Machine Learning and Invariant Synthesis

Arie Gurfinkel Dept. of Electrical and Computer Engineering University of Waterloo

Waterloo ML + Security + Verification Workshop August 26 – 30, 2019 Waterloo, Ontario, Canada

Automated (Software) Verification

Program and/or model

Alan M. Turing. 1936: "Undecidable"

Alan M. Turing. "Checking a large routine" 1949

How can one check a routine in the sense of making sure that it is right?

programmer should make a number of definite assertions which can be checked individually, and from which the correctness of the whole programme easily collows.

Symbolic Reachability Problem

P = (V, Init, *Tr*, Bad)

P is UNSAFE if and only if there exists a number *N* s.t.

$$Init(X_0) \land \left(\bigwedge_{i=0}^{N-1} Tr(X_i, X_{i+1})\right) \land Bad(X_N) \not\Rightarrow \bot$$

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

$$Init \Rightarrow Inv$$

$$Inv(X) \land Tr(X, X') \Rightarrow Inv(X')$$

$$Inv \Rightarrow \neg Bad$$
Inductive
Safe

Inductive Invariants

System S is safe iff there exists an **inductive invariant** Inv:

- Initiation: Initial \subseteq Inv
- Safety: $Inv \cap Bad = \emptyset$
- Consecution: $TR(Inv) \subseteq Inv$
- i.e., if $s \in Inv$ and $s \sim t$ then $t \in Inv$

Inductive Invariants

System S is safe iff there exists an **inductive invariant** Inv:

- Initiation: Initial \subseteq Inv
- Safety: $Inv \cap Bad = \emptyset$
- Consecution: $TR(Inv) \subseteq Inv$
- i.e., if $s \in Inv$ and $s \sim t$ then $t \in Inv$

```
System S is safe if Reach \cap Bad = \emptyset
```


Program Verification with HORN(LIA)

z = x; i = 0;assume (y > 0);while (i < y) { IS SAT? z = z + 1;i = i + 1;} assert(z == x + y);z = x & i = 0 & y > 0Inv(x, y, z, i) \rightarrow $Inv(x, y, z, i) \& i < y \& z1=z+1 \& i1=i+1 \rightarrow Inv(x, y, z1, i1)$ → false Inv(x, y, z, i) & i >= y & z != x+y

In SMT-LIB

```
(set-logic HORN)
;; Inv(x, y, z, i)
(declare-fun Inv ( Int Int Int Int) Bool)
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int))
         (=> (and (> B 0) (= C A) (= D 0))
            (Inv A B C D)))
 )
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int) )
         (=>
          (and (Inv A B C D) (< D B) (= C1 (+ C 1)) (= D1 (+ D
1)))
          (Inv A B C1 D1)
         )
 )
(assert
 (forall ( (A Int) (B Int) (C Int) (D Int))
         (=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))
            false
            )
         )
 )
(check-sat)
(get-model)
    UNIVERSITY OF
```

\$ z3 add-by-one.smt2

sat

)

(model

Spacer: Solving SMT-constrained CHC

Spacer: SAT procedure for SMT-constrained Horn Clauses

- now the default CHC solver in Z3
 - <u>https://github.com/Z3Prover/z3</u>
 - dev branch at https://github.com/agurfinkel/z3

Supported SMT-Theories

- Linear Real and Integer Arithmetic
- Quantifier-free theory of arrays
- Universally quantified theory of arrays + arithmetic
- Best-effort support for many other SMT-theories
 - data-structures, bit-vectors, non-linear arithmetic
- Support for Non-Linear CHC
 - for procedure summaries in inter-procedural verification conditions
 - for compositional reasoning: abstraction, assume-guarantee, thread modular, etc.

(Un)Decidability Barrier

The problem of finding a safe inductive invariant is highly undecidable

- In many cases, even whenever the problem of finding a finite counterexample is decidable, the inductive invariant problem remains undecidable
- In particular, in this talk, we assume that all components of the transition system are in linear arithmetic (LIA or LRA)

The problem of validating whether a candidate formula (or set of states) is an inductive invariant is (often) decidable

- In particular, decidability of the counterexample problem implies decidability of validating candidate invariants
- In particular, validating inductive invariants is decidable for transition systems over LRA and LIA

The problem of finding inductive invariant is decidable for transition system over propositional logic

• a.k.a, the Finite State Model Checking

Machine Learning for (Software) Verification

Treat invariant discovery as a machine learning problem

The object being learned is an inductive invariant

• described in some language or data structure

Samples are various artifacts from program execution

• e.g., a program state is a vector in Rⁿ

An invariant is a classifier that separates good and bad states

- A state is good if it is reachable state of the program
- A state is bad if it can reach a state that violates the property
- An invariant (if it exists) contains all good states, no bad states, and can classify other states arbitrarily

ML for Verification: The Old Guard

There is a long history of applications of "machine learning" in software verification

• after all, the problem is undecidable and no solution is perfect

For the purpose of this talk, the most relevant are:

Daikon

 Daikon is an implementation of dynamic detection of likely invariants, by M. Ernst, A. Czeislery, W. Griswoldz, and D. Notkin. International Conference on Software Engineering (ICSE) 2000.

