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Abstract— The great content diversity of real-world digital
images poses a grand challenge to image quality assessment (IQA)
models, which are traditionally designed and validated on a hand-
ful of commonly used IQA databases with very limited content
variation. To test the generalization capability and to facilitate
the wide usage of IQA techniques in real-world applications, we
establish a large-scale database named the Waterloo Exploration
Database, which in its current state contains 4744 pristine natural
images and 94 880 distorted images created from them. Instead
of collecting the mean opinion score for each image via subjective
testing, which is extremely difficult if not impossible, we present
three alternative test criteria to evaluate the performance of
IQA models, namely, the pristine/distorted image discriminability
test, the listwise ranking consistency test, and the pairwise
preference consistency test (P-test). We compare 20 well-known
IQA models using the proposed criteria, which not only provide
a stronger test in a more challenging testing environment for
existing models, but also demonstrate the additional benefits
of using the proposed database. For example, in the P-test,
even for the best performing no-reference IQA model, more
than 6 million failure cases against the model are “discovered”
automatically out of over 1 billion test pairs. Furthermore, we
discuss how the new database may be exploited using innovative
approaches in the future, to reveal the weaknesses of existing
IQA models, to provide insights on how to improve the models,
and to shed light on how the next-generation IQA models may be
developed. The database and codes are made publicly available
at: https://ece.uwaterloo.ca/~k29ma/exploration/.

Index Terms— Image quality assessment, image database,
discriminable image pair, listwise ranking consistency, pairwise
preference consistency, mean opinion score.

I. INTRODUCTION

IMAGE quality assessment (IQA) aims to quantify human
perception of image quality, which may be degraded during

acquisition, compression, storage, transmission and reproduc-
tion [1], [2]. Subjective testing is the most straightforward

Manuscript received July 1, 2016; revised October 25, 2016; accepted
November 15, 2016. Date of publication November 21, 2016; date of current
version January 5, 2017. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Dacheng Tao.

K. Ma, Z. Duanmu, and Z. Wang are with the Department of
Electrical and Computer Engineering, University of Waterloo, Waterloo,
ON N2L 3G1, Canada (e-mail: k29ma@uwaterloo.ca; zduanmu@
uwaterloo.ca; zhou.wang@uwaterloo.ca).

Q. Wu and H. Li are with the School of Electronic Engineering, University
of Electronic Science and Technology of China, Chengdu 611731, China
(e-mail: wqb.uestc@gmail.com; hlli@uestc.edu.cn).

H. Yong and L. Zhang are with the Department of Comput-
ing, The Hong Kong Polytechnic University, Hong Kong (e-mail:
cshyong@comp.polyu.edu.hk; cslzhang@comp.polyu.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2016.2631888

and reliable IQA method and has been conducted in the
construction of the most widely used IQA databases (e.g.,
LIVE [3] and TID2013 [4]). Despite its merits, subjective
testing is cumbersome, expensive and time-consuming [5].
Developing objective IQA models that can automate this
process has been attracting considerable interest in both
academia and industry. Objective measures can be broadly
classified into full-reference (FR), reduced-reference (RR) and
no-reference (NR) approaches based on their accessibility to
the pristine reference image, which is also termed as the
“source image” that is assumed to have pristine quality. FR-
IQA methods assume full access to the reference image [6].
RR-IQA methods utilize features extracted from the reference
to help evaluate the quality of a distorted image [7]. NR-IQA
methods predict image quality without accessing the reference
image, making them the most challenging among the three
types of approaches.

With a variety of IQA models available [8]–[16], how to
fairly evaluate their relative performance becomes pivotal. The
conventional approach in the literature is to compute correla-
tions between model predictions and the “ground truth” labels,
typically the mean opinion scores (MOSs) given by human
subjects, of the images on a handful of commonly used IQA
databases. However, collecting MOS via subjective testing is
a costly process. In practice, the largest IQA database that is
publicly available contains a maximum of 3, 000 subject-rated
images, many of which are generated from the same source
images with different distortion types and levels. As a result,
only less than 30 source images are included. By contrast,
the space of digital images is of very high dimension, which
is equal to the number of pixels in the images, making it
extremely difficult to collect sufficient subjective opinions to
adequately cover the space. Perhaps more importantly, using
only a few dozens of source images is very unlikely to provide
a sufficient representation of the variations of real-world image
content. Moreover, most objective IQA methods are developed
after the commonly used IQA databases became publicly
available and often involve machine learning or manual para-
meter tuning steps to boost their performance. All these issues
cast challenges on the generalization capability of existing
IQA models in real-world applications.

