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ABSTRACT
Blind video quality assessment (BVQA) algorithms are traditionally
designed with a two-stage approach - a feature extraction stage that
computes typically hand-crafted spatial and/or temporal features,
and a regression stage working in the feature space that predicts
the perceptual quality of the video. Unlike the traditional BVQA
methods, we propose a Video Multi-task End-to-end Optimized
neural Network (V-MEON) that merges the two stages into one,
where the feature extractor and the regressor are jointly optimized.
Our model uses a multi-task DNN framework that not only esti-
mates the perceptual quality of the test video but also provides a
probabilistic prediction of its codec type. This framework allows
us to train the network with two complementary sets of labels,
both of which can be obtained at low cost. The training process is
composed of two steps. In the first step, early convolutional layers
are pre-trained to extract spatiotemporal quality-related features
with the codec classification subtask. In the second step, initialized
with the pre-trained feature extractor, the whole network is jointly
optimized with the two subtasks together. An additional critical
step is the adoption of 3D convolutional layers, which creates novel
spatiotemporal features that lead to a significant performance boost.
Experimental results show that the proposed model clearly outper-
forms state-of-the-art BVQA methods.The source code of V-MEON
is available at https://ece.uwaterloo.ca/ zduanmu/acmmm2018bvqa.
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1 INTRODUCTION
Video quality assessment (VQA) aims to predict perceptual quality
of a video, and is a fundamental problem in many video process-
ing tasks, such as video compression [2], denoising [17], super-
resolution [3] etc. Existing VQA methods can be classified into
full-reference (FR-VQA), reduced-reference (RR-VQA) and blind
VQA (BVQA) based on the accessibility of the corresponding pris-
tine reference when estimating a video’s quality [30]. Compared to
FR-VQA and RR-VQA which require all or part of the information
from reference videos, BVQA is highly desirable when the refer-
ence video is not available, not of pristine quality, or temporally
misaligned with the test video [7]. Most existing BVQA models are
designed using a two-stage approach, which consists of a quality
feature extraction stage followed by a regression stage that maps
the extracted features to a quality score [7, 8, 21, 32]. The perfor-
mance of such a BVQA model is significantly influenced by the
quality of the features, typically hand-crafted, that rely heavily
on the understanding of the probabilistic distribution of our visual
world, the characteristics of common video artifacts, and the mecha-
nisms of the human visual system (HVS). Moreover, the complexity
of temporal visual characteristics and the content-dependent video
compression artifacts make it very challenging to construct a con-
cise and comprehensive feature set, limiting the effectiveness of
BVQA models.

Besides feature extraction, the regression stage also contributes
to the final BVQAmodel performance. A generalizable and accurate
regression function relies not only on effective quality-related fea-
tures, but also on a large and reliable subject-rated VQA database
that covers diverse contents, distortion types and distortion levels.
However, collecting mean opinion scores (MOSs) for videos via sub-
jective testing is extremely slow, cumbersome, and expensive. As a
result, all subject-annotated VQA databases lack sufficient coverage
in some, if not all, of the aforementioned aspects. For example, so
far the largest subject-rated VQA database [25] covers 60 source
videos, compressed at three distortion levels by the H.264 encoder.
By contrast, digital videos live in an extremely high dimensional
space, where the dimension equals to the number of pixels. There-
fore, a few hundreds of subject-rated samples are deemed to be
extremely sparse in the video space. Consequently, BVQA models
calibrated on these small databases inevitably suffer generalizability
problems when applied to the real-world videos.

To address the limitations of classic VQA models, we resort to a
deep-neural-network (DNN) based approach for three reasons. First,
DNN has shown its remarkable ability to discover strong visual
features in many vision tasks, such as image classification [13], im-
age compression [2], and video classification [10]. In the context of
DNN, a feature extractor is often composed of several sequentially-
connected convolutional, nonlinear activation, and pooling layers,
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Figure 1: Overview of the proposed V-MEON model.

which are completely trainable. Therefore, it is utterly possible to
train a perceptually meaningful feature extractor, should we have
enough data. Second, the regression function and the feature extrac-
tor can be jointly optimized. Third, DNN enjoys a lot of flexibility,
either in its architectures or learning approaches. Such flexibility
gives DNN many favorable features, such as the capability of being
transferable between different but related tasks [23], and of training
with multiple tasks [18].

