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ABSTRACT

Most existing full-reference (FR) image quality assessment (IQA)
models assume that the reference and distorted images are perfectly
aligned, and fail dramatically when the assumption does not hold.
In this study, we first show that pre-registration, especially feature-
based (as opposed to area-based) registration, is effective at reduc-
ing the performance drop of FR-IQA models. However, registra-
tion is an expensive process that often slows down the speed of the
IQA algorithms by several orders of magnitude. This motivates us
to construct an end-to-end convolutional neural network (CNN) for
direct image quality prediction, which contains built-in invariance to
geometric distortions. Our results show that when the training im-
ages are augmented by their geometrically transformed versions, the
learned network performs at a high level without image registration,
resulting in a fast and effective approach for geometric transforma-
tion invariant IQA.

Index Terms— Image quality assessment, image registration,
convolutional neural networks, geometric transformations, data aug-
mentation

1. INTRODUCTION

Full reference (FR) image quality assessment (IQA) aims to quan-
tify the perceptual quality of a possibly distorted image using its
pristine-quality counterpart as reference [1]. When comparing two
images in either pixel [2] or transform domain [3], most FR-IQA
models assume they are perfectly aligned, i.e., the geometrical rela-
tionship between the two images is an identity mapping. As a re-
sult, a tiny geometric transformation (e.g., translation, rotation, and
scaling) that may be imperceptible to humans could cause existing
models to fail. Limited work has been dedicated to IQA invariant
to geometric transformations. By incorporating geometric transfor-
mations as a special case of adaptive linear system decompositions
of image error signals, an IQA method was developed in [4] that
is capable of handling small geometric distortions. A substantially
different approach is to extend the structural similarity (SSIM) in-
dex [2] into the complex wavelet transform domain. The resulting
CW-SSIM [5] index was shown to be insensitive to consistent rel-
ative phase distortions and therefore can handle up to 4 degrees of
rotations and 7 pixels of translations [5].

In this work, we first probe the sensitivity of FR-IQA models
under gentle geometric transformations. Specifically, we equip ex-
isting knowledge-driven FR-IQA models with mature image regis-
tration techniques [6, 7, 8, 9, 10] to combat the misalignment prob-
lem. Our results show that feature-based alignment [9] is more ro-
bust than area-based (direct) alignment [6, 7, 8] and results in less
performance drop. However, a major drawback of incorporating im-
age registration as a preprocessing step is the significantly increased

computational complexity, especially for those methods that involve
iterative and multi-scale optimizations.

The drawback of pre-registration-based approaches motivates us
to look for novel solutions that can directly predict image quality
without registration. As a powerful class of models, convolutional
neural networks (CNNs) have reshaped the fields of image process-
ing and computer vision, achieving state-of-the-art results in image
classification [11], semantic segmentation [12], and many low-level
vision tasks [13, 14, 15]. Recently, CNN-based data-driven IQA
models [16, 17] have been shown to surpass the performance of
knowledge-driven models, which rely heavily on domain expertise.

In this work, we focus on studying the hierarchical representa-
tions of CNNs in their ability to handle geometric transformation-
s. Specifically, we construct a fully convolutional network, which
consists of four stages of convolution, subsampling, batch normal-
ization [18], and ReLU nonlinearity [19]. The predicted distortion
measure is computed as the mean squared error (MSE) between the
last-stage model responses of the original and distorted images. We
train our network by maximizing the Pearson correlation between
the predicted distortion scores and the human mean opinion scores
(MOSs). We show that the network is able to learn invariance to
translation, rotation, and scaling on the training data augmented by
their geometrically transformed versions, resulting in state-of-the-art
performance without image registration.

