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𝐶 ∨ 𝑥 𝐷 ∨ ¬𝑥
-----------------------------

(𝐶 ∨ 𝐷)





And what constitutes an acceptable solution? 



 Is this number prime? 2147483647 ∈ PRIMES? 
•Does this program reach a bad state? 

 Is this formula satisfiable? 
•Are these two graphs isomorphic? 

 But how do we know that the answer is correct?
 When do we have short and easy to check proofs? 
 What do the words “proof”, “short” and “easy to check” mean? 

Computational complexity setting: 
Given an instance of a problem, decide if this 
instance is in a specific set or not.



What is “easy” and “short”?
 Jack Edmonds (1960s): 

 “Good algorithm”: runs in polynomial time
 P: the class of all polynomial-time decidable languages

 “Good characterization”: “certain information 
<..> which the supervisor can then use with ease 
to verify <..> “
 Short: polynomial length. 

 NP:  problems with easy to verify short                                    
proofs of  all  “yes” answers 

 coNP: … of  all “no” answers. 

Open: 𝑷 = 𝑵𝑷? 𝑵𝑷 = 𝒄𝒐𝑵𝑷? 𝑵𝑷 ∩ 𝒄𝒐𝑵𝑷 = 𝑷?



How hard is it to prove theorems? 
 Gödel’s 1956 letter to von Neumann:

 Consider an optimal algorithm checking if a given first-order 
formula F has a proof of size 𝑛.
 size = number of symbols.  

 How fast can it be in the worst case, as a function of 𝑛? 

 𝑐𝑜𝑛𝑠𝑡 ⋅ 𝑛? 𝑐𝑜𝑛𝑠𝑡 ⋅ 𝑛2?…

 This letter was only discovered in 1988
 So complexity theory, including the notion of                      

NP-completeness,  and proof complexity                         
started independently from it. 



Gödel’s 1956 letter to von Neumann

...If there really were a machine with ... ∼ k · n 
(or even ∼ k · n2 ),  this would have 
consequences of the greatest importance.  
Namely, it would obviously mean that in spite 
of the undecidability of the 
Entscheidungsproblem, the mental work of a 
mathematician concerning  Yes-or-No 
questions could be completely replaced by a 
machine. After all, one would simply have to 
choose the natural number n so large that 
when the machine does not deliver a result, it 
makes no sense to think more about the 
problem... 



Special case: propositional formulas 
 Satisfiability problem:  well-formed propositional formulas with all variables 

(implicitly)  existentially quantified.  
 Propositional setting: Boolean variables (domain = {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒})
 SAT:  set of all satisfiable propositional formulas. UNSAT:  unsatisfiable. 
 e.g.  𝜑 = 𝑥 ∨ 𝑦 ∧ ¬𝑥 corresponds to F =  ∃𝑥 ∃𝑦 𝑥 ∨ 𝑦 ∧ ¬𝑥
 Proof for membership in SAT:  satisfying assignment. 
 Proof size = 𝑛

 Tautology problem: well-formed propositional formulas with all variables 
implicitly universally quantified. 
 TAUT:  set of all valid  propositional formulas. 
 e.g. 𝜑 = ¬ 𝑥 ∧ ¬𝑦 ∨ 𝑥 corresponds to  F =  ∀𝑥 ∀𝑦 ¬ 𝑥 ∧ ¬𝑦 ∨ 𝑥
 Proof for ∈ 𝑇𝐴𝑈𝑇:  ? 
 Proof size bound = ? 

 Note:  𝜑 ∈ 𝑈𝑁𝑆𝐴𝑇 iff ¬𝜑 ∈ 𝑇𝐴𝑈𝑇 iff 𝜑 ∉ 𝑆𝐴𝑇



From  Donald Knuth’s “The art 
of Computer Programming”



Proof complexity
Cook’71, “Complexity of theorem-proving procedures”

Every problem in NP polynomially reduces to SAT

 NP-completeness 

 Easily verifiable short proofs of “yes”: satisfying assignments.

 What about proofs of “no”? 

