(Cvx) (DV —x)

Proof complexity
of
SAT/SMT solvers

SAT Robert Robere

Rtk Antonina Kolokolova
s this assignment OK? o, here pop-

e Vijay Ganesh

UNSAT
F over T-atoms Waterloo, Aug 29, 2019

sizes(1] sizes(s-1-1]))

1))

iorarr(a, b)

array([x for x in (set([xly far x in a for y in b]) | set{[xdy for

return np.
xin a fory 1n b))])
2

-328-ba3abose1417> in <listcomp(.8)

array([x for x in (set([xly for x in a for y in b]) | set{[sdy for

Setting: what kind of
problems are we solving?

And what constitutes an acceptable solution?

) ot
il {

Computational complexity setting:

Given an instance of a problem, decide if this
instance is in a specific set or not.

Is this number prime? 2147483647 € PRIMES?

e Does this program reach a bad state?
Is this formula satisfiable?

e Are these two graphs isomorphic?

But how do we know that the answer is correct?
When do we have short and easy to check proofs?
What do the words “proof”, “short” and “easy to check” mean?

/\/

What is “easy” and “short”?

* Jack Edmonds (1960s):

* “Good algorithm”: runs in polynomial time
« P: the class of all polynomial-time decidable languages

n, u

» “Good characterization”: “certain information
<..> which the supervisor can then use with ease
to verify <..> “ ST
« Short: polynomial length.

e NP: problems with easy to verify short
proofs of all “yes” answers

o cONP: ... of all “no” answers.

Open: P = NP? NP = coNP? NP NcoNP = P?

How hard is it to prove theorems?

® Godel’s 1956 letter to von Neumann:

Consider an optimal algorithm checking if a given first-order
formula F has a proof of size n.

e size = number of symbols.

How fast can it be in the worst case, as a function of n?
o const -n? const-n??...

® This letter was only discovered in 1988

So complexity theory, including the notion of
NP-completeness, and proof complexity
started independently from it.

Godel’s 1956 letter to von Neumann

...If there really were a machine with ... ~k - n
(or even ~ k - n?), this would have
consequences of the greatest importance.
Namely, it would obviously mean that in spite
of the undecidability of the
Entscheidungsproblem, the mental work of a
mathematician concerning Yes-or-No
questions could be completely replaced by a
machine. After all, one would simply have to
choose the natural number n so large that
when the machine does not deliver a result, it
makes no sense to think more about the
problem...

\/y

Special case: propositional formulas

Satisfiability problem: well-formed propositional formulas with all variables
(implicitly) existentially quantified.

Propositional setting: Boolean variables (domain = {true, false})
SAT: set of all satisfiable propositional formulas. UNSAT: unsatisfiable.
e.g. @ = (xVy)A-x correspondstoF= dx Iy (x Vy) A x

Proof for membership in SAT: satisfying assignment.
Proof size=n

/

>

Tautology problem: well-formed propositional formulas with all variables
implicitly universally quantified.

TAUT: set of all valid propositional formulas.

e.g. @ = (—xA-y)Vxcorrespondsto F= VxVy (axA-y)Vx
Proof for € TAUT: ?

Proof size bound =7

Note: @ € UNSAT iff =@ € TAUT iff ¢ &€ SAT

- From Donald Knuth’s “The art
of Computer Programming”

Wow Section 7.2.2.2 has turned out to be the longest section, by far, in
The Art of Computer Programming. The SAT problem is evidently a “killer
app.” because it is key to the solution of so many other problems. Consequently
I can only hope that my lengthy treatment does not also kill off my faithful
readers! As I wrote this material, one topic always seemed to flow naturally
into another, so there was no neat way to break this section up into separate
subsections. (And anyway the format of TAOCP doesn’t allow for a Section

729921)

Proof complexity

Cook’71, “Complexity of theorem-proving procedures”
Every problem in NP polynomially reduces to SAT

® NP-completeness
Easily verifiable short proofs of “yes”: satisfying assignments.
What about proofs of “no”?

