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Secure Learning in Adversarial
Environments



Machine Learning is	Ubiquitous
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AutonomousDriving

Malware	Classification

Smart CityHealthcare

Fraud Detection Biometrics Recognition



Security & Privacy Problems
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Security Problems

Privacy Concerns



We	Live in	an Adversarial	Environment
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While cybersecurity R&D needs are addressed in greater detail in the
NITRD Cybersecurity R&D Strategic Plan, some cybersecurity risks are
specific to AI systems. One key research area is “adversarial
machine learning”, that explores the degree to which AI systems can
be compromised by “contaminating” training data, by modifying
algorithms, or by making subtle changes to an object that prevent it from
being correctly identified….

- National Science and Technology Council
2016



Dangers of Stationary	Assumption

Traditional machine	learning	approaches assume

Training	Data

≈
Testing	Data
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Realworld attacks against different
sensors

Potential defenses against adversarial
behaviors based on learning properties

Potential defenses against adversarial
behaviors via game theory



Adversarial Perturbation In ML
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Deep Neural Networks

Gradient Descent

min
✓

J(✓, x, y)

Model parameters Input feature
vector

label

max
✏

J(✓, x+ ✏, y)

Adversarial perturbation

How to solve the adversary strategy
Local search
Combinatorial optimization
Convex relaxation



Autonomous Driving in Practice



However,What We Can See Everyday…



The	Physical	World	Is…	Messy

Varying	Physical	Conditions	 (Angle,	 Distance,	Lighting,	…) Physical	Limits	on	Imperceptibility

Fabrication/Perception	Error	(Color	Reproduction,	 etc.) Background	Modifications*

Digital	Noise
(What	you	want)

What	is	
printed

What	a	camera	
may	see
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Image	Courtesy,	
OpenAI

[CVPR, 2017]



An	Optimization	Approach	To	Creating	
Robust	Physical	Adversarial	Examples
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Perturbation/Noise	Matrix

Lp norm	(L-0,	L-1,	L-2,	…) Loss	Function

Adversarial	Target	Label



Optimizing	Spatial	Constraints	
(Handling	Limits	on	Imperceptibility)
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Subtle	Poster

Camouflage	Sticker

Mimic	vandalism

“Hide	in	the	human	
psyche”



Handling	Fabrication/Perception	Errors
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P	is	a	set	of	printable	RGB	triplets

Color	Space

Sampled	Set	of	RGB	Triplets

NPS	based	on	Sharif	et	al.,	“Accessorize	to	a	crime,”	CCS	2016



How	Can	We	Realistically	Evaluate	
Attacks?
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Lab	Test	(Stationary) Field	Test	(Drive-
By)

~	250	feet,	0	to	20	mph

Record	video

Sample	frames	every	k	frames

Run	sampled	frames	through	DNN
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Subtle	Poster Subtle	Poster Camo	Graffiti Camo	Art Camo	Art

Lab	Test	Summary
(Stationary)

Target	Class:	Speed	Limit	45



Art Perturbation

17



Subtle Perturbation
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Physical Attacks Against Detectors
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Physical Attacks Against Detectors
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Physical Adversarial Stop Sign in the
Science Museum of London



Adversarial Examples in Physical World
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Adversarial perturbations are possible in physical
world under different conditions and viewpoints,
including the distances and angles.



Adversarial Point Clouds
• PointNet is widely used including in autonomous
driving systems to process Lidar point cloud data

• Perturbation on point cloud
– Points shifting
– Independentpoints adding
– Adversarial clusters
– Adversarial objects

• Adversarial objectives
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Adversarial 3D Meshes
• 3D to 2D space rendering is complicated

– Shapes/textures/illumination

• 3D space itself is complicated
• Adversarial optimization objective
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illumination

shape

texture



Adversarial	Goal:	Misclassification

Perturb.	Type Model Test	Accuracy Best	Case Average	Case Worst	Case

Shape

DenseNet 100.0% 100.0% 100.0% 100.0%

Inception-v3 100.0% 100.0% 99.8% 98.6%

Texture

DenseNet 100.0% 100.0% 99.8% 98.6%

Inception-v3 100.0% 100.0% 100.0% 100.0%



Transfer	to	the	Black-box	Renderer:	
Misdetection

Before	Attack
Neural	Mesh	Renderer

After	Attack
Neural	Mesh	Renderer

After	Attack
Mitsuba	Renderer

Before	Attack
Mitsuba	Renderer

Search	lighting	and	poses White-box	attack Black-box	transfer



Adversarial 3D Meshes
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• 934	:	hot	dog
[CVPR 2019]



LiDAR-based	perception

Goal: we	aim to generate	physical	adversarial	object against	
real-world LiDAR	system.

