
Robert Robere
Antonina Kolokolova

Vijay Ganesh

Waterloo, Aug 29, 2019

𝐶 ∨ 𝑥 𝐷 ∨ ¬𝑥

(𝐶 ∨ 𝐷)

And what constitutes an acceptable solution?

 Is this number prime? 2147483647 ∈ PRIMES?
•Does this program reach a bad state?

 Is this formula satisfiable?
•Are these two graphs isomorphic?

 But how do we know that the answer is correct?
 When do we have short and easy to check proofs?
 What do the words “proof”, “short” and “easy to check” mean?

Computational complexity setting:
Given an instance of a problem, decide if this
instance is in a specific set or not.

What is “easy” and “short”?
 Jack Edmonds (1960s):

 “Good algorithm”: runs in polynomial time
 P: the class of all polynomial-time decidable languages

 “Good characterization”: “certain information
<..> which the supervisor can then use with ease
to verify <..> “
 Short: polynomial length.

 NP: problems with easy to verify short
proofs of all “yes” answers

 coNP: … of all “no” answers.

Open: 𝑷 = 𝑵𝑷? 𝑵𝑷 = 𝒄𝒐𝑵𝑷? 𝑵𝑷 ∩ 𝒄𝒐𝑵𝑷 = 𝑷?

How hard is it to prove theorems?
 Gödel’s 1956 letter to von Neumann:

 Consider an optimal algorithm checking if a given first-order
formula F has a proof of size 𝑛.
 size = number of symbols.

 How fast can it be in the worst case, as a function of 𝑛?

 𝑐𝑜𝑛𝑠𝑡 ⋅ 𝑛? 𝑐𝑜𝑛𝑠𝑡 ⋅ 𝑛2?…

 This letter was only discovered in 1988
 So complexity theory, including the notion of

NP-completeness, and proof complexity
started independently from it.

Gödel’s 1956 letter to von Neumann

...If there really were a machine with ... ∼ k · n
(or even ∼ k · n2), this would have
consequences of the greatest importance.
Namely, it would obviously mean that in spite
of the undecidability of the
Entscheidungsproblem, the mental work of a
mathematician concerning Yes-or-No
questions could be completely replaced by a
machine. After all, one would simply have to
choose the natural number n so large that
when the machine does not deliver a result, it
makes no sense to think more about the
problem...

Special case: propositional formulas
 Satisfiability problem: well-formed propositional formulas with all variables

(implicitly) existentially quantified.
 Propositional setting: Boolean variables (domain = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒})
 SAT: set of all satisfiable propositional formulas. UNSAT: unsatisfiable.
 e.g. 𝜑 = 𝑥 ∨ 𝑦 ∧ ¬𝑥 corresponds to F = ∃𝑥 ∃𝑦 𝑥 ∨ 𝑦 ∧ ¬𝑥
 Proof for membership in SAT: satisfying assignment.
 Proof size = 𝑛

 Tautology problem: well-formed propositional formulas with all variables
implicitly universally quantified.
 TAUT: set of all valid propositional formulas.
 e.g. 𝜑 = ¬ 𝑥 ∧ ¬𝑦 ∨ 𝑥 corresponds to F = ∀𝑥 ∀𝑦 ¬ 𝑥 ∧ ¬𝑦 ∨ 𝑥
 Proof for ∈ 𝑇𝐴𝑈𝑇: ?
 Proof size bound = ?

 Note: 𝜑 ∈ 𝑈𝑁𝑆𝐴𝑇 iff ¬𝜑 ∈ 𝑇𝐴𝑈𝑇 iff 𝜑 ∉ 𝑆𝐴𝑇

From Donald Knuth’s “The art
of Computer Programming”

Proof complexity
Cook’71, “Complexity of theorem-proving procedures”

Every problem in NP polynomially reduces to SAT

 NP-completeness

 Easily verifiable short proofs of “yes”: satisfying assignments.

 What about proofs of “no”?

