
Robert Robere
Antonina Kolokolova

Vijay Ganesh

Waterloo, Aug 29, 2019

𝐶 ∨ 𝑥 𝐷 ∨ ¬𝑥

(𝐶 ∨ 𝐷)

And what constitutes an acceptable solution?

 Is this number prime? 2147483647 ∈ PRIMES?
•Does this program reach a bad state?

 Is this formula satisfiable?
•Are these two graphs isomorphic?

 But how do we know that the answer is correct?
 When do we have short and easy to check proofs?
 What do the words “proof”, “short” and “easy to check” mean?

Computational complexity setting:
Given an instance of a problem, decide if this
instance is in a specific set or not.

What is “easy” and “short”?
 Jack Edmonds (1960s):

 “Good algorithm”: runs in polynomial time
 P: the class of all polynomial-time decidable languages

 “Good characterization”: “certain information
<..> which the supervisor can then use with ease
to verify <..> “
 Short: polynomial length.

 NP: problems with easy to verify short
proofs of all “yes” answers

 coNP: … of all “no” answers.

Open: 𝑷 = 𝑵𝑷? 𝑵𝑷 = 𝒄𝒐𝑵𝑷? 𝑵𝑷 ∩ 𝒄𝒐𝑵𝑷 = 𝑷?

How hard is it to prove theorems?
 Gödel’s 1956 letter to von Neumann:

 Consider an optimal algorithm checking if a given first-order
formula F has a proof of size 𝑛.
 size = number of symbols.

 How fast can it be in the worst case, as a function of 𝑛?

 𝑐𝑜𝑛𝑠𝑡 ⋅ 𝑛? 𝑐𝑜𝑛𝑠𝑡 ⋅ 𝑛2?…

 This letter was only discovered in 1988
 So complexity theory, including the notion of

NP-completeness, and proof complexity
started independently from it.

Gödel’s 1956 letter to von Neumann

...If there really were a machine with ... ∼ k · n
(or even ∼ k · n2), this would have
consequences of the greatest importance.
Namely, it would obviously mean that in spite
of the undecidability of the
Entscheidungsproblem, the mental work of a
mathematician concerning Yes-or-No
questions could be completely replaced by a
machine. After all, one would simply have to
choose the natural number n so large that
when the machine does not deliver a result, it
makes no sense to think more about the
problem...

Special case: propositional formulas
 Satisfiability problem: well-formed propositional formulas with all variables

(implicitly) existentially quantified.
 Propositional setting: Boolean variables (domain = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒})
 SAT: set of all satisfiable propositional formulas. UNSAT: unsatisfiable.
 e.g. 𝜑 = 𝑥 ∨ 𝑦 ∧ ¬𝑥 corresponds to F = ∃𝑥 ∃𝑦 𝑥 ∨ 𝑦 ∧ ¬𝑥
 Proof for membership in SAT: satisfying assignment.
 Proof size = 𝑛

 Tautology problem: well-formed propositional formulas with all variables
implicitly universally quantified.
 TAUT: set of all valid propositional formulas.
 e.g. 𝜑 = ¬ 𝑥 ∧ ¬𝑦 ∨ 𝑥 corresponds to F = ∀𝑥 ∀𝑦 ¬ 𝑥 ∧ ¬𝑦 ∨ 𝑥
 Proof for ∈ 𝑇𝐴𝑈𝑇: ?
 Proof size bound = ?

 Note: 𝜑 ∈ 𝑈𝑁𝑆𝐴𝑇 iff ¬𝜑 ∈ 𝑇𝐴𝑈𝑇 iff 𝜑 ∉ 𝑆𝐴𝑇

From Donald Knuth’s “The art
of Computer Programming”

Proof complexity
Cook’71, “Complexity of theorem-proving procedures”

Every problem in NP polynomially reduces to SAT

 NP-completeness

 Easily verifiable short proofs of “yes”: satisfying assignments.

 What about proofs of “no”?