We believe that a large-scale database with greater con-
tent diversity is critical to fairly compare IQA models, to
test their generalization capability, and to develop the next-
generation IQA algorithms. This motivates us to build the
Waterloo Exploration Database, or in short the Exploration
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TABLE I

COMPARISON OF IQA DATABASES

database, which in its current state contains 4, 744 pristine
natural images that span a variety of real-world scenarios.
We extend it by adding four distortion types, namely JPEG
compression, JPEG2000 compression, white Gaussian noise
contamination and Gaussian blur with five distortion levels
each, resulting in 99, 624 images in total. Given the large
number of sample images, it is extremely difficult (if not
impossible) to collect MOSs for all images in a well controlled
laboratory environment. Therefore, innovative approaches are
necessary to evaluate the relative performance of IQA models.
Here we propose three evaluation criteria, termed as the pris-
tine/distorted image discriminability test (D-test), the listwise
ranking consistency test (L-test) and the pairwise preference
consistency test (P-test), respectively. Each of them tests the
robustness and generalization capability of an IQA model from
a different aspect. Specifically, the D-test exams whether an
IQA model well separates the pristine from distorted images.
The L-test checks whether an IQA model gives consistent
ranking of images with the same distortion type and content
but different distortion levels. The P-test evaluates the prefer-
ence concordance of an IQA measure on quality-discriminable
image pairs (DIPs), which are carefully selected image pairs
whose quality is clearly discriminable. By applying the three
evaluation criteria to the Exploration database, we perform
a systematic comparison of 20 well-known IQA models.
Furthermore, we demonstrate that innovative approaches may
be developed to leverage the large-scale Exploration database
in order to reveal the weaknesses of even top performing
IQA models, a task that is not easily achieved using existing
IQA databases. Careful investigations of the failure cases of
these models also provide valuable insights on potential ways
to improve them.

II. RELATED WORK

Several well-known IQA databases have been widely used
in the literature. In 2005, Sheikh et al. [3] conducted a
“large-scale” subjective image quality study and created the
LIVE database that consists of 29 reference and 779 distorted
images with five distortion types—JPEG2000 compression,
JPEG compression, white Gaussian noise, Gaussian blur and
fast fading transmission error. A single-stimulus continuous-
scale method [21] is adopted for testing, where the refer-
ence images are also evaluated under the same experimental
configuration [22]. MOS scaling and realignment (based on
an additional double-stimulus subjective experiment) are per-
formed to align the scores across different distortion sessions.

In particular, the scaling compensates different scales used by
different subjects during rating, while the realignment avoids
significant bias of MOS values towards any specific distortion
type and/or level.

The TID2008 [17] database contains 24 pristine natural and
1 computer generated images. 18 of them are originated from
LIVE [3], differing only in size via cropping. Seventeen types
of distortions with four distortion levels are added, resulting in
a total of 1, 700 distorted images. The testing methodology is
a paired comparison method [23], where the reference image
is also shown to the subjects. A Swiss competition principle is
used to reduce the number of pairs for subjective testing such
that each image appears in at most nine pairs. No explicit
MOS scaling and realignment are reported to refine the raw
MOSs collected from multiple sessions in three countries.
TID2008 was later extended to TID2013 [4] by adding seven
new distortion types and one additional distortion level, mak-
ing it the largest public database so far.

The CSIQ [18] database contains 30 reference images and
866 distorted images by adding six distortion types with
four to five distortion levels. CSIQ uses a multi-stimulus
absolute category method based on a linear displacement of
the images of the same content across four calibrated LCD
monitors placed side by side with equal viewing distance to
the observer. MOSs of images with different content are re-
aligned according to a separate, but identical, experiment in
which observers place subsets of all the images linearly in
space.

The LIVE multiply distorted (MD) database [19] and the
LIVE in the wild image quality challenge database [20]
(LIVE Challenge) focus on images with mixture of distortions.
LIVE MD simulates two multiple distortion scenarios, one for
image storage (Gaussian blur followed by JPEG compression)
and the other for digital image acquisition (Gaussian blur fol-
lowed by white Gaussian noise). It contains 15 pristine images
and 405 distorted ones. The test methodology is the same as
is used in LIVE [3]. LIVE Challenge database takes a step
further and directly works with authentically distorted images
captured from mobile devices. A total of 1, 162 images are
included, whose MOSs are crowdsourced using the Amazon
Mechanical Turk platform. Substantial efforts have been put
to process the noisy raw data and to verify the reliability
of the obtained human opinions from the uncontrolled test
environment. A summary of the aforementioned databases are
given in Table I.