LiDAR



Challenges
• Physical LiDAR equipment
• Multiple	non-differentiable pre/post-processing	stages

• Manipulation	constraints
– Limited by LiDAR
– Keeping	 the	shape plausible	and	smooth	adds	additional	 constraints	

• Limited	Manipulation	Space
– Consider	 the	practical	size	of	the	object	versus	the	size	of	the	scene	that	is	

processed	by	LiDAR,	the	3D	manipulation	 space	is	rather	small	(<	2%	in	our	
experiments)

LiDAR



Pipeline of LiDAR-adv
• Input:	a	3D	mesh	+	shape	perturbations
• Non-differentiable Pre/Post Processing: Differentiable	

proxy	function
• Target:	fool	a	machine	learning	model	and	keep	the	shape	

printable
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Robust Adversarial Objects Under
Different Viewpoints

33
Robust Adversarial Object against different angles. The original confidence 

is x. Our success rate is 100%. (�represents no object detected) 

The visualization of adversarial object with different angles. 



Physical Experiments
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Physical Experiments
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Realworld attacks against different
sensors

Potential defenses against adversarial
behaviors based on learning properties

Potential defenses against adversarial
behaviors via game theory



Numerous	Defenses	Proposed

Ensemble

Normalization

Distributional	detection

PCA	detection

Secondary	classification

Stochastic

Generative

Training	process

Architecture

Retrain

Pre-process	input

Detection

Prevention



Example	of	Evasion:	Spam	Filter V1.0

cheap	=		1.0
mortgage	=		1.5

Total	score	=		2.5

From:	spammer@example.com
Cheapmortgage now!!!		

Feature	Weights

>	1.0	(threshold)

1.

2.

3.

Spam
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Example	of	Evasion:	Spammer	V1.0

cheap	=		1.0
mortgage	=		1.5

Joy=	-1.0
Oregon	=	-1.0

Total	score	=		0.5

From:	spammer@example.com
Cheapmortgage now!!!
Joy Oregon

Feature	Weights

<	1.0	(threshold)

1.

2.

3.

OK
39



Example	of	Evasion:	Spam	Filter V2.0 (Retraining)

cheap	=		1.5
mortgage	=		2.0

Joy =	-0.5
Oregon	=	-0.5

Total	score	=		2.5

Feature	Weights

>	1.0	(threshold)

1.

2.

3.

Spam

From:	spammer@example.com
Cheapmortgage now!!!
Joy Oregon
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Challenge
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Stackelberg Game

Spam Filter V3.0

Spammer V2.0

Spammer V3.0

Spam	Filter V4.0

…….

How to efficiently solve the game?

Repeated Game!



Stackelberg Game
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Learner commits
to a strategy

Adversary solves								
to	generate		 from	idealx0 xA

• Learner: commits strategy
• Adversary: best response based on

Benign

Malicious

xA

x0

xA

Sd

Sd

Sd

x0 = Osd(x
A)

:	adversarial	instance

Example: Spam Evasion Attack
g(
x)

g(x)

Adversary
Model

[NIPS 2014]



Defending Evasions via Stackelberg Game
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Learner commits
to a strategy

Adversary solves								
to	generate		 from	idealxAx0

Sd

x0 = Osd(x
A)

S0
d = minL(Sd, x

0 = Osd(x
A))

Idea: model the adversary’s behavior
• Adversary cannot find additionalmanipulations
• Adversary incur too high manipulationcost

Human Subject
Experiments

Modeling
Adversaries



Modeling Evasion Attacks

• Adversary	modifies	 into instance
– Cost

• Evasion attack:
– s.t.:

44

xA x0

c(x0, xA)

min
x0

c(x0, xA) f(x0)  �

Cost Function

Feature Selection

Dynamic OperationalDecision



Better Cost Functions  Better Performance
• Model the adversary’s cost function

– Traditional:	Distance based cost function

45

c(x0, xA) =
X

i

ai|x0
i � xA

i |



Distance Based Cost Function
Underestimates Adversary
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Hello!
Are	you	ready to	become	more	active	and	
attractive	than	ever	before?
Our	final	product for	losing	weight is	on	
clearance now.
Follow	the	link	and	you	will	find	he	cheapest
way	to	gain	your	body	back.
http://www.ebay.com/application_form

Hello!
Are	you	happy to	become	more	active	and	attractive	
than	ever	before?
Our	final	merchandises for	losing	weigbt is	on	
claerance now.
Follow	the	link	and	you	will	find	he	deapest way	to	gain	
your	body	back.
http://www.ebay.com/application_form