2. EXPERIMENTAL SETUPS AND PERFORMANCE OF
KNOWLEDGE-DRIVEN MODELS

We use the LIVE IQA database [20] as the starting point, which con-
tains 29 original and 779 distorted images, and augment it by consid-
ering four types of geometric transformations—translation, rotation,
scaling, and their mixtures. To mimic real-world scenarios, an image
should first be geometrically transformed (e.g., camera movement)
and then distorted (e.g., compressed by JPEG). An equivalent but
much simpler implementation that we adopt is to directly apply the
transform to the original image. Specifically, 5 translated, 5 rotat-
ed, and 5 scaled images are generated by randomly shifting a LIVE
reference image in the horizontal and/or vertical directions with t-
wo offsets sampled uniformly between −15 and 15 pixels, random-
ly rotating the image between −5◦ and 5◦, and randomly scaling
the image by a factor between 0.85 and 1.15. 15 images of mixed
transforms are generated by applying translation, rotation, and scal-
ing simultaneously. All parameters are carefully chosen so that the
transformations do not hurt the perceptual quality. Therefore, it is
reasonable to assume that the difference of MOS (DMOS) of each
distorted image remains unchanged when compared with its geomet-
rically transformed reference versions. In total, the augmented LIVE
database contains 25, 048 images.
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Table 1. SRCC results of knowledge-driven FR-IQA models on the
augmented LIVE database

Images SSIM MS-SSIM CW-SSIM VIF
Not aligned 0.154 0.133 0.141 0.230
Perfectly aligned 0.932 0.954 0.806 0.968
LK aligned 0.585 0.572 0.515 0.622
ECC aligned 0.726 0.724 0.638 0.764
DIC aligned 0.889 0.904 0.780 0.926
SURF aligned 0.921 0.942 0.812 0.956

Table 2. Average execution time in seconds on 10, 000 images in
the augmented LIVE database

Algorithm SSIM [2] SURF+RANSAC [9, 21]
Environment MATLAB MATLAB+MEX
Time (s) 0.015± 0.002 5.663± 12.567

We select four image registration algorithms to help FR-IQA
models combat the misalignment between the reference and distort-
ed images. These are area-based alignment 1) the Lucas-Kanade
algorithm (LK) [6], 2) ECC [7], 3) DIC [8], and feature-based align-
ment 4) SURF+RANSAC [9, 21]. The LK algorithm [6] is a pi-
oneering work in image alignment, which minimizes the MSE be-
tween the warped image and the template. As a variant of the LK
algorithm, ECC [7] obtains the optimum transformation by maxi-
mizing the enhanced correlation coefficient between the warped im-
age and the template. DIC [8] expands upon the inverse compo-
sitional scheme to jointly estimate a group of geometric and pho-
tometric transformations, making it robust to intensity variations.
In SURF+RANSAC [9, 21], the feature correspondences between
images are provided by SURF feature matching [9] and the trans-
formation that best explains these correspondences is obtained by
RANSAC [21]. All algorithms are implemented in the image align-
ment toolbox [10] and tested with the default settings.

We test four knowledge-driven FR-IQA models without and
with image registration on the augmented LIVE database. These
include SSIM [2], MS-SSIM [22], CW-SSIM [5], and VIF [3]. The
Spearman’s ranking correlation coefficient (SRCC) [23] results are
listed in Table 1, from which we have several useful observations.
First, without registration, all competing models fail dramatically as
expected. Second, compared with the three area-based alignmen-
t algorithms, the feature-based SURF+RANSAC [9, 21] achieves
the least performance drop. Specifically, under mild and moderate
distortion levels, SURF still performs at a reasonably high level,
finding sufficient keypoint matches for robust transform estimation.
By contrast, area-based alignment begins to fail, especially when
the underlying transformation is complex (e.g., when translation,
rotation, and scaling are mixed). Under severe distortions, no algo-
rithm is able to successfully align two images because of destructive
structure loss. However, this does not appear to be a big prob-
lem because FR-IQA models are likely to give a low quality score
to a severely distorted image regardless of registration accuracy.
Third, since CW-SSIM [5] is originally designed to compare pattern
similarity (e.g., two binary edge maps), it is less competitive on
photographic images. However, the capability to tolerate small geo-
metric transformations (resulting from errors in image registration)
allows CW-SSIM to reduce more performance gaps than the other
models.