Other widely known but smaller databases include IVC [24],
Toyama-MICT [25], Cornell A57 [26] and WIQ [27], etc.
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Fig. 1. Sample source images in the Waterloo Exploration Database.

A useful collection of IQA databases can be found
at [28], [29].

A major common issue of all the existing IQA databases
is the limited numbers of source images being used (as a
matter of fact, none of the databases includes more than
30 source images), which creates a large gap between the
diversity of real-world images and the variation of the image
content that can be tested using the databases. As a result,
IQA models developed and validated using such databases are
inevitably questioned on their generalization capability to real-
world applications. This is evidenced by the recent test results
on the LIVE Challenge database, a collection of images from
the real-world, where the performance of the most advanced
NR-IQA models drops significantly [20]. The limitation on
the number of source images is largely due to the limited
capacity of the affordable subjective testing experiments. For
example, testing and comparing the 1, 700 distorted images
in TID2008 [17] is an expensive and highly time-consuming
“large-scale” subjective testing task, but given the combina-
tions of the distortion types and levels that are applied to
each source image, eventually, only 25 source images can be
included.

The above issue motivates us to build a new database
for IQA research, which aims to significantly expand the
diversity of image content. Meanwhile, testing all images in
the database using conventional subjective testing methodolo-
gies becomes extremely difficult, if not impossible. Therefore,
innovative approaches on how to use the database to test and
compare IQA models have to be developed in order to meet
the challenge. These are the key questions we would like to
answer in this work.

III. CONSTRUCTING THE WATERLOO

EXPLORATION DATABASE

We construct a new image database, namely the Waterloo
Exploration Database, which currently contains 4, 744 pristine
natural images that span a great diversity of image content.
An important consideration in selecting the images is that
they need to be representative of the images we see in our
daily life. Therefore, we resort to the Internet and elaborately
select 196 keywords to search for images. The keywords can
be broadly classified into 7 categories: human, animal, plant,
landscape, cityscape, still-life and transportation. We initially
obtain more than 200, 000 images. Many of these images
contain significant distortions or inappropriate content, and
thus a sophisticated manual process is applied to refine the
selection. In particular, we first remove those images that have
obvious distortions, including heavy compression artifacts,
strong motion blur or out of focus blur, low contrast, under-
exposure or over-exposure, substantial sensor noise, visible
watermarks, artificial image borders, and other distortions due
to improper operations during acquisition. Next, images of
too small or too large sizes, cartoon and computer generated
content, and inappropriate content are excluded. After this
step, about 7, 000 images remain. To make sure that the images
are of pristine quality, we further carefully inspect each of the
remaining images multiple times by zooming in and remove
those images with visible compression distortions. Eventually,
we end up with 4, 744 high quality natural images. Sample
images grouped into different categories are shown in Fig. 1.

Four distortion types with five levels each are chosen to alter
the source images. All distorted images are generated using
MATLAB functions as follows:
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• JPEG compression: The quality factor that parameterizes
the DCT quantization matrix is set to be [43, 12, 7, 4, 0]
for five levels, respectively.

• JPEG2000 compression: The compression ratio is set to
be [52, 150, 343, 600, 1200] for five levels, respectively.

• Gaussian blur: 2D circularly symmetric Gaussian
blur kernels with standard deviations (std) of
[1.2, 2.5, 6.5, 15.2, 33.2] for five levels are used to
blur the source images.

• White Gaussian noise: white Gaussian noise is added
to the source images, where variances are set to
be [0.001, 0.006, 0.022, 0.088, 1.000] for five levels,
respectively.

The above four distortion types are the most common ones
in existing IQA databases [22], [30], and many IQA models
are claimed to excel at handling these distortions [12]–[15],
[31]–[39]. Therefore, whether these models perform well on
the new Waterloo Exploration Database becomes a strong
test on the claims of these methods and their generalization
capability in the real-world. The parameters that control the
distortion levels for each distortion type are chosen so as
to cover the full range of subjective quality scale, which is
measured by VIF [9] calibrated on the LIVE database with
a nonlinear mapping. Specifically, we select the distortion
parameters for each distortion type separately so that the
distorted images are roughly evenly distributed in the score
range. As a result, the discriminability between two adjacent
levels can be guaranteed. Once determined, the parameters
are fixed for all images. Overall, the Exploration database
contains a total of 99, 624 images. The numbers of pristine
and distorted images are 150 times and 30 times, respectively,
more than those of the largest existing databases so far.

