Secure Learning in Adversarial Environments

Bo Li

University of Illinois at Urbana-Champaign

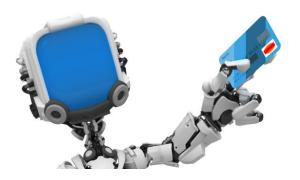
Machine Learning is Ubiquitous

Autonomous Driving

Healthcare

Smart City

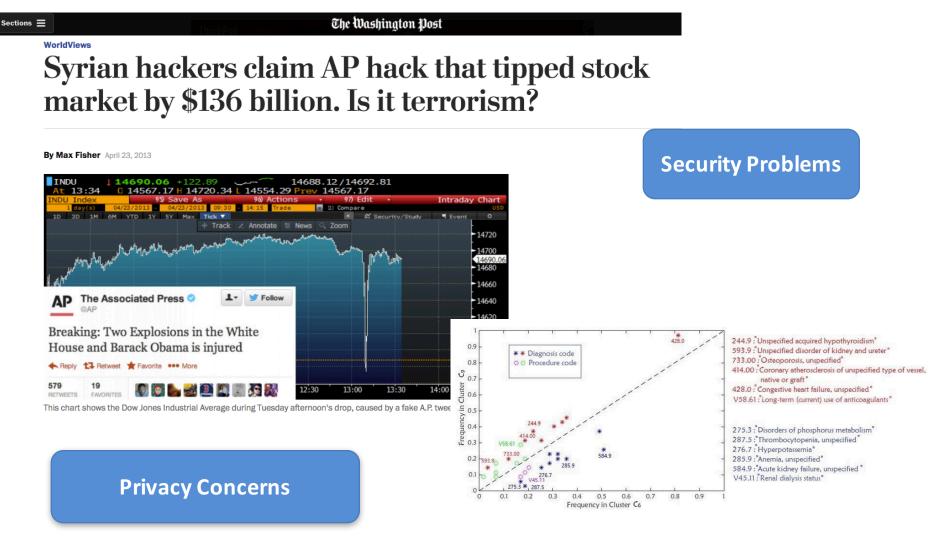
Malware Classification



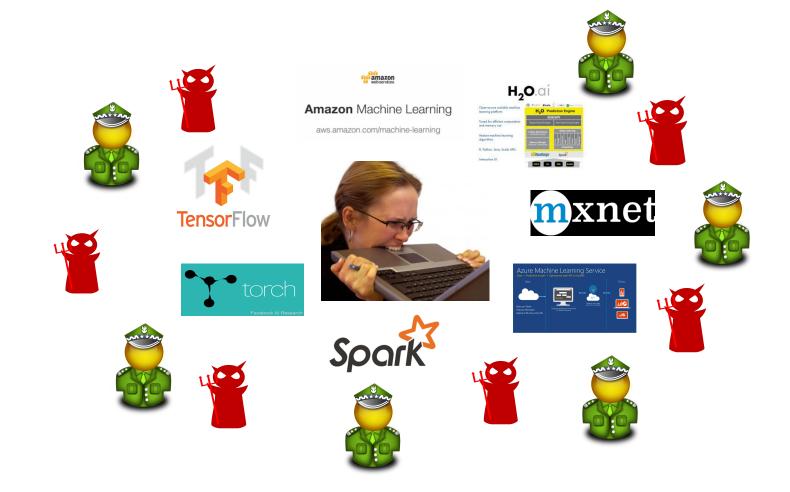
Fraud Detection

Biometrics Recognition

Security & Privacy Problems



We Live in an Adversarial Environment



While cybersecurity R&D needs are addressed in greater detail in the NITRD Cybersecurity R&D Strategic Plan, some cybersecurity risks are specific to AI systems. **One key research area is "adversarial machine learning"**, that explores the degree to which AI systems can be compromised by "contaminating" training data, by modifying algorithms, or by making subtle changes to an object that prevent it from being correctly identified....

