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ABSTRACT

We propose a complex wavelet domain image similarity measure,
which is simultaneously insensitive to luminance change, contrast
change and spatial translation. The key idea is to make use of
the fact that these image distortions lead to consistent magnitude
and/or phase changes of local wavelet coefficients. Since small
scaling and rotation of images can be locally approximated by
translation, the proposed measure also shows robustness to spa-
tial scaling and rotation when these geometric distortions are small
relative to the size of the wavelet filters. Compared with previous
methods, the proposed measure is computationally efficient, and
can evaluate the similarity of two images without a precise regis-
tration process at the front end.

1. INTRODUCTION

Image similarity measurement is a fundamental issue in many real-
world applications. For example, aperceputalimage similarity
measure can be used to estimate perceived image quality, by mea-
suring the similarity between a distorted image and a reference im-
age that is assumed to have perfect quality. Perhaps the simplest
way to quantify the similarity between two images is the mean
squared error (MSE), which is appealing because it is easy to com-
pute and is mathematically convenient in the context of optimiza-
tion. However, it has been shown that they perform poorly in im-
age quality assessment and pattern recognition tasks (e.g., [1, 2]).
We demonstrate this in Fig. 1, in which Images (b)-(g) have al-
most the same MSE values with respect to the reference image (a),
but exhibit dramatically different perceptual quality as well as rec-
ognizability of detailed image structures. In addition, small geo-
metrical distortions (Images (h)-(l)) can easily create much higher
MSE, but do not appear to have severe degradation of image qual-
ity.

Note that all the high quality images in Fig. 1 (Images (b),
(c), (h)-(l)) are associated with certain simple parametric distor-
tions. A successful image similarity measure must be insensitive
to these specific distortions. There are generally two approaches
to accomplish this. The first approach, which we refer to as the
“registration approach”, attempts to eliminate simple parametric
distortions by estimating their parameters and applying an appro-
priate inverse transformation to the distorted image. The second
approach, which we refer to as the “invariance approach”, attempts
to discount specific distortions by comparing the responses of a set
of measurements that are invariant to those distortions.

In this paper, we propose a new image similarity measure that
does not require a precise registration process in the front, and nat-
urally combines a number of invariants into one simple measure-
ment. This work is inspired by the success of the spatial domain
structural similarity (SSIM) index algorithm [1]. The fundamental

principle of the structural approach is that the human visual system
is highly adapted to extract structural information (the structures of
the objects) from the visual scene, and therefore a measurement of
structural similarity (or distortion) should provide a good approxi-
mation of perceptual image quality. It has been shown that a very
simple SSIM algorithm provides surprisingly good image quality
prediction performance for a wide variety of image distortions [1].

A major drawback of the spatial domain SSIM algorithm is
that it is highly sensitive to translation, scaling and rotation of im-
ages, as demonstrated in Images (h)-(l) of Fig. 1. In this paper, we
attempt to extend the current SSIM method to the complex wavelet
transform domain and make it insensitive to these “non-structured”
image distortions that are typically caused by the movement of the
image acquisition devices, rather than the changes of the structures
of the objects in the visual scene. In addition, the proposed mea-
sure shows some interesting connections with some recent compu-
tational models of biological vision (see Discussion section).

2. IMAGE SIMILARITY MEASURE

Here we consider symmetric complex wavelets whose “mother
wavelets” can be written as a modulation of a low-pass filterw(u)=
g(u) ejωcu, whereωc is the center frequency of the modulated
band-pass filter, andg(u) is a slowly varying and symmetric func-
tion. The family of wavelets are dilated/contracted and translated
versions of the mother wavelet:
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wheres ∈ R+ is the scale factor, andp ∈ R is the translation
factor. It can be shown that the continuous wavelet transform of a
given real signalx(u) can be written as [3]:
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whereX(ω) and G(ω) are the Fourier transforms ofx(u) and
g(u), respectively. The discrete wavelet coefficients are sampled
versions of the continuous wavelet transform.

2.1. The SSIM Index

In spatial domain, the SSIM index between two image patchesx =
{xi|i = 1, ...M} andy = {yi|i = 1, ..., M} is defined as [1]
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whereC1 andC2 are two small positive constants (see [1] for de-
tails), andµx = 1
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(c) MSE=309, SSIM=0.987
CW-SSIM=1.000