IV. EVALUATING OBJECTIVE IQA MODELS

To make use of the Exploration database for comparing the
relative performance of IQA models, we present three test
criteria, namely the pristine/distorted image discriminability
test (D-test), the listwise ranking consistency test (L-test), and
the pairwise preference consistency test (P-test).

A. Pristine/Distorted Image Discriminability Test (D-Test)

Considering the pristine and distorted images as two distinct
classes in a meaningful perceptual space, the D-test aims to
test how well an IQA model is able to sperate the two classes.
An illustration using the Exploration database is shown in
Fig. 2, where an IQA model with strong discriminability (e.g.
Wang05 [40]) is able to map pristine and distorted images
onto easily separable intervals with minimal overlaps, whereas
a less competitive model creates two distributions of scores
with large overlaps. Here we introduce a measure to quantify
this discriminability. Let qi represent the predicted quality
of the i -th image by a model, we group indices of pristine
and distorted images into the sets of Sp and Sd , respectively.
We then apply a threshold T on {qi } to classify the images
such that S′

p = {i |qi > T } and S′
d = {i |qi ≤ T }. The average

correct classification rate is given by

R = 1

2

( |Sp ∩ S′
p|

|Sp | + |Sd ∩ S′
d |

|Sd |

)
. (1)

Fig. 2. Distributions of IQA model prediction scores of pristine and distorted
images of the Waterloo Exploration Database. Ideal IQA models are expected
to have strong discriminability of the distributions, and are expected to create
small overlaps between the two distributions. (a) WANG05 [40] model;
(b) DIIVINE [13] model. (a) WANG05 [40]. (b) DIIVINE [13].

It is worth noting that most existing IQA databases, includ-
ing the Waterloo Exploration Database are class-imbalanced,
where the collection of samples is overwhelmed by the dis-
torted images. By normalizing the correctly classified samples,
we avoid the trivial solution that all images are classified
as distorted, which could also result in a not bad R. The
value of T should be optimized to yield the maximum correct
classification rate. Thus, we define a discriminability index as

D = max
T

R(T ) . (2)

D lies in [0, 1], with a larger value indicating a better
separability between pristine and distorted images. The single-
variable optimization problem can be solved using a line
search method.

B. Listwise Ranking Consistency Test (L-Test)

The idea behind the L-test has been advocated by
Xue et al. [29], [41]. The goal is to evaluate the robustness of
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Fig. 3. L-test of “Hip-hop Girl” images under JPEG2000 compression.
The image quality degrades with the distortion level from left to right and
from top to bottom. A competitive IQA model (e.g., ILNIQE [14]) rank-lists
the images in exactly the same order. By contrast, a less competitive model
(e.g., QAC [35]) may give different rankings.

IQA models when rating images with the same content and
the same distortion type but different distortion levels. The
underlying assumption is that the quality of an image degrades
monotonically with the increase of the distortion level for any
distortion type. Therefore, a good IQA model should rank
these images in the same order. An example on the Exploration
database is given in Fig. 3, where different models may or
may not produce the same quality rankings in consistency with
the image distortion levels. Given a database with N pristine
images, K distortion types and L distortion levels, we use the
average Spearman’s rank-order correlation coefficient (SRCC)
and Kendall’s rank-order correlation coefficient (KRCC) to
quantify the ranking consistency between the distortion levels
and the model predictions, which are defined as

Ls = 1

N K

N∑
i=1

K∑
j=1

SRCC(li j , qi j ) , (3)

and

Lk = 1

N K

N∑
i=1

K∑
j=1

KRCC(li j , qi j ) , (4)

where li j and qi j are both length-L vectors representing
the distortion levels and the corresponding distortion/quality
scores given by a model to the set of images that are from the
same (i -th) source image and have the same ( j -th) distortion
type.

C. Pairwise Preference Consistency Test (P-Test)

The P-test compares preference predictions of IQA models
on pairs of images whose quality is clearly discriminable.
We call such pairs of images quality-discriminable image
pairs (DIPs). A good IQA model should consistently predict
preferences concordant with the DIPs. Paired comparison is a
widely used subjective testing methodology in IQA research,
as discussed in Section II. Pairwise preference has also been
exploited previously to learn rank-IQA models [16], [42].
Nevertheless, in all previous work, the DIPs that can be used
for testing or developing objective models are obtained exclu-
sively from subjective quality ratings, which largely limits the
number of available DIPs, and is impractical for large-scale
image databases such as the Exploration database.