 Proof complexity [Cook, Reckhow’79]

A propositional proof system is a polynomial time

computable onto function S: 0,1 ∗→ 𝑇𝐴𝑈𝑇

𝑆 is polynomially bounded if every unsatisfiable formula
has a short (polynomial-size) proof.

 Proof size is the number of symbols in a proof.

 NP=coNP iff there exists a polynomially bounded proof system

𝑆 p-simulates 𝑆’ if for all tautologies 𝑓, 𝑓 has an S-proof of size at most
polynomial of size of shortest S’-proof of 𝑓.

Cook’s program: prove NP ≠ 𝑐𝑜𝑁𝑃 (and so P ≠NP) by proving
lower bounds for stronger and stronger proof systems

Propositional Proof Systems

UNSATProofs 𝑺
short

A propositional proof system is a polynomial time

computable onto function S: 0,1 ∗→ 𝑇𝐴𝑈𝑇

𝑆 is polynomially bounded if every unsatisfiable formula
has a short (polynomial-size) proof.

 NP=coNP iff there exists a polynomially bounded proof system

𝑆 p-simulates 𝑆’ if for all tautologies 𝑓, 𝑓 has an S-proof of size at most
polynomial of size of shortest S’-proof of 𝑓.

Cook’s program: prove NP ≠ 𝑐𝑜𝑁𝑃 (and so P ≠NP) by proving
lower bounds for stronger and stronger proof systems

Propositional Proof Systems

UNSATProofs 𝑺
short

These definitions do not say anything about the
complexity of finding proofs (automatizability):

A system is automatizable if there is an algorithm
finding a proof in time polynomial in proof size.

This is where ML could come into play: to help find
short proofs when they exist

(but see Atserias/Müller’19 result…)

Semi-

Algebraic

SOS

Algebraic

AC0-Frege

Frege

Extended Frege

AC0[p]-Frege

Resolution

Tree
resolution

Truth tables

Polynomial
Calculus

Nullstellensatz

The Proof Complexity Zoo

SOS+

IPS

Cutting
Planes

From a talk by Toni Pitassi

Frege

Extended Frege/
Extended Resolution

Resolution

Tree
Resolution

The Proof Complexity Petting Zoo

Cutting
Planes

Resolution proof system
 A refutation system: to prove a tautology, refute its negation.
 Start with a CNF formula: ∧ of clauses (∨ of 𝑥,¬𝑥).
 Apply the resolution rule (cut on a literal) until an empty clause

is derived:

 Tree-like resolution: the graph of the refutation is a tree.

 Resolution proof system is sound and complete.
 A propositional formula is unsatisfiable if and only if it has a

resolution refutation

𝑥 ∨ 𝐶 , ¬𝑥 ∨ 𝐷

(𝐶 ∨ 𝐷)

When I worked on resolution in
1980s I never thought it would

become useful in practice.

The proofs by CDCL solvers (with restarts)
are exactly characterized by Resolution!

[Pipatsrisawat/Darwiche’11, Atserias/Fichte/Thurley’11]

Alasdair Urquhart

DPLL vs. tree-like resolution
 𝑥 ∨ ¬ 𝑦 ∧ 𝑥 ∨ 𝑦 ∧ (¬𝑥) : unsatisfiable

 Label leaves with violated input clauses

y

x

TF

TF

(𝑥)

(𝑥 ∨ 𝑦) (𝑥 ∨ ¬𝑦)

(¬𝑥)

()

PigeonHole principle
 If n+1 pigeons all fly into

n holes, some hole has at
least two pigeons.

 There is no injective
function from 1,… , 𝑛 to
{1,… , 𝑛 − 1}

PigeonHole Principle
 If n+1 pigeons all fly into n holes, some hole has at least two pigeons.