 Proof complexity [Cook, Reckhow’79]

A propositional proof system is a polynomial time

computable onto function S: 0,1 ∗→ 𝑇𝐴𝑈𝑇

𝑆 is polynomially bounded if every unsatisfiable formula
has a short (polynomial-size) proof.

 Proof size is the number of symbols in a proof.

 NP=coNP iff there exists a polynomially bounded proof system

𝑆 p-simulates 𝑆’ if for all tautologies 𝑓, 𝑓 has an S-proof of size at most
polynomial of size of shortest S’-proof of 𝑓.

Cook’s program: prove NP ≠ 𝑐𝑜𝑁𝑃 (and so P ≠NP) by proving
lower bounds for stronger and stronger proof systems

Propositional Proof Systems

UNSATProofs 𝑺
short

A propositional proof system is a polynomial time

computable onto function S: 0,1 ∗→ 𝑇𝐴𝑈𝑇

𝑆 is polynomially bounded if every unsatisfiable formula
has a short (polynomial-size) proof.

 NP=coNP iff there exists a polynomially bounded proof system

𝑆 p-simulates 𝑆’ if for all tautologies 𝑓, 𝑓 has an S-proof of size at most
polynomial of size of shortest S’-proof of 𝑓.

Cook’s program: prove NP ≠ 𝑐𝑜𝑁𝑃 (and so P ≠NP) by proving
lower bounds for stronger and stronger proof systems

Propositional Proof Systems

UNSATProofs 𝑺
short

These definitions do not say anything about the
complexity of finding proofs (automatizability):

A system is automatizable if there is an algorithm
finding a proof in time polynomial in proof size.

This is where ML could come into play: to help find
short proofs when they exist

(but see Atserias/Müller’19 result…)

Semi-

Algebraic

SOS

Algebraic

AC0-Frege

Frege

Extended Frege

AC0[p]-Frege

Resolution

Tree
resolution

Truth tables

Polynomial
Calculus

Nullstellensatz

The Proof Complexity Zoo

SOS+

IPS

Cutting
Planes

From a talk by Toni Pitassi

Frege

Extended Frege/
Extended Resolution

Resolution

Tree
Resolution

The Proof Complexity Petting Zoo

Cutting
Planes

Resolution proof system
 A refutation system: to prove a tautology, refute its negation.
 Start with a CNF formula: ∧ of clauses (∨ of 𝑥,¬𝑥).
 Apply the resolution rule (cut on a literal) until an empty clause

is derived:

 Tree-like resolution: the graph of the refutation is a tree.

 Resolution proof system is sound and complete.
 A propositional formula is unsatisfiable if and only if it has a

resolution refutation

𝑥 ∨ 𝐶 , ¬𝑥 ∨ 𝐷

(𝐶 ∨ 𝐷)

When I worked on resolution in
1980s I never thought it would

become useful in practice.

The proofs by CDCL solvers (with restarts)
are exactly characterized by Resolution!

[Pipatsrisawat/Darwiche’11, Atserias/Fichte/Thurley’11]

Alasdair Urquhart

DPLL vs. tree-like resolution
 𝑥 ∨ ¬ 𝑦 ∧ 𝑥 ∨ 𝑦 ∧ (¬𝑥) : unsatisfiable

 Label leaves with violated input clauses

y

x

TF

TF

(𝑥)

(𝑥 ∨ 𝑦) (𝑥 ∨ ¬𝑦)

(¬𝑥)

()

PigeonHole principle
 If n+1 pigeons all fly into

n holes, some hole has at
least two pigeons.

 There is no injective
function from 1,… , 𝑛 to
{1,… , 𝑛 − 1}

PigeonHole Principle
 If n+1 pigeons all fly into n holes, some hole has at least two pigeons.