Although DNN seems to fit the BVQA task perfectly, there is
still an unwieldy obstacle: the lack of training data. In order to
train a DNN-based BVQA model, one needs a huge number of
videos of different distortion types and levels, together with co-
registered MOSs, which seem impractical to obtain. Inspired by
the work [11] where a DNN-based image quality assessment (IQA)
model is trained with quality scores given by a reliable full reference
IQA as ground-truth labels, we leverage a recently established
FR-VQA model SSIMplus [26] to generate quality scores for the
compressed videos. However, using such objective quality scores
rather than MOSs as training labels is often criticized for their
internal noises [19], which might be over-fitted to by the DNN
model. To combat the over-fitting issue, we propose to regularize
the model by learning another codec classification subtask (Subtask
I) simultaneously. Subtask I is highly relevant to the main BVQA
subtask (Subtask II), and the codec type labels can be accurately
generated at little cost.

Equipped with the training data, we propose a multi-task DNN-
based BVQA model for compressed videos, which is the first in
the literature to the best of our knowledge. Since its structure is
inspired by a successful BIQA method, namely Multi-task End-to-
end Optimized neural Network (MEON) [19], we dub the proposed
BVQA model V-MEON. The overview of V-MEON is depicted in
Fig. 1, where the two quality-related subtasks are implemented with
two subnetworks sharing the same feature extractor at early layers.
The fundamental assumption is that due to the inherent relation-
ship between visual artifacts and perceptual quality, the feature
extractor can be shared and jointly optimized by the two subtasks.
Such a multi-task structure exerts strong regularization on the fea-
ture extractor, making it possible to learn robust quality-related
features with quality scores generated by SSIMplus [26]. Moreover,
a differentiable causal structure is designed to allow Subtask II to
bring in codec information for better quality prediction [8, 19, 32].
To account for temporal distortions that may exist in a video, we
explore different temporal information fusion connectivities in the
quality feature extractor. As such, the network is able to extract
powerful spatiotemporal features from contiguous video frames.
We empirically show that the 3D filters can greatly boost the quality

prediction performance on subjectively annotated databases. For
training, a two-step learning strategy is employed. We first train
the network with Subtask I for a better initialization of the second
step, where the whole network is jointly optimized with two sub-
tasks together. As a result, we obtain a unified quality assessment
model for compressed videos, which also enjoys the advantage of
utilizing codec information. Finally, we evaluate V-MEON on three
publicly available VQA databases, and demonstrate its superiority
over state-of-the-art BVQA models.

2 RELATEDWORK
In this section, we provide a brief overview of recent developments
in the BVQA field. For a more detailed review of BVQA models
proposed earlier than 2014, please refer to [30].

Since a video compression codec degrades a video in a particular
way, some BVQA models predict video quality by codec analysis.
In [32], Søgaard et al. proposed to first identify whether a test video
is encoded by H.264 [39] or MPEG-2 [35], and then extract respec-
tive quality features for each codec. Later, the authors proposed
another set of quality features [8] for the HEVC-encoded videos [33].
Though knowledge of a specific codec helps such methods achieve
decent performance, it is difficult to incorporate them into a single
general-purposed model or to extend them to new codecs.

By considering a video as a stack of pictures, V-CORNIA [41]
takes advantage of the successful BIQA features, CORNIA [42], to
characterize frame-level perceptual qualities, and adaptively pool
them into a video quality score along the temporal dimension.
However, such a framework fails to take into account the following
influencing factors in video perceptual quality: 1) motion-induced
blindness [5, 28] to spatial distortions; 2) possible temporal artifacts
or incoherence [29, 43]; 3) codec-specific distortions [43]; and 4)
interactions between spatial and temporal artifacts [9].

Most recently, natural video statistics (NVS) features are em-
ployed to jointly consider spatiotemporal distortions as a whole.
Normally, NVS features are first extracted [14, 15, 29, 40], and then
a regression function is learned to map extracted features to quality
scores. However, due to the complex nature of the BVQA problem
and our limited understanding on natural video statistics, this kind
of model has only achieved limited success.