 Proof complexity [Cook, Reckhow’79]



A propositional proof system  is a polynomial time 

computable onto function  S: 0,1 ∗→ 𝑇𝐴𝑈𝑇

𝑆 is polynomially bounded if every  unsatisfiable formula                                               
has a short  (polynomial-size) proof. 

 Proof size  is the number of symbols in a proof.  

 NP=coNP iff there exists a polynomially bounded proof system

𝑆 p-simulates 𝑆’ if for all tautologies 𝑓, 𝑓 has an S-proof of size at most 
polynomial of size of shortest S’-proof of 𝑓.

Cook’s program:  prove NP ≠ 𝑐𝑜𝑁𝑃 (and so P ≠NP) by proving 
lower bounds for  stronger and stronger proof systems

Propositional Proof Systems

UNSATProofs 𝑺
short



A propositional proof system  is a polynomial time 

computable onto function  S: 0,1 ∗→ 𝑇𝐴𝑈𝑇

𝑆 is polynomially bounded if every  unsatisfiable formula                                               
has a short  (polynomial-size) proof. 

 NP=coNP iff there exists a polynomially bounded proof system

𝑆 p-simulates 𝑆’ if for all tautologies 𝑓, 𝑓 has an S-proof of size at most 
polynomial of size of shortest S’-proof of 𝑓.

Cook’s program:  prove NP ≠ 𝑐𝑜𝑁𝑃 (and so P ≠NP) by proving 
lower bounds for  stronger and stronger proof systems

Propositional Proof Systems

UNSATProofs 𝑺
short

These definitions do not say anything about the 
complexity of finding proofs (automatizability): 

A system is automatizable if there is an algorithm 
finding a proof in time polynomial in proof size.

This is where ML could come into play: to help find 
short proofs when they exist

(but see Atserias/Müller’19 result…)
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Resolution proof system
 A refutation system: to prove a tautology, refute its negation. 
 Start with a CNF formula:   ∧ of clauses (∨ of 𝑥,¬𝑥).  
 Apply the resolution rule  (cut on a literal) until an empty clause 

is derived:  

 Tree-like resolution: the graph of the refutation is a tree. 

 Resolution proof system is sound and complete.
 A propositional formula is unsatisfiable if and only if  it has a 

resolution refutation 

𝑥 ∨ 𝐶 , ¬𝑥 ∨ 𝐷

(𝐶 ∨ 𝐷)



When I worked on resolution in 
1980s I never thought it would 

become useful in practice.

The proofs by CDCL solvers (with restarts) 
are exactly characterized by Resolution! 

[Pipatsrisawat/Darwiche’11,  Atserias/Fichte/Thurley’11]

Alasdair Urquhart





DPLL vs. tree-like resolution
 𝑥 ∨ ¬ 𝑦 ∧ 𝑥 ∨ 𝑦 ∧ (¬𝑥) : unsatisfiable

 Label leaves with violated input clauses

y

x

TF

TF

(𝑥)

(𝑥 ∨ 𝑦) (𝑥 ∨ ¬𝑦)

(¬𝑥)

()



PigeonHole principle
 If  n+1 pigeons all fly  into 

n holes, some hole has at 
least two pigeons.

 There is no injective 
function from 1,… , 𝑛 to 
{1,… , 𝑛 − 1}



PigeonHole Principle
 If  n+1 pigeons all fly  into n holes, some hole has at least two pigeons. 

 PHP:  negation of the above

 𝑥1,1 ∨ 𝑥1,2 ∧ 𝑥2,1 ∨ 𝑥2,2 ∧ 𝑥3,1 ∨ 𝑥3,2 ∧

 ¬𝑥1,1 ∨ ¬𝑥2,1 ∧ ¬𝑥1,1 ∨ ¬𝑥3,1 ∧ ¬𝑥2,1 ∨ ¬𝑥3,1 ∧

 ¬𝑥1,2 ∨ ¬𝑥2,2 ∧ ¬𝑥1,2 ∨ ¬𝑥3,2 ∧ ¬𝑥2,2 ∨ ¬𝑥3,2

 Requires exponential-size proofs in Resolution! 