 PHP: negation of the above

 𝑥1,1 ∨ 𝑥1,2 ∧ 𝑥2,1 ∨ 𝑥2,2 ∧ 𝑥3,1 ∨ 𝑥3,2 ∧

 ¬𝑥1,1 ∨ ¬𝑥2,1 ∧ ¬𝑥1,1 ∨ ¬𝑥3,1 ∧ ¬𝑥2,1 ∨ ¬𝑥3,1 ∧

 ¬𝑥1,2 ∨ ¬𝑥2,2 ∧ ¬𝑥1,2 ∨ ¬𝑥3,2 ∧ ¬𝑥2,2 ∨ ¬𝑥3,2

 Requires exponential-size proofs in Resolution!

𝒙𝟏,𝟐

𝒙𝟏,𝟏

𝒙𝟐,𝟏
𝒙𝟐,𝟐

𝒙𝟑,𝟏
𝒙𝟑,𝟐

Size vs width
 Width of a proof of a formula f:

 number of literals in a clause with most literals.

 Gives lots of lower bounds!

 Random k-CNF, pebbling, etc...

Theorem[Ben-Sasson/Wigderson 99]
Every size s resolution proof of a formula f can be
converted to a resolution proof of f with width

2𝑛 𝑙𝑜𝑔 𝑠 + width(𝑓)

Even the best heuristic will take exponential time to produce an
exponential-size proof.

Theorem [Atserias/Müller’2019]

Automating resolution is NP-hard.

• Finding a resolution refutation at most polynomially longer than the
shortest one is NP-hard.

• It is even NP-hard to distinguish formulas with polynomial-size proofs
from formulas that only have exponential size proofs in resolution.

• In general, resolution is not automatizable in any complexity class C
(such as C = subexponential time) unless 𝑁𝑃 ⊆ 𝐶

However, tree-like resolution is automatizable in quasi-polynomial time.

Frege proof systems
 Textbook-style proof system, natural deduction

 Modus ponens as an inference rule.

 A complete set of axiom schemas.

 Cuts on formulas

 More powerful than Resolution: can prove PigeonHole principle with a
polynomial-size proof.

 For some tautologies, best known proof has size 𝑛𝑙𝑜𝑔 𝑛 .

 Running out of candidate hard tautologies...

 All Frege systems are equivalent [Cook/Reckhow’79]

 Automatizing Frege systems would break cryptography.

𝐴, 𝐴 → 𝐵

𝐵

The power of extension
 Extended resolution (extended Frege):

 add a rule 𝑧 = 𝐶 (𝑧 = 𝐹) where z is a new variable

 and C is a clause (F is a subformula).

 Extended resolution and extended Frege are
computationally equivalent
 Correspond to cuts on circuits.

 Every example tautology people tried has a polynomial
size extended Frege proof...
 But no proof that every tautology does.

Metamathematics of P versus NP

•Independence of P versus NP?

-Baker-Gil-Solovay

-Razborov-Rudich

•Is P versus NP independent of Extended Frege?

Theorem (Razborov)
“SAT cannot be decided by polynomial-size circuits” requires superpoly-size
proofs in resolution (even with k-DNFs instead of clauses)
• if pseudo-random generators exist.

Strange consequences of independence
 1992: Ben-David/Halevi

 If P vs. NP is independent of PA1, Peano Arithmetic
+ all true sentences with unbounded only ∀ quantifiers (*)

 Then SAT can be solved in “almost polynomial time”!

 Proof idea:
 Define a function R(i) = maxj<i {min |x|: SAT(x) Mj(x) }, where Mj are

polynomial-time Turing machines.

 PA1 does not prove P  NP , R-1(n) is very slow-growing (e.g., < log* n)

 By definition, for every satisfiable formula of size n, one of the first log* n TMs
will find a satisfying assignment; total runtime < O(nlog*

).

(*) Quoting BD/H’92: “All current techniques for proving independence of Peano
Arithmetic imply independence of PA1”

Cutting planes: semi-algebraic

 A proof system operating with
integer inequalities.

 Rules:
 addition, multiplication,

 division by a positive integer with
rounding.