Here, we propose a novel automatic DIP generation engine
by leveraging the quality prediction power of several most-
trusted FR-IQA measures in the literature. Specifically, we
consider an image pair to be a valid DIP if the absolute
differences of the predicted scores from the FR models are
all larger than a pre-defined threshold, T .

To explore this idea, we first experiment with the LIVE
database [3], from which we extract all possible image pairs
whose absolute MOS differences are larger than Tl = 20 and
consider them as the “ground truths” DIPs. The legitimacy of
Tl = 20 on LIVE can be validated from two sources. First,
the average std of MOSs on LIVE is around 9 and Tl = 20 is
right outside the ±1 std range, which guarantees the perceptual
quality discriminability of the pair of images. Second, from
the subjective experiment conducted by Horita et al. [16], it is
observed that the consistency between subjects on the relative
quality of one pair from LIVE increases with Tl , and when Tl

is larger than 20, the consistency approaches 100%. Using the
available MOS values in LIVE [3], we are able to generate
206, 717 “ground truth” DIPs, termed as the “ground truth”
set. After that, we use our DIP generation engine to generate
DIPs on LIVE and observe whether the generated pairs are
in the “ground truth” set. Fig. 4 shows the percentage p of
generated DIPs in the “ground truth” DIP set as a function of
T for different combinations of FR-IQA measures, where three
base FR-IQA measures, namely MS-SSIM [43], VIF [9] and
GMSD [10] are selected. It can be seen that p increases when
more FR-IQA models are involved, and is maximized when
all the 3 FR-IQA models are used. Using all the three models
together with T = 40, we achieve p = 99.81% accuracy,
which verifies the reliability of the DIP generation engine.
This configuration is used as the default setting. Note that
the model predictions of the three FR-IQA models should be
mapped to the same perceptual scale before DIP generation.
Fig. 5 shows 3 DIPs generated by the proposed engine on the
Exploration database. One can see that the left images of the
3 DIPs have superior perceived quality compared to the right
ones.
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Fig. 4. The percentage of generated DIPs in the “ground truth” set on
the LIVE [3] database as a function of T for different combinations of base
FR-IQA models.

Given an image database D, the DIP generation goes
through all possible pairs of images to create the full DIP
set from D. Suppose that the total number of DIPs in the set
is M and the number of concordant pairs of an IQA model
(meaning that the model predicts the correct preference) is Mc,
a pairwise preference consistency ratio is defined as

P = Mc

M
. (5)

P lies in [0, 1] with a higher value indicating better perfor-
mance of the IQA model being tested.

D. Discussion

The above test criteria are defined independent of any
particular database, regardless of their size or content. Each of
them challenges an IQA model from a different perspective.
One would not be surprised to see that one model is superb
under one criterion but subpar under another (as we will see
in Section V). Meanwhile, all of them benefit from larger
databases, where the weaknesses and failure cases of the test
models have more chances to be detected. These failure cases
may provide insights on how to improve IQA models.

V. EXPERIMENTAL RESULTS

We apply the aforementioned test criteria on the Waterloo
Exploration Database and compare the performance of 20
well-known IQA models, which are selected to cover a wide
variety of design methodologies with an emphasis on NR-IQA
methods. The models include FR-IQA measures 1) PSNR,
2) SSIM [8], 3) MS-SSIM [43], 4) FSIM [44], 5)VIF [9],
6) GMSD [10], RR-IQA measures 7) WANG05 [40],
8) RRED [45], and NR-IQA methods 9) BIQI [31],
10) BLINDS_II [32], 11) BRISQUE [33], 12) CORNIA [12],
13) DIIVINE [13], 14) IL-NIQE [14], 15) LPSI [38],
16) M3 [36], 17) NFERM [39], 18) NIQE [34], 19) QAC [35]

and 20) TCLT [15]. The implementations of all algorithms are
obtained from the original authors or their public websites.
For training based IQA methods, we use the whole LIVE
database [3] to learn the models. Furthermore, we adopt a
4-parameter logistic nonlinear function as suggested in [21]
to map the predicted scores of candidate models to the MOS
scale of LIVE [22]. The nonlinear mapping compensates the
nonlinearity of model predictions on the human perception of
image quality and make the results more interpretable. As a
result, the score range of all algorithms spans between [0, 100],
where a higher value indicates better perceptual quality.