 PHP: negation of the above

 𝑥1,1 ∨ 𝑥1,2 ∧ 𝑥2,1 ∨ 𝑥2,2 ∧ 𝑥3,1 ∨ 𝑥3,2 ∧

 ¬𝑥1,1 ∨ ¬𝑥2,1 ∧ ¬𝑥1,1 ∨ ¬𝑥3,1 ∧ ¬𝑥2,1 ∨ ¬𝑥3,1 ∧

 ¬𝑥1,2 ∨ ¬𝑥2,2 ∧ ¬𝑥1,2 ∨ ¬𝑥3,2 ∧ ¬𝑥2,2 ∨ ¬𝑥3,2

 Requires exponential-size proofs in Resolution!

𝒙𝟏,𝟐

𝒙𝟏,𝟏

𝒙𝟐,𝟏
𝒙𝟐,𝟐

𝒙𝟑,𝟏
𝒙𝟑,𝟐

Size vs width
 Width of a proof of a formula f:

 number of literals in a clause with most literals.

 Gives lots of lower bounds!

 Random k-CNF, pebbling, etc...

Theorem[Ben-Sasson/Wigderson 99]
Every size s resolution proof of a formula f can be
converted to a resolution proof of f with width

2𝑛 𝑙𝑜𝑔 𝑠 + width(𝑓)

Even the best heuristic will take exponential time to produce an
exponential-size proof.

Theorem [Atserias/Müller’2019]

Automating resolution is NP-hard.

• Finding a resolution refutation at most polynomially longer than the
shortest one is NP-hard.

• It is even NP-hard to distinguish formulas with polynomial-size proofs
from formulas that only have exponential size proofs in resolution.

• In general, resolution is not automatizable in any complexity class C
(such as C = subexponential time) unless 𝑁𝑃 ⊆ 𝐶

However, tree-like resolution is automatizable in quasi-polynomial time.

Frege proof systems
 Textbook-style proof system, natural deduction

 Modus ponens as an inference rule.

 A complete set of axiom schemas.

 Cuts on formulas

 More powerful than Resolution: can prove PigeonHole principle with a
polynomial-size proof.

 For some tautologies, best known proof has size 𝑛𝑙𝑜𝑔 𝑛 .

 Running out of candidate hard tautologies...

 All Frege systems are equivalent [Cook/Reckhow’79]

 Automatizing Frege systems would break cryptography.

𝐴, 𝐴 → 𝐵

𝐵

The power of extension
 Extended resolution (extended Frege):

 add a rule 𝑧 = 𝐶 (𝑧 = 𝐹) where z is a new variable

 and C is a clause (F is a subformula).

 Extended resolution and extended Frege are
computationally equivalent
 Correspond to cuts on circuits.

 Every example tautology people tried has a polynomial
size extended Frege proof...
 But no proof that every tautology does.

Metamathematics of P versus NP

•Independence of P versus NP?

-Baker-Gil-Solovay

-Razborov-Rudich

•Is P versus NP independent of Extended Frege?

Theorem (Razborov)
“SAT cannot be decided by polynomial-size circuits” requires superpoly-size
proofs in resolution (even with k-DNFs instead of clauses)
• if pseudo-random generators exist.

Strange consequences of independence
 1992: Ben-David/Halevi

 If P vs. NP is independent of PA1, Peano Arithmetic
+ all true sentences with unbounded only ∀ quantifiers (*)

 Then SAT can be solved in “almost polynomial time”!

 Proof idea:
 Define a function R(i) = maxj<i {min |x|: SAT(x) Mj(x) }, where Mj are

polynomial-time Turing machines.

 PA1 does not prove P NP , R-1(n) is very slow-growing (e.g., < log* n)

 By definition, for every satisfiable formula of size n, one of the first log* n TMs
will find a satisfying assignment; total runtime < O(nlog*

).

(*) Quoting BD/H’92: “All current techniques for proving independence of Peano
Arithmetic imply independence of PA1”

Cutting planes: semi-algebraic

 A proof system operating with
integer inequalities.

 Rules:
 addition, multiplication,

 division by a positive integer with
rounding.