* Proof complexity [Cook, Reckhow’79]

jb
_‘J‘

des ' S

A propositional proof system is a polynomial time
computable onto function S: {0,1}* —» TAUT

S is polynomially bounded if every unsatisfiable formula
has a short (polynomial-size) proof.

* Proof size is the number of symbols in a proof.
* NP=coNP iff there exists a polynomially bounded proof system

S p-simulates S’ if for all tautologies f, f has an S-proof of size at most
polynomial of size of shortest S’-proof of f.

Cook’s program: prove NP #= coNP (and so P #NP) by proving
lower bounds for stronger and stronger proof systems

Propositional Proof Systems

These definitions do not say anything about the W

complexity of finding proofs (automatizability):

A system is automatizable if there is an algorithm
finding a proof in time polynomial in proof size.

This is where ML could come into play: to help find
short proofs when they exist
(but see Atserias/Miller’19 result...)

Extended Frege

Frege

<D,
,

Polynomial
alculu
Nullstellensatz

ACO-Frege
Tree
esolutior

D
Plane

From a talk by Toni Pitassi

exitv rettin

e e e i g

Extended Frege/
Extended Resolution

Cutting
Planes

Resolution proof system

A refutation system: to prove a tautology, refute its negation.
Start with a CNF formula: A of clauses (V of x, =x).

Apply the resolution rule (cut on a literal) until an empty clause
is derived:

(xvC),(=xVD)

(CVvD)
Tree-like resolution: the graph of the refutation is a tree.

Resolution proof system is sound and complete.

A propositional formula is unsatisfiable if and only if it has a
resolution refutation

The proofs by CDCL solvers (with restarts)
are exactly characterized by Resolution!
[Pipatsrisawat/Darwiche’11, Atserias/Fichte/Thurley’11]

med on resolution in
1980s | never thought it would
\ become useful in practice.

Alasdair Urquhart

* (xVay)A(xVy)A(—x) :unsatisfiable
* Label leaves with violated input clauses

9

(xVy) (xV —y)

/\/

PigeonHole principle

* If n+1 pigeons all fly into
n holes, some hole has at
least two pigeons.

® There is no injective

function from {1, ...,n} to
iL.oon 1}

PigeonHole Principle

* If n+1 pigeons all fly into n holes, some hole has at least two pigeons.

* PHP: negation of the above

1 (xl,l \V xl,z) N (xz’l V xZ’z) N (xg’l V x3’2) N
L (_Ix1,1 \ —1x2’1) N (_'le’l V _Ix3’1) N (_Ixz’l V —1x3‘1) N

L (_Ix]_,z V _Ilez) N (_lelz V _|X3,2) N (_Ixz’z V _|X3,2)

® Requires exponential-size proofs in Resolution!

Size vs width

* Width of a proof of a formula f:

number of literals in a clause with most literals.

Theorem[Ben-Sasson/Wigderson 99]
Every size s resolution proof of a formula f can be
converted to a resolution proof of f with width

J2nlog s + width(f)

® Q@Gives lots of lower bounds!
Random k-CNF, pebbling, etc...

SAT solvers that use just CDCL
cannot solve all instances in
polynomial time...

Even the best heuristic will take exponential time to produce an
exponential-size proof.

hat if there is a small proof?
How hard is it to find it?

Theorem [Atserias/Miiller’2019]
Automating resolution is NP-hard.

* Finding a resolution refutation at most polynomially longer than the
shortest one is NP-hard.

* Itis even NP-hard to distinguish formulas with polynomial-size proofs
from formulas that only have exponential size proofs in resolution.

* In general, resolution is not automatizable in any complexity class C
(such as C = subexponential time) unless NP € C

However, tree-like resolution is automatizable in quasi-polynomial time.

>
Frege proof systems

Textbook-style proof system, natural deduction

Modus ponens as an inference rule.
A complete set of axiom schemas.