Despite the specific limitations the three kinds of existing VQA
modelsmay respectively have, they are facedwith the same problem
that the models are often tuned on a very limited subject-rated
database, which makes their generalizability questionable in the
real world. Our proposed BVQAmodel, V-MEON, provides a unified
BVQA framework for videos compressed by various codecs, and
can be readily extended to novel distortion types. By training a
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Figure 2: Detailed architecture of the proposed V-MEON model with the 3D slow-fusion feature extractor. Green box: a 3D
convolutional layer C3D(d, f , t , s,p) with d 3D filters of size f × f × t , a stride of s, and a spatial padding of p pixels; yellow:
a GDN layer; red: a maximum pooling layer; blue: a fully-connected layer FC(n) with n neurons; D: number of codec types;
< ·, · >: inner product operation.

feature extractor composed of 3D convolutional layers, the network
is enabled to extract spatiotemporal features that are effective in
detecting video quality degradation patterns. The model is end-
to-end trained on a large video database, which contains more
than 200 source and 3000 distorted videos. Their training labels are
automatically generated, making the database easily expandable.
With data augmentation techniques [10, 19], we obtain tens of
millions of training samples, providing a solid foundation for the
training process.

3 THE V-MEON MODEL
In this section, we first describe the network architecture of V-
MEON in detail, and then explore several variants of the spatiotem-
poral feature extractor. Finally, we wrap up this section by introduc-
ing the training and testing procedures for the V-MEON network.

3.1 Network Architecture
Fig. 1 illustrates the overview of the multi-task DNN used in the
V-MEON model. The three components in the diagram, i.e., the
feature extractor, the codec classifier, and the quality predictor, are
connected in a way that the latter two components share the same
quality-related feature representation extracted by the feature ex-
tractor. With respect to the specific structure of each component,
the feature extractor is composed of several convolutional, non-
linear activation and polling layers, while the codec classifier and
the quality predictor are fully-connected. Their parameters are col-
lectively denoted byW, w1, and w2, respectively. We also denote

a mini batch of training samples by
{(
X(k ), p(k ),q(k )

)}K
k=1

, where

X(k ), p(k ), and q(k ) represent the k-th raw input video clip, the
one-hot vector whose only one non-zero entry encodes the ground
truth codec type, and the SSIMplus [26] score of the video which
the input clip belongs to, respectively. It is worth noting that the
chroma channels U and V have only half of the original resolution.
To avoid any new artifacts (e.g., blur) introduced by upsampling
U and V channels, we simply disregard them for now, and thus

the training clip X(k ) is only grayscale. The feature extractor is
responsible for transforming the raw video clip X(k ) into a 64-d
quality-related feature vector, which is fed into the two subsequent
fully-connected subnetworks. Several possible variants of the fea-
ture extractor will be explored in the next subsection, while the
exact architectures of the codec classifier and the quality predictor
are elaborated in the rest part of this subsection.

The architecture of the codec classifier is sketched in Fig. 2 and
can be denoted by FC(128) −GDN − FC(D) using shorthand nota-
tions, where FC(n) indicates a fully connected layer with n nodes.
GDN is a generalized divisive normalization (GDN) joint nonlin-
earity layer that is inspired biologically, and has proven effective in
assessing image quality [19], Gaussianizing image densities [1], and
compressing digital images [2].D is the total number of codec types
under consideration. Then, a softmax function is employed to con-
vert the unnormalized outputs of the last fully connected layer into
a probability vector, denoted by p̂(k )(X(k );W,w1). p̂(k ) is therefore
a D-dimensional probability vector, where each entry indicates the
probability of X(k) being compressed by a corresponding codec.
Note that we also include pristine videos as a “codec” type, and
designate the first entry of p̂(k) to represent the probability of X(k )

belonging to the “pristine” type. Finally, the mean cross entropy
ℓ1({X(k )};W,w1) over the mini batch measures the classification
loss of p̂(k ).

The subnetwork for quality prediction has a similar structure
as the other subnetwork, but with doubled nodes in the first fully
connected layer, resulting an architecture of FC(256) − GDN −

FC(D) (also shown in Fig. 2). The quality predictor produces a score
vector ŝ(k ) ∈ RD , whose i-th entry represents the perceptual quality
score corresponding to the i-th codec type. An inner-product layer
combines p̂(k ) and ŝ(k ) to yield an overall quality score

q̂(k ) = p̂(k )T ŝ(k ) =
D∑
i=1

p̂
(k )
i · ŝ

(k )
i . (1)



The inner-product operation is not only differentiable to both in-
puts, but also physically interpretable. Firstly, when p̂(k )i is larger,
indicating higher probability of the presence of compression ar-
tifact introduced by codec type i , more emphasis will be given
to ŝ