Synonym

Letter	substitution

Spam Ham

C = 5

C = 1

X



A Better Cost Function

• Model the adversarial cost function
– Traditional:Distance based cost function

– Equivalencebased cost function
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Feature Class

c(x0, xA) =
X

i

ai|x0
i � xA

i |

c(x0, xA) =
X

i

min
j2Fi|xA

j �x0
j=1

ai|x0
j � xA

i |



Semantic Based Distances

• Colorization and texture for images

48



Modeling Evasion Attacks

• Adversary	modifies	 into instance
– Modification	cost

• Evasion attack:
– s.t.:
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xA x0

c(x0, xA)

min
x0

c(x0, xA) f(x0)  �

Cost Function

Feature Selection

Dynamic OperationalDecision



Dangers of Dimension Reduction
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No Adversary:Dimension	Reduction	= Good
With Adversary: Dimension	Reduction	= Vulnerable



Vulnerability	Across Learning Algorithms
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Naïve	Bayesian SVM(linear) SVM	(rbf) Neural	Networks

Distance Based Cost Function

Equivalence Based Cost Function



Modeling Evasion Attacks

• Adversary	modifies	 into instance
– Modification	cost

• Evasion attack:
– s.t.:
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xA x0

c(x0, xA)

min
x0

c(x0, xA) f(x0)  �

Cost Function

Feature Selection

Dynamic OperationalDecision



Scaling Optimization

• Adversary has a preferredmalicious instance
– Modifying into instance incurs a cost

• Evasion attack:
– s.t.: ,
– Use
– Scale up:
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xA x0 c(x0, xA)

xA

min
x0

c(x0, xA) c(x0, xA)  B f(x0)  �

q(x0) = Q(x0, f(x0))

Boolean Basis
Functions

q(x0) =
X

j

↵j�j(x
0)

[AISTATS 2015]



Adversary’s Best Response is Hard!

• Computing adversary’s best response
– Theorem1. Evasion is NP-complete

• Approximation	algorithm

– Branch and bound
– Greedy	Heuristic	
– Approximation
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s.t.:

The number of inputs in basis is bounded by c.
ApproxEvasion computes a solution x’ which achieves inΔ

^
≥ Δ
1+ ε

poly(n, 1
ε
,2c )



Loss for benign
instances

Defending Evasions via Stackelberg Game
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Adversarial Strategies

min
w

X
l(w, xi)

Loss formalicious
instances

Tradeoff between dimension
reduction and robustnessxAs.t. : 8i : yi = 1,

zi = argmin
x|wT x0

c(x, xi),

x0
i =

⇢
zi c(zi, xi)  B
xi otherwise

min
w

↵
X

i|yi=0

l(w, xi) + (1� ↵)
X

i|yi=1

l(w, x0
i) + �||w||1



Mixed Integer Linear Programming (MILP)
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    min
ω  z, r

α Di + (1−α ) Si + λ K j
j
∑

i|yi=1
∑

i|yi=0
∑

s.t. :    ∀i,  j  : zi (a), r(a)∈{0,1}

           zi (a) =1
a
∑

           ei = mi (a)(LaiTa + (1−
a
∑ Lai )xi )

           ∀a,  i,  j  : −Mzi (a) ≤ mij (a) ≤ Mzi (a)
           ω j −M (1− zi (a)) ≤ mij (a) ≤ω j +M (1− zi (a))

           ω jTaj ≤ 2 Tajyaj
j
∑

j
∑

           ∀a,  j  : −Mra ≤ yaj ≤ Mra
           ω j −M (1− ra ) ≤ yaj ≤ω j +M (1− ra )

           Di = max(0,1−ω T xi )
           Si = max(0,1+ ei )
           K j = max(ω j,−ω j )

Solve the game:MILP!
Solved?

