multiple distortions. Jet-LBP [19]
uses color Gaussian jets to generate feature maps from a
distorted image. The LBP is applied to these feature maps,
followed by a weighted histogram that is mapped to quality
scores through SVR. MUSIQUE [20] performs distortion
identification followed by distortion parameter estimation and
score generation. Nevertheless, we showed in [21] that NR
IQA methods generally perform unsatisfactorily when dealing
with multiply distorted images, especially when the distortion
types vary and with high distortion levels at earlier stages.

In addition to the performance issues, another major
limitation of NR IQA methods is that they are incapable
of incorporating the mid-stage distorted images along the
media delivery chain, shown as D1 to DN−1 in Fig. 2,
to determine the quality of the final multiply distorted image
DN . For example, at the input of a video transcoder, typically
a compressed video stream of degraded quality, is often
available but not used by NR IQA methods to assess the
video stream at transcoder output. Similarly, FR and RR IQA
are also unable to incorporate this additional information in
the quality assessment task. The question is: How to best
utilize the auxiliary information of the mid-stage images of
degraded quality to assess the quality of the final multiply
distorted images? We term this problem degraded-reference
IQA (DR IQA) and define it as determining the quality of a
final multiply distorted image given access to its degraded
reference image(s), but with no or limited access to the
pristine reference image. In Fig. 2 images D1 to DN−1
are the degraded references of the final multiply distorted
image DN .

This work is by no means the first attempt to tackle
the DR IQA problem. A pioneering work is the corrupted-
reference (CR) IQA scheme laid out in the context of
an image restoration problem [22], [23], [24], where the
quality of a denoised image with respect to an absent
pristine reference image is estimated by using a Gaussian
or Poisson noise contaminated corrupted reference image.
A recent interesting work targeting at DR IQA in image
restoration scenarios learns a reference space for DR images
by knowledge distillation from pristine images [25]. These
are instantiations of Type-010010 DR IQA based on the

categorization we will introduce in Section II. In our earlier
work [21], we show that Type-100100 DR IQA offers
the potential to substantially elevate the performance of
quality prediction against two baselines: FR IQA between
the degraded-reference and final distorted images, and NR
IQA of the final distorted image. The two-step quality
assessment (2stepQA) scheme [26], [27], [28] represents
a series of Type-001100 DR IQA instantiations, where
many combinations of FR methods (PSNR, MSSSIM [29],
FSIM [30], VSI [31]) between the degraded-reference
and final distorted images, and NR methods (NIQE [32],
BRISQUE [33], CORNIA [34], PQR [35]) on the degraded
reference images, have demonstrated great promises, though
it does not take into account how different distortions behave
in conjunction with each other. Other types of DR IQA
architectures (as elaborated in Section II), to the best of our
knowledge, have not been attempted in the literature.

In this paper, we make one of the first attempts to
establish DR IQA as a new IQA paradigm. We lay out
and discuss 53 potential architectures for DR IQA in a
two-stage distortion pipeline (Section II). We construct two
new large-scale synthetically annotated datasets dedicated
to DR IQA (Section III-A). We study the behaviors in
multiple simultaneous distortions and make some interesting
observations not reported before (Section III-B). Based on
these observations, we develop novel DR IQA models
(Section IV) and make extensive comparisons with baseline
models derived from top-performing FR and NR models
(Section V). Finally, we conclude that the DR IQA paradigm
offers great potentials and is worth further exploration in the
future (Section VI).

II. DEGRADED REFERENCE IQA ARCHITECTURES

Although in practice images and videos may undergo many
stages of distortions, a logical starting point to study DR IQA
is to focus on the case of two stages of distortions. This
allows for a thorough discussion about all potential ways to
perform DR IQA without missing the main issues that may be
encountered in the cases of many stages of distortions. In a
two-stage distortion pipeline, a source of a pristine reference
(PR) image undergoes stage-1 distortion, leading to a degraded
reference (DR) image, which subsequently undergoes stage-2
distortion and results in a final distorted (FD) image, as shown
at the top part of Fig. 3. In DR IQA, both DR and FD
images are assumed available, while the PR image is generally
not accessible. However, in certain circumstances, information
regarding the degradation from the PR to DR images may
be made available to the DR IQA module, which may help
improve the performance of DR IQA algorithms.

Although traditional FR/RR/NR IQA methods alone do not
directly provide adequate solutions to the DR IQA problem,
they may be employed as key components in the total
solution. Depending on how they are utilized, there may
be many configurations of DR IQA architectures, which are
summarized in Fig. 3. In particular, the FR/RR IQA computed
between the PR and DR images, and between the DR and
FD images, the NR IQA computed from the DR and FD
images, together with the DR and FD images themselves,
may all be part of the input to the DR IQA module, which
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Fig. 3. General architectures of DR IQA. Configurations determined by the
statuses of six switches. See Table I for more information.

TABLE I
INFORMATION CONNECTED WITH SWITCHES (S0 TO S5) IN THE DR IQA

ARCHITECTURE SHOWN IN FIG. 3. EACH SWITCH IS CONTROLLED BY
A CODE BIT FROM THE 6-BIT ARCHITECTURE CODE

TABLE II
DR IQA ARCHITECTURE TYPE GROUPS AND SWITCH CODE

produces a single quality score of the FD image. Depending
upon the nature of the DR IQA module, the respective output
of each FR/RR and NR IQA module, shown in Fig. 3, may
be a predicted quality score, a quality map, or extracted
features. The inputs to the DR IQA module may be controlled
by six switches, each of which may be turned on or off
independently, resulting in 64 potential configurations of DR
IQA architectures, each represented by a 6-bit architecture
code, where a bit of 1 or 0 denotes a switch being ON or
OFF, respectively. The six switches, S0 to S5, are respectively
controlled by bit0 to bit5 of the 6-bit architecture code and
their order is given in Fig. 3. Table I provides details about
the type of information connected with each switch along with
its respective controlling code bit.

The 64 potential architectures may be further classified into
three groups. In the case that the PR image is completely
inaccessible (even in gauging the FR/RR quality degradation
from the PR image to the DR image), the first bit of the
architecture code equals 0. Therefore, we categorize these
architectures into the Type-0 group. Correspondingly, when
information regarding the PR image is accessed through the

FR/RR measure between PR and DR images, we classify the
architectures into the Type-1 group. There are also invalid
configurations for DR IQA when either the DR or the FD
image is completely inaccessible to the DR IQA module. The
classifications and the corresponding architecture codes are
listed in Table II, where there are 25, 28, and 11 architectures
in the Type-0, Type-1 and invalid groups, respectively.

