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Program and/or model

Automated
Reasoning

Correct

Incorrect

Alan M. Turing. ”Checking  a large routine” 1949

Alan M.  Turing. 1936:  “Undecidable” 

Automated (Software) Verification
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P = (V, Init, Tr, Bad)

P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^
 

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN ) 6) ?

Init ) Inv

Inv(X) ^ Tr(X,X 0) ) Inv(X 0)

Inv ) ¬Bad

Symbolic Reachability Problem
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Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation:            Initial ⊆ Inv
• Safety:          Inv ∩ Bad = ∅
• Consecution:   TR(Inv) ⊆ Inv

Initial

i.e., if s ∈ Inv and s↝t 
then t ∈ Inv
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Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation:            Initial ⊆ Inv
• Safety:          Inv ∩ Bad = ∅
• Consecution:   TR(Inv) ⊆ Inv

Initial

System S is safe if Reach ∩ Bad = ∅

Reach

i.e., if s ∈ Inv and s↝t 
then t ∈ Inv
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Program Verification with HORN(LIA)
z = x; i = 0;

assume (y > 0);

while (i < y) {

z = z + 1; 

i = i + 1; 

}

assert(z == x + y);

z = x & i = 0 & y > 0 è Inv(x, y, z, i)

Inv(x, y, z, i) & i < y & z1=z+1 & i1=i+1 è Inv(x, y, z1, i1)

Inv(x, y, z, i) & i >= y & z != x+y è false

IS SAT?
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In SMT-LIB
(set-logic HORN)

;; Inv(x, y, z, i)

(declare-fun Inv ( Int Int Int Int) Bool)

(assert

(forall ( (A Int) (B Int) (C Int) (D Int))

(=> (and (> B 0) (= C A) (= D 0))

(Inv A B C D)))

)

(assert

(forall ( (A Int) (B Int) (C Int) (D Int) (C1 Int) (D1 Int) )

(=>

(and (Inv A B C D) (< D B) (= C1 (+ C 1)) (= D1 (+ D 
1)))

(Inv A B C1 D1)

)

)

)

(assert

(forall ( (A Int) (B Int) (C Int) (D Int))

(=> (and (Inv A B C D) (>= D B) (not (= C (+ A B))))

false

)

)

)

(check-sat)

(get-model)

$ z3 add-by-one.smt2
sat

(model

(define-fun Inv ((x!0 Int) (x!1 Int) (x!2 Int) (x!3 Int)) Bool

(and (<= (+ x!2 (* (- 1) x!0) (* (- 1) x!3)) 0)

(<= (+ x!2 (* (- 1) x!0) (* (- 1) x!1)) 0)

(<= (+ x!0 x!3 (* (- 1) x!2)) 0)))

)

Inv(x, y, z, i)

z  = x + i

z <= x + y
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Spacer: Solving SMT-constrained CHC

Spacer: SAT procedure for SMT-constrained Horn Clauses

• now the default CHC solver in Z3 

– https://github.com/Z3Prover/z3

– dev branch at https://github.com/agurfinkel/z3

Supported SMT-Theories

• Linear Real and Integer Arithmetic

• Quantifier-free theory of arrays

• Universally quantified theory of arrays + arithmetic

• Best-effort support for many other SMT-theories

– data-structures, bit-vectors, non-linear arithmetic

Support for Non-Linear CHC

• for procedure summaries in inter-procedural verification conditions

• for compositional reasoning: abstraction, assume-guarantee, thread modular, 

etc.

https://github.com/Z3Prover/z3
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(Un)Decidability Barrier

The problem of finding a safe inductive invariant is highly undecidable
• In many cases, even whenever the problem of finding a finite counterexample 

is decidable, the inductive invariant problem remains undecidable
• In particular, in this talk, we assume that all components of the transition 

system are in linear arithmetic (LIA or LRA)