Two reasons for intractability:
• The	large	number	of	adversarial	

objective	instances	
• Intractable	amount	of	constraints	

for	each	attack	action	

xA

Solutions:
• Clusteringattacks: clustermalicious

feature vectors in trainingdata
• Constraint generation: iteratively add

“best response”attacks intoMILP

x0



Our Solution (SMA) Outperforms
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Our approach

Not adversarial

State-of-the-art

The Stackelberg multi-adversary model (SMA) significantly outperforms
in adversarial environments with a range of selected dimensions



Realworld attacks against different
sensors

Potential defenses against adversarial
behaviors based on learning properties

Potential defenses against adversarial
behaviors via game theory



Beyond the Min-max Game

• Will it help if we have more knowledge about
our learning tasks?
– Properties of learning tasks or data
– General understanding about ML models

59



Characterize	Adversarial	Examples	Based	on	Spatial	
Consistency	Information	for	Semantic	Segmentation	
• Attacks against semantic segmentation

– State-of-the-art attacks against segmentation:Houdini [NIPS2017],
DAG [ICCV 2017]

– We design diverse adversarial targets: hello kitty, pure color, a real
scene, ECCV, color shift, strips of even color of classes

– Cityscapes and BDD datasets

60

Benign

Adversarial Examples



Spatial Context Information
• Spatial	consistency	is	a	distinct	property	of	image	

segmentation
• Perturbation	at	one	pixel	will	potentially	affect	the	prediction	

of	surrounding	pixels
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For each pixel m, we select its
neighbor pixels and calculate the
entropy of their predictions for m



mIOU

mIOU

RandomPatchSelection Spatial Consistency

Pipeline of spatial consistency based detection for adversarial examples on
semantic segmentation



Detecting adversarial instances based on
spatial consistency information

• Both the spatial consistency based detection and the scaling
based baseline achieve promising detection rate on different
attacks

• The scaling based baseline fails to detect strong adaptive
attacks while the spatial based method can
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Takeaways

Spatial consistency information can be
potentially applied to help distinguish benign
and adversarial instances against segmentation
models.
Temporal consistency?
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Attackson
segmentation		

Attackson	pose
estimation

Attackson object
detection

Adversarial Frames In Videos



Defensing Adversarial behaviors in
Videos – Temporal Dependency
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• The results show that choosing more random patches can improve detection
ratewhile k=5 is enough to achieve AUC 100%

• The spatial consistency based detection is robust against strong adaptive
attackers due to the randomness in patch selection
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Temporal Consistency Based Analysis

• “Yanny” or “Laurel”? – adversarial audio

69[ICLR 2019]



Temporal Consistency (TD) Based
Detection
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TD achieves high detection rate for adversarial audio



Strong Adaptive Attacks
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Concatenate Attack: attack different segments individually and concatenate them

SegmentAttack: Attack only the first k length SK



Strong Adaptive Attacks
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Combination Attack: attack both individual sections and whole sentence

Conclusion: Strong adaptive attack seldom succeeds





Robust Smart Home

Large-Scale	Auditing GameWith
HumanInthe Loop

Thank	You!
Bo Li

lbo@illinois.edu

http://boli.illinois.edu/

74

Privacy-Preserving DataAnalysis

PrivacyProtectedMobile
Healthcare

Topic of Workflow Analysis
GameTheoretic Auditing System

for EMR

Robust FaceRecognition
Against Poisoning Attack

Robust Learning



Beyond the Min-max Game

• What if we have more knowledge about our
learning tasks?
– Properties of learning tasks and data
– General understanding about ML models
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Important	Concept:	data	manifold

• Data	Manifold	theory:	
– Manifold:	the	subspace	that	has	local	Euclidean	space properties
– The	data	we	observed	were	actually	mapped	from	a	low-dimensional	

space
– We usePCA/autoencoders etc.	to	“unwrap”	the	manifold
– We assume the	data	points	from	testset and	trainset	are	all	from	a	

same	manifold
– Not	the	case	if	we	consider	adversaries

[ICLR 2018]



Previous	Measures

• K-means	distance
– Distance	to	k	nearest	neighbors

• Kernel	density	
– non-parametric
– estimate the pdf	(probability	density	function) of	a random	
variable

• Can	fail	to	distinguish	the	sub-manifold	that	a	test	
case	lies	in



Estimation	of	Local Intrinsic
Dimensionality (LID)

• The	sub-manifolds	are	not	parametric	
– given	by	data	points	instead

• We	use	estimation
– Sample	a	small	set	of	size	larger	than	k
– compute	their	distance	to	x,	take	closest	k
– rk(x)	is	the	maximum	of	the	neighbor	distances



Use	LID	to	characterize	the	sub-manifold

• LID	of	benign	x	
– The	dimension	of	S	(the	sub-manifold	x	lies	in)
– Should	be	small	since	S	is under	some	intrinsic	constraints

• LID	of	adversarial x’:	
– Full	degrees	of	freedom	afforded	by	the	representational	
dimension	of	the	data	domain

– Attacks	generally	allow	modification	of	all	pixels



Characterizing Adversarial Examples
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AUC of different detection methods against various attacks

Attack Failure Rate of Strong Adaptive Attacks Against LID Detector