(k )
i . Secondly, the overall quality q̂(k ) increases as any entry

of ŝ(k ) increases. For Subtask II, we define its loss function ℓ2 as
the Pearson linear correlation coefficient (PLCC) between the pre-
dicted scores {q̂(k )} and the ground-truth {q(k )} in the mini-batch.
Mathematically, the PLCC is computed by

ℓ2({X(k )};W,w1,w2) B

∑K
k=1(q̂

(k ) − q̂m )(q(k ) − qm )√∑K
k=1(q̂

(k ) − q̂m )2
√∑K

k=1(q
(k ) − qm )2

,

(2)

where q̂m and qm denote the mean of {q̂(k )} and {q(k )} across the
mini-batch. The advantages of choosing the PLCC loss instead of
the widely-used l1- or l2-norm [6, 19] are three-folds. First, human-
beings are more consistent producing rankings of perceptual quality
rather than absolute scores [20]. Second, PLCC and Spearman’s
rank-order correlation coefficient (SRCC) are commonly-used evalu-
ation criteria in the context of perceptual quality assessment. Third,
the PLCC loss is normalized in the range [−1, 1], making the train-
ing process less sensitive to the weight between ℓ1 and ℓ2 when
they are jointly optimized. SRCC is not used as the loss because it is
not differentiable, a critical feature to enable the training procedure.

3.2 Spatiotemporal Feature Extractor
Image features extracted by various 2D CNNs, such as AlexNet [13],
VGG [31] etc., have shown great potentials in predicting percep-
tual quality of images [4, 11, 19], but fail to incorporate temporal
information in the VQA task [41]. Since most video compression
distortions manifest themselves spatiotemporally [43], it is of vi-
tal importance for a BVQA model to be capable of discovering
spatiotemporal features [14, 21, 29, 40]. In the proposed V-MEON
model, we adopt 3D convolutional layers in the feature extractor
to extract spatiotemporal features directly from raw video clips.
Inspired by [10], we explore two different kinds of temporal infor-
mation fusion approach in the spatiotemporal feature extractor. We
also include a single-frame structure as a baseline. All structures
are illustrated in Fig. 3.

Single-frame. Fig. 3(a) shows the architecture of a baseline
feature extractor. The green, yellow, and pink boxes indicate con-
volutional, GDN, and max-pooling layers, respectively. The specific
parameterization of the architecture is C2D(8, 5, 2, 2) − GDN −

P − C2D(16, 5, 2, 2) − GDN − P − C2D(32, 5, 2, 2) − GDN − P −

C2D(64, 3, 1, 0) − GDN − P , where C2D(d, f , s,p) indicates a 2D
convolutional layer with d filters of spatial size f × f , applied to
the input, padded by p pixels to all boundaries, with a stride of s .
GDN denotes a GDN nonlinear activation layer, while P indicates a
2× 2 spatial max-pooling layer. The baseline feature extractor takes
a 235 × 235 × 1 gray-level patch as input, and extracts image-level
features only.

(a) 2D single-frame

(b) 3D early-fusion

(c) 3D slow-fusion

Figure 3: Possible variants of the shared spatiotemporal fea-
ture extractor. Green, yellow, and pink boxes indicate convo-
lutional, GDN, and max-pooling layers, respectively. In the
3D slow-fusion, all layers at the same depth share weights.

3D early-fusion. By gulping a video clip of length T as input
and extending the convolutional layers to 3D, the feature extrac-
tor enables itself to extract spatiotemporal features. The 3D early-
fusion extractor condenses all temporal information into one image
at its very first convolutional layer, as shown in Fig. 3(b). To do this,
the extractor architecture is changed to C3D(8, 5,T , 2, 2) −GDN −

P −C3D(16, 5, 1, 2, 2) −GDN − P −C3D(32, 5, 1, 2, 2) −GDN − P −

C3D(64, 3, 1, 1, 0) −GDN − P , where C3D(d, f , t , s,p) is a 3D con-
volutional layer with d filters of spatial size f × f and temporal
support of t frames. Stride s is applied to both spatial and temporal
domains, while both padding p and max-pooling P only apply to
the spatial domain. The GDN unit is also modified to accommodate
4D-tensor inputs and outputs. In this work, the frame number T of
an input video clip is set to 8, which is a common group-of-picture
(GOP) size used in video compression [35].