Houdini

 <u>Cormac Flanagan</u>, K. Rustan M. Leino: Houdini, an Annotation Assistant for ESC/Java. <u>FME 2001</u>: 500-517

Daikon: Overview

Determined Invariants

1.) n >= 0
2.) s = SUM(B)
3.)
$$0 \le i \le n$$

15.1.1:::ENTER B = 92 56 -96 -49 N = 8, modified	76	92	-3	-88,	modified
15.1.1:::LOOP B = 92 56 -96 -49 N = 8, modified I = 0, modified s = 0, modified	76	92	-3	-88,	modified
15.1.1:::LOOP B = 92 56 -96 -49 N = 8, unmodified I = 1, modified S = 92, modified	76	92	-3	-88,	unmodified

Houdini: Maximal Inductive Subset

Let *L* be a set of formulas, P=(V, Init, Tr, Bad) a program A subset *X* of *L* is a *maximal inductive subset* iff it is the largest subset of *X* such that

$$Init(u) \Rightarrow \wedge_{\ell \in X} \ell(u)$$

$$\wedge_{\ell \in X} \ell(u) \wedge Tr(u, v) \Rightarrow \wedge_{\ell \in X} \ell(v)$$

A Maximal Inductive Subset is unique

inductive invariants are closed under conjunction

Houdini: Algorithm Sketch

Start with a set of candidates S (the hypothesis space)

Check whether S is inductive (using some decision procedure)

- Yes: terminate
- No: there is s in S that is not preserved by the transition relation; remove s and repeat

Guarantees to find the maximal inductive subset of S

ML for Verification: The Newcomers

ICE-DT:

 <u>Pranav Garg</u>, Daniel Neider, <u>P. Madhusudan</u>, <u>Dan Roth</u>: Learning invariants using decision trees and implication counterexamples. <u>POPL 2016</u>: 499-512

Data-driven CHC

<u>He Zhu</u>, Stephen Magill, <u>Suresh Jagannathan</u>:
 <u>A data-driven CHC solver</u>. <u>PLDI 2018</u>: 707-721

FreqHorn

- Grigory Fedyukovich, <u>Samuel J. Kaufman</u>, <u>Rastislav Bodík</u>: Sampling invariants from frequency distributions. <u>FMCAD 2017</u>: 100-107 HOICE
 - <u>Adrien Champion</u>, Naoki Kobayashi, <u>Ryosuke Sato</u>: Holce: An ICE-Based Non-linear Horn Clause Solver. <u>APLAS 2018</u>

Loop invariants

 <u>Xujie Si</u>, <u>Hanjun Dai</u>, <u>Mukund Raghothaman</u>, Mayur Naik, <u>Le Song</u>: Learning Loop Invariants for Program Verification. <u>NeurIPS 2018</u>:

LEARNING INDUCTIVE INVARIANTS

Finding an Inductive Invariant

Discovering an inductive invariants involves two steps

Step 1: find a candidate inductive invariant Inv

Step 2: check whether Inv is an inductive invariant

Invariant Inference is the process of automating both of these phases

Finding an Inductive Invariant

Two popular approaches to invariant inference:

Machine Learning based Invariant Synthesis (MLIS)

- e.g. ICE: Pranav Garg, Christof Löding, P. Madhusudan, Daniel Neider: ICE: A Robust Framework for Learning Invariants. CAV 2014: 69-87
- referred to as a Black-Box approach

SAT-based Model Checking (SAT-MC)

- e.g. IC3: Aaron R. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011: 70-87
- referred to as a White-Box approach

Our Goal

Understand the relationship between SAT-MC and MLIS

What is the fundamental difference between White-Box and Black-Box?

Our Goal

Understand the relationship between SAT-MC and MLIS

What is the fundamental difference between White-Box and Black-Box?

- Study two state-of-the-art algorithms: ICE and IC3
- In other words: can we describe IC3 as an instance of ICE?