The problem of validating whether a candidate formula (or set of states) 
is an inductive invariant is (often) decidable
• In particular, decidability of the counterexample problem implies decidability 

of validating candidate invariants
• In particular, validating inductive invariants is decidable for transition systems 

over LRA and LIA

The problem of finding inductive invariant is decidable for transition 
system over propositional logic
• a.k.a, the Finite State Model Checking
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Machine Learning for (Software) Verification

Treat invariant discovery as a machine learning problem

The object being learned is an inductive invariant
• described in some language or data structure

Samples are various artifacts from program execution
• e.g., a program state is a vector in Rn

An invariant is a classifier that separates good and bad states
• A state is good if it is reachable state of the program
• A state is bad if it can reach a state that violates the property
• An invariant (if it exists) contains all good states, no bad states, and can 

classify other states arbitrarily
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ML for Verification: The Old Guard

There is a long history of applications of “machine learning” in software 
verification
• after all, the problem is undecidable and no solution is perfect

For the purpose of this talk, the most relevant are:
Daikon
• Daikon is an implementation of dynamic detection of likely invariants, by M. 

Ernst, A. Czeislery , W. Griswoldz , and D. Notkin. International Conference 
on Software Engineering (ICSE) 2000.

Houdini
• Cormac Flanagan, K. Rustan M. Leino:

Houdini, an Annotation Assistant for ESC/Java. FME 2001: 500-517

https://dblp.uni-trier.de/pers/hd/f/Flanagan:Cormac
https://dblp.uni-trier.de/db/conf/fm/fme2001.html
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Daikon: Overview

1.) n >= 0
2.) s = SUM(B)
3.) 0 £ i £ n

Determined Invariants
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Houdini: Maximal Inductive Subset

Let L be a set of formulas, P=(V, Init, Tr, Bad) a program
A subset X of L is a maximal inductive subset iff it is the 
largest subset of X such that 

A Maximal Inductive Subset is unique
• inductive invariants are closed under conjunction

Cormac Flanagan, K. Rustan M. Leino¬ Houdini, an Annotation Assistant for ESC/Java. FME 2001¬ 500-517

Init(u) ) ^`2X`(u)

^`2X`(u) ^ Tr(u, v) ) ^`2X`(v)
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Houdini: Algorithm Sketch

Start with a set of candidates S (the hypothesis space)

Check whether S is inductive (using some decision procedure)
• Yes: terminate
• No: there is s in S that is not preserved by the transition relation; remove s 

and repeat

Guarantees to find the maximal inductive subset of S



15 15

ML for Verification: The Newcomers

ICE-DT:
• Pranav Garg, Daniel Neider, P. Madhusudan, Dan Roth:

Learning invariants using decision trees and implication 
counterexamples. POPL 2016: 499-512 

Data-driven CHC
• He Zhu, Stephen Magill, Suresh Jagannathan:

A data-driven CHC solver. PLDI 2018: 707-721
FreqHorn
• Grigory Fedyukovich, Samuel J. Kaufman, Rastislav Bodík:

Sampling invariants from frequency distributions. FMCAD 2017: 100-107
HOICE
• Adrien Champion, Naoki Kobayashi, Ryosuke Sato:

HoIce: An ICE-Based Non-linear Horn Clause Solver. APLAS 2018

Loop invariants
• Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, Le Song:

Learning Loop Invariants for Program Verification. NeurIPS 2018:

https://dblp.org/pers/hd/g/Garg_0001:Pranav
https://dblp.org/pers/hd/m/Madhusudan:P=
https://dblp.org/pers/hd/r/Roth:Dan
https://dblp.org/db/conf/popl/popl2016.html
https://dblp.org/pers/hd/z/Zhu:He
https://dblp.org/pers/hd/j/Jagannathan:Suresh
https://dblp.org/db/conf/pldi/pldi2018.html
https://dblp.org/pers/hd/k/Kaufman:Samuel_J=
https://dblp.org/pers/hd/b/Bod=iacute=k:Rastislav
https://dblp.org/db/conf/fmcad/fmcad2017.html
https://dblp.org/pers/hd/c/Champion:Adrien
https://dblp.org/pers/hd/s/Sato:Ryosuke
https://dblp.org/db/conf/aplas/aplas2018.html
https://dblp.uni-trier.de/pers/hd/s/Si:Xujie
https://dblp.uni-trier.de/pers/hd/d/Dai:Hanjun
https://dblp.uni-trier.de/pers/hd/r/Raghothaman:Mukund
https://dblp.uni-trier.de/pers/hd/s/Song:Le
https://dblp.uni-trier.de/db/conf/nips/nips2018.html
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LEARNING INDUCTIVE INVARIANTS
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Finding an Inductive Invariant