In practice, not all of the 53 (25+28) valid DR
IQA architectures are equally favored, and the choice is
likely dependent on the application scenarios. For instance,
FR IQA methods are generally more reliable than other
IQA approaches, and thus Type-1***** or Type-***1** are
desirable. But in practical video delivery pipelines, obtaining
both PR and DR videos or both DR and FD videos at
the same monitoring points may not be easy, and even
when the condition is met, the videos are often not aligned
along the temporal dimension. For another example, when
no existing FR/RR/NR IQA method is available, then Type-
010010 is the only option, but this would require a completely
new design of the DR IQA approach. More sophisticated cases
may also occur with certain mixtures of distortion types in the
two stages of distortions, which will be elaborated in more
detail in Section III-B.

Scrutinizing observers may find some of the 53 valid DR
IQA architectures to be redundant. For example, when both
the DR and FD images are available, as in the case of
Type-010010, then the related architectures of Type-01**1*
may all be redundant, because the associated FR or NR
IQA computations can be done inside the DR IQA module.
However, this is based on the assumption that all the FR,
NR and DR computations are performed at a centralized
location. In practice, this may not always be the case,
as the FR and NR IQA measures may be computed at local
monitoring points (which may serve certain local decision
making purposes), while DR IQA is conducted at a central
location, for example, in the cloud, where the FR and NR
models may not be available, or recomputing them is not
energy efficient but reusing them may largely reduce the
computational burden of DR IQA. Therefore, it is meaningful
to identify them as distinct types.

In the rest of this paper, we focus on two scenarios
corresponding to two DR IQA architectures, based on which
we study the behaviors of two-stage quality variations under
different distortion combinations in Section III-B and develop
DR IQA models in Section IV. For this work, we limit
ourselves at taking a model predicted score from each FR
and NR IQA module that may be present within the two DR
IQA architectures. The first scenario corresponds to Type-
100100 DR IQA, and this architecture is given in Fig. 4.
Since FR methods provide the most reliable quality prediction
performance [13] and the PR image is assumed to have perfect
quality, to simplify the analysis, we define the absolute scores
(AS) of a test image as the FR measure between the test image
and its corresponding PR image. In the case of two distortion
stages, we may compute the AS scores of the DR and FD
images as Eq. 1 and 2:

ASDR = FR(IPR, IDR), (1)
ASFD = FR(IPR, IFD), (2)

Authorized licensed use limited to: University of Waterloo. Downloaded on January 19,2023 at 14:51:45 UTC from IEEE Xplore.  Restrictions apply. 



ATHAR AND WANG: DEGRADED REFERENCE IMAGE QUALITY ASSESSMENT 825

Fig. 4. Scenario 1: Type-100100 DR IQA architecture.

Fig. 5. Scenario 2: Type-001100 DR IQA architecture.

respectively, where IPR, IDR, and IFD are the PR, DR and
FD images, respectively. The third possible FR comparison is
between the DR and FD images, which assesses the quality
of the FD image relative to the DR image. Thus, we regard it
as the relative score (RS) of the FD image:

RSFD = FR(IDR, IFD). (3)

Ideally, if FR IQA is fully trusted, then ASFD yields the best
quality estimate of the FD image, but cannot be computed as
the PR image is not available, at the end user level. Therefore,
in Scenario 1, which assumes the availability of the PR image
early on in the media distribution system, the goal of the DR
IQA module in Fig. 4 is to make the best prediction of ASFD
using ASDR and RSFD, i.e.,

ÂSFD = f (ASDR, RSFD), (4)

where f is the prediction function of the DR IQA module.
Scenario 1 is practically applicable only when ASDR is pre-
computed at the first distortion stage and transmitted as side
information with the DR image to the second distortion stage.
Apparently, transferring ASDR would require minor protocol
changes of the media delivery system.

The second scenario follows Type-001100 DR IQA
architecture, as shown in Fig. 5, where the PR image is
completely inaccessible, and thus ASDR cannot be computed.
Instead, an NR IQA method is employed to produce an
estimated score ÂSDR:

ÂSDR = NR(IDR). (5)

Correspondingly, the DR IQA module is designed to predict
ASFD by using NR IQA predicted ÂSDR and RSFD:

ÃSFD = g(ÂSDR, RSFD), (6)

where g is the prediction function of the DR IQA module and
may take a similar form as f in Eq. 4. Unlike the first scenario,
there is no need here to make any change to the existing media
distribution system, and the DR IQA systems can be deployed
as passive quality monitoring probes. This makes Scenario 2
both practically applicable and readily deploy-able.

TABLE III
COMPOSITION OF DR IQA DATABASES V1 AND V2

III. MULTIPLE DISTORTIONS: DATABASE CONSTRUCTION
AND BEHAVIOR ANALYSIS

A. Database Construction

Most existing IQA datasets of multiply distorted content
such as LIVE MD [36], MDIVL [37], MDID [38],
MDID2013 [14], and LIVE WCmp [27], use a limited number
of distortion levels (typically 3 or 4) per distortion type per
stage, making it difficult to analyze how different constituent
distortions behave in conjunction with each other. The
Waterloo Exploration-II (Exp-II) database, that we developed
in [39], has 3,570 PR, 117,810 singly distorted, and 3,337,950
multiply distorted images, offering an excellent testbed for
two-stage DR IQA. Here we construct two new datasets,
namely DR IQA database Version 1 (V1) and DR IQA
database Version 2 (V2), by following the same procedure
as [39], but without any cross-dataset content overlap. The
purpose here is to use one dataset for training and the other
for validation in a machine learning process, and then use the
Waterloo Exp-II database for independent testing.

A total of 68 pristine quality reference images were
taken from the following sources: IQA databases CSIQ [40],
IVC [41], LIVE R2 [42], TID2013 [43], Toyoma [44] and
some pristine images were extracted from raw videos available
at CDVL [45]. These images were divided into two disjoint
groups of 34 images each, with one group forming the pristine
image set of DR IQA database V1 and the other forming the
pristine image set of DR IQA database V2. Table III outlines
the composition of DR IQA databases V1 and V2.

We include singly distorted DR images belonging to three
distortion categories of Gaussian white noise, Gaussian blur,
and JPEG compression. The stage-1 DR images are created in
the fair to excellent perceptual quality range at distortion levels
1 to 11 based on a content adaptive distortion process [39].
This leads to 374 DR images for each of the three single
distortion types in each dataset.

The stage-2 multiply distorted FD images belong to the
following five distortion combinations which simulate real-
world multiple distortion scenarios and are examples of
practical applications of DR IQA: 1) Gaussian blur followed
by JPEG compression (Blur-JPEG or B-JPG) simulates
the storage of blurry images through JPEG compression;
2) Gaussian white noise followed by JPEG compression
(Noise-JPEG or N-JPG) simulates the storage of noisy images
through JPEG compression; 3) Gaussian white noise followed
by JPEG2000 compression (Noise-JP2K or N-JP2) simulates
the storage of noisy images through JPEG2000 compression;
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Fig. 6. SQB histogram of DR IQA database V1.