 A clause (𝑥 ∨ ¬𝑦 ∨ 𝑧) becomes
inequality 𝑥 + 1 − 𝑦 + 𝑧 ≥ 1

 Also have 𝑥 ≤ 1, 𝑥 ≥ 0

 Want to derive 0 ≥ 1

Short proof of the PigeonHolePrinciple.

Exponential lower bound for CliqueColor [Pudlak’97].

Pseudo-Boolean solvers
 CDCL-based solvers

 + “cardinality constraints”: 𝑥2 + 𝑥5 + 𝑥10 ≥ 5

 Some version of Cutting Planes axioms

 PHP encoded propositionally:

 As hard as always: lower bounds for resolution work

 PHP encoded by inequalities/cardinality constraints:

 Short polynomial-size proof!

SAT vs. Integer linear programming

 FCC spectrum auction:

 Essentially a colouring problem

 ILP: poor

 SAT: good

 TravelingSalesperson:

 ILP: good

 SAT: poor

They talk about programs, circuits, graphs, numbers, strings...

Domains with a lot of inherent structure!

Satisfiability modulo theories (SMT):
best of both worlds?
 Use whichever atoms are

most convenient:
 variables

 equalities

 inequalities...

 Alternate between
 treating atoms as

propositional variables

 checking that an
assignment makes sense
given atoms’ meaning.

SAT solver
F SAT/UNSAT

T-F

SATT solver

Is this assignment OK?

SAT solver

No, here
is why: C

UNSAT

Propositional

 T is a (first-order) theory over
some signature L.
 Focus on quantifier-free

fragment of T
 Usually have =

 M is a conjunction of atoms
of T (and their negations)

 Mainly want (efficiently)
decidable theories

Reasoning within a domain: theories

T solver
SAT/UNSATM

 Linear equations:
 Atoms: lin. inequalities
 M: system of lin. ineqs

 2𝑥1 + 𝑥2 ≤ 5

 𝑥1 − 3𝑥2 ≤ 7

 Theory of equality:
 Atoms: 𝑎 = 𝑏, 𝑏 ≠ 𝑐
 M: 𝑎 = 𝑏, 𝑏 = 𝑐, 𝑎 ≠ c

 Want to reason about any Boolean combination of theory
atoms: 𝑥 = 0 ∨ 𝑥 = 1 ∧ 𝑥 + 𝑦 > 2 → 𝑦 > 1

Satisfiability modulo theories (SMT)

SAT solver
Prop. F SAT/UNSAT

F over T-atoms

SATT solver

Is this assignment OK?

SAT solver

No, here
is why: C

UNSAT

T solver
SAT/UNSAT∧ of T-atoms M

 “Lazy” SMT

Joint work with Vijay Ganesh and Robert Robere

For which theory T would CDCL(T)
correspond to Extended Frege?

Resolution modulo theories

Literals are atoms of the theory.
Rules of inference:

1. Resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ ¬𝑥

(𝐶 ∨ 𝐷)

2. Clauses derivable from T

 Eg: T is a theory of equality:

 (𝑎 ≠ 𝑏 ∨ 𝑏 ≠ 𝑐 ∨ 𝑎 = 𝑐)

 Eg: T is linear arithmetic:

 (𝑎 ≤ 𝑐 ∨ 𝑏 ≤ 𝑑 ∨ 𝑎 + 𝑏 > 𝑐 + 𝑑)

Resolution

Resolution modulo T

SAT
solver

F SAT/UNSAT

T-F

SATT
solver

Is this
assignment

OK?

SAT
solver

No, here is
why: C

UNSAT

CNF

Resolution modulo theories

Literals are atoms of the theory.
Rules of inference:

1. Resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ ¬𝑥

(𝐶 ∨ 𝐷)

2. Clauses derivable from T

Resolution

Resolution modulo T

SAT
solver

F SAT/UNSAT

T-F

SATT
solver

Is this
assignment

OK?