 A clause (𝑥 ∨ ¬𝑦 ∨ 𝑧) becomes
inequality 𝑥 + 1 − 𝑦 + 𝑧 ≥ 1

 Also have 𝑥 ≤ 1, 𝑥 ≥ 0

 Want to derive 0 ≥ 1

Short proof of the PigeonHolePrinciple.

Exponential lower bound for CliqueColor [Pudlak’97].

Pseudo-Boolean solvers
 CDCL-based solvers

 + “cardinality constraints”: 𝑥2 + 𝑥5 + 𝑥10 ≥ 5

 Some version of Cutting Planes axioms

 PHP encoded propositionally:

 As hard as always: lower bounds for resolution work

 PHP encoded by inequalities/cardinality constraints:

 Short polynomial-size proof!

SAT vs. Integer linear programming

 FCC spectrum auction:

 Essentially a colouring problem

 ILP: poor

 SAT: good

 TravelingSalesperson:

 ILP: good

 SAT: poor

They talk about programs, circuits, graphs, numbers, strings...

Domains with a lot of inherent structure!

Satisfiability modulo theories (SMT):
best of both worlds?
 Use whichever atoms are

most convenient:
 variables

 equalities

 inequalities...

 Alternate between
 treating atoms as

propositional variables

 checking that an
assignment makes sense
given atoms’ meaning.

SAT solver
F SAT/UNSAT

T-F

SATT solver

Is this assignment OK?

SAT solver

No, here
is why: C

UNSAT

Propositional

 T is a (first-order) theory over
some signature L.
 Focus on quantifier-free

fragment of T
 Usually have =

 M is a conjunction of atoms
of T (and their negations)

 Mainly want (efficiently)
decidable theories

Reasoning within a domain: theories

T solver
SAT/UNSATM

 Linear equations:
 Atoms: lin. inequalities
 M: system of lin. ineqs

 2𝑥1 + 𝑥2 ≤ 5

 𝑥1 − 3𝑥2 ≤ 7

 Theory of equality:
 Atoms: 𝑎 = 𝑏, 𝑏 ≠ 𝑐
 M: 𝑎 = 𝑏, 𝑏 = 𝑐, 𝑎 ≠ c

 Want to reason about any Boolean combination of theory
atoms: 𝑥 = 0 ∨ 𝑥 = 1 ∧ 𝑥 + 𝑦 > 2 → 𝑦 > 1

Satisfiability modulo theories (SMT)

SAT solver
Prop. F SAT/UNSAT

F over T-atoms

SATT solver

Is this assignment OK?

SAT solver

No, here
is why: C

UNSAT

T solver
SAT/UNSAT∧ of T-atoms M

 “Lazy” SMT

Joint work with Vijay Ganesh and Robert Robere

For which theory T would CDCL(T)
correspond to Extended Frege?

Resolution modulo theories

Literals are atoms of the theory.
Rules of inference:

1. Resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ ¬𝑥

(𝐶 ∨ 𝐷)

2. Clauses derivable from T

 Eg: T is a theory of equality:

 (𝑎 ≠ 𝑏 ∨ 𝑏 ≠ 𝑐 ∨ 𝑎 = 𝑐)

 Eg: T is linear arithmetic:

 (𝑎 ≤ 𝑐 ∨ 𝑏 ≤ 𝑑 ∨ 𝑎 + 𝑏 > 𝑐 + 𝑑)

Resolution

Resolution modulo T

SAT
solver

F SAT/UNSAT

T-F

SATT
solver

Is this
assignment

OK?

SAT
solver

No, here is
why: C

UNSAT

CNF

Resolution modulo theories

Literals are atoms of the theory.
Rules of inference:

1. Resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ ¬𝑥

(𝐶 ∨ 𝐷)

2. Clauses derivable from T

Resolution

Resolution modulo T

SAT
solver

F SAT/UNSAT

T-F

SATT
solver

Is this
assignment

OK?