- National Science and Technology Council

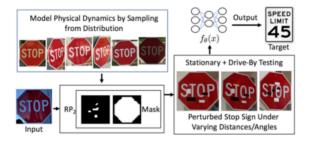
5

2016

Guaranteeing AI Robustness against Deception (GARD)

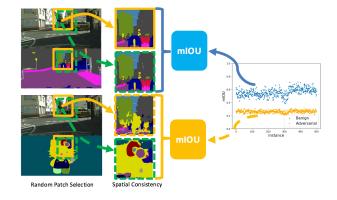
Dangers of Stationary Assumption

Traditional machine learning approaches assume



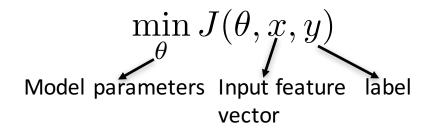
Real world attacks against **different sensors**

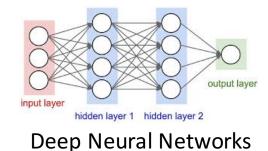
Potential **defenses** against adversarial behaviors via game theory

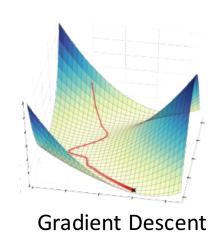


Potential **defenses** against adversarial behaviors based on learning properties

Adversarial Perturbation In ML







$$\max_{\epsilon} J(\theta, x + \epsilon, y)$$

Adversarial perturbation

How to solve the adversary strategy Local search

- Combinatorial optimization
- Convex relaxation

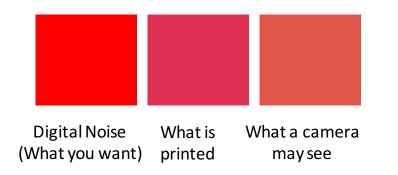
Autonomous Driving in Practice

However, What We Can See Everyday...

The Physical World Is... Messy

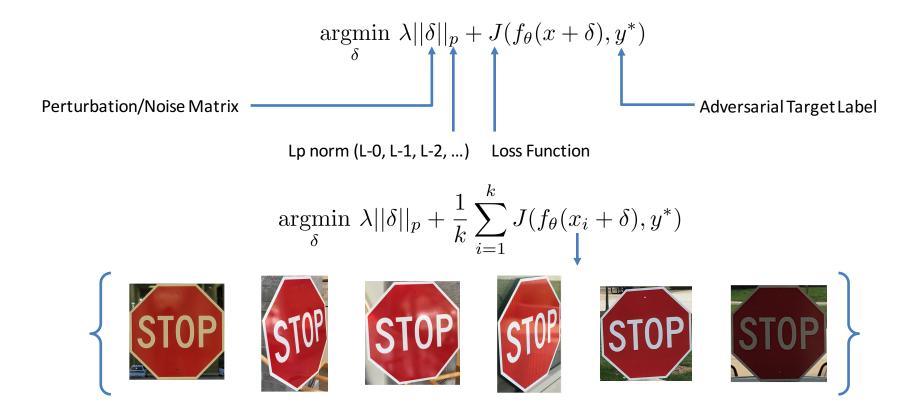
Varying Physical Conditions (Angle, Distance, Lighting, ...) Physical Limits on Imperceptibility

Fabrication/Perception Error (Color Reproduction, etc.)



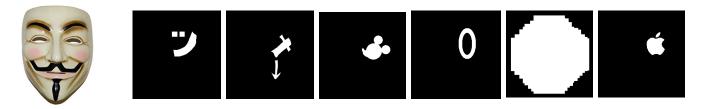
Background Modifications* OpenAl

An Optimization Approach To Creating Robust Physical Adversarial Examples



Optimizing Spatial Constraints (Handling Limits on Imperceptibility)

$$\operatorname{argmin}_{\delta} \lambda || M_{x} \cdot \delta ||_{p} + \frac{1}{k} \sum_{i=1}^{k} J(f_{\theta}(x_{i} + M_{x} \cdot \delta), y^{*})$$