3D slow-fusion. A simple linear combination in only one layer
may not be able to identify sophisticated temporal distortion in
a compressed video. To resolve the problem, the 3D slow-fusion
feature extractor uses an architecture of C3D(8, 5, 2, 2, 2) −GDN −

P −C3D(16, 5, 2, 2, 2) −GDN − P −C3D(32, 5, 2, 2, 2) −GDN − P −

C3D(64, 3, 1, 1, 0) −GDN − P as shown in Fig. 2. To better illustrate
how the temporal information in input frames are gradually fused
during the first 3 convolutional layers, Fig. 3(c) expands the 3D



filters along the temporal dimension. Specifically, the first convolu-
tional layer squeezes the 8-frame input to a 4-frame output, where
each “frame” encodes the temporal information of two neighbor-
ing video frames. In the second convolutional layer, the 4-frame
tensor is further squeezed into 2 “frames”, each of which encodes
4 neighboring video frames. Finally, the third convolutional layer
fuses the 2-frame tensor from the previous layer into a single frame,
which encodes temporal information from the whole input video
clip. Moreover, nonlinear activations are added between convo-
lutional layers, enabling the slow-fusion architecture to capture
complicated temporal visual patterns.

3.3 Training and Testing
The V-MEON models are trained on our newly collected database
with two automatically generated labels, i.e., video codec types and
SSIMplus [26] scores. A two-step training strategy is adopted to
train the multi-task neural network. In the first step, we train the
codec classifier along with the feature extractor by minimizing the
loss function in Subtask I

(Ŵ, ŵ1) = argmin ℓ1({X(k )};W,w1) . (3)

In the second step, we initialize (W,w1) with (Ŵ, ŵ1) and jointly
optimize the whole network by minimizing an overall loss function
defined as

ℓ B ℓ1 − λℓ2 , (4)
where λ > 0 is a preset weighting parameter. In the two-step
training strategy, the first pre-training step allows us to train a
quality-related feature extractor using accurate codec type labels,
while the joint optimization step trains a quality predictor with the
codec classification subtask as a strong regularizer.

When testing a video, we crop temporally non-overlapping 235×
235 × 1 ×T clips with a spatial stride of S from the Y-channel. The
final codec type is computed by majority voting among predicted
codec types of all the extracted clips, while the final quality score
is obtained by averaging all the clip-level predicted scores.

4 EXPERIMENTS
In this section, we first describe the experimental setups including
implementation details of V-MEON, VQA databases, and evaluation
criteria. We then compare the three variants of V-MEON with state-
of-the-art BVQA models. We also conduct an ablation experiment
to show the benefit of the proposed two-phase training procedure.
Finally, the computational costs of V-MEON and its rivalry models
are measured.

4.1 Experimental Setups
4.1.1 Implementation Details. Both pre-training and joint opti-
mization steps adopt the Adam optimization algorithm [12] with
a mini batch of 40. In the pre-training stage, we set the learning
rate to α = 10−3 for the V-MEON single-frame and slow-fusion
models, and α = 10−4 for the V-MEON early-fusion model. In the
joint optimization stage, α is fixed to 10−4. Other parameters in
Adam are set by default [12]. The parameters βββ and γγγ in GDN are
clipped to nonnegative values after each update. Additionally we
enforce γγγ to be symmetric by averaging it with its transpose as
suggested in [2]. The balance weight in Eq. (4) is set to 1, since

both loss terms are roughly at the same scale. During testing, the
cropping stride S is selected according to the spatial resolution of
testing videos. Specifically, we set S = 128 for the CSIQVQA [38]
and the EVVQ [27] databases, while S = 32 for the ECVQ [37]
database.

We construct a new video dataset for training which contains
250 pristine videos that span diverse video contents. An impor-
tant consideration in selecting the videos is that they should be
representative of the videos seen in the daily life. Therefore, we
resort to the Internet and elaborately select 200 keywords to search
for creative common licensed videos. The obtained videos can be
loosely categorized into eight classes: human, animal, plant, land-
scape, cityscape, still life, transportation, and computer synthesized
videos. We initially obtained more than 700 4K videos. Many of
these videos contain significant distortions, including heavy com-
pression artifacts, noise, blur, and other distortions due to improper
operations during acquisition. To make sure that the videos are
of pristine quality, we carefully inspect each of the videos mul-
tiple times by zooming in and remove those videos with visible
distortions. We further reduce artifacts and other unwanted con-
taminations by downsampling the videos to a size of 1920 × 1080
pixels, from which we extracted 10 seconds semantically coherent
video clips. Eventually, we end up with 250 high quality 10s videos.
Some representative video frames from the dataset are displayed in
Fig. 4.