SAT
solver

No, here is
why: C

UNSAT

CNF

Res(T):

𝐶, 𝑤ℎ𝑒𝑟𝑒 𝑇 ⊢ 𝐶
𝑣𝑎𝑟𝑠 𝐶 ⊆ 𝑣𝑎𝑟𝑠(𝐹)

Res*(T):

𝐶, 𝑤ℎ𝑒𝑟𝑒 𝑇 ⊢ 𝐶
𝑣𝑎𝑟𝑠 𝐶 ⊆ 𝑎𝑡𝑜𝑚𝑠(𝑇)

Let T be a theory, and F an unsat. formula over atoms of T. Then

• an SMT solver produces a Res(T) refutation of F.

• an SMT solver with asserting learning scheme and non-deterministic
branching can efficiently simulate Res(T).

• When theory solvers can introduce new literals, same statements hold for
Res*(T) in place of Res(T).

CDCL, CDCL(T) and CDCL*(T)

 CDCL:
 Repeat:

 Decision: set a variable

 Propagate unit clauses

 If there is a conflict, analyse
it and learn

 Maybe restart

 CDCL (T):
 Repeat:

 Decision
 Propagation and T-Propagation
 Conflict analysis and T-conflict
 Maybe restart

F over T-atoms

SATT solver

T-conflict: is 𝛼 ok?
T-Propagate: anything 𝛼 forces?

SAT solver

Clause C

UNSAT

 T-Conflict:
 If a partial assign. 𝛼 is

inconsistent with T,

 Learn a clause 𝐶 ⊆ ¬𝛼

 T-propagation:
 Partial assign 𝛼,

 𝑇 ⊢ 𝛼 → 𝑙

 Learn a clause 𝐶 ⊆ (𝑙 ∨ ¬𝛼)

CDCL, CDCL(T) and CDCL*(T)

 CDCL:
 Repeat:

 Decision: set a variable

 Propagate unit clauses

 If there is a conflict,
analyse it and learn

 Maybe restart

 Resolution captures CDCL
 Pipatsrisawat/Darwiche

 Atserias/Fichte/Thurley.

 CDCL (T): CDCL plus

 Repeat:
 Decision
 Propagation and T-Propagation
 Conflict analysis and T-conflict
 Maybe restart

 CDCL*(T):
 T-conflict and T-propagation can

introduce new literals

 Res(T) captures CDCL(T)
 Res*(T) captures CDCL*(T)

 Generalizing PD’09, AFT’09

CDCL ≈ Resolution: [PD’09,AFT09]

 Consider a general resolution proof Π = 𝐶1, … , 𝐶𝑚
 There exists a solver run

 Sequence of decisions and restarts

 Such that every clause in Π is (implicitly) learned:
 A clause 𝐶 = (𝑙1 ∨ ⋯∨ 𝑙𝑘) is absorbed wrt set of clauses S

 if whenever all 𝑙𝑖 except one are set to false, the remaining literal is
set by unit-propagation from S.

 Eg: 𝑥 ∨ 𝑦 ∨ 𝑧 , ¬𝑧 ∨ 𝑢 , ¬𝑢 ∨ 𝑤 absorbs (𝑥 ∨ 𝑦 ∨ 𝑤)

 In polynomial number of steps.

CDCL(T) ≈ Res(T) and CDCL*(T) ≈ Res(T)

 Consider a general resolution proof Π = 𝐶1, … , 𝐶𝑚
 There exists a solver run

 Sequence of decisions and restarts and theory clauses

 Produce theory clauses first

 Such that every clause in Π is (implicitly) learned:
 A clause 𝐶 = (𝑙1 ∨ ⋯∨ 𝑙𝑘) is absorbed wrt set of clauses S

 if whenever all 𝑙𝑖 except one are set to false, the remaining literal is
set by unit-propagation from S.

 Eg: 𝑥 ∨ 𝑦 ∨ 𝑧 , ¬𝑧 ∨ 𝑢 , ¬𝑢 ∨ 𝑤 absorbs (𝑥 ∨ 𝑦 ∨ 𝑤)

 Enough to use T-Propagation rule

 In polynomial number of steps.