Subtle Poster

Camouflage Sticker

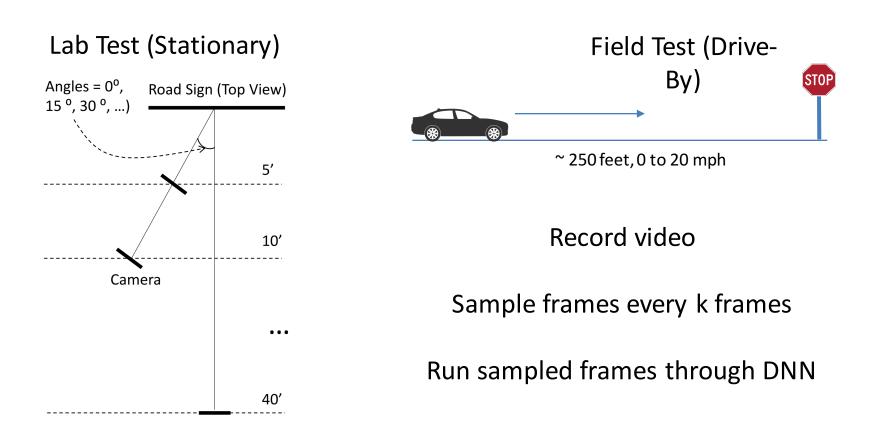
Mimic vandalism

"Hide in the human psyche"

Handling Fabrication/Perception Errors

NPS based on Sharif et al., "Accessorize to a crime," CCS 2016

How Can We Realistically Evaluate Attacks?



Subtle Poster

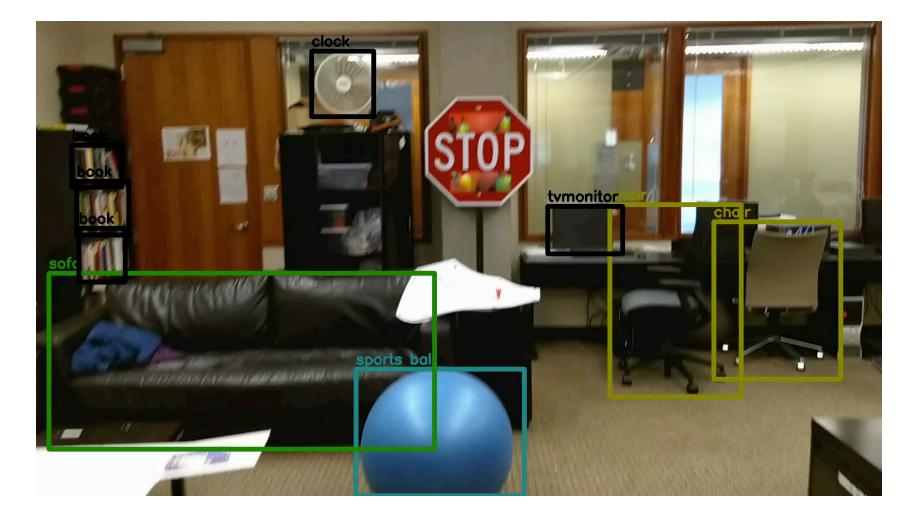
Lab Test Summary (Stationary)