𝒙𝟏,𝟐

𝒙𝟏,𝟏

𝒙𝟐,𝟏
𝒙𝟐,𝟐

𝒙𝟑,𝟏
𝒙𝟑,𝟐



Size vs width 
 Width of a proof of a formula f: 

 number of literals in a clause with most literals.

 Gives lots of lower bounds! 

 Random k-CNF, pebbling, etc... 

Theorem[Ben-Sasson/Wigderson 99]
Every size s resolution proof of a formula f  can be 
converted to a resolution proof of f with width 

2𝑛 𝑙𝑜𝑔 𝑠 + width(𝑓)



Even the best heuristic will take exponential time to produce an 
exponential-size proof. 



Theorem [Atserias/Müller’2019]

Automating resolution is NP-hard. 

• Finding a resolution refutation at most polynomially longer than the 
shortest one is NP-hard. 

• It is even NP-hard to distinguish formulas with polynomial-size proofs 
from formulas that only have exponential size proofs in resolution. 

• In general, resolution is not automatizable in any complexity class C 
(such as C = subexponential time) unless 𝑁𝑃 ⊆ 𝐶

However, tree-like resolution is automatizable in quasi-polynomial time.



Frege proof systems
 Textbook-style proof system, natural deduction

 Modus ponens as an inference rule.   

 A complete set of axiom schemas.

 Cuts on formulas

 More powerful than Resolution: can prove PigeonHole principle with a 
polynomial-size proof. 

 For some tautologies, best known proof has size 𝑛𝑙𝑜𝑔 𝑛 .

 Running out of candidate hard tautologies... 

 All Frege systems are equivalent [Cook/Reckhow’79]

 Automatizing Frege systems would break cryptography.

𝐴, 𝐴 → 𝐵

𝐵



The power of extension
 Extended resolution (extended Frege):  

 add a rule  𝑧 = 𝐶 (𝑧 = 𝐹 ) where z is a new variable 

 and C is a clause (F is a subformula).

 Extended resolution and extended Frege are 
computationally  equivalent 
 Correspond to cuts on circuits. 

 Every example tautology people tried has a polynomial 
size extended Frege proof... 
 But no proof that every tautology does.  



Metamathematics of P versus NP

•Independence of P versus NP?

-Baker-Gil-Solovay

-Razborov-Rudich

•Is P versus NP  independent of Extended Frege?

Theorem (Razborov) 
“SAT cannot be decided by polynomial-size circuits”  requires superpoly-size 
proofs in resolution (even with k-DNFs instead of clauses) 
• if pseudo-random generators exist. 



Strange consequences of independence
 1992: Ben-David/Halevi

 If P vs. NP is independent of  PA1,  Peano Arithmetic 
+ all true sentences  with unbounded only ∀ quantifiers (*)

 Then  SAT can be solved in “almost polynomial time”! 

 Proof idea:
 Define a function R(i) = maxj<i {min |x|: SAT(x) Mj(x) }, where Mj are 

polynomial-time Turing machines.

 PA1 does not prove P  NP  , R-1(n) is very slow-growing (e.g., < log* n)

 By definition,  for every satisfiable formula of size n, one of the first log* n TMs 
will find a satisfying assignment; total runtime < O(nlog* 

).

(*) Quoting BD/H’92: “All current techniques for proving independence of Peano
Arithmetic imply independence of PA1” 





Cutting planes: semi-algebraic

 A proof system operating with 
integer inequalities. 

 Rules:  
 addition, multiplication,

 division by a positive integer with 
rounding.   

 A clause (𝑥 ∨ ¬𝑦 ∨ 𝑧) becomes 
inequality 𝑥 + 1 − 𝑦 + 𝑧 ≥ 1

 Also have 𝑥 ≤ 1, 𝑥 ≥ 0

 Want to derive 0 ≥ 1

Short proof of the PigeonHolePrinciple.

Exponential lower bound for CliqueColor [Pudlak’97].