A. D-Test

Fig. 7 shows the D-test results on the Exploration database
of 20 IQA measures. It can be observed that FR-IQA and RR-
IQA models perform the best and often give nearly perfect
performance. This is not surprising because they have full
or partial access to the pristine images. Second, TCLT [15],
CORNIA [12], QAC [35] and BRISQUE [33] are among
the top performing NR-IQA models. Despite their superior
performance, by looking into their common failure cases, we
are able to identify their weaknesses. Some examples are
shown in Fig. 6. In general, the pristine images that are
misclassified as distorted ones often exhibit low illumination
or low intensity variations. There are also exceptions. For
example, complex textures as those in Fig. 6(c) resemble noise
structures and may fool NR-IQA models. On the other hand,
the distorted images that are misclassified as pristine ones are
often induced by white Gaussian noise and JPEG compression
at mild distortion levels. Since slightly distorted images may
not be visually differentiable from pristine images, we are not
expecting an ideal NR-IQA model to have a perfect or nearly
perfect D value on the Exploration database.

We also run the D-test on LIVE [3] which has less than
1, 000 test images. The top performing NR-IQA models
TCLT [15] and CORNIA [12] on the Exploration database
perform perfectly on LIVE (achieving D = 1), which means
that no failure case can be found. This manifests the benefits
of using the Exploration database which contains substantially
more images to better distinguish between IQA models by
more easily identifying their failure cases.

B. L-Test

We perform the L-test on the Exploration database that
includes 4, 744 × 4 = 18, 976 sets of images, each of which
contains a list of images generated from the same source
with the same distortion type but at different distortion levels.
Fig. 8 shows the Ls and Lk results of 20 IQA models, from
which we have several observations. First, it is not surprising
that FR- and RR-IQA models generally perform better than
NR-IQA approaches because they are fidelity measures that
quantify how far a distorted image departs from the source
image, and such fidelity typically decreases monotonically
with the increase of distortion levels. Second, the NR model
NIQE [34] and its feature enriched extension ILNIQE [14]
outperform all other NR-IQA models. It is worth mentioning
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Fig. 5. Sample DIPs from the Exploration database. (a), (b) and (c) show 3 DIPs, where the left images have clearly better quality than the right images.
A good model is able to give concordant opinions, whereas a less competitive model tends to perform randomly or provide discordant opinions.

Fig. 6. Failure cases of the top four NR-IQA models (TCLT [15], CORNIA [12], QAC [35] and BRISQUE [33]) in the D-test on the Exploration database.
(a)-(d): pristine images misclassified as distorted ones by the four models; (e)-(h): distorted images misclassified as pristine ones by the four models.

Fig. 7. D-test results of IQA models on the Exploration database.

that NIQE and ILNIQE are based on perception-and distortion-
relevant natural scene statistics (NSS) features, without MOS
for training. This reveals the power of NSS, which map
images into a perceptually meaningful space for comparison.
Third, although TCLT [15] performs the best in the D-test,
it is not outstanding in the L-test. Fourth, training based
models, such as BIQI [31] and DIIVINE [13] generally have
lower overall consistency values and larger error bars (stds),
implying potential overfitting problems.

Furthermore, to demonstrate the additional benefits of the
L-test, we focus on NIQE [34], one of the best performing
models, observing its main failure cases and discussing how
it can be improved. Fig. 9 shows sample failure cases which
occur when JPEG2000 compression is applied. A common
characteristic of these images is that they are a combination of
strong edges and large smooth regions, which results in abun-
dant ringing artifacts after JPEG2000 compression. The patch
selection mechanism in NIQE [34] may mistakenly group
such distorted structures to build the multi-variant Gaussian
model (MVG), which can be close to the MVG computed
from a number of natural image patches. This results in a
reverse order of quality ranking. Potential ways of improving
NIQE [34] include pre-screening ringing artifacts and training
the MVG using natural image patches of more diverse content.

To investigate the impact of the size of the image databases
on the L-test, we also run it on the LIVE [3] database. The
average Ls value over 20 IQA models is 0.964 with an std
of 0.025, which is only half of the std obtained using the
Exploration database. This indicates that running L-test on
larger databases is desirable to better differentiate IQA models.