Target Class: Speed Limit 45

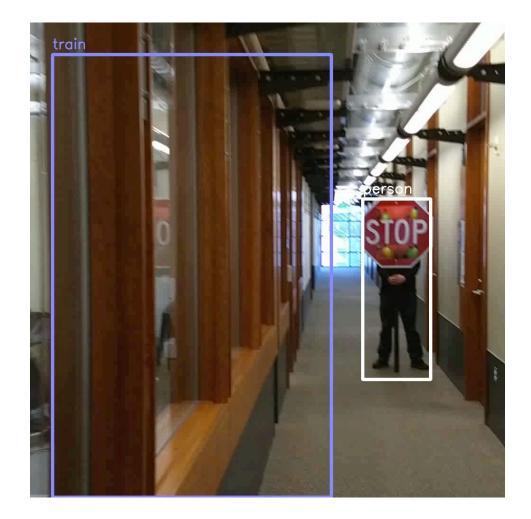
Art Perturbation

Subtle Perturbation

Physical Attacks Against Detectors



Physical Attacks Against Detectors



Physical Adversarial Stop Sign in the Science Museum of London

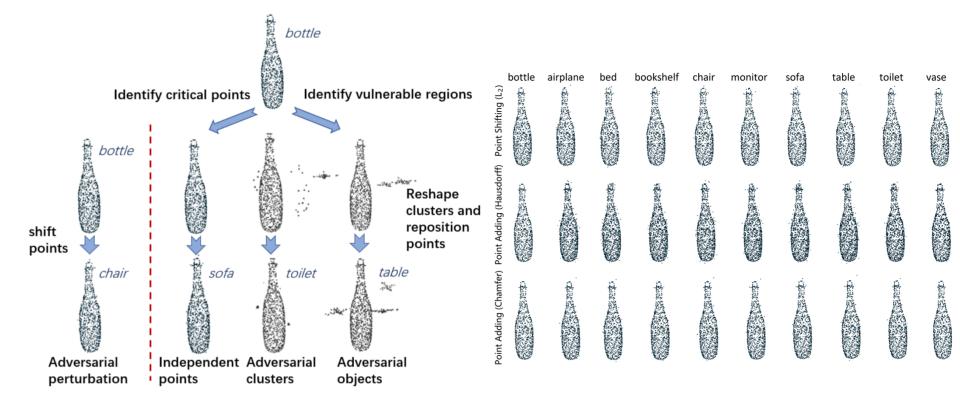


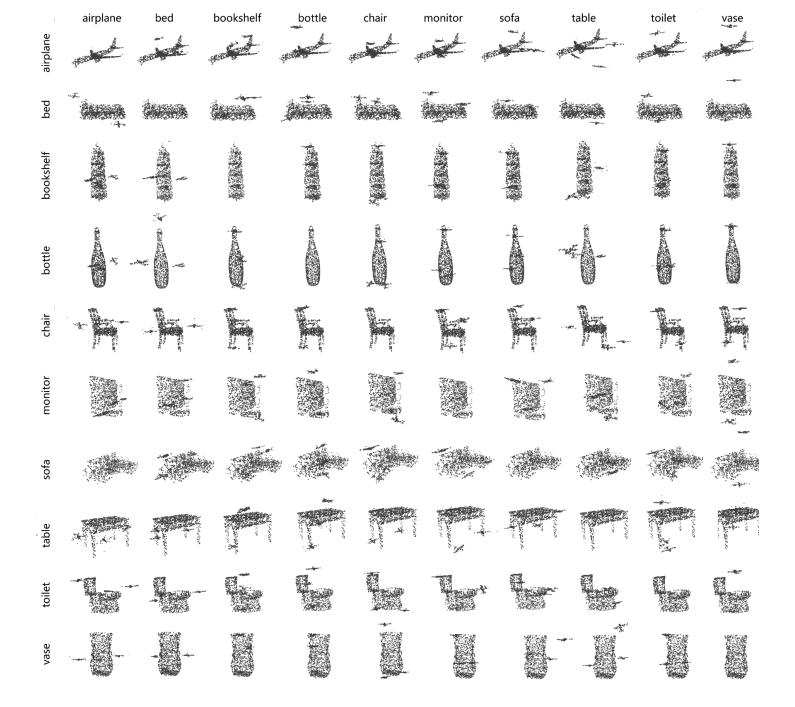
Adversarial Examples in Physical World

Adversarial perturbations are possible in physical world under different conditions and viewpoints, including the distances and angles.