4) JPEG compression followed by JPEG compression (JPEG-
JPEG or JPG-JPG) simulates multiple levels of compression
(e.g., images taken by cell phone cameras are usually JPEG
compressed and may undergo further compression when
uploaded to a social media platform); and 5) Gaussian blur
followed by Gaussian white noise (Blur-Noise or B-N) not
only simulates different image capture conditions but can
also simulate image acquisition followed by transmission [14].
Stage-2 FD images are created by starting with the
respective DR images and applying content adaptive distortion
parameters [39] at levels 1 to 17, which correspond to the
entire bad to excellent perceptual quality range. This leads
to 6,358 FD images for each distortion combination in each
dataset. By having 11 stage-1 and 17 stage-2 distortion levels,
we have ensured an adequate density of distortion levels per
distortion stage. Overall, each database has 32,912 distorted
images.

Conducting subjective testing for such large datasets
is extremely difficult. To find an alternative automatic
data annotation mechanism, we conducted the largest IQA
performance evaluation study to-date [13], where we find
that fusing multiple FR IQA methods through a training-
free reciprocal rank fusion (RRF) strategy [46] (first used
in IQA in [47]) offers robust perceptual quality prediction
performance. Based on RRF, we develop a synthetic quality
benchmark (SQB) scheme [39] that fuses four FR methods
including CIDMS [48], DSS [49], IWSSIM [50], and
VIFDWT [51]. SQB outperforms all state-of-the-art FR and
fused FR methods, on subject-rated datasets, that it was tested
against [39]. Furthermore, by utilizing the SQB-annotated
Waterloo Exp-II dataset, we trained a deep neural network
(DNN) based NR IQA model called EONSS [39]. Exclusively
trained on SQB-annotated Waterloo Exp-II dataset, and
exclusively tested on nine subject-rated datasets, EONSS
outperforms all state-of-the-art NR IQA methods that it was
tested against, which in turn, justifies the reliability of the
SQB annotation strategy. More information about SQB can
be found in [39].

We use SQB to annotate DR IQA databases V1 and
V2, and provide the SQB histogram of DR IQA database
V1 in Fig. 6 which shows a wide representation of
the full quality range (SQB dynamic range is between
0 and 100, where the best quality is represented by the
latter), with a higher concentration on the higher quality
half, which is the working range in most real-world
applications. The SQB histogram of DR IQA database V2

is similar to the one shown in Fig. 6. We have made
both DR IQA databases V1 and V2 publicly available
on IEEE DataPort. DR IQA database V1 is available at
https://dx.doi.org/10.21227/4795-vv06 and DR IQA database
V2 is available at https://dx.doi.org/10.21227/8r47-gp07.

B. Multiple Distortions: Behavior Analysis

The large-scale DR IQA databases V1 and V2 provide
us with a platform to investigate the behaviors of images
undergoing multiple stages of distortions, which is essential
in building effective DR IQA methods. We start with a visual
example given in Figs. 7 and 8, where the PR Barbara
image undergoes three types of stage-1 distortions (Gaussian
noise, Gaussian blur, JPEG compression) at level 7, which
then undergo stage-2 distortions (Gaussian noise, JPEG and
JPEG2000 compression) at level 11 to create five distortion
combinations (Blur-JPEG, Blur-Noise, JPEG-JPEG, Noise-
JPEG, Noise-JP2K), resulting in 3 DR and 5 FD images, for
which we compute their SSIM [52] quality maps that indicate
quality variations over space (brighter suggests better quality).
The various image-level ASDR, ASFD, and RSFD quality scores
for these images are also computed by SSIM1 [52] (higher
indicates better quality) and are given in Table IV.

There are several useful observations from these visual
examples and SSIM results. 1) The relative quality maps of
the FD images (Fig. 8(d-h)) are drastically different from
their respective absolute quality maps (Fig. 8(i-m)), suggesting
RSFD is not a good predictor of ASFD in general and FR
methods should be used with caution in the absence of PR
images. 2) For the cases of Blur-JPEG, Blur-Noise, and JPEG-
JPEG, the relative quality maps are lighter than the absolute
quality maps, showing an over-estimation of ASFD by RSFD.
3) However, the opposite is observed for the cases of Noise-
JPEG and Noise-JP2K, where their relative quality maps are
darker, and RSFD under-estimates ASFD. 4) For the cases of
Blur-JPEG, Blur-Noise, and JPEG-JPEG, the absolute quality
map of the FD image appears to be roughly an accumulative
combination of the absolute quality map of the DR image and
the relative quality map of the FD image. 5) However, this
is obviously not the case for Noise-JPEG and Noise-JP2K,
suggesting sophisticated distortion combination behaviors.

To investigate further, we use the FR IQA method
FSIMc [30], which was found to be among the top performing
FR methods in [13], to compute the ASDR, RSFD, and
ASFD scores (higher indicates better quality) for various DR
and FD Barbara images created from all 11-level stage-1
distortions and 17-level stage-2 distortion combinations, and
plot ASFD versus RSFD scores in Fig. 9. For each distortion
combination, there are 11 curves, each corresponding to one
of the 11 stage-1 DR images and containing 17 points that
represent the corresponding stage-2 FD images. The dotted
horizontal lines represent the quality level of the DR images.

1To enhance the visibility of the quality maps in Fig. 8, we have chosen the
original version of the FR IQA method SSIM [52] that does not implement
automatic downsampling. Consequently the same version of SSIM has been
used to generate the scores in Table IV. While we have used SSIM due to its
quality map feature to give the visual demonstration in Fig. 8, we recognize
that better FR methods exist and have used FSIMc [30] in subsequent analysis.
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Fig. 7. Example Barbara images: (a) PR image; (b-d) DR images (Stage 1 distortion level 7); (e-i) FD images (Stage 2 distortion level 11).

Fig. 8. SSIM [52] Quality Maps of the example Barbara images of Fig. 7: (a-c) Absolute Quality Maps of the DR images with respect to PR; (d-h) Relative
Quality Maps of the FD images with respect to their DR images; (i-m) Absolute Quality Maps of the FD images with respect to PR.

TABLE IV
SSIM ASDR , RSFD , AND ASFD SCORES FOR EXAMPLES IN FIG. 7

The key observations are summarized as follows: 1) When
stage-1 distortion is minimum (level-1), the DR image is

almost as good as the PR image, and not surprisingly the
prediction from RSFD to ASFD is nearly perfect, demonstrated
as the straight lines of the Stage-1 Level-1 (S1-L1) curves in
all five distortion combinations in Fig. 9. However, the trend
changes dramatically with the increasing stage-1 distortion
levels; 2) For all five distortion combinations, with the
exception of some Noise-JPEG curves, at minimum stage-2
distortion (Stage-2 Level-1), RSFD ≃ 1 and ASFD ≃ ASDR,
which is not surprising since stage-2 is not adding any
further distortion to the DR image; 3) For Blur-JPEG and

Authorized licensed use limited to: University of Waterloo. Downloaded on January 19,2023 at 14:51:45 UTC from IEEE Xplore.  Restrictions apply. 