Using the aforementioned 10s sequences as reference, we com-
pressed them by three commonly-used video encoders, i.e., H.264 [39],
HEVC [33], and MPEG4-Visual [22], into 4 perceptually discernible
levels.We used the FFmpeg software [34] and its internal libraries to
perform the video compression. The quality levels were controlled
by setting CRFs to 30, 35, 40, 45 for H.264 and HEVC or quality
scales to 10, 17, 24, 31 for MPEG4-Visual. As a result, we collected
3000 distorted videos generated from 250 different video contents.
In the dataset, 225 reference videos and the associated distorted
videos are randomly selected for training, while the others serve
as the validation set. It is worth mentioning that we oversample
reference videos 4 times during training to balance the number of
data points in the “pristine” type and other codec types.

4.1.2 VQA Databases & Evaluation Criteria. We compare V-MEON
with state-of-the-art BVQA methods on three subject-rated VQA
databases, namely CSIQVQA [38], EVVQ [27], and ECVQ [37].
CSIQVQA database contains 72 H.264- and HEVC-encoded videos
from 12 source contents, while EVVQ and ECVQ databases have 90
test videos compressed by H.264 and MPEG4-Visual from 8 pristine
videos each. In the three databases, each reference video is encoded
by each codec at 3-6 quality levels. The experiment on CSIQVQA
examines the cross-codec performance of BVQA models between
H.264 and HEVC codecs, and EVVQ and ECVQ databases evaluate
such performance between H.264 and MPEG4-Visual codecs. Since
MOSs in different databases are not directly comparable, and there
exists subject-rated database that covers the three codecs, we are
unable to evaluate the cross-codec capability of BVQA methods
between HEVC and MPEG4-Visual or among all the three codecs.

To evaluate the performance of BVQA methods on the databases,
the commonly-used PLCC and SRCC between predicted scores and
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Figure 4: Sample frames of source videos in the training set. All images are cropped for better visibility.

Table 1: SRCC and PLCC results on CSIQVQA [38]

SRCC H.264 HEVC ALL
PSNR 0.792 0.774 0.768

FR-VQA SSIMplus [26] 0.961 0.965 0.920
VMAF [16] 0.954 0.933 0.909
V-BLIINDS [29] 0.385 0.183 0.274
VIIDEO [21] 0.715 0.268 0.069

BVQA V-MEON-2D 0.818 0.637 0.625
V-MEON-EF 0.784 0.637 0.673
V-MEON-SF 0.886 0.781 0.816
PLCC H.264 HEVC ALL
PSNR 0.831 0.807 0.796

FR-VQA SSIMplus [26] 0.968 0.983 0.942
VMAF [16] 0.963 0.943 0.924
V-BLIINDS [29] 0.396 0.297 0.335
VIIDEO [21] 0.726 0.319 0.358

BVQA V-MEON-2D 0.792 0.638 0.631
V-MEON-EF 0.798 0.652 0.683
V-MEON-SF 0.894 0.797 0.822

MOSs are computed. Before calculating PLCC, a nonlinear function

q′ = (β1 − β2)/(1 + exp(−(q − β3)/|β4 |)) + β2,

is applied to map raw model predictions to the MOS scale [36].

4.2 Experimental Results
We compare three variants of V-MEON with a baseline FR-VQA
model, PSNR, and two state-of-the-art BVQAmodels, i.e., V-BLIINDS [29]
and VIIDEO [21]. Both competing BVQA models were claimed to
be general-purposed. V-BLIINDS was calibrated on LIVE Video
database, while VIIDEO was developed without training processes.