C. P-Test

We apply the proposed DIP generation engine on the
Exploration database, resulting in more than 1 billion DIPs.
Fig. 10 shows the pairwise preference consistency ratios
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Fig. 8. L-test results of IQA models on the Exploration database.
(a) Ls results. (b) Lk results.

Fig. 9. Failure cases of NIQE [34] in the L-test induced by JPEG2000
compression on the Exploration database, where Lk is less than 0.5.

of 12 NR-IQA, 2 RR-IQA and 3 FR-IQA measures.
MS-SSIM [43], VIF [9] and GMSD [10] are not tested here
because they are used in the DIP generation process and thus
are not independent of the test. Several useful observations can
be made. First, all algorithms under test achieve P ≥ 90%,
which verifies the success of these algorithms in predicting
image quality to a certain extent. Second, as one of the first
attempts towards RR-IQA, WANG05 [40], a top performer
in the D-test, does not perform very well in the P-test

Fig. 10. P-test results of IQA models on the Exploration database.

compared to many NR-IQA methods. This may be because
the statistical features on marginal wavelet coefficients are
insufficient to fully capture the variations in image content
and distortion. The performance may be further compromised
due to quantization of extracted features. Third, ILNIQE [14],
NIQE [33] and CORNIA [12] are among top performing NR
models, which conforms to the results in the L-test.

Note that the size of the Exploration database is fairly large
and therefore a small difference of the P-test may indicate
significant space for improvement. For example, although
CORNIA [12] outperforms all the other NR-IQA methods
and achieve P = 0.995, it still makes 6, 808, 400 wrong
predictions. Representative failure cases are shown in Fig. 11.
Careful investigations show its weaknesses and provide poten-
tial ways to improve it. Specifically, CORNIA tends to favor
artificial structures introduced in smooth regions, for example
blocking structures in the sky in Fig. 11(a1), and ringing
around sharp edges in Fig. 11(c1). This may be a consequence
of its unsupervised feature learning mechanism that may not
be capable of reliably differentiating real structures from
artificially created distortions in smooth areas.

We run the P-test on LIVE [3] for comparison. Only 90, 870
DIPs can be generated, which is less than 0.01% of the DIPs
generated from the Exploration database. All 14 algorithms
perform perfectly on LIVE, achieving P = 1. No failure case
is found of any IQA model. This result manifests the value of
the Exploration database, and meanwhile shows the capability
of the P-test at exploiting large databases.

We also conduct experiments using the P-test on the LIVE
Challenge database [20]. We generate DIPs based on the MOS
provided by the database. Specifically, we consider an image
pair to be a valid DIP if their absolute MOS difference is
larger than one std of the MOS.1 As such, a total number of
330, 752 DIPs are generated. Note that the reference images
are not available in the Challenge database and therefore only
NR-IQA models are tested. Fig. 12 shows the P values of
12 NR-IQA models. It can be observed that the top performing

1Every image in the LIVE Challenge database has a MOS and an std
associated with it, computed from all valid subjective scores. Here we use
the average std of all images.
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Fig. 11. Failure cases of CORNIA [12] in the P-test on the Exploration
database. The left images have inferior quality compared with the right ones,
but CORNIA [12] gives incorrect preference predictions. (a1) CORNIA = 54.
(a2) CORNIA = 24. (b1) CORNIA = 82. (b2) CORNIA = 39.
(c1) CORNIA = 60. (d1) CORNIA = 49. (c2) CORNIA = 28.
(d2) CORNIA = 19.

Fig. 12. The P-test results of 12 NR-IQA models on the LIVE Challenge
database [20].

NR-IQA models CORNIA [12], NIQE [34], ILNIQE [14] on
the Waterloo Exploration Database are also ranked high on
the LIVE Challenge database. However, DIIVINE [13], a less

Fig. 13. Illustration of the MAD competition method [46] with synthesized
image pairs.

competitive model on the Exploration database, performs the
second best on the Challenge database. One possible reason
might be the relatively large noise levels of the MOS in
the LIVE Challenge database, whose samples were collected
via crowdsourcing from an uncontrolled environment. The
differences in the ranks of the IQA models may also result
from a combination of the nature of the image distortions in
different databases and the properties of the features employed
in different models. Further investigations are needed to better
explain the observations.

VI. DISCUSSIONS

The D-test, L-test and P-test presented in this paper are by
no means the only ways we could use the Exploration database
to test, compare and improve existing IQA models. The rich
diversity of the database allows for many innovative and
advanced approaches for testing and new model development.