Adversarial Point Clouds

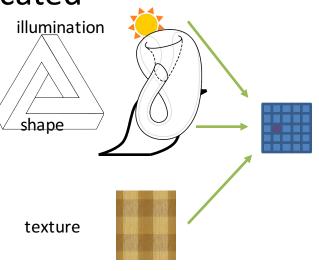
- PointNet is widely used including in autonomous driving systems to process Lidar point cloud data
- Perturbation on point cloud
 - Points shifting
 - Independent points adding
 - Adversarial clusters
 - Adversarial objects
- Adversarial objectives $\min \mathcal{D}(x, x'), \qquad s.t. \ \mathcal{F}(x') = t'$ $\mathcal{D}_{C}(\mathcal{S}, \mathcal{S}') = \frac{1}{\|\mathcal{S}'\|_{0}} \sum_{y \in \mathcal{S}'} \min_{x \in \mathcal{S}} \|x - y\|_{2}^{2}$ $\mathcal{D}_{H}(\mathcal{S}, \mathcal{S}') = \max_{y \in \mathcal{S}'} \min_{x \in \mathcal{S}} \|x - y\|_{2}^{2}$ $\min f(x') + \lambda \cdot \sum_{i} \mathcal{D}_{far}(\mathcal{S}_{i}) + \mu \cdot \mathcal{D}_{C}(\mathcal{S}_{0}, \mathcal{S}_{i})$

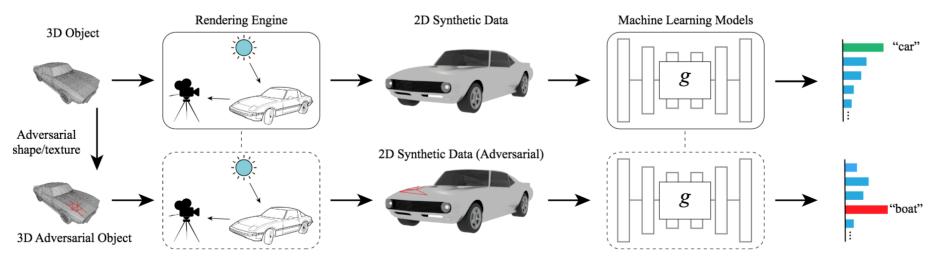




Adversarial 3D Meshes

- 3D to 2D space rendering is complicated
 - Shapes/textures/illumination
- 3D space itself is complicated
- Adversarial optimization objective $\mathcal{L}(S^{\text{adv}}) = \mathcal{L}_{\text{adv}}(S^{\text{adv}}, g, y') + \lambda \mathcal{L}_{\text{perceptual}}(S^{adv})$ $I^{\text{adv}} = R(S^{\text{adv}}; P, L)$

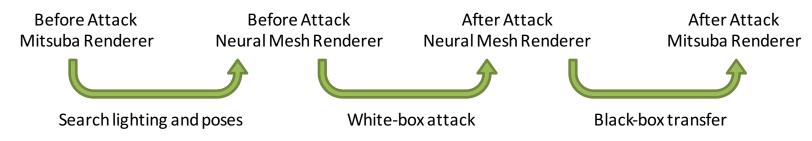




Adversarial Goal: Misclassification

Perturb. Type	Model	Test Accuracy	Best Case	Average Case	Worst Case
Shape	DenseNet	100.0%	100.0%	100.0%	100.0%
	Inception-v3	100.0%	100.0%	99.8%	98.6%
Texture	DenseNet	100.0%	100.0%	99.8%	98.6%
	Inception-v3	100.0%	100.0%	100.0%	100.0%

Transfer to the Black-box Renderer: Misdetection

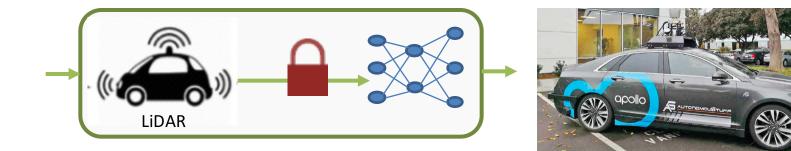


Adversarial 3D Meshes

• 934 : hot dog

LiDAR-based perception

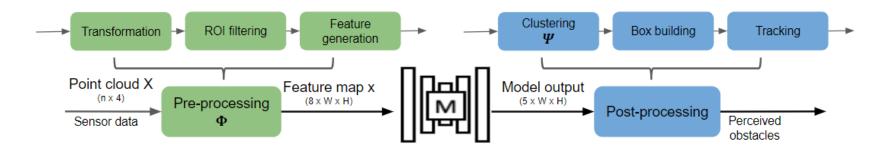
Goal: we aim to generate physical adversarial object against real-world LiDAR system.