828 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

Fig. 9. ASFD versus RSFD plots for all stage-1 (ASDR) distortion levels (S1-L1 to S1-L11) corresponding to five distortion combination types for the
Barbara image. Dotted lines represent ASDR scores. The FR IQA method FSIMc [30] was used to obtain all scores.

JPEG-JPEG2 distortion combinations (Fig. 9(a) and (c)), the
curves consistently move away nearly in parallel (especially
for Blur-JPEG) from the S1-L1 curve with increasing stage-1
distortion level, suggesting additive quality degradation of
the two distortion stages; 4) The Blur-Noise distortion
combination (Fig. 9(b)) follows a similar behavior as the
Blur-JPEG and JPEG-JPEG cases, but the curves converge
with increasing stage-2 distortion, implying that as the
magnitude of the stage-2 distortion, i.e., Gaussian noise,
increases, it overshadows the stage-1 distortion (Gaussian
blur) and becomes the dominant distortion factor; 5) The
Noise-JPEG and Noise-JP2K distortion combination cases
(Fig. 9(d) and (e)) exhibit more interesting nonlinear
behaviors. Notably some portions of the curves go above their
respective ASDR baseline, i.e., overshoots take place. This
behavior is most apparent in the low to mid-level stage-2
distortion levels corresponding to mid to high level stage-1
distortion levels and is much more pronounced in the Noise-
JP2K case. Most interestingly, the overshoot phenomenon
indicates that the corresponding FD images have better quality
than their respective DR images from which they are created,
suggesting that the denoising effect of compression may help
improve image quality at certain noise and compression levels.
A visual demonstration is given in Fig. 10, where the PR
Barbara image is distorted at Gaussian noise level 11 to
generate the DR image, which is then further distorted by
JPEG2000 compression level 6 to generate the FD image.
The quality maps of the DR and FD images with respect to
the PR image and their SSIM scores clearly show that the

2Fig. 9(c): Some JPEG-JPEG ASFD versus RSFD curves, especially
corresponding to lower ASDR scores, seem to form closed loops. This happens
when stage-2 JPEG compression (used to create the FD image) is lower than
stage-1 JPEG compression (used to create the parent DR image).

quality of the FD image improves upon the DR image. 6)
For Noise-JPEG and Noise-JP2K, especially the latter, we also
note that unlike the other three distortion combinations, curves
corresponding to higher stage-1 distortion levels are not always
below those with lower stage-1 distortion. Instead as stage-2
distortion increases, a crossover takes places which is more
evident for higher stage-1 distortion levels. Again this points
to complex joint effects of the two distortion types involved
in the combination where noisier stage-1 images are better
impacted by the denoising effect of compression. 7) Although
Blur-JPEG, JPEG-JPEG, and Noise-JPEG, have different
stage-1 distortions but the same stage-2 distortion (JPEG
compression), Figures 9(a), (c), and (d) respectively show that
their quality behavior is quite different which indicates that the
behavior of constituent distortions in multiply distorted content
needs to considered in conjunction with each other rather than
separately. Overall, the multi-stage quality variation behavior
is highly dependent on the distortion combinations, and the
relationship of the two distortion stages on quality ranges from
nearly linear to highly nonlinear. While we have presented the
above behavior analysis using one example due to space limit,
similar behaviors have been observed in the whole DR IQA
V1 and V2, and Waterloo Exp-II [39] databases.

IV. DR IQA MODEL DESIGN

Here we make one of the first attempts to develop DR IQA
models. Rather than adopting sophisticated methods such as
deep neural networks, we opt for straightforward and empirical
approaches because our main goal is to establish DR IQA as
a new paradigm, that offers advantages in handling multiple-
distortion cases, through head-to-head comparisons with top-
performing FR or NR methods (baselines in Section V).
The transparency of these approaches also demonstrates
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Fig. 10. Noise-JP2K distortion combination example. (a) PR Barbara image;
(b) DR image contaminated by white Gaussian noise (level 11), SSIM ASDR =
0.5053; (c) FD image obtained by compressing the DR image with JPEG2000
(level 6), SSIM RSFD = 0.4825, SSIM ASFD = 0.7889; SSIM quality maps
of: (d) DR with respect to PR image; (e) FD with respect to DR image; (f) FD
with respect to PR image.

the value of understanding the multiple-distortion behaviors
(as discussed in Section III-B) in DR IQA modeling.

A. Model 1: Distortion Behavior Model

The first model is motivated by the observations on
distortion behaviors from Fig. 9, where for each given stage-1
distortion level, the relationship between ASFD and RSFD is
often well fitted by a straight line (with the exception of Noise-
JP2K), anchored by the rightmost point at (RSFD, ASFD) = (1,
ASDR) for each curve, especially in Blur-JPEG, Blur-Noise,
JPEG-JPEG, and Noise-JP2K cases. In Scenario 1, or Type-
100100 DR IQA, shown in Fig. 4 and represented by Eq. 4,
both FR computed ASDR and RSFD are known, and thus an
estimate of ASFD directly follows from the point-slope formula
for each curve, given by

ÂSFD = m · (RSFD − 1) + ASDR. (7)

It remains to determine the slope parameter m. For each
distortion combination, we use least-square regression to
obtain the best value of m for each of the 11 stage-1 distortion
levels for all the DR images in DR-IQA databases V1 and
V2. The plots of the best coefficient m versus ASDR are
shown in Fig. 11. Somewhat surprisingly, for each distortion
combination type (with the exception of JPEG-JPEG at high
stage-1 distortion), the behavior of coefficient m with respect
to ASDR is rather quite linear, suggesting that the optimal value

of m may be directly predicted from ASDR by

m̂ = P1 · ASDR + P2, (8)

where P1 and P2 are the slope and intercept coefficients,
respectively. Replacing m with m̂ and plugging into Eq. 7,
we obtain

ÂSFD = P1 · ASDR · RSFD + P2 · RSFD

+(1 − P1) · ASDR − P2. (9)

As such, by following a 2-tier modeling approach,
we narrow down the number of parameters to two (P1 and P2)
that need to be found separately for each distortion
combination. Since five multiple distortion combinations are
being considered in this work (Blur-JPEG, Blur-Noise, JPEG-
JPEG, Noise-JPEG, and Noise-JP2K), this requires that
parameters P1 and P2 be separately determined for all five
cases. This also makes the application of the resulting Model 1
versions distortion combination specific.