Reachability Analysis

Reachability Analysis

Computing states reachable from a set of states S using the post operator

$$\begin{cases} post^{0}(S) = S\\ post^{i+1} = post^{i}(S) \cup \{t \mid s \in S \land (s,t) \in Tr\} \end{cases}$$

Computing states reaching a set of states S using the pre operator

$$\begin{cases} pre^{0}(S) = S\\ pre^{i+1} = pre^{i}(S) \cup \{t \mid s \in S \land (t,s) \in Tr\} \end{cases}$$

Transitive closure is denoted by post* and pre*

Machine Learning-based Invariant Synthesis

MLIS consists of two entities: Teacher and Learner

Learner comes up with a candidate Inv

- Agnostic of the transition system
- Uses machine learning techniques

Learner asks the Teacher if *Inv* is a safe inductive invariant

If not, Teacher replies with a witness: positive or negative

• Teacher knows the transition system

Referred to as Black-Box

Machine Learning-based Invariant Synthesis

Machine Learning-based Invariant Synthesis

ICE: MLIS Framework

(Garg et al. CAV 2014)

Given a transition system T=(INIT, Tr, Bad) and a candidate *Inv* generated by the Learner

When the Teacher determines *Inv* is not a safe inductive invariant, a witness is returned:

- E-example: s ∈ post*(INIT) but s ∉ Inv
- C-example: s ∈ pre*(Bad) and s ∈ Inv
- I-example: $(s,t) \in T$ such that $s \in Inv$ but $t \notin Inv$

Given a set of states S, the triple (E, C, I) is an ICE state

• $E \subseteq S, C \subseteq S, I \subseteq S \times S$

A set $J \subseteq S$ is **consistent** with ICE state iff

- $E \subseteq J$ and $J \cap C = \emptyset$
- for $(s,t) \in I$, if $s \in J$ then $t \in J$

Inductive Invariants

System S is safe iff there exists an **inductive invariant** Inv:

- Initiation: Initial \subseteq Inv
- Safety: $Inv \cap Bad = \emptyset$
- Consecution: $TR(Inv) \subseteq Inv$

i.e., if s ∈ Inv and s∿t then t ∈ Inv

(Garg et al. CAV 2014)

Input: A transition system $T = (\mathcal{V}, Init, Tr, Bad)$ $Q \leftarrow \emptyset$ LEARNER(T); TEACHER(T);

repeat

- $J \leftarrow \text{Learner.SynCandidate}(Q);$
- $\varepsilon \leftarrow \text{TEACHER.IsInd}(J);$
- if $\varepsilon = \bot$ then return SAFE;

 $| Q \leftarrow Q \cup \{\varepsilon\};$ until ∞ ;

Input: A transition system $T = (\mathcal{V}, \mathcal{V})$ No requirement $Q \leftarrow \emptyset$ LEARNER(T); TEACHER(T); for incrementality repeat $J \leftarrow \text{LEARNER.SYNCANDIDATE}(Q);$ $\varepsilon \leftarrow \text{TEACHER.IsInd}(J);$ if $\varepsilon = \bot$ then return AFE; $Q \leftarrow Q \cup \{\varepsilon\};$ J must be until ∞ ; The Learner is consistent with Q passive - has no control over the

Teacher

ICE

SAT/SMT-based Model Checking

Search for a counterexample for a specific length

• using Bounded Model Checking with a SAT solver

If a counterexample does not exist, generalize the bounded proof into a candidate *Inv*

• using interpolation with the help of a SAT solver

Check if *Inv* is a safe inductive invariant

• using a SAT solver, like in Houdini

Referred to as White-Box: Rely on a close interaction between the main algorithm and the decision procedure (SAT/SMT solver) used

SMT-based Model Checking

Generalizing from bounded proofs

Key IC3 Data Structure: Inductive Trace \vec{F}

A sequence of state formulas called frames

Properties of a trace:

- Inductive: $F_i \wedge Tr \rightarrow F'_{i+1}$
 - Monotone: $\forall i \ F_i \rightarrow F_{i+1}$
- Safe: $\forall i \ F_i \rightarrow \neg \underline{Bad}$
- Closed: $\exists i \ F_i \rightarrow \bigvee_j^{i-1} F_j$

Frame F_i over-approximates states reachable in i steps

2

3

PDR/IC3 – SAT Queries

Trace $[F_0,...,F_N]$, and $Q \subseteq pre^*(Bad)$, a state $s \in Q \cap F_{i+1}$ Strengthening

- SAT query: is SAT ($F_i \land \neg s$) $\land T \land s'$
- Checking whether (F_i $\land \neg s$) $\land T \rightarrow \neg s'$ is valid

If the above is satisfiable then there exists a state $t\ \mbox{in}\ \mbox{F}_{i}\ \mbox{that}\ \mbox{can}\ \mbox{reach}\ \mbox{Bad}$

• This looks like a C-example

In order to "fix" F_i the state t must be removed

Now check

• $(F_{i-1} \land \neg t) \land T \land t'$

PDR/IC3 – SAT Queries

Trace $[F_0,...,F_N]$, try to push a lemma $c \in F_i$ to F_{i+1} Pushing

• (F_i \land c) \land T \land \neg c'

4

• is (F_i \land c) \land T \rightarrow c' valid?