Discovering an inductive invariants involves two steps

Step 1: find a candidate inductive invariant Inv

Step 2: check whether  Inv is an inductive invariant

Invariant Inference is the process of  automating both of these 
phases
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Finding an Inductive Invariant

Two popular approaches to invariant inference:

Machine Learning based Invariant Synthesis (MLIS)
• e.g. ICE: Pranav Garg, Christof Löding, P. Madhusudan, Daniel Neider: ICE: A Robust 

Framework for Learning Invariants. CAV 2014: 69-87
• referred to as a Black-Box approach

SAT-based Model Checking (SAT-MC)
• e.g. IC3: Aaron R. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 

2011: 70-87
• referred to as a White-Box approach
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Our Goal

Understand the relationship 
between SAT-MC and MLIS

What is the fundamental difference 
between White-Box and Black-Box?
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Our Goal

• Study two state-of-the-art algorithms: ICE and IC3
• In other words: can we describe IC3 as an instance of ICE?

Understand the relationship 
between SAT-MC and MLIS

What is the fundamental difference 
between White-Box and Black-Box?

Yakir Vizel, Arie Gurfinkel, Sharon Shoham, Sharad Malik: IC3 - Flipping the E in ICE. VMCAI 2017

https://dblp.uni-trier.de/pers/hd/v/Vizel:Yakir
https://dblp.uni-trier.de/pers/hd/g/Gurfinkel:Arie
https://dblp.uni-trier.de/pers/hd/s/Shoham:Sharon
https://dblp.uni-trier.de/pers/hd/m/Malik:Sharad
https://dblp.uni-trier.de/db/conf/vmcai/vmcai2017.html
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…Rn=post(Rn-1,Tr)

R2=post(R1,Tr)R1=post(INIT,Tr)

INIT

Reachability Analysis

Bad
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Reachability Analysis

Computing states reachable from a set of states S using the post operator

! "#$%& ' = '
"#$%)*+ = "#$%) ' ∪ % $ ∈ ' ∧ ($, %) ∈ 23}

Computing states reaching  a set of states S using the pre operator

! "35& ' = '
"35)*+ = "35) ' ∪ % $ ∈ ' ∧ (%, $) ∈ 23}

Transitive closure is denoted by post* and pre*
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Machine Learning-based Invariant Synthesis

MLIS consists of two entities: Teacher and Learner

Learner comes up with a candidate Inv
• Agnostic of the transition system
• Uses machine learning techniques

Learner asks the Teacher if Inv is a safe inductive invariant

If not, Teacher replies with a witness: positive or negative
• Teacher knows the transition system

Referred to as Black-Box

23
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Machine Learning-based Invariant Synthesis

Teacher Learner

candidate 
Inv

a witness 
s

NO

YES
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Machine Learning-based Invariant Synthesis25

Teacher Learner

candidate 
Inv

witness 
s

NO

YES

aware of 
Tr

not 
aware of 

Tr
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Given a transition system T=(INIT, Tr, Bad) and a candidate Inv generated by 

the Learner

When the Teacher determines Inv is not a safe inductive invariant, a witness is 

returned:

• E-example: s ∈ post*(INIT) but s ∉ Inv

• C-example: s ∈ pre*(Bad) and s ∈ Inv

• I-example: (s,t) ∈ T such that s ∈ Inv but t ∉ Inv

Given a set of states S, the triple (E, C, I) is an ICE state
• E ⊆ S, C ⊆ S, I ⊆ S × S