In addition to developing the 2-tier Model 1 above for
the five distortion combinations separately, we also construct
it (i.e., determine parameters P1 and P2) for two general-
purpose cases: 1) NBJ-JPEG (NBJ-JPG), where the distortion
combinations of Noise-JPEG, Blur-JPEG, and JPEG-JPEG are
considered together (so that comparisons can be made with
2stepQA [26], [27], which is designed for the case where
the second distortion stage is JPEG compression); and 2) the
All Data case, where all five distortion combinations are
considered together. These two additional versions of Model 1,
especially the All Data case, are not specific to any particular
distortion combination, i.e., they are more generally applicable
compared to the earlier five versions. For Scenario 1, we use
the FR method FSIMc [30] to compute both ASDR and RSFD,
and call this ASDR-RSFD combination FSIMc-FSIMc.

For Scenario 2 or Type-001100 DR IQA as shown in Fig. 5
and represented by Eq. 6, we use three NR IQA methods,
CORNIA [34], dipIQ [53], and NIQE [32] to predict the
quality of DR images, i.e., to find ÂSDR (Eq. 5). CORNIA and
dipIQ are selected for their top performance in [13], and NIQE
has been used in the 2stepQA model [26], [27]. Combining
with the FR method FSIMc [30] (used to find RSFD), this
leads to three ÂSDR-RSFD combinations: CORNIA-FSIMc,
dipIQ-FSIMc, and NIQE-FSIMc. We also include the NIQE-
MSSSIM combination (where the FR method MSSSIM [29]
is used to compute RSFD), so as to make direct comparisons
with 2stepQA [26], [27], which also uses this combination.
Specifically, we learn a nonlinear mapping from CORNIA,
dipIQ, and NIQE to FSIMc for the CORNIA-FSIMc, dipIQ-
FSIMc, and NIQE-FSIMc combinations, and from NIQE to
MSSSIM for the NIQE-MSSSIM combination, with a five-
parameter modified logistic function [42]:

F(N ) = β1

[
1
2

−
1

1 + e{β2(N−β3)}

]
+ β4 N + β5, (10)

where N denotes NR scores, F denotes mapped FR scores
after the mapping step, and β1, β2, β3, β4, and β5 are
parameters tuned using DR IQA databases V1 and V2, and
fixed for testing. The NR-predicted and FR-mapped ÂSDR
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Fig. 11. Scatter plots of coefficient m versus ASDR for the entire DR IQA databases V1 and V2 for the five distortion combinations under consideration.

score is then used in Model 1 (Eq. 9) which becomes:

ÃSFD = P1 · ÂSDR · RSFD

+ P2 · RSFD + (1 − P1) · ÂSDR − P2. (11)

Altogether, with five ASDR/ÂSDR and RSFD combina-
tions (Scenario 1: FSIMc-FSIMc; Scenario 2: CORNIA-
FSIMc; Scenario 2: dipIQ-FSIMc; Scenario 2: NIQE-FSIMc;
Scenario 2: NIQE-MSSSIM) and seven multiple distortion
combinations (Blur-JPEG; Blur-Noise; JPEG-JPEG; Noise-
JPEG; Noise-JP2K; NBJ-JPEG; All data), we develop 35 sets
of parameter settings for Model 1.

B. Model 2: Distortion Behavior Model

Motivated by the simplicity of the distortion behavior
analysis based 2-tier Model 1 with only two parameters, and
also to better account for the non-linear behavior of certain
distortion combinations such as Noise-JPEG and Noise-JP2K,
we adopt a direct six-parameter polynomial model with
quadratic terms as Model 2 for Scenario 1 DR IQA:

ÂSFD = a · ASDR
2
+ b · RSFD

2
+ c · ASDR + d · RSFD

+ e · ASDR · RSFD + f, (12)

where a, b, c, d , e and f are model coefficients, which
are estimated directly using DR IQA databases V1 and V2.
Similar to Model 1, the six model coefficients of Model 2
are separately determined for the five multiple distortion com-
binations as well as for the more generally applicable NBJ-
JPEG and All Data cases. Model 2 reduces to Model 1 when:
a = 0, b = 0, c = (1 − P1), d = P2, e = P1 and
f = −P2. Analogous to Model 1, for the case of

Scenario 2 DR IQA, Model 2 becomes:

ÃSFD = a · ÂSDR
2
+ b · RSFD

2
+ c · ÂSDR + d · RSFD

+ e · ÂSDR · RSFD + f. (13)

Specifically, the NR (CORNIA, dipIQ, NIQE) predicted DR
image quality scores are mapped to respective FR (FSIMc
or MSSSIM) scores using the nonlinear mapping function
of Eq. 10. Similarly, with five ASDR/ÂSDR and RSFD
combinations, and seven multiple distortion combinations,
35 sets of parameter settings are developed for Model 2.

C. Model 3: Support Vector Regression Model

To better understand how well the distortion behavior based
Models 1 and 2 (which use very few parameters) capture the
nature of the DR IQA problem, we opt to use support vector
regression (SVR) [54], [55] to construct Model 3, which serves
as an additional reference point, and also act as DR IQA
models in their own right.

Specifically, we develop Model 3 by using nu-SVR that
employs the radial basis function (RBF) kernel [55], [56]
and four control parameters. For each of the 35 settings, the
predictors are the FR FSIMc/MSSSIM RSFD scores and either
the FR FSIMc ASDR scores or the NR CORNIA/dipIQ/NIQE
ÂSDR scores. The training targets are the ASFD scores given
by the SQB of the FD images. We use DR IQA database
V1 for model training and DR IQA database V2 for model
validation. The finalized models are later tested on a separate
set of datasets (Section V). Before training, we ensure that
the data has been scaled properly as recommended in [56].
During training, we determine the best possible SVR control
parameters for a particular model through an extensive grid
search by training the model on DR IQA database V1 hundreds
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TABLE V
ABSOLUTE PERFORMANCE OF FR METHODS WHEN DETERMINING THE QUALITY OF FD IMAGES WITH RESPECT TO PR IMAGES

IN TERMS OF PLCC. THE BEST SCORES FOR EACH DATABASE AND DISTORTION COMBINATION ARE HIGHLIGHTED IN BOLD

to thousands of times using different combinations of control
parameters, and then selecting the parameters that lead to the
best model performance in terms of both the Pearson Linear
Correlation Coefficient (PLCC) and the Spearman Rank-order
Correlation Coefficient (SRCC) on the validation data (DR
IQA database V2). Since model training by using a large grid
is quite time consuming, we use a two-tier grid search. First a
coarse-level grid search is performed that identifies the region
of the grid that should be focused on. This is followed by a
fine-level grid search to finalize the SVR parameters which
are used to train the final model on DR IQA database V1.