AA-B

Cuts on formulas
B

More powerful than Resolution: can prove PigeonHole principle with a

polynomial-size proof.
For some tautologies, best known proof has size nt°9" |

Running out of candidate hard tautologies...

All Frege systems are equivalent [Cook/Reckhow’79]
Automatizing Frege systems would break cryptography.

e
The power of extension

Extended resolution (extended Frege):
addarule z=C (z = F) where zis a new variable
and Cis a clause (F is a subformula).

Extended resolution and extended Frege are
computationally equivalent

Correspond to cuts on circuits.

Every example tautology people tried has a polynomial
size extended Frege proof...

But no proof that every tautology does.

*Independence of P versus NP?

-Baker-Gil-Solovay
-Razborov-Rudich

*|s P versus NP independent of Extended Frege?

Theorem (Razborov)
“SAT cannot be decided by polynomial-size circuits” requires superpoly-size

proofs in resolution (even with k-DNFs instead of clauses)
* if pseudo-random generators exist.

Strange consequences of independence
® 1992: Ben-David/Halevi

* If Pvs. NP is independent of PA, Peano Arithmetic
+ all true sentences with unbounded only V quantifiers (*)

e Then SAT can be solved in “almost polynomial time”!

e Proof idea:

« Define a function R(i) = max;_; {min |x]: SAT(x) # Mj(x) }, where M; are

polynomial-time Turing machines.
» PA, does not prove P = NP , R(n) is very slow-growing (e.g., < log™ n)

By definition, for every satisfiable formula of size n, one of the first log® n TMs
will find a satisfying assignment; total runtime < O(n'°8).

(*) Quoting BD/H’92: “All current techniques for proving independence of Peano
Arithmetic imply independence of PA,”

\/'

Is the best way to solve constraint satisfaction
problems then to encode them as formulas and
run SAT solvers?

What about, eg, writing them as systems of
equations and using integer linear

programming/cutting planes?

Does going to non-Boolean domains help?

~ Cutting planes semi-algebraic

A proof system operating with \
integer inequalities.
Rules: /

addition, multiplication,

division by a positive integer with
rounding.

A clause (x V =1y V z) becomes
inequalityx+ (1—y)+z=>1
Alsohavex < 1,x >0

Want to derive 0> 1

Short proof of the PigeonHolePrinciple.
Exponential lower bound for CliqueColor [Pudlak’97].

=

Pseudo-Boolean solvers
CDCL-based solvers

+ “cardinality constraints”: x, + X5 + x19 = 5
Some version of Cutting Planes axioms

PHP encoded propositionally: "‘45"

As hard as always: lower bounds for resolution work

PHP encoded by inequalities/cardinality constraints:

Short polynomial-size proof! ‘ i

SAT vs. Integer linear programming

® FCC spectrum auction:
» Essentially a colouring problem
e |LP: poor

o SAT: gOOd ((“)) *. (((

A
((() . ((<) ((AS))S(%\)) '_ 2

e |LP: good ((n)) (((,))

e SAT: poor "‘ (™)
\<((<>)) ((“))

* TravelingSalesperson:

Practical problems rarely

start propositional Q %

They talk about programs, circuits, graphs, numbers, strings...

Domains with a lot of inherent structure!

isfiability modulo

eories (SMT):

best of both worlds?

e Use whichever atoms are
most convenient:

* variables
* equalities
* inequalities...

® Alternate between

* treating atoms as
propositional variables

* checking that an
assignment makes sense
given atoms’ meaning.

iti SAT/UNSAT
Propositional F R / N
[] —

Is this assignment OK?

No, here
is why: C

UNSAT

~Reasoning within a domain: theories

T is a (first-order) theory over M {

| SAT/UNSAT
4>

)
Linear equations:
Atoms: lin. inequalities
M: system of lin. ineqgs
M is a conjunction of atoms © 2x;+x; <5
of T (and their negations) s X3 =7

some signature L.