Table 2: SRCC and PLCC results on EVVQ [27]

SRCC H.264 MPEG4-Visual ALL
PSNR 0.720 0.781 0.772

FR-VQA SSIMplus [26] 0.882 0.933 0.921
VMAF [16] 0.829 0.899 0.874
V-BLIINDS [29] 0.683 0.768 0.684
VIIDEO [21] 0.120 0.272 0.357

BVQA V-MEON-2D 0.429 0.905 0.724
V-MEON-EF 0.597 0.908 0.738
V-MEON-SF 0.794 0.840 0.800
PLCC H.264 MPEG4-Visual ALL
PSNR 0.668 0.761 0.727

FR-VQA SSIMplus [26] 0.924 0.936 0.930
VMAF [16] 0.945 0.949 0.942
V-BLIINDS [29] 0.617 0.735 0.622
VIIDEO [21] 0.319 0.390 0.296

BVQA V-MEON-2D 0.594 0.872 0.769
V-MEON-EF 0.661 0.887 0.782
V-MEON-SF 0.838 0.864 0.841

None of the proposed and rivalry models are trained on the three
testing databases, making the experiments a fair comparison. Be-
sides, we also include two state-of-the-art FR-VQA models, SSIM-
plus [26] and VMAF [16], for reference.

The results on CSIQVQA [38], EVVQ [27], and ECVQ [37] are
summarized in Table 1, Table 2, and Table 3, where the respective
highest performances of FR-VQA and BVQAmodels in each column
are highlighted with bold face. We abbreviate the V-MEON model
with the single-frame feature extractor as V-MEON-2D, early-fusion
as V-MEON-EF, and slow-fusion as V-MEON-SF in the tables and



Table 3: SRCC and PLCC results on ECVQ [37]

SRCC H.264 MPEG4-Visual ALL
PSNR 0.753 0.709 0.740

FR-VQA SSIMplus [26] 0.866 0.890 0.891
VMAF [16] 0.863 0.564 0.736
V-BLIINDS [29] 0.296 0.471 0.343
VIIDEO [21] 0.029 0.173 0.150

BVQA V-MEON-2D 0.357 0.753 0.617
V-MEON-EF 0.314 0.714 0.540
V-MEON-SF 0.503 0.755 0.639
PLCC H.264 MPEG4-Visual ALL
PSNR 0.703 0.706 0.716

FR-VQA SSIMplus [26] 0.911 0.918 0.916
VMAF [16] 0.942 0.767 0.830
V-BLIINDS [29] 0.395 0.486 0.283
VIIDEO [21] 0.277 0.300 0.280

BVQA V-MEON-2D 0.594 0.813 0.699
V-MEON-EF 0.582 0.743 0.660
V-MEON-SF 0.767 0.784 0.767

hereafter. From the experimental results, we have several observa-
tions. First, SSIMplus exhibits considerably high correlations with
MOSs, and overall more robust performances than VMAF across the
three databases, justifying our approach of using SSIMplus scores
for training. Second, the V-MEON models consistently outperform
the two competing BVQA models. We believe that the performance
improvement arises from the data-driven feature representation,
and the jointly optimized feature extractor and regressor. Third,
among the three V-MEON models, V-MEON-SF generally has a
better performance than V-MEON-EF, which in turn is superior to
V-MEON-2D. The improvement can be attributed to the fact that
spatiotemporal features play a pivotal role in the VQA task, and
that V-MEON-SF does better in extracting such features. V-MEON-
EF also encodes spatiotemporal information, but without the deep
involvement of nonlinearity, the early-fusion feature extractor ap-
pears less effective in this task. However, the three V-MEONmodels
show similar performance on the MPEG4-Visual videos. By visu-
ally inspecting these videos, we find that spatial blocking artifacts
are the most apparent cause of quality degradation. Fourth, the
performance of V-MEON-SF is superior to the baseline FR-VQA
model, PSNR, in most cases, indicating the effectiveness of the
spatialtemporal features extracted by the slow-fusion structure.
Fifth, V-MEON performs the worst on the ECVQ, moderately on
the EVVQ, and the best on the CSIQVQA database. This incon-
sistency may be caused by the different resolutions of test videos
in the three databases. Specifically, the performance of V-MEON
gradually degrades as the difference in spatial resolutions between
the training set and the testing set increases.

To get a sense of what kind of spatiotemporal features are learned,
we visualize the eight 3D filters in the first convolutional layer of
V-MEON-SF, and compare them with those from the first convo-
lutional layer of a DNN-based BIQA model, MEON [19], in Fig. 5.
Not surprisingly, we find some blocking patterns in the first two
filters from V-MEON-SF, which do not appear in the MEON filters.

Figure 5: The filters in the box are from the first convolu-
tional layer of V-MEON-SF. Each column forms a 3D filter
for two frames, where the top one convolves with the first
frame, the bottom one with the second. The filters in the
last row are from the first convolutional layer of the BIQA
model, MEON [19].