Pseudo-Boolean solvers
 CDCL-based solvers

 + “cardinality constraints”:  𝑥2 + 𝑥5 + 𝑥10 ≥ 5

 Some version of Cutting Planes axioms

 PHP encoded propositionally:  

 As hard as always: lower bounds for resolution work

 PHP encoded by inequalities/cardinality constraints:

 Short polynomial-size proof! 



SAT vs. Integer linear programming

 FCC spectrum auction:

 Essentially a colouring problem

 ILP: poor

 SAT: good

 TravelingSalesperson:

 ILP: good

 SAT: poor



They talk about  programs,  circuits,  graphs,  numbers, strings...

Domains with a lot of inherent structure! 



Satisfiability modulo theories (SMT): 
best of both worlds? 
 Use whichever atoms are 

most convenient:
 variables

 equalities

 inequalities... 

 Alternate between
 treating atoms as 

propositional variables

 checking that an 
assignment makes sense 
given atoms’ meaning.

SAT solver
F SAT/UNSAT

T-F

SATT solver

Is this assignment OK?

SAT solver

No, here 
is why:  C

UNSAT

Propositional



 T is a (first-order) theory over 
some signature L. 
 Focus on  quantifier-free 

fragment of T
 Usually have  = 

 M  is a conjunction of atoms 
of T (and their negations)

 Mainly want (efficiently) 
decidable theories

Reasoning within a domain: theories 

T solver
SAT/UNSATM

 Linear equations:  
 Atoms:  lin. inequalities
 M: system of lin. ineqs

 2𝑥1 + 𝑥2 ≤ 5

 𝑥1 − 3𝑥2 ≤ 7

 Theory of equality: 
 Atoms:  𝑎 = 𝑏, 𝑏 ≠ 𝑐
 M:  𝑎 = 𝑏, 𝑏 = 𝑐, 𝑎 ≠ c

 Want to reason about any Boolean combination of theory 
atoms:  𝑥 = 0 ∨ 𝑥 = 1 ∧ 𝑥 + 𝑦 > 2 → 𝑦 > 1



Satisfiability modulo theories (SMT) 

SAT solver
Prop.  F SAT/UNSAT

F over T-atoms

SATT solver

Is this assignment OK?

SAT solver

No, here 
is why:  C

UNSAT

T solver
SAT/UNSAT∧ of T-atoms M 

 “Lazy” SMT





Joint work with Vijay Ganesh and Robert Robere



For which theory T would CDCL(T) 
correspond to Extended Frege?   



Resolution modulo theories

Literals  are atoms of the theory.  
Rules of inference:  

1. Resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ ¬𝑥
-----------------------------

(𝐶 ∨ 𝐷)

2. Clauses derivable from  T

 Eg:  T is a theory of equality:  

 (𝑎 ≠ 𝑏 ∨ 𝑏 ≠ 𝑐 ∨ 𝑎 = 𝑐)

 Eg: T is linear arithmetic: 

 (𝑎 ≤ 𝑐 ∨ 𝑏 ≤ 𝑑 ∨ 𝑎 + 𝑏 > 𝑐 + 𝑑)

Resolution

Resolution modulo  T

SAT 
solver

F SAT/UNSAT

T-F

SATT 
solver

Is this 
assignment 

OK?

SAT 
solver

No, here is 
why:  C

UNSAT

CNF



Resolution modulo theories

Literals  are atoms of the theory.  
Rules of inference:  

1. Resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ ¬𝑥
-----------------------------

(𝐶 ∨ 𝐷)

2. Clauses derivable from  T

Resolution

Resolution modulo  T

SAT 
solver

F SAT/UNSAT

T-F

SATT 
solver

Is this 
assignment 

OK?

SAT 
solver

No, here is 
why:  C

UNSAT

CNF

Res(T): 

𝐶, 𝑤ℎ𝑒𝑟𝑒 𝑇 ⊢ 𝐶
𝑣𝑎𝑟𝑠 𝐶 ⊆ 𝑣𝑎𝑟𝑠(𝐹)

Res*(T): 

𝐶, 𝑤ℎ𝑒𝑟𝑒 𝑇 ⊢ 𝐶
𝑣𝑎𝑟𝑠 𝐶 ⊆ 𝑎𝑡𝑜𝑚𝑠(𝑇)



Let T be a theory,  and F an unsat. formula over atoms of T.  Then 

• an SMT solver produces a Res(T) refutation of F.