V. PERFORMANCE EVALUATION

A. Databases and Evaluation Criteria
To the best of our knowledge, there are only four

datasets [27], [36], [37], [39] that provide both singly distorted
DR and their respective multiply distorted FD images, together
with quality labels. Although two other datasets, MDID [38]
and MDID2013 [14], contain multiply distorted images, they
do not provide DR images. Therefore, we use these four
datasets, as discussed below, for performance evaluation.
These datasets do not have any content overlap with DR IQA
databases V1 and V2 used in the development of our DR IQA
models.

The Waterloo Exploration-II (Waterloo Exp-II)
database [39] has 3,570 PR images, 39,270 singly distorted
images each for Blur, JPEG compression, and Noise, and
667,590 multiply distorted images each for the distortion
combinations of Blur-JPEG, Blur-Noise, JPEG-JPEG, Noise-
JPEG, and Noise-JP2K. The singly and multiply distorted
images are the DR and FD images, respectively, in a 2-stage
distortion process. All distorted images are annotated with
synthetic quality benchmark (SQB) labels that have been
generated by fusing the results from four state-of-the-art FR
methods [39].

The LIVE Multiply Distorted (LIVE MD) database [36]
consists of 15 PR images, 45 singly distorted images each for
Blur, JPEG compression and Noise, and 135 multiply distorted
images each for the distortion combinations of Blur-JPEG
and Blur-Noise. We consider the singly distorted Blur images
as DR and the multiply distorted images as the FD images.
Subjective ratings are available in the form of difference mean
opinion scores (DMOS).

The Multiply Distorted IVL (MDIVL) database [37], [57]
consists of 10 PR and 750 multiply distorted images of which
350 belong to the Blur-JPEG combination while 400 belong
to the Noise-JPEG combination. Although the database does

not explicitly contain singly distorted images, in both Blur-
JPEG and Noise-JPEG combinations, the least compression
distortion level utilizes MATLAB quality factor of 100, which
produces nearly perceptually lossless compression. Thus,
we regard 70 out of 350 Blur-JPEG and 100 out of 400 Noise-
JPEG images as singly distorted Blur and Noise images,
respectively, thereby providing us with DR and FD images.
MDIVL provides subjective ratings in the form of mean
opinion scores (MOS).

The LIVE Wild Compressed (LIVE WCmp) database
[26], [27] is composed of 400 images. It starts with
80 authentically distorted images taken from the LIVE
Wild Challenge database [58] which can be regarded as
DR images. Each of these 80 images are further JPEG
compressed at four fixed compression levels regardless of
content, leading to 320 FD images. LIVE WCmp does not
have PR images and provides subjective ratings in the form
of MOS.

Among the above-mentioned datasets, Waterloo Exp-
II [39] is synthetically annotated while the other three
(LIVE MD [36], MDIVL [37], and LIVE WCmp [27])
contain subjective ratings. On the other hand, three datasets
(Waterloo Exp-II [39], LIVE MD [36], and MDIVL [37])
are simulated distortion datasets, whereas LIVE WCmp [27]
has authentically distorted DR images. It is pertinent to
mention that while the development of DR IQA models
in this work (Section IV) was done by using simulated
distortion datasets (DR IQA databases V1 and V2), testing
these models on the LIVE WCmp [27] database allows us
to evaluate their performance for the real world scenario of
the storage of authentically distorted user generated content
through compression.

We use PLCC and SRCC as measures of a model’s predic-
tion accuracy and prediction monotonicity, respectively [59].
PLCC is computed after a nonlinear mapping step between
model predictions and target scores, whereas SRCC is
computed directly [13]. Due to space limit, only PLCC results
are reported here but SRCC results are found to be similar in
all test cases.

B. Absolute FR Performance and Baseline IQA Models
With access to the pristine reference images, FR IQA

methods offer the best quality prediction performance [13],
and thus serve as an approximate upper bound for the baseline
and DR IQA models that we will test later. Here we select
FSIMc [30] and MSSSIM [29] as the reference FR models.
The former outperforms most other FR methods [13], and the
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TABLE VI
PERFORMANCE OF BASELINE METHODS IN TERMS OF PLCC. FOR BASELINES 1 AND 2 THE BEST SCORES

FOR EACH DATABASE AND DISTORTION COMBINATION ARE HIGHLIGHTED IN BOLD

latter is the FR component in 2stepQA [27] besides being
a competitive method [13]. Table V shows the performance
of the FR methods in terms of PLCC, where the results are
termed as absolute performance since testing is done against
PR images. The LIVE WCmp database [27] is not present
because it does not have PR images.

Given the two-stage DR IQA framework, three types of
approaches may be applied using existing IQA models in the
literature, and are included as baseline models. 1) Baseline-1:
Use FR methods to assess the relative quality of FD images
with respect to DR images, i.e., RSFD, and use it to predict
the absolute quality of FD images. Specifically, we use
FSIMc [30] and MSSSIM [29] as the representative FR
measures; 2) Baseline-2: Use NR methods to assess the
FD images directly, without referencing to the DR images.
Based on the performance analysis of 14 NR methods on
nine datasets in [13] and another six recent NR methods
[60], [61], [62], [63], [64], [65] on the LIVE MD and/or
MDIVL datasets, we select CORNIA [34] and dipIQ [53]
as representative opinion-aware and opinion-unaware baseline
NR methods, respectively, due to their good performance.
We also select NIQE [32] as it is the NR component in
2stepQA [27]; 3) Baseline-3: 2stepQA [26], [27] is the only
IQA model that utilizes the quality information about the DR
image while determining the quality of a multiply distorted
FD image. Specifically, NIQE [32] is used for NR assessment
of the DR image, MSSSIM [29] is used to compare the DR
and FD images, and a product of the scores produces a final
quality assessment of the FD image.

Table VI provides the quality prediction performance of
the three baseline approaches in terms of PLCC. There
are several important observations. First, close comparison
with Table V shows that there is generally a large gap in
performance between the absolute FR quality scores and

the Baseline-1 relative FR quality scores, even though the
same top-performing FR models are employed in both cases,
suggesting that FR IQA models are reliable only when
the pristine quality reference is accessible. Table VI also
shows that Baseline-1 performance varies drastically between
databases, where it is quite acceptable in case of LIVE WCmp
but poor for LIVE MD. This is explained by the amount of
distortion(s) present in the DR images and if there is perceptual
separation between the quality ranges of the DR and FD
images in a dataset. To elaborate on this further, we provide
the histograms of the subjective ratings for the DR and FD
images in LIVE MD and LIVE WCmp databases in Fig. 12.
It should be noted that LIVE MD [36] provides subjective
ratings in the form of DMOS for which a lower value indicates
better visual quality, whereas LIVE WCmp [27] provides these
ratings as MOS for which a higher value indicates better
visual quality. The histogram of the DR images in LIVE MD,
shown in Fig. 12(a), shows that most of its DR images are
quite distorted and when compared with the histograms of the
FD images in LIVE MD, shown in Fig. 12(b,c), it becomes
clear that not only do the DR and FD images share a similar
perceptual quality range, but they are also similarly distributed
in terms of quality. Since FR IQA methods are essentially
image fidelity measures and require the reference image to
be of pristine quality, the nature of DR and FD images in
LIVE MD render them completely ineffective as Baseline-1
models. On the other hand, Fig. 12(d) shows that most of
the DR images in the LIVE WCmp database have relatively
better quality and when compared with the histogram of the
FD images in this dataset, shown in Fig. 12(e), it is evident
that the DR and FD images in LIVE WCmp are differently
distributed in terms of quality. This shows that as the quality
of DR images improves, the performance of FR IQA models,
used as Baseline-1, improves as well. Overall, this discussion
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Fig. 12. Histograms of MOS/DMOS for the DR and FD images in LIVE MD [36] (a-c) and LIVE WCmp [27] (d, e) databases.

demonstrates the ineffectiveness of FR IQA when dealing with
degraded references on their own.