SAT
solver

No, here is
why: C

UNSAT

CNF

Res(T):

𝐶, 𝑤ℎ𝑒𝑟𝑒 𝑇 ⊢ 𝐶
𝑣𝑎𝑟𝑠 𝐶 ⊆ 𝑣𝑎𝑟𝑠(𝐹)

Res*(T):

𝐶, 𝑤ℎ𝑒𝑟𝑒 𝑇 ⊢ 𝐶
𝑣𝑎𝑟𝑠 𝐶 ⊆ 𝑎𝑡𝑜𝑚𝑠(𝑇)

Let T be a theory, and F an unsat. formula over atoms of T. Then

• an SMT solver produces a Res(T) refutation of F.

• an SMT solver with asserting learning scheme and non-deterministic
branching can efficiently simulate Res(T).

• When theory solvers can introduce new literals, same statements hold for
Res*(T) in place of Res(T).

CDCL, CDCL(T) and CDCL*(T)

 CDCL:
 Repeat:

 Decision: set a variable

 Propagate unit clauses

 If there is a conflict, analyse
it and learn

 Maybe restart

 CDCL (T):
 Repeat:

 Decision
 Propagation and T-Propagation
 Conflict analysis and T-conflict
 Maybe restart

F over T-atoms

SATT solver

T-conflict: is 𝛼 ok?
T-Propagate: anything 𝛼 forces?

SAT solver

Clause C

UNSAT

 T-Conflict:
 If a partial assign. 𝛼 is

inconsistent with T,

 Learn a clause 𝐶 ⊆ ¬𝛼

 T-propagation:
 Partial assign 𝛼,

 𝑇 ⊢ 𝛼 → 𝑙

 Learn a clause 𝐶 ⊆ (𝑙 ∨ ¬𝛼)

CDCL, CDCL(T) and CDCL*(T)

 CDCL:
 Repeat:

 Decision: set a variable

 Propagate unit clauses

 If there is a conflict,
analyse it and learn

 Maybe restart

 Resolution captures CDCL
 Pipatsrisawat/Darwiche

 Atserias/Fichte/Thurley.

 CDCL (T): CDCL plus

 Repeat:
 Decision
 Propagation and T-Propagation
 Conflict analysis and T-conflict
 Maybe restart

 CDCL*(T):
 T-conflict and T-propagation can

introduce new literals

 Res(T) captures CDCL(T)
 Res*(T) captures CDCL*(T)

 Generalizing PD’09, AFT’09

CDCL ≈ Resolution: [PD’09,AFT09]

 Consider a general resolution proof Π = 𝐶1, … , 𝐶𝑚
 There exists a solver run

 Sequence of decisions and restarts

 Such that every clause in Π is (implicitly) learned:
 A clause 𝐶 = (𝑙1 ∨ ⋯∨ 𝑙𝑘) is absorbed wrt set of clauses S

 if whenever all 𝑙𝑖 except one are set to false, the remaining literal is
set by unit-propagation from S.

 Eg: 𝑥 ∨ 𝑦 ∨ 𝑧 , ¬𝑧 ∨ 𝑢 , ¬𝑢 ∨ 𝑤 absorbs (𝑥 ∨ 𝑦 ∨ 𝑤)

 In polynomial number of steps.

CDCL(T) ≈ Res(T) and CDCL*(T) ≈ Res(T)

 Consider a general resolution proof Π = 𝐶1, … , 𝐶𝑚
 There exists a solver run

 Sequence of decisions and restarts and theory clauses

 Produce theory clauses first

 Such that every clause in Π is (implicitly) learned:
 A clause 𝐶 = (𝑙1 ∨ ⋯∨ 𝑙𝑘) is absorbed wrt set of clauses S

 if whenever all 𝑙𝑖 except one are set to false, the remaining literal is
set by unit-propagation from S.

 Eg: 𝑥 ∨ 𝑦 ∨ 𝑧 , ¬𝑧 ∨ 𝑢 , ¬𝑢 ∨ 𝑤 absorbs (𝑥 ∨ 𝑦 ∨ 𝑤)

 Enough to use T-Propagation rule

 In polynomial number of steps.