• an SMT solver with asserting learning scheme and non-deterministic 
branching can efficiently simulate Res(T).  

• When theory solvers can introduce new literals, same statements hold for 
Res*(T) in place of Res(T). 



CDCL, CDCL(T) and CDCL*(T)

 CDCL:   
 Repeat: 

 Decision:  set a variable

 Propagate unit clauses 

 If  there is a conflict, analyse 
it and learn

 Maybe restart

 CDCL (T):
 Repeat: 

 Decision
 Propagation and T-Propagation 
 Conflict analysis and T-conflict
 Maybe restart  

F over T-atoms

SATT solver

T-conflict: is 𝛼 ok?
T-Propagate: anything 𝛼 forces?

SAT solver

Clause C

UNSAT

 T-Conflict:  
 If a partial assign.  𝛼 is 

inconsistent with T, 

 Learn a clause 𝐶 ⊆ ¬𝛼

 T-propagation:  
 Partial assign 𝛼,

 𝑇 ⊢ 𝛼 → 𝑙

 Learn a clause 𝐶 ⊆ (𝑙 ∨ ¬𝛼)



CDCL, CDCL(T) and CDCL*(T)

 CDCL:   
 Repeat: 

 Decision:  set a variable

 Propagate unit clauses 

 If  there is a conflict, 
analyse it and learn

 Maybe restart

 Resolution captures CDCL
 Pipatsrisawat/Darwiche

 Atserias/Fichte/Thurley.

 CDCL (T):  CDCL plus 

 Repeat: 
 Decision
 Propagation and T-Propagation 
 Conflict analysis and T-conflict
 Maybe restart  

 CDCL*(T):   
 T-conflict and T-propagation  can 

introduce new literals

 Res(T) captures CDCL(T)   
 Res*(T)  captures CDCL*(T)

 Generalizing PD’09, AFT’09



CDCL ≈ Resolution:  [PD’09,AFT09]

 Consider a general resolution proof Π = 𝐶1, … , 𝐶𝑚
 There exists a solver run

 Sequence of decisions and restarts 

 Such that every clause in Π is (implicitly) learned:
 A clause 𝐶 = (𝑙1 ∨ ⋯∨ 𝑙𝑘) is absorbed wrt set of clauses S

 if whenever all 𝑙𝑖 except one are set to false, the remaining literal is 
set by unit-propagation  from S. 

 Eg: 𝑥 ∨ 𝑦 ∨ 𝑧 , ¬𝑧 ∨ 𝑢 , ¬𝑢 ∨ 𝑤 absorbs (𝑥 ∨ 𝑦 ∨ 𝑤)

 In polynomial number of steps.



CDCL(T) ≈ Res(T)  and CDCL*(T) ≈ Res(T)

 Consider a general resolution proof Π = 𝐶1, … , 𝐶𝑚
 There exists a solver run

 Sequence of decisions and restarts and theory clauses

 Produce theory clauses first 

 Such that every clause in Π is (implicitly) learned:
 A clause 𝐶 = (𝑙1 ∨ ⋯∨ 𝑙𝑘) is absorbed wrt set of clauses S

 if whenever all 𝑙𝑖 except one are set to false, the remaining literal is 
set by unit-propagation  from S. 

 Eg: 𝑥 ∨ 𝑦 ∨ 𝑧 , ¬𝑧 ∨ 𝑢 , ¬𝑢 ∨ 𝑤 absorbs (𝑥 ∨ 𝑦 ∨ 𝑤)

 Enough to use T-Propagation rule

 In polynomial number of steps.