Focus on quantifier-free
fragment of T

Usually have =

Mainly want (efficiently) Thcany ot equality:

decidable theories Atoms: a = b,b # ¢

Want to reason about any Boolean combination of theory
atoms: (x=0vVx =DAx+y>2 - y>1

:" eories (SMT)

SAT/UNSAT A of T-atoms M SAT/UNSAT
Prop. E SAT solver / > / >

T solver

Is this assignment OK? No, here

is why: C

UNSAT

F over T-atoms - SAT solver >

* “Lazy” SMT

NJ

- SAT solving is to resolution as

SMT solving is to... ?

=
R T N R RN AR N R e
—_

SAT solving is to resolution as

SMT solving is to resolution
modulo theories: Res(T)

Joint work with Vijay Ganesh and Robert Robere

CDCL(T)
d Frege?

For which theory Tw
correspond to Exte

Resolution

Is this
assignment
OK?

No, here is
why: C

T UNSAT

e

Resolution modulo T

Literals are atoms of the theory.
Rules of inference:

1. Resolution rule
(Cvx) (DV-x)

2. Clauses derivable from T
e Eg: Tisatheory of equality:
o Rl Y P Y i)

® Eg:Tislinear arithmetic:
e (a<cVb=sdva+b>c+d)

SAT/UNSAT

Resolution

T SAT
LG —

No, here is

Is this

assignment why: C
OK?
T-F UNSAT
—

Resolution modulo T

A N A A A
o N N e e N S S A N S S St S S S i

A
e

Literals are atoms of the theory.
Rules of inference:

1. Resolution rule
(Cvx) (DV-—x)

2. Clauses derivable from T

P ot

Res(T): Res*(T):

C, whereT + C C, whereT + C
vars(C) S vars(F) wvars(C) € atoms(T)

Main theorem

Let T be a theory, and F an unsat. formula over atoms of T. Then

* an SMT solver produces a Res(T) refutation of F.

* an SMT solver with asserting learning scheme and non-deterministic
branching can efficiently simulate Res(T).

* When theory solvers can introduce new literals, same statements hold for
Res*(T) in place of Res(T).

, L, CDCL(T) an

* CDCL: ® COCL (T):

* Repeat: * Repeat:

Decision

Propagation and T-Propagation
Conflict analysis and T-conflict
Maybe restart

» Decision: set a variable
« Propagate unit clauses

o If there is a conflict, analyse
it and learn

» Maybe restart

o T-Conflict: [] -

o |If a partial assign. ais
inconsistent with T,

o Learnaclause C C -«
e T-propagation:

 Partial assign a, F over T-atoms

s T g

e Learnaclause C € (I V —a)

T-conflict: is a ok?
T-Propagate: anything «a forces?

Clause C

UNSAT

>

>

~CDCL, CDCL(T) an

CDCL CDCL (T): CDCL plus
Repeat:
Repeat: » Decision
- Decision: set a variable Propagation and T-Propagation
* Propagate unit clauses « Conflict analysis and T-conflict
o If there is a conflict, e Maybe restart
analyse it and learn
« Maybe restart CDCL*(T):
T-conflict and T-propagation can
introduce new literals
Resolution captures CDCL Res(T) captures CDCL(T)
Pipatsrisawat/Darwiche Res*(T) captures CDCL*(T]

. . Generalizing PD’09, AFT’09
Atserias/Fichte/Thurley.

~CDCL =~ Resolution: [PD’09,AFT09]

Consider a general resolution proof Il = (j, ..., G}y,

There exists a solver run
« Sequence of decisions and restarts

Such that every clause in Il is (implicitly) learned:

o Aclause C = (I V-V l) is absorbed wrt set of clauses S

« if whenever all [; except one are set to false, the remaining literal is
set by unit-propagation from S.

e« Eg: (xVyV2z),(mzVu),(—uVvw) absorbs (x VyVvw)

In polynomial number of steps.