Res(T)/Res*(T)

New literals

 Theory solver might return a clause with literals not in F:

 𝐹: 𝑎 = 𝑏 ∨ 𝑏 = 𝑐 ∧ 𝑏 = 𝑐 ∨ 𝑐 = 𝑑 ∧ 𝑎 ≠ d
 (𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (¬ 𝑥4)

 T returns a clause 𝑎 ≠ 𝑏 ∨ 𝑏 ≠ 𝑐 ∨ 𝑎 = 𝑐 , 𝑎 = 𝑐 not in F.

 Diamond equalities [Bjorner, Dutertre, de Moura]
 Over theory of equality.
 Hard for resolution if not allowed to introduce new literals.
 Easy if T introduces literals 𝑎𝑖 = 𝑎𝑖+1

 𝑖<𝑛ٿ (𝑎𝑖= 𝑏𝑖 ∧ 𝑏𝑖 = 𝑎𝑖+1 ∨ 𝑎𝑖 = 𝑐𝑖 ∧ 𝑐𝑖 = 𝑎𝑖+1) ∧ (𝑎0≠ 𝑎𝑛)

𝑎0

𝑏0

𝑐0

𝑎1

𝑏1

𝑐1

𝑎2 𝑎𝑛−1

𝑏𝑛−1

𝑐𝑛−1

𝑎𝑛....

𝑎0 ≠ 𝑎𝑛

New literals

 Diamond equalities [Bjorner, Dutertre, de Moura]

 𝑖<𝑛ٿ (𝑎𝑖= 𝑏𝑖 ∧ 𝑏𝑖 = 𝑎𝑖+1 ∨ 𝑎𝑖 = 𝑐𝑖 ∧ 𝑐𝑖 = 𝑎𝑖+1) ∧ (𝑎0≠ 𝑎𝑛)

 Theorem [Hadarean, Horn, King’15]
 Suppose an unsatisfiable formula F over T has t “critical” assignments: each

corresponding to a different theory conflict.
 Then a CDCL(T) solver needs to learn ≥ 𝑡 theory clauses.

 Corollary: then any Res(T) proof has size ≥ 𝑡

 In diamond equalities, each path from 𝑎0 to 𝑎𝑛 is a different critical assignment
 So need ≥ 2𝑛 theory solver calls

 But if can derive 𝑎𝑖 = 𝑎𝑗 , then polynomial time.

𝑎0

𝑏0

𝑐0

𝑎1

𝑏1

𝑐1

𝑎2 𝑎𝑛−1

𝑏𝑛−1

𝑐𝑛−1

𝑎𝑛....

𝑎0 ≠ 𝑎𝑛

PigeonHolePrinciple
 PigeonHole Principle: there is no injective function from [n] to [n-1]

 PHP:

𝑖≤𝑛(∨𝑗<𝑛ٿ 𝑝𝑖,𝑗) ∧ ሥ

𝑖≠𝑘,𝑗

(¬𝑝𝑖,𝑗 ∨ ¬𝑝𝑘,𝑗)

 =-PHP:

ሥ

𝑖≤n

(∨𝑗<𝑛 𝑝𝑖 = ℎ𝑗 ∧ ሥ

𝑖<𝑘≤n

(𝑝𝑖 ≠ 𝑝𝑘)

 EUF-PHP:

ሥ

𝑥∈[𝑛]

(𝑓 𝑥 ≠ 0) ∧ ሥ

𝑥,𝑦∈[𝑛]

(𝑥 ≠ 𝑦 → 𝑓 𝑥 ≠ 𝑓(𝑦))

 LA-PHP:

ሥ

𝑖≤n

(Σ𝑗<𝑛 𝑥𝑖,𝑗 ≥ 1) ∧ሥ

𝑗<n

(Σ𝑖≤𝑛 𝑥𝑖,𝑗 ≤ 1)

 PigeonHole Principle: there is no injective function from [n] to [n-1]

 PHP:

𝑖≤𝑛(∨𝑗<𝑛ٿ 𝑝𝑖,𝑗) ∧ ሥ

𝑖≠𝑘,𝑗

(¬𝑝𝑖,𝑗 ∨ ¬𝑝𝑘,𝑗)

 =-PHP:

ሥ

𝑖≤n

(∨𝑗<𝑛 𝑝𝑖 = ℎ𝑗 ∧ ሥ

𝑖<𝑘≤n

(𝑝𝑖 ≠ 𝑝𝑘)

 EUF-PHP:

ሥ

𝑥∈[𝑛]

(𝑓 𝑥 ≠ 0) ∧ ሥ

𝑥,𝑦∈[𝑛]

(𝑥 ≠ 𝑦 → 𝑓 𝑥 ≠ 𝑓(𝑦))

 LA-PHP:

ሥ

𝑖≤n

(Σ𝑗<𝑛 𝑥𝑖,𝑗 ≥ 1) ∧ሥ

𝑗<n

(Σ𝑖≤𝑛 𝑥𝑖,𝑗 ≤ 1)

• Propositional

• Theory of equality:

– 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐

• Equality with uninterpreted
functions (EUF)

– equality axioms

– Ackermann axioms: (𝑎 =
𝑏 → 𝑓 𝑎 = 𝑓 𝑏)

• Linear arithmetic

PigeonHolePrinciple

Power of Res(T)

 Res(Theory of Equality) is no more powerful than Resolution

 Add all 𝑛3 equality axioms to F, then solve.

 Res(Linear Arithmetic) polynomially simulates R(lin)

 Resolution over Equality with Uninterpreted Functions
theory, Res(EUF), can effectively p-simulate Frege.

 Even though conjunctions of EUF atoms are decidable in
𝑂(𝑛 log 𝑛) time!

 Using a variant of Union-Find algorithm.

 E-Res calculus of [Bjorner, de Moura] is already enough

 Res*(EUF) effectively simulates E-Res

𝑔(𝑓 𝑎)

 Signature:

 uninterpreted function symbols of bounded arity

 constants a, b, c...

 Terms: constants, and inductively 𝑓 ҧ𝑡 for functions.

 Atoms: equalities/disequalities over terms: 𝑡1 = 𝑡2, 𝑡1 ≠ 𝑡2
 Formulas: conjunctions of atoms

(𝑓 𝑎 = 𝑏) ∧ (𝑔(𝑏) = 𝑐) ∧ (𝑔 𝑓 𝑎 ≠ 𝑐)

 Axioms:

 Equality: 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐

 Ackermann: ത𝑎 = ത𝑏 → 𝑓 ത𝑎 = 𝑓(ത𝑏)

 Can decide very efficiently (time 𝑂(𝑛 log 𝑛)) if a given EUF formula is satisfiable:

 Downey-Sethi-Tarjan congruence closure (based on Union-Find)

Equality with uninterpreted
functions theory (EUF)

𝑏

𝑐
𝑓(𝑎)

𝑔(𝑏)

 Signature:

 uninterpreted function symbols of bounded arity

 constants a, b, c...

 Terms: constants, and inductively 𝑓 ҧ𝑡 for functions.

 Atoms: equalities/disequalities over terms: 𝑡1 = 𝑡2, 𝑡1 ≠ 𝑡2
 Formulas: conjunctions of atoms

(𝑓 𝑎 = 𝑏) ∧ (𝑔(𝑏) = 𝑐) ∧ (𝑔 𝑓 𝑎 ≠ 𝑐)

 Axioms:

 Equality: 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐

 Ackermann: ത𝑎 = ത𝑏 → 𝑓 ത𝑎 = 𝑓(ത𝑏)

 Can decide very efficiently (time 𝑂(𝑛 log 𝑛)) if a given EUF formula is satisfiable:

 Downey-Sethi-Tarjan congruence closure (based on Union-Find)

Equality with uninterpreted
functions theory (EUF)

𝑏

𝑐
𝑓(𝑎)

𝑔(𝑓 𝑎)

𝑔(𝑏)

Sequent calculus (LK)
 Equivalent to Frege systems.