Res(T)/Res*(T)



New literals

 Theory solver might return a clause with literals  not in F:

 𝐹: 𝑎 = 𝑏 ∨ 𝑏 = 𝑐 ∧ 𝑏 = 𝑐 ∨ 𝑐 = 𝑑 ∧ 𝑎 ≠ d
 (𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (¬ 𝑥4)

 T returns a clause 𝑎 ≠ 𝑏 ∨ 𝑏 ≠ 𝑐 ∨ 𝑎 = 𝑐 ,   𝑎 = 𝑐 not in F. 

 Diamond equalities [Bjorner, Dutertre, de Moura] 
 Over theory of equality. 
 Hard for resolution if not allowed to introduce new literals. 
 Easy if T introduces literals 𝑎𝑖 = 𝑎𝑖+1

 𝑖<𝑛ٿ (𝑎𝑖= 𝑏𝑖 ∧ 𝑏𝑖 = 𝑎𝑖+1 ∨ 𝑎𝑖 = 𝑐𝑖 ∧ 𝑐𝑖 = 𝑎𝑖+1) ∧ (𝑎0≠ 𝑎𝑛)

𝑎0

𝑏0

𝑐0

𝑎1

𝑏1

𝑐1

𝑎2 𝑎𝑛−1

𝑏𝑛−1

𝑐𝑛−1

𝑎𝑛....

𝑎0 ≠ 𝑎𝑛



New literals

 Diamond equalities [Bjorner, Dutertre, de Moura] 


 𝑖<𝑛ٿ (𝑎𝑖= 𝑏𝑖 ∧ 𝑏𝑖 = 𝑎𝑖+1 ∨ 𝑎𝑖 = 𝑐𝑖 ∧ 𝑐𝑖 = 𝑎𝑖+1) ∧ (𝑎0≠ 𝑎𝑛)

 Theorem [Hadarean, Horn, King’15] 
 Suppose an unsatisfiable formula F  over T has t “critical” assignments:  each  

corresponding  to a different  theory conflict.
 Then a CDCL(T) solver needs to learn ≥ 𝑡 theory clauses.

 Corollary:  then any  Res(T) proof has size ≥ 𝑡

 In diamond equalities,  each path from 𝑎0 to 𝑎𝑛 is a different critical  assignment
 So  need  ≥ 2𝑛 theory solver calls  

 But if can derive 𝑎𝑖 = 𝑎𝑗 , then polynomial time. 

𝑎0

𝑏0

𝑐0

𝑎1

𝑏1

𝑐1

𝑎2 𝑎𝑛−1

𝑏𝑛−1

𝑐𝑛−1

𝑎𝑛....

𝑎0 ≠ 𝑎𝑛





PigeonHolePrinciple
 PigeonHole Principle:   there is no injective function from [n] to [n-1] 

 PHP:

𝑖≤𝑛(∨𝑗<𝑛ٿ 𝑝𝑖,𝑗) ∧ ሥ

𝑖≠𝑘,𝑗

(¬𝑝𝑖,𝑗 ∨ ¬𝑝𝑘,𝑗)

 =-PHP:  

ሥ

𝑖≤n

(∨𝑗<𝑛 𝑝𝑖 = ℎ𝑗 ∧ ሥ

𝑖<𝑘≤n

( 𝑝𝑖 ≠ 𝑝𝑘)

 EUF-PHP: 

ሥ

𝑥∈[𝑛]

( 𝑓 𝑥 ≠ 0) ∧ ሥ

𝑥,𝑦∈[𝑛]

( 𝑥 ≠ 𝑦 → 𝑓 𝑥 ≠ 𝑓(𝑦))

 LA-PHP:  

ሥ

𝑖≤n

(Σ𝑗<𝑛 𝑥𝑖,𝑗 ≥ 1) ∧ሥ

𝑗<n

(Σ𝑖≤𝑛 𝑥𝑖,𝑗 ≤ 1)



 PigeonHole Principle:   there is no injective function from [n] to [n-1] 

 PHP:

𝑖≤𝑛(∨𝑗<𝑛ٿ 𝑝𝑖,𝑗) ∧ ሥ

𝑖≠𝑘,𝑗

(¬𝑝𝑖,𝑗 ∨ ¬𝑝𝑘,𝑗)

 =-PHP:  