(b) MSE=306, SSIM=0.928
CW-SSIM=0.938

(f) MSE=309, SSIM=0.580
CW-SSIM=0.633

(i) MSE=871, SSIM=0.404
CW-SSIM=0.933

(h) MSE=694, SSIM=0.505
CW-SSIM=0.925

(k) MSE=590, SSIM=0.549
CW-SSIM=0.917

(a) MSE=0, SSIM=1
CW-SSIM=1

(e) MSE=313, SSIM=0.730
CW-SSIM=0.811

(d) MSE=309, SSIM=0.576
CW-SSIM=0.814

(g) MSE=308, SSIM=0.641
CW-SSIM=0.603

(j) MSE=873, SSIM=0.399
CW-SSIM=0.933

(l) MSE=577, SSIM=0.551
CW-SSIM=0.916

Fig. 1. Comparison of image similarity measures for images with different types of distortions. (a) reference image (8bits/pixel, assumed to
have perfect quality); (b) contrast stretch; (c) mean luminance shift; (d) Gaussian noise contamination; (e) impulsive noise contamination;
(f) JPEG compression; (g) blurring; (h) spatial scaling (zooming out); (i) spatial translation (to the right); (j) spatial translation (to the left);
(k) rotation (counterclockwise); (l) roation (clockwise). Images are cropped from 256×256 to 128×128 for visibility. Note that Images
(b)-(g) have almost the same MSE values but drastically different visual quality, which is better predicted by SSIM and CW-SSIM. Also
note that MSE and SSIM are both sensitive to translation, scaling and rotation (Images (h)-(l)), and CW-SSIM is robust to these distortions.

σxy = 1
M

∑M

i=1
(xi−µx)(yi−µy), respectively. It can be shown

that the maximum SSIM index value 1 is achieved if and only ifx
andy are identical.

In the complex wavelet transform domain, supposecx = {cx,i

|i = 1, ..., N} andcy = {cy,i|i = 1, ..., N} are two sets of coef-
ficients extracted at the same spatial location in the same wavelet
subbands of the two images being compared, respectively. We ex-
tend the spatial domain SSIM algorithm into a complex wavelet
SSIM (CW-SSIM) index (note that the coefficients are zero mean,
due to the bandpass nature of the wavelet filters):

S̃(cx, cy) =
2 |∑N

i=1
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i=1
|cx,i|2 +

∑N

i=1
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. (4)

Herec∗ denotes the complex conjugate ofc andK is a small pos-
itive constant.

To better understand the CW-SSIM index, we rewrite it as a
product of two components:
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The first component is completely determined by the magnitudes
of the coefficients and the maximum value 1 is achieved if and only
|cx,i| = |cy,i| for all i’s. The second component, on the other
hand, is fully determined by the consistency of phase changes be-
tweencx andcy. It achieves the maximum value 1 when the phase
difference betweencx,i andcy,i is a constant for alli’s. We con-
sider this component as a useful measure of image structural simi-
larity based on the believes that



• The structural information of local image features is mainly
contained in the relative phase patterns of the wavelet coef-
ficients.

• Consistent phase shift of all coefficients does not change
the structure of the local image feature.

In previous work, similar phase correlation idea had been em-
ployed for image alignment [4], feature localization [5], texture
description [6] and blur detection [3], but has not been used for
image similarity measurement.

2.2. Sensitivity Analysis

In all the analysis below, we assume thatx corresponds to a refer-
ence image andy is an altered version of the image whose simi-
larity to the reference image is being evaluated.

Luminance and contrast changescan be roughly described as
a point-wise linear transform of local pixel intensities:yi = a xi+
b for all i’s. Due to the linear and bandpass nature of the wavelet
transform, the effect in the wavelet domain is a constant scaling of
all the coefficients, i.e.,cy,i = a cx,i for all i’s. Substitute this into
Eq. (5), we can see that a perfect value 1 is obtained for the second
component and the first component gives

S̃(cx, cy) =
2a + K/

∑N
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1 + a2 + K/
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i=1
|cx,i|2

. (6)

At strong image features (large coefficient magnitudes),
K/

∑N

i=1
|cx,i|2 is small and can be ignored, leading to an insen-

sitive measure (compared with MSE)− scaling the magnitude by a
factor of 10% (a = 1.1) only causes reduction of the SSIM value
from 1 to 0.9955. The measure is even less sensitive at weaker
image features (small coefficient magnitudes).

Translation, scaling and rotationin the 2-D spatial domain
can be written as
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where (1+∆s1, 1+∆s2), ∆θ, and (∆t1, ∆t2) are the scaling,
rotation and translation factors, respectively. When∆θ is small,
we havecos∆θ≈1 andsin∆θ≈∆θ, and therefore
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From Eq. (8), we see that when (u1, u2) is not far away from the
origin, small amount of translation, scaling and rotation can be
locally approximated by a small translation (∆u1, ∆u2). For easy
analysis, let us consider the 1-D casey(u) = x(u + ∆u). This
corresponds to a linear phase shift in the Fourier domainY (ω) =
X(ω)ejω∆u. Substitute this into Eq. (2), we obtain
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Here the approximation is valid when∆u is small compared to
the spatial extent ofg(u) . Similar result can be obtained for the
2-D case. Consequently, the corresponding discrete wavelet coeffi-
cients{cy,i} and{cx,i} (discrete samples ofX(s, p) andY (s, p))
are approximately phase shifted versions of each other. Therefore,
based on the analysis of the CW-SSIM index in Section 2.1, we
haveS̃(cx, cy) ≈ 1, where the accuracy of the approximation de-
pends on the magnitudes of the translation, scaling and rotation
factors as well as the shape of the envelop of the wavelet filter.