A set J ⊆ S is consistent with ICE state iff

• E ⊆ J and J ∩ C = ∅
• for (s,t) ∈ I, if s ∈ J then t ∈ J

ICE: MLIS Framework (Garg et al. CAV 2014)
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Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation:            Initial ⊆ Inv
• Safety:          Inv ∩ Bad = ∅
• Consecution:   TR(Inv) ⊆ Inv

Initial

i.e., if s ∈ Inv and s↝t 
then t ∈ Inv
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ICE (Garg et al. CAV 2014)



29 29

ICE (Garg et al. CAV 2014)

J must be 
consistent with QThe Learner is 

passive - has no 
control over the 

Teacher

No requirement 
for incrementality
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SAT/SMT-based Model Checking

Search for a counterexample for a specific length

• using Bounded Model Checking with a SAT solver

If a counterexample does not exist, generalize the bounded proof into a 
candidate Inv
• using interpolation with the help of a SAT solver

Check if Inv is a safe inductive invariant

• using a SAT solver, like in Houdini

Referred to as White-Box: Rely on a close interaction between the main 
algorithm and the decision procedure (SAT/SMT solver) used
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SMT-based Model Checking

counterexample 
of length N 

exists?
SMT

Generalize 
proof

SMT

No + bounded 
proof

candidate 
Inv

Is safe 
inductive 
invariant?

SMT

No, N:=N+1Yes

YES

Tr, N=0

Generalizing from bounded proofs
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Key IC3 Data Structure: Inductive Trace !
A sequence of state formulas called frames

32

…."# "$%#&'() "$

Properties of a trace:

• Inductive: "* ∧ ,- → "*/#0

• Monotone: ∀( "*→ "*/#
• Safe: ∀( "* → ¬345
• Closed: ∃( "*→ ⋁8*%# "8

Frame "* over-approximates 
states reachable in ( steps
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PDR/IC3 – SAT Queries

Trace [F0,…,FN], and Q ⊆ pre*(Bad), a state s ∈ Q ∩ Fi+1

Strengthening 
• SAT query: is SAT (Fi ∧ ¬s) ∧ T ∧ s’ 
• Checking whether  (Fi ∧ ¬s ) ∧ T → ¬s’ is valid

If the above is satisfiable then there exists a state t in Fi that can reach Bad
• This looks like a C-example

In order to ”fix” Fi the state t must be removed

Now check
• (Fi-1 ∧ ¬t) ∧ T ∧ t’

33
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PDR/IC3 – SAT Queries

Trace [F0,…,FN], try to push a lemma c ∈ Fi to Fi+1

Pushing
• (Fi ∧ c ) ∧ T ∧ ¬c’ 
• is (Fi ∧ c ) ∧ T → c’ valid?

If this is satisfiable then there exists a pair (s,t) ∈ T s.t. s ∈ Fi and t ∉ Fi+1

• It looks like an I-example
– Also, can be either an E- or C-example 

In order to ”fix” Fi, either s is removed from Fi or t is added to it
• Strengthening vs Weakening

34
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The Problem of Connecting ICE and IC3
35

IC3 reasons about relative induction

F is inductive relative to G when:

• INIT → F, and

• G(V) ∧ F(V) ∧ T(V,V’) → F(V’)

But, in ICE, the Learner (Teacher) asks (answers) about induction

and, the Learner in ICE is passive

• cannot control the Teacher in any way

• No guarantee for incrementality
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RICE – ICE + Relative Induction
36

When G is true 
it is a regular 

inductive check

G allows the 
Learner to have 

some control 
over the Teacher
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RICE – ICE + Relative Induction

The Teacher in RICE reacts to queries about relative induction

The Learner can “manipulate” the Teacher using relative induction

RICE is a generalization of ICE where the Learner is an active learning 
algorithm

37
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RICE – ICE + Relative Induction

The Teacher in RICE reacts to queries about relative induction

Is F inductive relative to G?