Second, the Baseline-2 NR models perform highly incon-
sistently and largely depend on the test dataset, the distortion
types, and the NR model being used. Since most NR models
are developed, trained and/or validated with singly distorted
images, there is generally a large performance drop when they
evaluate multiply distorted images. Furthermore, as shown
in [13], NR methods SISBLIM [14] and GWHGLBP [18],
that are designed for multiply distorted content, are unable
to outperform CORNIA [34] even on multiply distorted
datasets, and their performance drops further when testing
also incorporates singly distorted content. Such inconsistent
performance of the NR IQA paradigm, owing to the difficult
nature of the problem and its inability to use auxiliary
information about a distorted image even if it is available,
is a strong motivation for the development of the new DR
IQA paradigm that is able to utilize additional information
provided by DR images.

Third, the Baseline-3 2stepQA model may sometimes
significantly improve upon the first two Baseline models, but
the performance gain varies drastically, and is mostly limited
to certain types of distortion combinations such as B-JPG and
JPG-JPG. Overall, all three baseline models exhibit significant
performance gaps against the absolute FR IQA scores shown
in Table V, suggesting the potential space for improvement by
deeper investigation on DR IQA.

C. Performance of DR IQA Models

Table VII provides the performance of DR IQA Models 1,
2, and 3 in terms of PLCC, where the test datasets have no
content overlap with DR IQA databases V1 and V2 used for
model development.

1) Comparison With Baseline Models: A comparison of
Table VII with Table VI, shows that DR IQA Models 1, 2, and
3 outperform the FR based Baseline-1 approach significantly

and nearly comprehensively. Their superior performance
relative to Baseline-1 demonstrates the shortcomings of the FR
paradigm in the absence of PR images at the final destination
and establishes the value of the DR IQA framework.

Comparing Table VII with Table V, we find that the DR IQA
models perform better than or at par in most cases against FR
computed ASFD scores. This is no small achievement given
that FR performance is usually considered as an upper bound
in IQA when the PR images are accessible. There are a few
exceptions on the N-JP2, NBJ-JPG and All data cases. This
highlights the difficult nature of the N-JP2 case, as can be seen
in the distortion behavior plot of Fig. 9(e). It also highlights
the difficult nature of the NBJ-JPG and All data cases, where
multiple distortion combinations are considered together.

Comparing Table VII with Table VI shows that DR
IQA Models nearly comprehensively outperform the NR
based Baseline-2 approach on all test datasets. A few NR
models perform exceptionally well on certain test cases (e.g.,
CORNIA [34] on B-N and B-JPG cases of LIVE MD and
MDIVL, respectively, and dipIQ [53] on Waterloo Exp-II),
but their performance drops drastically on other cases. These
results suggest the benefit of incorporating the additional
information in the DR images, and again demonstrate the
value of the DR IQA paradigm. The superior performance of
Scenario 2 or Type-001100 DR IQA, compared to Baseline-2,
also shows that in the absence of PR images, NR methods can
be effectively used to compute ÂSDR scores for DR images,
which together with the FR computed RSFD scores between
the DR and FD images, can lead to effective DR IQA models,
again highlighting the value of using additional information
provided by DR images even if it is through their NR predicted
quality.

The 2stepQA-based Baseline-3 approach is most relevant
as an early Type-001100 DR IQA instantiation. Since
2stepQA [27] combines NIQE and MSSSIM, a direct
comparison can be made with the NIQE-MSSSIM DR IQA
models by comparing Tables VI and VII, where it can be
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TABLE VII
PERFORMANCE OF DR IQA MODELS IN TERMS OF PLCC. FOR MODELS 1, 2, AND 3 THE BEST SCORES

FOR EACH DATABASE AND DISTORTION COMBINATION ARE HIGHLIGHTED IN BOLD

seen that 2stepQA performs better than the NIQE-MSSSIM
DR IQA models in more than half of the test cases.
However, when other base FR/NR-FR combinations (FSIMc-
FSIMc, CORNIA-FSIMc, dipIQ-FSIMc, and NIQE-FSIMc),
are adopted, DR IQA Models 1, 2, and 3, outperform 2stepQA
nearly comprehensively (with the exception of B-JPG and
B-N), and the gaps are large in the difficult N-JPG (except
Model 1 on Waterloo Exp-II), N-JP2 (except Model 1 on
Waterloo Exp-II), NBJ-JPG, and the most difficult All data
cases of Waterloo Exp-II, LIVE MD, and MDIVL databases.

For the B-N combination, DR IQA models perform better
than 2stepQA on LIVE MD while the reverse is true for
the Waterloo Exp-II database. For the B-JPG combination,
2stepQA mostly performs better than the DR IQA models.
It can also be seen that both the 2stepQA and DR IQA models
offer similar performance on the LIVE WCmp database, where
for the majority of test cases 2stepQA is slightly better
while DR IQA models are slightly better for a few cases.
However, almost all DR IQA models have a PLCC above
0.9 suggesting competitive performance (see Section V-C.3
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for more discussion). Overall, these results suggest that the
selection of base NR and FR models, and the method
of combination (i.e., considering the behavior of multiple
simultaneous distortions instead of simple product) are both
important in yielding superior performance.

It is also worth noting that the DR IQA Models 1, 2, and 3,
are developed by using DR IQA databases V1 and V2, where
all training images are annotated by SQB scores [39] rather
than subjective ratings. Thus, the superior performance of
these models on subject-rated test datasets (LIVE MD [36],
MDIVL [37], and LIVE WCmp [27]) has in turn provided
another strong demonstration of the value of using SQB [39]
as an alternative IQA data annotation mechanism.