ሥ

𝑖≤n

(∨𝑗<𝑛 𝑝𝑖 = ℎ𝑗 ∧ ሥ

𝑖<𝑘≤n

( 𝑝𝑖 ≠ 𝑝𝑘)

 EUF-PHP: 

ሥ

𝑥∈[𝑛]

( 𝑓 𝑥 ≠ 0) ∧ ሥ

𝑥,𝑦∈[𝑛]

( 𝑥 ≠ 𝑦 → 𝑓 𝑥 ≠ 𝑓(𝑦))

 LA-PHP:  

ሥ

𝑖≤n

(Σ𝑗<𝑛 𝑥𝑖,𝑗 ≥ 1) ∧ሥ

𝑗<n

(Σ𝑖≤𝑛 𝑥𝑖,𝑗 ≤ 1)

• Propositional

• Theory of equality: 

– 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐

• Equality with uninterpreted
functions  (EUF)

– equality axioms

– Ackermann axioms: (𝑎 =
𝑏 → 𝑓 𝑎 = 𝑓 𝑏 )

• Linear arithmetic

PigeonHolePrinciple



Power of Res(T)

 Res(Theory of Equality) is no more powerful than Resolution

 Add all 𝑛3 equality axioms to F, then solve.  

 Res(Linear Arithmetic)  polynomially simulates R(lin)  

 Resolution over Equality with Uninterpreted Functions 
theory,  Res(EUF), can effectively p-simulate Frege. 

 Even though conjunctions of EUF atoms are decidable in 
𝑂(𝑛 log 𝑛) time! 

 Using a variant of Union-Find algorithm. 

 E-Res calculus of [Bjorner, de Moura] is already enough

 Res*(EUF)  effectively simulates E-Res 



𝑔(𝑓 𝑎 )

 Signature:  

 uninterpreted function symbols of bounded arity 

 constants a, b, c...  

 Terms:  constants, and inductively 𝑓 ҧ𝑡 for functions. 

 Atoms:   equalities/disequalities over terms:  𝑡1 = 𝑡2,  𝑡1 ≠ 𝑡2
 Formulas:  conjunctions of atoms

(𝑓 𝑎 = 𝑏) ∧ (𝑔(𝑏) = 𝑐) ∧ (𝑔 𝑓 𝑎 ≠ 𝑐)

 Axioms:  

 Equality:  𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐

 Ackermann:  ത𝑎 = ത𝑏 → 𝑓 ത𝑎 = 𝑓(ത𝑏)

 Can decide very efficiently (time  𝑂(𝑛 log 𝑛) ) if a given EUF formula is satisfiable: 

 Downey-Sethi-Tarjan congruence closure (based on Union-Find) 

Equality with uninterpreted
functions  theory (EUF) 

𝑏

𝑐
𝑓(𝑎)

𝑔(𝑏)



 Signature:  

 uninterpreted function symbols of bounded arity 

 constants a, b, c...  

 Terms:  constants, and inductively 𝑓 ҧ𝑡 for functions. 

 Atoms:   equalities/disequalities over terms:  𝑡1 = 𝑡2,  𝑡1 ≠ 𝑡2
 Formulas:  conjunctions of atoms

(𝑓 𝑎 = 𝑏) ∧ (𝑔(𝑏) = 𝑐) ∧ (𝑔 𝑓 𝑎 ≠ 𝑐)

 Axioms:  

 Equality:  𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐

 Ackermann:  ത𝑎 = ത𝑏 → 𝑓 ത𝑎 = 𝑓(ത𝑏)

 Can decide very efficiently (time  𝑂(𝑛 log 𝑛) ) if a given EUF formula is satisfiable: 

 Downey-Sethi-Tarjan congruence closure (based on Union-Find) 

Equality with uninterpreted
functions  theory (EUF) 

𝑏

𝑐
𝑓(𝑎)

𝑔(𝑓 𝑎 )

𝑔(𝑏)



Sequent calculus (LK)
 Equivalent to Frege systems.