Although adding image alignment as a preprocessing step em-

Convolution, 5 × 5 filters

Subsampling 2 × 2, BN, ReLU

Fig. 1. Architecture of the proposed convolutional network for FR-
IQA. BN stands for batch normalization.

powers existing knowledge-driven FR-IQA models to handle geo-
metric transformations, it also brings substantial computational com-
plexity. Specifically, state-of-the-art image registration algorithms
require solving nonlinear and nonconvex optimization problems in
an iterative and multi-scale fashion, and the number of iterations of-
ten increases with the complexity of the underlying transformation
and with the level of distortion. We compare the execution time be-
tween SSIM [2] and SURF+RANSAC [9, 21] on 10, 000 images in
the augmented LIVE database on a computer with 3.4GHz CPU and
16G RAM. From Table 2, we see that SURF+RANSAC runs 379
times slower than SSIM with a much larger standard deviation. In
summary, existing image alignment methods are effective at resolv-
ing the misalignment problem in FR-IQA, but may be impractical for
real-world applications due to substantially increased computational
burden.

3. CNN FOR GEOMETRIC TRANSFORMATION
INVARIANT IQA

The results presented in Section 2 and the success of CNNs inspire
us to develop a CNN-based solution for geometric transformation
invariant IQA.

3.1. Network Architecture and Training

The mini-batch training data are denoted by {(X(l)
r ,X

(l)
d , d(l))}Ll=1,

where X
(l)
r and X

(l)
d are the l-th reference and distorted images,

respectively, d(l) is the DMOS, and L is the mini-batch size. The
network architecture is shown in Fig. 1, where the reference and dis-
torted images are mapped into the same perceptual space for com-
parison. It consists of four stages of convolution, subsampling, batch
normalization, and ReLU nonlinearity, whose parameters are collec-
tively denoted by W. The size of convolution filters is fixed to 5×5
for all stages, while the number of filters at the first stage is set to
6 and is increased by a factor of 2 for each subsequent stage. The
convolution responses are subsampled by a factor of 2 along both
horizontal and vertical directions, which can be efficiently imple-
mented with stride convolution for computational efficiency. Before
applying ReLU nonlinearity, we employ batch normalization to ac-
celerate training, where responses are jointly normalized across the
mini-batch and over all spatial locations [18]. Unlike standard CNN
architectures, we avoid using fully connected layers to make the net-
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Distortion Level:
1 2 3 4 5

Blur Noise JPEG JP2K

Fig. 2. Sensitivity of the proposed CNN-based model to Gaussian blur (Column 1), white Gaussian noise (Column 2), JPEG compression
(Column 3), and JPEG2000 compression (Column 4) under translation (Row 1), rotation (Row 2), and scaling (Row 3) for the “Chemist”
image from [24]. d̂ is the predicted distortion score in Eq. (1).

work fully convolutional. As a result, our network accepts inputs of
arbitrary size and produces an overall distortion score.

We compute the distortion measure as the MSE between the last-
stage model responses of the original image f(X(l)

r ) and the distort-
ed image f(X(l)

d ) [25]

d̂(l)(W) =
16

3MN

M
16∑
i=1

N
16∑
j=1

48∑
k=1

(
f(X(l)

r )ijk − f(X(l)
d )ijk

)2
,

(1)
where M and N denote the height and the width of input images.
The factor of 16 is introduced due to subsampling in four stages.

During training, the optimal parameters W? are obtained by
maximizing the Pearson correlation between the predicted distortion
scores and the DMOSs

W? = argmax
W

corr(d̂(W),d) , (2)

where both d̂ = [d̂(1), d̂(2), · · · , d̂(L)]T and d = [d(1), d(2), · · · , d(L)]T

are length-L vectors in the current mini-batch. For end- to-end blind
IQA [17, 26], the `p-norm induced metric

`p(d̂(W),d) = ‖d̂(W)− d‖p =

L∑
l=1

|d̂(l) − d(l)|p (3)

Table 3. SRCC results of CNN-based FR-IQA models on the aug-
mented LIVE test set

Images CNN trained w/o CNN trained with
data augmentation data augmentation

Not aligned 0.140 0.902
Perfectly aligned 0.967 0.939
LK aligned 0.577 0.917
ECC aligned 0.769 0.929
DIC aligned 0.924 0.934
SURF aligned 0.957 0.933

is often used as the empirical loss, where p is set to 1 or 2. For FR-
IQA, however, Eq. (3) is less preferable than a correlation loss for
optimization because a network with a random initialization tends to
perform at a reasonable level in terms of rank correlation. For ex-
ample, our network with He’s initialization [27] achieves an SRCC
of 0.876 on the original LIVE database. Directly maximizing SR-
CC is difficult due to its non- differentiability. Therefore, we adopt
Pearson correlation in Eq. (2). This optimization framework also re-
minds us of listwise learning-to-rank approaches [28], which have
been exploited in blind IQA [24].