If this is satisfiable then there exists a pair (s,t) $\in T$ s.t. s $\in F_i$ and t $\notin F_{i+1}$

- It looks like an I-example
 - Also, can be either an E- or C-example

In order to "fix" F_i , either s is removed from F_i or t is added to it

• Strengthening vs Weakening

The Problem of Connecting ICE and IC3

IC3 reasons about relative induction

F is inductive relative to G when:

- INIT \rightarrow F, and
- $G(V) \land F(V) \land T(V,V') \rightarrow F(V')$

But, in ICE, the Learner (Teacher) asks (answers) about induction

and, the Learner in ICE is passive

- cannot control the Teacher in any way
- No guarantee for incrementality

6

RICE – ICE + Relative Induction

Input: A transition system $T = (\mathcal{V}, Init, Tr, Bad)$ G allows the $Q \leftarrow \emptyset$; Learner to have LEARNER(T); TEACHER(T); some control repeat over the Teacher $(F,G) \leftarrow \text{LEARNER.SYNCANDANDBASE}(Q);$ $\varepsilon \leftarrow \text{TEACHER.ISRELIND}(F, G);$ if $\varepsilon = \bot \land G = true$ then return SAFE; $Q \leftarrow Q \cup \{\varepsilon\};$ When G is true until ∞ ; it is a regular inductive check

RICE – ICE + Relative Induction

The Teacher in RICE reacts to queries about relative induction

The Learner can "manipulate" the Teacher using relative induction

RICE is a generalization of ICE where the Learner is an active learning algorithm

7

RICE – ICE + Relative Induction

The Teacher in RICE reacts to queries about relative induction

Is F inductive relative to G?

If not, a witness is returned:

- E-example: $s \in post^*(INIT)$ but $s \notin F$
- C-example: $s \in pre^*(Bad)$ and $s \in F$
- I-example: (s,t) \in T such that s \in $F \land G$ but t $\notin F$

8

IC3 AS AN INSTANCE OF RICE

IC3 Learner

The IC3 Learner is active and incremental

Maintains the following:

- a trace $[F_0, ..., F_N]$ of candidates
- RICE state Q=(E, C, I)

The Learner must be consistent with the RICE state

E-examples and C-examples may exist when F is inductive relative to G

• The Teacher may return an E-example or C-example when F is inductive relative to G

IC3 Learner - Pushing

INIT \rightarrow F, and G(V) \wedge F(V) \wedge T(V,V') \rightarrow F(V')

Pushing:

2

- a lemma c in F_i
- $(F_i \land c \land \neg C(Q) \land F_{i+1}) \land T \land (\neg c \lor C(Q) \lor \neg F_{i+1})'$

is (c $\land \neg C(Q) \land F_{i+1}$) inductive relative to F_i ? E-example: do not push and add to Q

C-example: do not push and add to Q

I-example: do not push and add to Q

IC3 Learner - Pushing

Using a general Teacher, the described Learner computes a trace $[{\rm F}_0,\,...,\,{\rm F}_N]$ such that

• $post^*(INIT) \rightarrow F_i \rightarrow \neg pre^*(Bad)$

General Teacher is infeasible

- required to look arbitrary far into the future (for E-examples)
- required to look arbitrary far into the past (for C-examples)

Solution: add restrictions on E- and C-examples

IC3 Teacher

Is F inductive relative to G?

If not, a witness is returned:

- C-example: $s \in pre^{m}(Bad)$ and $s \in F$
- I-example: (s,t) \in T such that s \in $F \land G$ but t $\notin F$
- E-example: $s \in post^0(INIT)$ but $s \notin F$

Claim: Using this IC3 Teacher and the IC3 Learner results in an algorithm that behaves like (simulates) IC3

What Can We Learn?

Can we lift the restriction that requires E-example to be in INIT only?

• Yes, a variant of IC3, called Quip, does that

There is no "real" weakening mechanism in IC3

- (Not) Pushing is a form of weakening
- But no 'active' weakening of candidates
- IC3 is incremental and never restarts

RICE – a fundamentally different framework for MLIS

• exponentially more effective learning (Y. Feldman et al.)

Conclusions

Program analysis is a difficult (undecidable) problem

• many more solutions/technqiues are needed!

Program Analysis is well suited for ML-based solutions

- Rich space of heuristics
- Easy definition of 'ground truth'

But much better benchmarks / data sets are needed!

• existing benchmarks are not well suited for empirical research

Is program analysis harder / different than image recognition?

- 5 year olds are amazingly good at recognizing animals
- Not so good at distinguishing good and bad programs
- (are experts really that much better?)

Puppy?