 Natural deduction   

 Sequents: 𝐴1, … , 𝐴𝑛 −→ 𝐵1, … , 𝐵𝑚
 𝐴1 ∧ ⋯∧ 𝐴𝑛 → 𝐵1 ∨ ⋯∨ 𝐵𝑚

 Axioms  𝐴 → 𝐴, 0 → 𝑆, 𝑆 → 1.  

 Rules for ∨,∧,¬ and cut

 Proof size:  total number of symbols. 

𝐹 → 𝐺, 𝐴 𝐴, 𝐹 → 𝐺
-----------------------------

𝐹 → 𝐺

𝐹 → 𝐺, 𝐴
-------------------
¬𝐴, 𝐹 → 𝐺

𝐹 → 𝐺, 𝐴 𝐹 → 𝐺, 𝐵
-----------------------------

𝐹 → 𝐺 , 𝐴 ∧ 𝐵

𝐴, 𝐵, 𝐹 → 𝐺
-------------------
𝐴 ∧ 𝐵, 𝐹 → 𝐺



Res(EUF) simulates LK

 Suppose there is an LK proof of 𝐹 → 0
 An LK-refutation of F

 Add to 𝐹:
 Two constants: 𝑒0 ≠ 𝑒1
 Definitions of N, O, A (and, or, not): 

 𝑁 𝑒0 = 𝑒1, 𝑁 𝑒1 = 𝑒0, 𝑂 𝑒1, 𝑒0 = 𝑒1,.... 

 Bounded variable range: ٿ 𝑥𝑖 = 𝑒0 ∨ 𝑥𝑖 = 𝑒1

 Now simulate an LK proof by constructing terms for all 
formulas in the proof inductively 
 Prove  that at each step of LK proof:  𝐴1…𝐴𝑘 → 𝐵1…𝐵ℓ
 Either one of the 𝐴 terms is 𝑒0 or one of the 𝐵 terms is 𝑒1

 Also for each subformula in proof so far,  its term = 𝑒0 or = 𝑒1



For which theory T would Res*(T) 
effectively p-simulate Extended Frege?   

 Arnold Beckmann’s  observation:  just add a flattening rule to 
Res*(EUF)!
 Flattening:  every time a new term is introduced,  add a new 

variable  for this term. 
 Do not need to decide when to add extension variables! 

Didn’t you say EUF instances are 
usually flattened? 





Eager vs. Lazy SMT
Question. Is it better to use a theory solver as an oracle, or just bit-
blast all the way to propositional SAT instance? 

Theorem. Assuming the Exponential Time Hypothesis (SAT requires 
2Ω(n) time), any reduction from EUF to SAT requires a blow-up of Ω(m 
log m).

Remark. This is tight!

 Ackermann Reduction maps EUF formulas of size m to 
SAT instances of size 𝑂(𝑚2)



Lots of open problems

 Upper/lower bounds on Res(T)/ Res*(T)  for a variety of theories. 

 Proof complexity of  model  checking and first-order provers?

 Knowledge compilation:
 How to choose  T given a problem and class of instances?
 In particular,  when to choose Eager SMT and when Lazy? 
 And how to choose T-representation?

 How to even compare representations of the same problem in different 
underlying languages?
 Is Marc’s and Jakob’s PseudoBoolean encoding  of PHP the “same PHP” as 

the classic CNF encoding? 
 Work in progress

Given an instance of a problem, what is the 
best way to state it to make it easier to solve?   



ML for choosing the right 
representation and heuristics? 
 Kevin Leyton-Brown:  

 Empirical hardness models
 Predict runtime for a specific instance                         

from this instance’s features.

 Uses random forests/regression trees

 Application: automatic algorithm configuration
 SATzilla, Hydra… 

 Can something like this be done for 
representations?



𝑏

𝑐
𝑓(𝑎)

𝑔(𝑓 𝑎 )

𝑔(𝑏)

Is this assignment OK?

T-F

SATT solver

SAT solver

No, 
here is 
why:  C

UNSAT

T-F

Frege

Extended Frege/
Extended Resolution 

Resolution

Tree 
Resolution

Cutting 
Planes