If not, a witness is returned:
• E-example: s ∈ post*(INIT) but s ∉ F
• C-example: s ∈ pre*(Bad) and s ∈ F

• I-example: (s,t) ∈ T such that s ∈ F ˄ G but t ∉ F

38



39 39

IC3 AS AN INSTANCE OF RICE

39
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IC3 Learner

The IC3 Learner is active and incremental

Maintains the following:

• a trace [F0, …, FN] of candidates

• RICE state Q=(E, C, I)

The Learner must be consistent with the RICE state

E-examples and C-examples may exist when F is inductive relative to G

• The Teacher may return an E-example or C-example when F is inductive relative to G

40
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IC3 Learner - Strengthening
41

Strengthening:
• a C-example s in Fi

• (Fi ∧ ¬s ∧ ¬C(Q)) ∧ T ∧ (s ∨ C(Q))’

is (¬s ∧ ¬C(Q)) 
inductive relative to 

Fi?

C-example: 
add to Q

I-example: 
treat like C-

example

E-example: a 
cex exists

INIT → F, and
G(V) ∧ F(V) ∧ T(V,V’) → F(V’)
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IC3 Learner - Pushing
42

Pushing:
• a lemma c in Fi

• (Fi ∧ c ∧ ¬C(Q) ∧ Fi+1) ∧ T ∧ (¬c ∨ C(Q) ∨ ¬Fi+1)’

is (c ∧ ¬C(Q) ∧ Fi+1) 
inductive relative to 

Fi?

C-example: do 
not push and 

add to Q

I-example: do 
not push and 

add to Q

E-example: do 
not push and 

add to Q

INIT → F, and
G(V) ∧ F(V) ∧ T(V,V’) → F(V’)
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IC3 Learner - Pushing
43

Pushing:
• a lemma c in Fi

• (Fi ∧ c ∧ ¬C(Q) ∧ Fi+1) ∧ T ∧ (¬c ∨ C(Q) ∨ ¬Fi+1)’

is (c ∧ ¬C(Q) ∧ Fi+1) 
inductive relative to 

Fi?

C-example: do 
not push and 

add to Q

I-example: do 
not push and 

add to Q

E-example: do 
not push and 

add to Q

E- and C-examples 
may exist even when 

relative induction 
holds
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IC3 Teacher
44

Using a general Teacher, the described Learner computes a trace [F0, …, FN] 
such that
• post*(INIT) → Fi → ¬pre*(Bad)

General Teacher is infeasible
• required to look arbitrary far into the future (for E-examples)

• required to look arbitrary far into the past (for C-examples)

Solution: add restrictions on E- and C-examples
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IC3 Teacher
45

Is F inductive relative to G?

If not, a witness is returned:
• C-example: s ∈ prem(Bad) and s ∈ F
• I-example: (s,t) ∈ T such that s ∈ F ˄ G but t ∉ F
• E-example: s ∈ post0(INIT) but s ∉ F

Claim: Using this IC3 Teacher and the IC3 Learner results in an algorithm 
that behaves like (simulates) IC3
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What Can We Learn?
46

Can we lift the restriction that requires E-example to be in INIT only?

• Yes, a variant of IC3, called Quip, does that

There is no “real” weakening mechanism in IC3

• (Not) Pushing is a form of weakening

• But no ‘active’ weakening of candidates

• IC3 is incremental and never restarts

RICE – a fundamentally different framework for MLIS

• exponentially more effective learning (Y. Feldman et al.)
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Program analysis is a difficult (undecidable) problem

• many more solutions/technqiues are needed!

Program Analysis is well suited for ML-based solutions

• Rich space of heuristics

• Easy definition of ‘ground truth’

But much better benchmarks / data sets are needed!

• existing benchmarks are not well suited for empirical research

Is program analysis harder / different than image recognition?

• 5 year olds are amazingly good at recognizing animals

• Not so good at distinguishing good and bad programs

• (are experts really that much better?)

Conclusions
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Puppy?