2) Inter-Model Comparisons: We perform three kinds of
inter-model comparisons. First, the complexity and number of
parameters increase from the proposed Models 1, 2 to 3, thus
presumably, one would expect their performance to improve
correspondingly. Somewhat surprisingly, this is not necessarily
always the case. Close observation of Table VII concludes that
in a majority of cases, these models offer similar performance.
In particular, Model 1, which is constructed empirically from
distortion behavior analysis and uses only 2 parameters,
often produces similar performance when compared with the
6-parameter Model 2 and the much more sophisticated SVR-
based Model 3. This reveals the value of distortion behavior
analysis as discussed in Sections III-B and IV. Also note that
the performance of Model 1 is not as competitive as the other
two models in the N-JPG and N-JP2 combinations. This is
explained by the construction of Eq. 7 which makes it difficult
to adequately capture the complex distortion behavior for these
cases as depicted in Figs. 9(d) and (e).

Second, we compare across DR IQA architectures. Of the
five ASDR/ÂSDR and RSFD combinations, the first (FSIMc-
FSIMc) belongs to Scenario 1 or Type-100100 DR IQA
(Fig. 4), while the rest (CORNIA-FSIMc, dipIQ-FSIMc,
NIQE-FSIMc, and NIQE-MSSSIM) belong to the more
practical Scenario 2 or Type-001100 DR IQA (Fig. 5). While
FR methods are used to compute RSFD in both Scenarios 1
and 2, the major difference is that Scenario 1 considers the
PR image to be available and uses FR methods to compute
ASDR whereas Scenario 2 considers such images to be
unavailable and uses NR methods to compute ÂSDR. Since FR
methods generally outperform NR ones, it is natural to expect
that the Scenario 1 method should outperform Scenario 2
methods. Interestingly, this is not always the case in Table VII.
To further investigate this rather counter-intuitive observation,
in Table VIII we evaluate the performance of the FR and
NR methods used to predict the quality of DR images, i.e.,
compute ASDR and ÂSDR scores, respectively, in terms of
PLCC and SRCC on subject-rated IQA databases that provide
PR images (i.e., for LIVE MD Blur DR images, and MDIVL
Blur and Noise DR images). A comparison of Tables VII
and VIII shows: 1) For LIVE MD Blur images, the FR FSIMc
is outperformed by the NR methods (with the exception of
NIQE in terms of PLCC) and correspondingly Scenario 1 is
outperformed by Scenario 2 on both the Blur-JPEG and Blur-
Noise combinations of LIVE MD. 2) Similarly for MDIVL
Blur images, the FR FSIMc is outperformed by the NR
methods (with the exception of NIQE) and correspondingly

TABLE VIII
IQA METHOD PERFORMANCE TO PREDICT THE QUALITY OF DR IMAGES

IN THE LIVE MD (BLUR) AND MDIVL (BLUR & NOISE) DATABASES

Scenario 1 is outperformed by CORNIA-FSIMc and dipIQ-
FSIMc based Scenario 2 on the Blur-JPEG combination
of MDIVL. 3) For MDIVL Noise images, the FR FSIMc
outperforms the NR methods and correspondingly Scenario 1
outperforms Scenario 2 on the Noise-JPEG combination of
MDIVL. This analysis shows that the performance of a DR
IQA model is directly impacted by the performance of the
IQA method evaluating the quality of the DR images. It also
suggests that the lack of access to the PR image may not
always be critical to DR IQA, as long as appropriate NR
and FR methods are used to compute ÂSDR and RSFD,
respectively.

Third, we compare across distortion combinations.
Table VII reports the performance of DR IQA models for
seven multiple distortion combinations (Blur-JPEG, Blur-
Noise, JPEG-JPEG, Noise-JPEG, Noise-JP2K, NBJ-JPEG,
and All data). All models perform quite consistently across
the LIVE MD [36], MDIVL [37], and LIVE WCmp [27]
databases, but they do not have all seven combinations. Thus,
we focus on the Waterloo Exp-II database [39]. It appears
that the DR IQA models perform quite well for Blur-JPEG,
Blur-Noise, and JPEG-JPEG cases, and reasonably well (with
few exceptions) for Noise-JPEG, Noise-JP2K, NBJ-JPEG,
and All data cases when considered independently, but not at
the same level of the first three cases. This is understandable
given the variations in distortion behaviors demonstrated in
Fig. 9. This makes DR IQA an interesting and challenging
problem that demands future investigations, especially for the
challenging distortion combinations and the All data case.

3) Performance on Authentically Distorted Content: To the
best of our knowledge, LIVE WCmp [27] is the only subject-
rated IQA dataset that uses authentically distorted DR images
to create FD images and provides both. A comparison of
Tables VI and VII shows that on LIVE WCmp, the DR IQA
models outperform both the FR-based Baseline 1 and NR-
based Baseline 2, while their performance is similar to the
2stepQA-based Baseline 3. This indicates that even when
developed by using simulated distorted content, DR IQA
has the potential to perform adequately well when using
authentically distorted degraded references. However, it should
be pointed out that LIVE WCmp [27] is a small dataset
with only 80 authentically distorted DR and 320 FD images.
Furthermore, to create FD images, LIVE WCmp [27] uses
fixed JPEG compression parameters of 18, 12, 6 and 3,
where the latter two lead to excessive compression which is
uncommon in practice. The MOS histogram of LIVE WCmp
FD images, shown in Fig. 12(e) indicates that it has relatively
more low quality images than high quality ones. In the future,
it is desirable to develop new subject-rated IQA datasets that
contain a more diverse set of authentically distorted DR/FD
images with a wider coverage of the quality spectrum. Such
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datasets will be helpful in developing new DR IQA models
targeted towards authentically distorted content.

VI. CONCLUSION

We make one of the first attempts to establish a DR IQA
paradigm, targeting at the problem when only a reference
image of degraded quality is available when assessing the
quality of a multiply distorted image, a problem that is of
practical importance in many real-world applications such as
image/video distributions. We lay out possible architectures
of DR IQA in two-stage distortion pipelines, introduce a
6-bit code to denote various configurations, and focus on two
specific architectures or scenarios. We establish first-of-their-
kind large-scale synthetically annotated databases dedicated
to DR IQA, and conduct a novel multiple distortion behavior
analysis for two-stage distortion pipelines. We also develop
novel DR IQA models and make extensive comparisons
with different types of baseline models. The results suggest
that DR IQA may offer significant performance gain in
multiple distortion environments against existing FR and NR
IQA paradigms, thereby establishing DR IQA as a novel
IQA paradigm in its own right. We hope the current work
can inspire significant future research that explores different
DR IQA architectures, distortion combinations, and design
philosophies. Extension of the general DR IQA architectures
framework introduced in this work (Fig. 3) to more than
two distortion stages should be straightforward but the
development and verification of associated DR IQA models
is grounds for significant future work. As with other IQA
paradigms, DR IQA can be extended to undertake DR video
quality assessment (VQA). In fact, pioneering work in this
direction has recently emerged [66], [67], [68], which opens
up a new venue for future research.
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