Res(T)/Res*(T)

New literals

 Theory solver might return a clause with literals not in F:

 𝐹: 𝑎 = 𝑏 ∨ 𝑏 = 𝑐 ∧ 𝑏 = 𝑐 ∨ 𝑐 = 𝑑 ∧ 𝑎 ≠ d
 (𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (¬ 𝑥4)

 T returns a clause 𝑎 ≠ 𝑏 ∨ 𝑏 ≠ 𝑐 ∨ 𝑎 = 𝑐 , 𝑎 = 𝑐 not in F.

 Diamond equalities [Bjorner, Dutertre, de Moura]
 Over theory of equality.
 Hard for resolution if not allowed to introduce new literals.
 Easy if T introduces literals 𝑎𝑖 = 𝑎𝑖+1

 𝑖<𝑛ٿ (𝑎𝑖= 𝑏𝑖 ∧ 𝑏𝑖 = 𝑎𝑖+1 ∨ 𝑎𝑖 = 𝑐𝑖 ∧ 𝑐𝑖 = 𝑎𝑖+1) ∧ (𝑎0≠ 𝑎𝑛)

𝑎0

𝑏0

𝑐0

𝑎1

𝑏1

𝑐1

𝑎2 𝑎𝑛−1

𝑏𝑛−1

𝑐𝑛−1

𝑎𝑛....

𝑎0 ≠ 𝑎𝑛

New literals

 Diamond equalities [Bjorner, Dutertre, de Moura]


 𝑖<𝑛ٿ (𝑎𝑖= 𝑏𝑖 ∧ 𝑏𝑖 = 𝑎𝑖+1 ∨ 𝑎𝑖 = 𝑐𝑖 ∧ 𝑐𝑖 = 𝑎𝑖+1) ∧ (𝑎0≠ 𝑎𝑛)

 Theorem [Hadarean, Horn, King’15]
 Suppose an unsatisfiable formula F over T has t “critical” assignments: each

corresponding to a different theory conflict.
 Then a CDCL(T) solver needs to learn ≥ 𝑡 theory clauses.

 Corollary: then any Res(T) proof has size ≥ 𝑡

 In diamond equalities, each path from 𝑎0 to 𝑎𝑛 is a different critical assignment
 So need ≥ 2𝑛 theory solver calls

 But if can derive 𝑎𝑖 = 𝑎𝑗 , then polynomial time.

𝑎0

𝑏0

𝑐0

𝑎1

𝑏1

𝑐1

𝑎2 𝑎𝑛−1

𝑏𝑛−1

𝑐𝑛−1

𝑎𝑛....

𝑎0 ≠ 𝑎𝑛

PigeonHolePrinciple
 PigeonHole Principle: there is no injective function from [n] to [n-1]

 PHP:

𝑖≤𝑛(∨𝑗<𝑛ٿ 𝑝𝑖,𝑗) ∧ ሥ

𝑖≠𝑘,𝑗

(¬𝑝𝑖,𝑗 ∨ ¬𝑝𝑘,𝑗)

 =-PHP:

ሥ

𝑖≤n

(∨𝑗<𝑛 𝑝𝑖 = ℎ𝑗 ∧ ሥ

𝑖<𝑘≤n

(𝑝𝑖 ≠ 𝑝𝑘)

 EUF-PHP:

ሥ

𝑥∈[𝑛]

(𝑓 𝑥 ≠ 0) ∧ ሥ

𝑥,𝑦∈[𝑛]

(𝑥 ≠ 𝑦 → 𝑓 𝑥 ≠ 𝑓(𝑦))

 LA-PHP:

ሥ

𝑖≤n

(Σ𝑗<𝑛 𝑥𝑖,𝑗 ≥ 1) ∧ሥ

𝑗<n

(Σ𝑖≤𝑛 𝑥𝑖,𝑗 ≤ 1)

 PigeonHole Principle: there is no injective function from [n] to [n-1]

 PHP:

𝑖≤𝑛(∨𝑗<𝑛ٿ 𝑝𝑖,𝑗) ∧ ሥ

𝑖≠𝑘,𝑗

(¬𝑝𝑖,𝑗 ∨ ¬𝑝𝑘,𝑗)

 =-PHP:

ሥ

𝑖≤n

(∨𝑗<𝑛 𝑝𝑖 = ℎ𝑗 ∧ ሥ

𝑖<𝑘≤n

(𝑝𝑖 ≠ 𝑝𝑘)

 EUF-PHP:

ሥ

𝑥∈[𝑛]

(𝑓 𝑥 ≠ 0) ∧ ሥ

𝑥,𝑦∈[𝑛]

(𝑥 ≠ 𝑦 → 𝑓 𝑥 ≠ 𝑓(𝑦))

 LA-PHP:

ሥ

𝑖≤n

(Σ𝑗<𝑛 𝑥𝑖,𝑗 ≥ 1) ∧ሥ

𝑗<n

(Σ𝑖≤𝑛 𝑥𝑖,𝑗 ≤ 1)

• Propositional

• Theory of equality:

– 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐

• Equality with uninterpreted
functions (EUF)

– equality axioms

– Ackermann axioms: (𝑎 =
𝑏 → 𝑓 𝑎 = 𝑓 𝑏)

• Linear arithmetic

PigeonHolePrinciple

Power of Res(T)

 Res(Theory of Equality) is no more powerful than Resolution

 Add all 𝑛3 equality axioms to F, then solve.

 Res(Linear Arithmetic) polynomially simulates R(lin)

 Resolution over Equality with Uninterpreted Functions
theory, Res(EUF), can effectively p-simulate Frege.

 Even though conjunctions of EUF atoms are decidable in
𝑂(𝑛 log 𝑛) time!

 Using a variant of Union-Find algorithm.

 E-Res calculus of [Bjorner, de Moura] is already enough

 Res*(EUF) effectively simulates E-Res

𝑔(𝑓 𝑎)

 Signature:

 uninterpreted function symbols of bounded arity

 constants a, b, c...

 Terms: constants, and inductively 𝑓 ҧ𝑡 for functions.

 Atoms: equalities/disequalities over terms: 𝑡1 = 𝑡2, 𝑡1 ≠ 𝑡2
 Formulas: conjunctions of atoms

(𝑓 𝑎 = 𝑏) ∧ (𝑔(𝑏) = 𝑐) ∧ (𝑔 𝑓 𝑎 ≠ 𝑐)

 Axioms:

 Equality: 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐

 Ackermann: ത𝑎 = ത𝑏 → 𝑓 ത𝑎 = 𝑓(ത𝑏)

 Can decide very efficiently (time 𝑂(𝑛 log 𝑛)) if a given EUF formula is satisfiable:

 Downey-Sethi-Tarjan congruence closure (based on Union-Find)

Equality with uninterpreted
functions theory (EUF)

𝑏

𝑐
𝑓(𝑎)

𝑔(𝑏)

 Signature:

 uninterpreted function symbols of bounded arity

 constants a, b, c...

 Terms: constants, and inductively 𝑓 ҧ𝑡 for functions.

 Atoms: equalities/disequalities over terms: 𝑡1 = 𝑡2, 𝑡1 ≠ 𝑡2
 Formulas: conjunctions of atoms

(𝑓 𝑎 = 𝑏) ∧ (𝑔(𝑏) = 𝑐) ∧ (𝑔 𝑓 𝑎 ≠ 𝑐)

 Axioms:

 Equality: 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐

 Ackermann: ത𝑎 = ത𝑏 → 𝑓 ത𝑎 = 𝑓(ത𝑏)

 Can decide very efficiently (time 𝑂(𝑛 log 𝑛)) if a given EUF formula is satisfiable:

 Downey-Sethi-Tarjan congruence closure (based on Union-Find)

Equality with uninterpreted
functions theory (EUF)

𝑏

𝑐
𝑓(𝑎)

𝑔(𝑓 𝑎)

𝑔(𝑏)

Sequent calculus (LK)
 Equivalent to Frege systems.