““CDCL(T) ~ Res(T) and CDCL*(T) ~ Res(T)

Res(T)/Res*(T
Consider a geneFaI—FeseLuJHen—proof [1=04,..,Ch

There exists a solver run

» Sequence of decisions and restarts and theory clauses
Produce theory clauses first

Such that every clause in I is (implicitly) learned:

e Aclause C = (l; V-~V [}) is absorbed wrt set of clauses S

« if whenever all [; except one are set to false, the remaining literal is
set by unit-propagation from S.

« Eg:(xVyVz),(mzVvu),(—uVvw) absorbs (x VyVw)
e Enough to use T-Propagation rule

In polynomial number of steps.

~ New literals

Theory solver might return a clause with literals not in F:
F: ta=bVb= c)Atbh=cVe=d)Ala+d)
o (X1 Vxz) A(x2Vx3)A(—1xy)
Treturnsaclause (a #b Vb #cV), notin F.

Diamond equalities [Bjorner, Dutertre, de Moura]
Over theory of equality.
Hard for resolution if not allowed to introduce new literals.
Easy if T introduces literals a; = a;4

,’b()—— b a’O #: an ~~b'n=1§\
do aq a an-1 an
Q Z D z D z
Co C1 Cn-1

Nicn(@i=b; Ab; =a;41 Va; =c;Ac; = ajpq1) A(ag# ay)

~ New literals

Diamond equalities [Bjorner, Dutertre, de Moura]

e e
———— ——_
—

_-bg b Ay + Ap T b=
A = Z < Z N N
dg a a, an-1 An
N Z > Z Q Z

C C c
Nicn (@;=%; Ab; = a;51 Va; =c; Ac; = ajeq) A(ag# apy !

Theorem [Hadarean, Horn, King’15]

Suppose an unsatisfiable formula F over T has t “critical” assignments: each
corresponding to a different theory conflict.

Then a CDCL(T) solver needs to learn > t theory clauses.
Corollary: then any Res(T) proof has size > t
In diamond equalities, each path from a, to a,, is a different critical assignment

So need = 2™ theory solver calls
But if can derive a; = a;, then polynomial time.

P R

The power of Res*(T)

= ‘PigeonHoIPrincipIe

PigeonHole Principle: there is no injective function from [n] to [n-1]

PHP:
Nisn(Vj<n Dij) A /\ (mpij VvV Pk,j)
ik,
=-PHP:
/\(Vj<n (pi =h) A /\ (pi # Pr)
i<n i<k=n
EUF-PHP:
Ns@=oa N\ cey-r@=ro)
x€[n] x,Y€[n]
LA-PHP:

/\(Zj<n xij=1) /\/\(ZiSn xij<1)

i<n j<n

PHP:

=-PHP:

EUF-PHP:

LA-PHP:

'PigeonHolePrinciple

PigeonHole Principle: there is no injective function from [n] to [n-1]

Nisn(Vj<n Pij) A /\ (mpij VvV Pk,;)

i#k,j

/\(Vj<n (pi = h;) A /\ (Di # Px)

i<n i<k<n

/\ (f(x) #0) A A (x %y = f() # f))

x,YE[n

/\<z,<n %2 1) A \Gizniy < 1

j<n

Propositional

Theory of equality:
— (a=bAb=c—->a=rc)

Equality with uninterpreted
functions (EUF)

— equality axioms
— Ackermann axioms: (a =

b - f(a) = f(b))

Linear arithmetic

\/'
- Power of Res(T)

Res(Theory of Equality) is no more powerful than Resolution
Add all n3 equality axioms to F, then solve.

Res(Linear Arithmetic) polynomially simulates R(lin)

Resolution over Equality with Uninterpreted Functions
theory, Res(EUF), can effectively p-simulate Frege.

Even though conjunctions of EUF atoms are decidable in
O(nlogn) time!

« Using a variant of Union-Find algorithm.