 Natural deduction

 Sequents: 𝐴1, … , 𝐴𝑛 −→ 𝐵1, … , 𝐵𝑚
 𝐴1 ∧ ⋯∧ 𝐴𝑛 → 𝐵1 ∨ ⋯∨ 𝐵𝑚

 Axioms 𝐴 → 𝐴, 0 → 𝑆, 𝑆 → 1.

 Rules for ∨,∧,¬ and cut

 Proof size: total number of symbols.

𝐹 → 𝐺, 𝐴 𝐴, 𝐹 → 𝐺

𝐹 → 𝐺

𝐹 → 𝐺, 𝐴

¬𝐴, 𝐹 → 𝐺

𝐹 → 𝐺, 𝐴 𝐹 → 𝐺, 𝐵

𝐹 → 𝐺 , 𝐴 ∧ 𝐵

𝐴, 𝐵, 𝐹 → 𝐺

𝐴 ∧ 𝐵, 𝐹 → 𝐺

Res(EUF) simulates LK

 Suppose there is an LK proof of 𝐹 → 0
 An LK-refutation of F

 Add to 𝐹:
 Two constants: 𝑒0 ≠ 𝑒1
 Definitions of N, O, A (and, or, not):

 𝑁 𝑒0 = 𝑒1, 𝑁 𝑒1 = 𝑒0, 𝑂 𝑒1, 𝑒0 = 𝑒1,....

 Bounded variable range: ٿ 𝑥𝑖 = 𝑒0 ∨ 𝑥𝑖 = 𝑒1

 Now simulate an LK proof by constructing terms for all
formulas in the proof inductively
 Prove that at each step of LK proof: 𝐴1…𝐴𝑘 → 𝐵1…𝐵ℓ
 Either one of the 𝐴 terms is 𝑒0 or one of the 𝐵 terms is 𝑒1

 Also for each subformula in proof so far, its term = 𝑒0 or = 𝑒1

For which theory T would Res*(T)
effectively p-simulate Extended Frege?

 Arnold Beckmann’s observation: just add a flattening rule to
Res*(EUF)!
 Flattening: every time a new term is introduced, add a new

variable for this term.
 Do not need to decide when to add extension variables!

Didn’t you say EUF instances are
usually flattened?

Eager vs. Lazy SMT
Question. Is it better to use a theory solver as an oracle, or just bit-
blast all the way to propositional SAT instance?

Theorem. Assuming the Exponential Time Hypothesis (SAT requires
2Ω(n) time), any reduction from EUF to SAT requires a blow-up of Ω(m
log m).

Remark. This is tight!

 Ackermann Reduction maps EUF formulas of size m to
SAT instances of size 𝑂(𝑚2)

Lots of open problems

 Upper/lower bounds on Res(T)/ Res*(T) for a variety of theories.

 Proof complexity of model checking and first-order provers?

 Knowledge compilation:
 How to choose T given a problem and class of instances?
 In particular, when to choose Eager SMT and when Lazy?
 And how to choose T-representation?

 How to even compare representations of the same problem in different
underlying languages?
 Is Marc’s and Jakob’s PseudoBoolean encoding of PHP the “same PHP” as

the classic CNF encoding?
 Work in progress

Given an instance of a problem, what is the
best way to state it to make it easier to solve?

ML for choosing the right
representation and heuristics?
 Kevin Leyton-Brown:

 Empirical hardness models
 Predict runtime for a specific instance

from this instance’s features.

 Uses random forests/regression trees

 Application: automatic algorithm configuration
 SATzilla, Hydra…

 Can something like this be done for
representations?

𝑏

𝑐
𝑓(𝑎)

𝑔(𝑓 𝑎)

𝑔(𝑏)

Is this assignment OK?

T-F

SATT solver

SAT solver

No,
here is
why: C

UNSAT

T-F

Frege

Extended Frege/
Extended Resolution

Resolution

Tree
Resolution

Cutting
Planes