Challenges

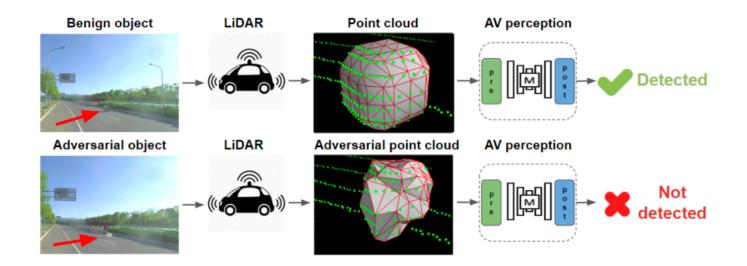
- Physical LiDAR equipment
- Multiple non-differentiable pre/post-processing stages
- Manipulation constraints
 - Limited by LiDAR

- Keeping the shape plausible and smooth adds additional constraints
- Limited Manipulation Space
 - Consider the practical size of the object versus the size of the scene that is processed by LiDAR, the 3D manipulation space is rather small (< 2% in our experiments)

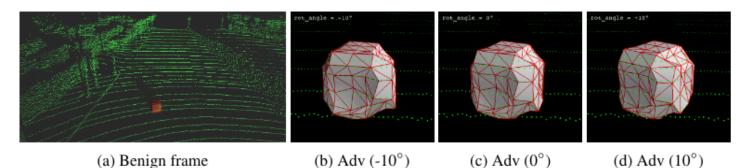


Pipeline of *LiDAR-adv*

- Input: a 3D mesh + shape perturbations
- Non-differentiable Pre/Post Processing: Differentiable proxy function
- Target: fool a machine learning model and keep the shape printable



Robust Adversarial Objects Under Different Viewpoints



The visualization of adversarial object with different angles.

Angl	-10°	-5°	0°	5°	10°	
Objectness		√	\checkmark	\checkmark	\checkmark	\checkmark
(Confid.)	Apollo	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

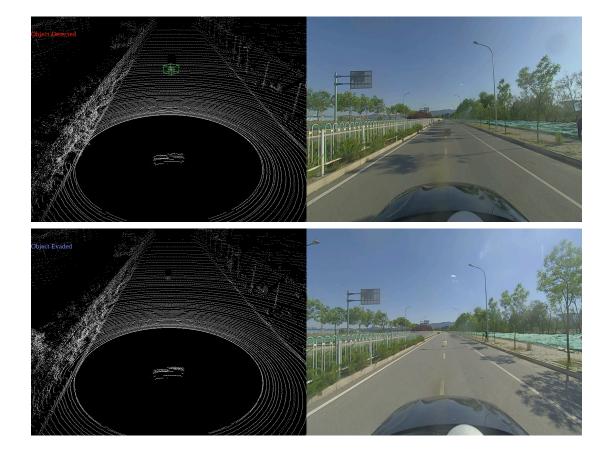
Robust Adversarial Object against different angles. The original confidence is x. Our success rate is 100%. (represents no object detected)