E-Res calculus of [Bjorner, de Moura] is already enough
o Res*(EUF) effectively simulates E-Res

- “Equality with uninterprete
functions theory (EUF)

Signature:
uninterpreted function symbols of bounded arity b
constants a, b, c...
Terms: constants, and inductively f(t) for functions. C f(a)
Atoms: equalities/disequalities over terms: t; = t,, t; # t,
Formulas: conjunctions of atoms g(f(@)

(f@=@ N (g(®) = o) A (G + ¢ g(b)

Axioms:
Equality: (a=bAb=c—>a=c)
Ackermann: a=b — f(a) = f(b)

Can decide very efficiently (time O(nlogn)) if a given EUF formula is satisfiable:
Downey-Sethi-Tarjan congruence closure (based on Union-Find)

..................
e

~FEquality with uninterprete
functions theory (EUF)

® Signature:
uninterpreted function symbols of bounded arity
constants a, b, c...

e Terms: constants, and inductively f(t) for functions.

f(a)

* Atoms: equalities/disequalities over terms: t; = t,, t; # t,

® Formulas: conjunctions of atoms

(-0 » @ =) @ @) = o g(b)

® Axioms:
Equality: (a=bAb=c—>a=c)
Ackermann: a=b — f(a) = f(b)

® Can decide very efficiently (time O(nlogn)) if a given EUF formula is satisfiable:
Downey-Sethi-Tarjan congruence closure (based on Union-Find)

“Sequent calculus (LK)

Equivalent to Frege systems.
« Natural deduction

Seguentsidy v A e BB
A A AAd SB Vo VE.

Axioms A - 4,0 -5, S - 1. !

F-G
Rules for V,A, = and cut
F-G,A F-G,A F - G,B ABF -G
-AF - G F-G,ANB AANBF - G

Proof size: total number of symbols.

~Res(EUF) simulaW

Suppose there is an LK proof of F = 0
An LK-refutation of F

Add to F:
Two constants: ey # e;
Definitions of N, O, A (and, or, not):
« N(ey) =e;,N(ey) = ey, 0(eq,ep) = eq,....
Bounded variable range: A(x; = ey V x; = eq)

Now simulate an LK proof by constructing terms for all
formulas in the proof inductively

Prove that at each step of LK proof: A, ...4;, = B; ... By

Either one of the A terms is ey or one of the B terms is e4
» Also for each subformula in proof so far, its term = ey or = ¢4

For which theory T would Res*(T)
effectively p-simulate Extended Frege?

Didn’t you say EUF instances are
usually flattened?

* Arnold Beckmann’s observation: just add a flattening rule to
Res*(EUF)!
» Flattening: every time a new term is introduced, add a new
variable for this term.
« Do not need to decide when to add extension variables!

- -

" Eager vs. Lazy SMT

Question. Is it better to use a theory solver as an oracle, or just bit-
blast all the way to propositional SAT instance?

Ackermann Reduction maps EUF formulas of size m to
SAT instances of size O0(m?)

Theorem. Assuming the Exponential Time Hypothesis (SAT requires

22(n) time), any reduction from EUF to SAT requires a blow-up of Q(m
log m).

Remark. This is tight!

NN
T
Sl

~ Lots of open problems

e Upper/lower bounds on Res(T)/ Res*(T) for a variety of theories.
® Proof complexity of model checking and first-order provers?

* Knowledge compilation:
How to choose T given a problem and class of instances?
In particular, when to choose Eager SMT and when Lazy?
And how to choose T-representation?

Given an instance of a problem, what is the
best way to state it to make it easier to solve?

* How to even compare representations of the same problem in different
underlying languages?
Is Marc’s and Jakob’s PseudoBoolean encoding of PHP the “same PHP” as
the classic CNF encoding?
o Work in progress

< T

~ ML for choosing the rig
representation and heuristics?

® Kevin Leyton-Brown:

Empirical hardness models

» Predict runtime for a specific instance
from this instance’s features.

« Uses random forests/regression trees
Application: automatic algorithm configuration
» SATzilla, Hydra...

® Can something like this be done for
representations?

A >
/ nded Resolution =ML

L " Tsolver RV PG

w” Is this assignment OK? -

T-F
% > SAT solver

No,
here is
hy: C
UNSAT

TN

A,
AR
A A