3. TEST

To apply the CW-SSIM measure for comparing images, we first
decompose the two given images being compared using a complex
version [6] of the “steerable pyramid” transform [7] (a type of
redundant wavelet transform that avoids aliasing in subbands). We
then move a sliding window (of size 7×7) step by step across each
wavelet subband. At each step, the CW-SSIM index is calculated
within the sliding window using Eq. (4). The overall similarity
of the two images is estimated using the average of the local CW-
SSIM measures in all subbands (or a subset of all the subbands).

Figure 1 demonstrates the CW-SSIM measure for image qual-
ity assessment. A 2-scale, 16-orientation steerable pyramid de-
composition is constructed and the 16 subbands at the second scale
are used by the CW-SSIM measure. It can be seen that images
with almost the same MSE values but different distortion types
(Images (b)-(g)) have drastically different visual quality, which
is better predicted by SSIM and CW-SSIM. However, the SSIM
method fails to provide useful quality prediction when the images
are slightly shifted, scaled or rotated (Images (h)-(l)). These are
effectively accounted for by CW-SSIM, which gives significantly
higher scores to Images (b), (c) and (h)-(l) than to Images (d)-(g).

In Fig. 2, we demonstrate the effectiveness of the CW-SSIM
measure using a pattern matching test. We first manually created
ten standard digit templates with a size of 32×32, as shown in
Fig. 2. A total of 2430 distorted images (243 for each digit) were
then generated by shifting, scaling, rotating, and blurring the stan-
dard templates (examples shown in Fig. 2). We then “recognize”
each distorted image based on direct image matching with the ten
standard templates, without any registration process in the front.
MSE, SSIM and CW-SSIM are used as the matching standards,
where CW-SSIM employs 4 subands of the second scale in a 2-
scale, 4-orientation steerable pyramid transform.

The recognition performance is significantly different when
different similarity measures are employed. As expected, the MSE
and spatial domain SSIM measures are sensitive to translation,
scaling and rotation of images, thus poor correct recognition rates
were obtained. By contrast, the performance of the CW-SSIM
measure is surprisingly good, achieving an overall correct recog-
nition rate of 97.7%! It needs to be emphasized that this exper-
iment is only a simple test of image similarity measures, but not
a complete test of digit recognition systems. However, we find it
impressive that this approach, which does not rely on any registra-
tion or intensity normalization preprocessing, does not include any
probabilistic model for either the image patterns or the distortions,
and requires no training, works as well as it does.

4. CONCLUSION AND DISCUSSION

We propose the CW-SSIM index method, an image similarity mea-
sure that is simultaneously insensitive to luminance change, con-
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Fig. 2. Pattern matching without registration. Each test image (from a database of 2430 images) is matched to the ten standard templates
using MSE, SSIM and CW-SSIM as the similarity measures, without any normalization or registration process in the front. The test image
is then “recognized” as belonging to the category that corresponds to the best similarity score. The resulting correct recognition rates show
that both MSE and SSIM are sensitive to translation, scaling and rotation of images, but CW-SSIM exhibits much stronger robustness.

trast change, and small translation, scaling and rotation of im-
ages. It is computationally efficient in comparison with typical
registration-based methods, which usually require a more compli-
cated procedure to search or estimate the registration parameters.

The proposed algorithm shows some interesting connections
with several computational models that have been successfully used
to account for a variety of biological vision behaviors. These mod-
els include: 1) The involvement of bandpass visual channels in im-
age pattern recognition tasks [8]; 2) Representation of phase infor-
mation in primary visual cortex using quadrature pairs of localized
bandpass filters [9]; 3) The computation of complex-valued prod-
uct in visual cortex [10]; 4) The computation of local energy (using
sums of squared responses of quadrature-pair filters) by complex
cells in visual cortex [11]; and 5) Divisive normalization of filter
responses (using summed energy of neighboring filter responses)
in both visual and auditory neurons [12].

It is important to realize the limitations of the current algo-
rithm. First, the CW-SSIM measure does not provide any corre-
spondence information between the pixels of the two images be-
ing compared (a disadvantage compared to registration-based ap-
proaches). Second, the method works only when the amount of
translation, scaling and rotation is small (compared to the wavelet
filter size). This problem may be solved by using a multi-scale,
coarse-to-fine method, with a rough registration adjustment be-
tween scales, e.g., [13]. The inclusion of invariants to additional
parametric distortions may also lead to further improvement.
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