Physical Experiments

Adversarial object/benign box in the middle

Adversarial Object

Benign Object

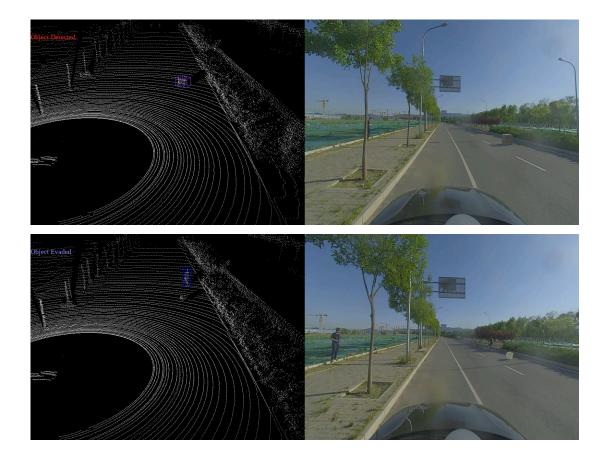


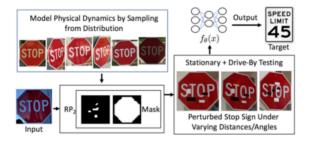
Physical Experiments

Adversarial object/benign box on the right

Adversarial Object

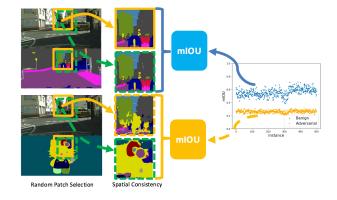
Benign Object





Real world attacks against **different sensors**

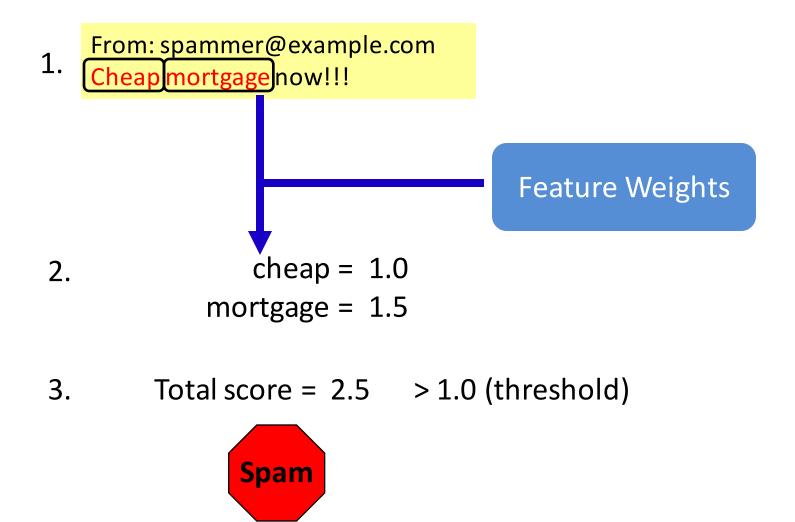
Potential **defenses** against adversarial behaviors via game theory



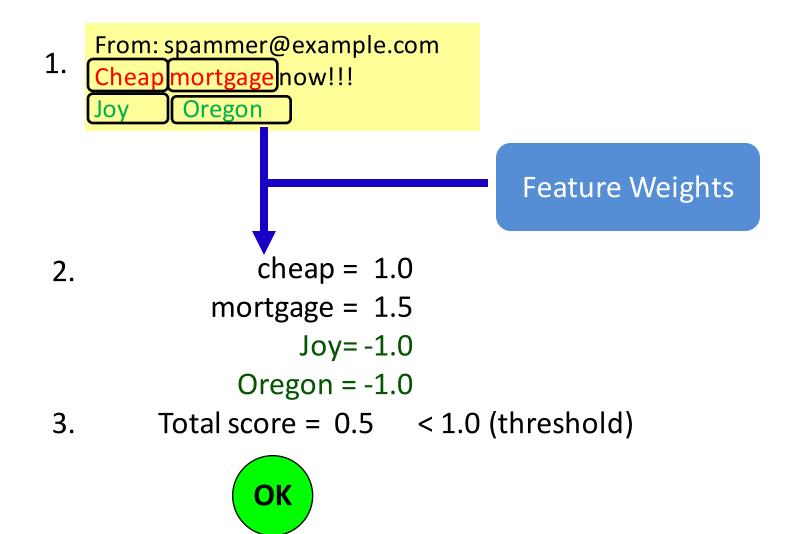
Potential **defenses** against adversarial behaviors based on learning properties