 Natural deduction

 Sequents: 𝐴1, … , 𝐴𝑛 −→ 𝐵1, … , 𝐵𝑚
 𝐴1 ∧ ⋯∧ 𝐴𝑛 → 𝐵1 ∨ ⋯∨ 𝐵𝑚

 Axioms 𝐴 → 𝐴, 0 → 𝑆, 𝑆 → 1.

 Rules for ∨,∧,¬ and cut

 Proof size: total number of symbols.

𝐹 → 𝐺, 𝐴 𝐴, 𝐹 → 𝐺

𝐹 → 𝐺

𝐹 → 𝐺, 𝐴

¬𝐴, 𝐹 → 𝐺

𝐹 → 𝐺, 𝐴 𝐹 → 𝐺, 𝐵

𝐹 → 𝐺 , 𝐴 ∧ 𝐵

𝐴, 𝐵, 𝐹 → 𝐺

𝐴 ∧ 𝐵, 𝐹 → 𝐺

Res(EUF) simulates LK

 Suppose there is an LK proof of 𝐹 → 0
 An LK-refutation of F

 Add to 𝐹:
 Two constants: 𝑒0 ≠ 𝑒1
 Definitions of N, O, A (and, or, not):

 𝑁 𝑒0 = 𝑒1, 𝑁 𝑒1 = 𝑒0, 𝑂 𝑒1, 𝑒0 = 𝑒1,....

 Bounded variable range: ٿ 𝑥𝑖 = 𝑒0 ∨ 𝑥𝑖 = 𝑒1

 Now simulate an LK proof by constructing terms for all
formulas in the proof inductively
 Prove that at each step of LK proof: 𝐴1…𝐴𝑘 → 𝐵1…𝐵ℓ
 Either one of the 𝐴 terms is 𝑒0 or one of the 𝐵 terms is 𝑒1

 Also for each subformula in proof so far, its term = 𝑒0 or = 𝑒1

For which theory T would Res*(T)
effectively p-simulate Extended Frege?

 Arnold Beckmann’s observation: just add a flattening rule to
Res*(EUF)!
 Flattening: every time a new term is introduced, add a new

variable for this term.
 Do not need to decide when to add extension variables!

Didn’t you say EUF instances are
usually flattened?

Eager vs. Lazy SMT
Question. Is it better to use a theory solver as an oracle, or just bit-
blast all the way to propositional SAT instance?

Theorem. Assuming the Exponential Time Hypothesis (SAT requires
2Ω(n) time), any reduction from EUF to SAT requires a blow-up of Ω(m
log m).

Remark. This is tight!

 Ackermann Reduction maps EUF formulas of size m to
SAT instances of size 𝑂(𝑚2)

Lots of open problems

 Upper/lower bounds on Res(T)/ Res*(T) for a variety of theories.

 Proof complexity of model checking and first-order provers?

 Knowledge compilation:
 How to choose T given a problem and class of instances?
 In particular, when to choose Eager SMT and when Lazy?
 And how to choose T-representation?

 How to even compare representations of the same problem in different
underlying languages?
 Is Marc’s and Jakob’s PseudoBoolean encoding of PHP the “same PHP” as

the classic CNF encoding?
 Work in progress

Given an instance of a problem, what is the
best way to state it to make it easier to solve?

ML for choosing the right
representation and heuristics?
 Kevin Leyton-Brown:

 Empirical hardness models
 Predict runtime for a specific instance

from this instance’s features.

 Uses random forests/regression trees

 Application: automatic algorithm configuration
 SATzilla, Hydra…

 Can something like this be done for
representations?

𝑏

𝑐
𝑓(𝑎)

𝑔(𝑓 𝑎)

𝑔(𝑏)

Is this assignment OK?

T-F

SATT solver

SAT solver

No,
here is
why: C

UNSAT

T-F

Frege

Extended Frege/
Extended Resolution

Resolution

Tree
Resolution

Cutting
Planes