During testing, we estimate the population mean and variance of
batch normalization with exponential moving average, and perform
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 3. The proposed CNN-based model is robust to geometric transformations as compared to other distortions of strong visual impairment.
This is in stark contrast to traditional FR-IQA methods such as SSIM [2]. (a) Original image. (b) Gaussian blur. SSIM = 0.726, d̂ = 0.423.
(c) JPEG compression. SSIM = 0.740, d̂ = 0.760. (d) JPEG2000 compression. SSIM = 0.710, d̂ = 0.515. (e) Translation (by 5 pixels). SSIM
= 0.612, d̂ = 0.037. (f) Rotation (by 3 degrees). SSIM = 0.585, d̂ = 0.061. (g) Scaling (by a factor of 1.05). SSIM = 0.599, d̂ = 0.069.

a standard forward propagation to output the distortion score of Xd

using Xr as reference.
We first train a CNN without data augmentation. Specifically,

we randomly select 476 and 166 images from the original LIVE
database [20] for training and validation, respectively. We test the
model on 5, 146 images augmented from the remaining 166 images
as described in Section 2. No content overlap occurs among train-
ing, validation, and test sets. We then train another CNN with data
augmentation, where the network is exposed to geometric transfor-
mations during training and validation, trying to learn robust feature
representations against them. The two models are trained using the
Adam optimization algorithm [29] with a mini-batch size of 64. The
learning rate α is initialized to 10−2 and is subsequently lowered
by a factor of 10 when the loss plateaus, until α = 10−4. Other
parameters in Adam are set by default. The learning stops when the
maximum epoch number 500 is reached and the weights that achieve
the highest correlation in the validation set are used for testing.

3.2. Experimental Results

Table 3 lists the SRCC results of the two CNNs on the augment-
ed LIVE test set. Without data augmentation, the data-driven net-
work fails in a similar way as knowledge-driven models. When
trained with the augmented data, the plain network learns invariance
to translation, rotation, scaling, and mixed transform, without adding
advanced modules that are dedicated to spatial manipulation of data
such as spatial transformer [30]. As a result, we achieve compara-
ble performance to the perfectly aligned case without using image
registration techniques.

To take a close look at the sensitivity of the CNN-based model to
geometric transformations, we test our network with a wider range

of translation offsets (in pixels), rotation angles (in degrees), and s-
caling factors on the “Chemist” image from [24]. The results are
drawn in Fig. 2, from which we can see that under mild distortions,
our network is robust to translation (up to 10 pixels), rotation (up
to 5 degrees), and scaling (up to a factor of 0.9 and 1.1). A visual
illustration is also shown in Fig. 3. Under severe distortions, the pre-
dicted distortion score is approximately constant, which is expected
because most perceptually meaningful structures would have been
damaged and alignment is of little importance.

The network runs at 9 ms and 36 ms per image on an Nvidia
GTX Titan X GPU and on a 3.4 GHz CPU, which are 630 and 157
times, respectively, faster than SSIM [2] with SURF+RANSAC [9,
21].

4. CONCLUSION

In this study, we focus on geometric transformation invariant IQA.
Our study suggests that while image pre-registration is effective
at improving the quality prediction performance of traditional
knowledge-driven FR-IQA models, its wide usage in practice may
be severely impeded by the high computational cost. Therefore, we
construct an end-to-end IQA model using a CNN-based approach
for direct image quality prediction without registration. We show
that such a model, when trained with images augmented by their
geometrically transformed versions, leads to a simple yet efficient
solution to the geometric transformation invariant IQA problem.
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