A concept that is worth deeper investigation is the MAx-
imum Differentiation (MAD) competition method, intro-
duced by Wang and Simoncelli [46]. The fundamental idea
behind MAD, which is substantially different from standard
approaches of model evaluation, is to disprove a model
by visually inspecting automatically generated “counter-
examples”, instead of trying to prove a model using pre-
selected and subject-rated stimuli. This could largely reduce
the required number of samples for subjective testing because
conceptually even one “counter-example” is sufficient to dis-
prove a model. In the context of IQA, image pairs are automat-
ically synthesized to optimally distinguish two IQA models
in comparison. An illustration is shown in Fig. 13, where
we first synthesize a pair of images that maximize/minimize
SSIM [8] while holding MSE fixed. We then repeat this
procedure, but with the roles of SSIM [8] and MSE exchanged.
An implementation issue that impedes the wide applicability
of MAD competition is that the image synthesis process
relies on gradient computations to perform an iterative con-
strained optimization process, which is not plausible for many
IQA models whose gradients are difficult to compute, if not
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Fig. 14. MAD-motivated image pairs selection using the Exploration
database. A pair of images (A, B) is selected by maximizing/minimizing SSIM
but holding MS-SSIM fixed. Similarly, a pair of images (C, D) is selected by
maximizing/minimizing MS-SSIM but holding SSIM fixed.

Fig. 15. Image pairs found by MAD competition between SSIM [8] and
MS-SSIM [43] on the Exploration database. (a) MS-SSIM = 3. SSIM = 53.
(b) MS-SSIM = 30. SSIM = 13. (c) SSIM = 30. MS-SSIM = 78.
(d) SSIM = 30. MS-SSIM = 13.

impossible. The rich diversity of the Exploration database
allows us to bypass this difficult step by replacing the image
synthesis process with a search step for pairs of images with
one model fixed but the other maximally differentiated. This
corresponds to finding image pairs on the scatter plots of
two models that have the longest distance in a given row
or column (where we assume that the quality predictions
of two models are mapped to the same perceptual scale),
as exemplified in Fig. 14, where SSIM competes with MS-
SSIM. The corresponding image pairs are shown in Fig. 15,
from which we can see that images in the first row exhibits
approximately the same perceptual quality (in agreement with
MS-SSIM [8]) and those in the second row have drastically
different perceptual quality (in disagreement with SSIM [43]).
This suggests that MS-SSIM may be a significant improvement
over SSIM.

Inspired by the spirit of MAD, we may explore the idea
even further by looking for image pairs that two models

Fig. 16. Selection of a pair of images that two models have the strongest
opposite opinions. (A, B) corresponds to the images for which the quality
predictions by NIQE [34] and ILNIQE [14] are maximized/minimized.

Fig. 17. The pair of images in the Exploration database for which NIQE [34]
and ILNIQE [14] have the strongest opposite opinions. (a) NIQE = 93.
ILNIQE = 45. (b) NIQE = 36. ILNIQE = 81.

have exactly opposite opinions. An extreme case is to find
the outmost outlier image pair in the scatter plot of two
models, as exemplified in Fig. 16, where we pick two images
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corresponding to maxi (qi −q ′
i) and min j (q j −q ′

j ), respectively.

Using this strategy, we find the outmost outlier image pair
of NIQE [34] and ILNIQE [14] on the Exploration database,
as shown in Fig. 17. Surprisingly, although ILNIQE [14] is
claimed to improve upon NIQE [34], NIQE [34] is in closer
agreement with human perception in this test. This suggests
that the evolvement from NIQE [34] to ILNIQE [14] may have
lost certain merits originally in NIQE [34].

VII. CONCLUSION AND FUTURE WORK

We introduced the Waterloo Exploration Database, currently
the largest database for IQA research. We presented three
evaluation criteria, the D-test, L-test and P-test, and applied
them to the Exploration database to assess 20 well-known
IQA models, resulting in many useful findings. In addition,
innovative approaches for comparing IQA models were also
discussed. Both the Exploration database and the proposed
testing tools are made publicly available to facilitate future
IQA research.

The current work can be extended in many ways. First,
other existing and future IQA models may be tested and
compared by making use of the database. Second, the database
is readily extended by adding more pristine images, more
distortion types and/or more distortion levels. Third, the failure
cases discovered in the database using the proposed testing
methodologies may be exploited to improve existing IQA
models or to combine the merits of multiple models. Fourth,
new machine learning based approaches may be developed
using the database, aiming for IQA models with stronger
generalization capability.
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