Table 4: SRCC results of V-MEON-SF with different training
approaches on CSIQVQA [38], EVVQ [27] and ECVQ [37]

CSIQVQA EVVQ ECVQ
Single-task 0.746 0.771 0.616
No pre-training 0.766 0.773 0.622
2-stage 0.816 0.804 0.639

Such blocking patterns may capture the hierarchical macro-block
structures, which are commonly employed in the video codecs. Fur-
thermore, it can be observed that two 2D filters in the same column,
which together form a 3D spatiotemporal filter, often demonstrate
some correlations. For example, the two filters in the 3rd , 4th ,
6th and 8th columns share similar patterns, capturing the redun-
dancies on the background, while those in the 1st and 2nd seem
complementary to each other, respectively, extracting motions on
the foreground. This observation suggests that the 3D filters have
learned from the training data to consider temporal information
between adjacent frames.

4.3 Ablation Experiment
We conduct an ablation experiment by training the V-MEON-SF
model in different ways. As described previously, the model is first
pre-trained with the codec classification subtask, and then jointly
optimized with both subtasks. In the ablation experiment, two al-
ternative training approaches are evaluated. In both approaches,
the V-MEON-SF model is randomly initialized, and no pre-training
steps are performed. Then the model is either trained with the qual-
ity prediction subtask only or directly optimized with both subtasks
using the combined loss function in (4). Their SRCC performances
on the three databases are compared in Table 4, from which we can
see that the model trained with the proposed two-phase strategy
performs the best. The reason might be that SSIMplus [26] scores
are imperfect labels compared to MOSs on the relatively large train-
ing dataset. The codec classification subtask helps improve the
performance from two aspects. First, the pre-training step enables
the network to start from a more task-relevant initialization, boost-
ing the possibility of converging to a better local optimum. Second,



Table 5: Average processing speed in frames-per-second
(FPS) of different BVQA models on CSIQVQA [38]

Model V-BLIINDS VIIDEO V-MEON-SF
Processing speed (FPS) 0.645 2.138 98.78

during the joint optimization, the quality prediction subtask is reg-
ularized by the codec classification subtask, and more likely to end
up with a generalizable quality estimator.

4.4 Computational Cost
It is critical for a BVQA model to evaluate perceptual quality of a
video in real-time. We compare the average processing speed of
V-BLIINDS [29], VIIDEO [21], and the proposed V-MEON-SF on
the CSIQVQA [38] database, where all the videos have the same
spatial resolution of 832 × 480. V-MEON-SF is implemented us-
ing PyTorch [24] on a computer with a 3.5GHz CPU and a GTX
1080Ti GPU. V-BLIINDS and VIIDEO are implemented in MATLAB,
and tested on the same computer. The average processing speed
measured in frames-per-second (FPS) is shown in Table 5, where
the fastest one is highlighted. It is worth noting that V-MEON-SF
achieves over-real-time processing speed, V-BLIINDS and VIIDEO
can only process less than 3 frames per second.

5 CONCLUSION
We proposed the first end-to-end BVQA model based on DNN ar-
chitectures, where the feature extractor, the codec classifier, and
the quality predictor are jointly optimized. Inspired by MEON [19],
a multi-task framework is adopted, and optimized by a two-step
training strategy with two subtasks. Pre-training with the codec
classification subtask provides a quality-relevant initialization for
the second step, where a quality predictor is optimized to fit qual-
ity scores generated by a reliable FR-VQA model, SSIMplus [26].
3D convolutional layers are employed to extract spatiotemporal
features from a video. Having explored several options of the 3D
filters, we observe that the slow-fusion architecture seems the best
in extracting highly nonlinear spatiotemporal features. The experi-
mental results on three subject-rated databases demonstrate that the
proposed V-MEON outperforms state-of-the-art general-purposed
BVQA models.

Many video enhancement tasks, such as video denoising [17],
and super-resolution [3], are aiming for producing high-quality
videos. However, there is a lack of proper video quality metrics that
can guide the enhancement processes. The V-MEON framework
has the potential for evaluating perceptual quality of enhanced
videos, and thus helps improve video enhancement algorithms.
Furthermore, the BVQA model can even serve as the objective
function to train an end-to-end video enhancer, where spatial and
temporal aspects can be addressed simultaneously.
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