Numerous Defenses Proposed

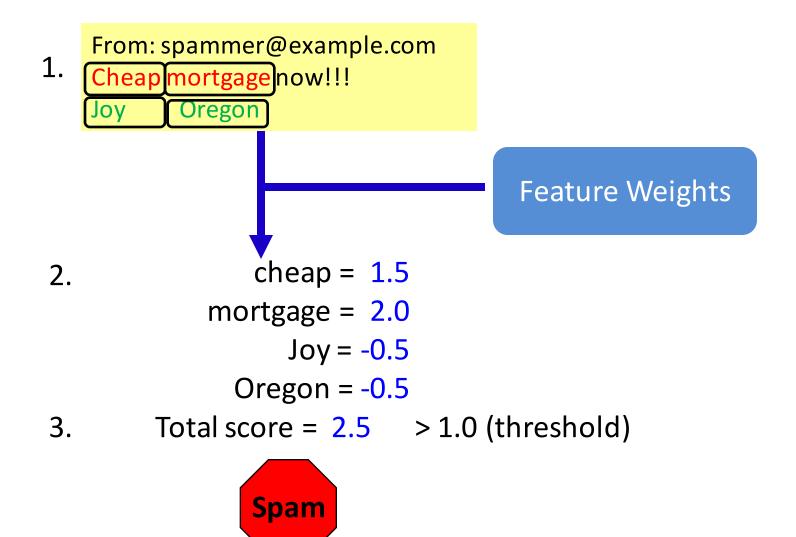
Example of Evasion: Spam Filter V1.0

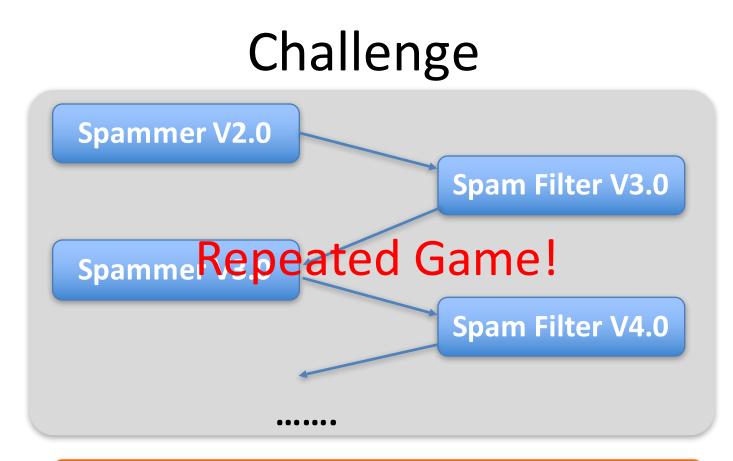


Example of Evasion: Spammer V1.0



Example of Evasion: Spam Filter V2.0 (Retraining)



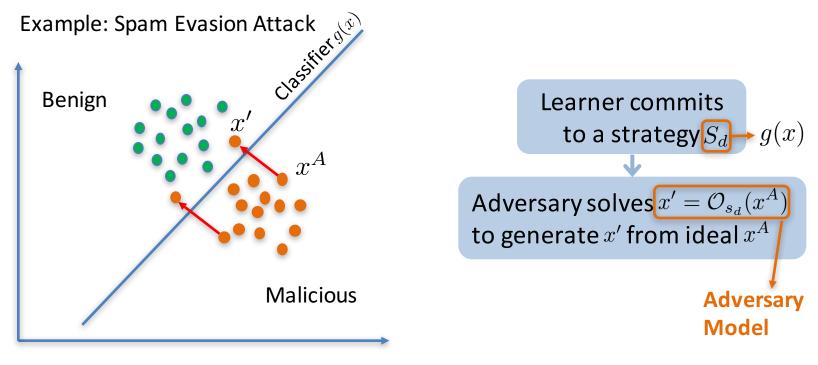


How to efficiently solve the game?

Stackelberg Game

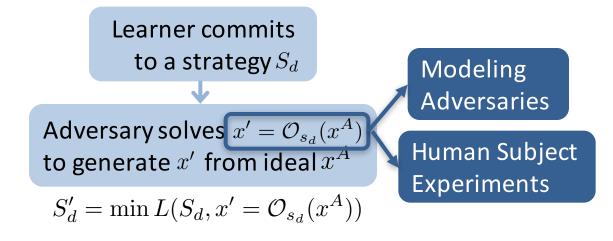
Stackelberg Game

- Learner: commits strategy S_d
- Adversary: best response based on S_d



 x^A : adversarial instance

Defending Evasions via Stackelberg Game

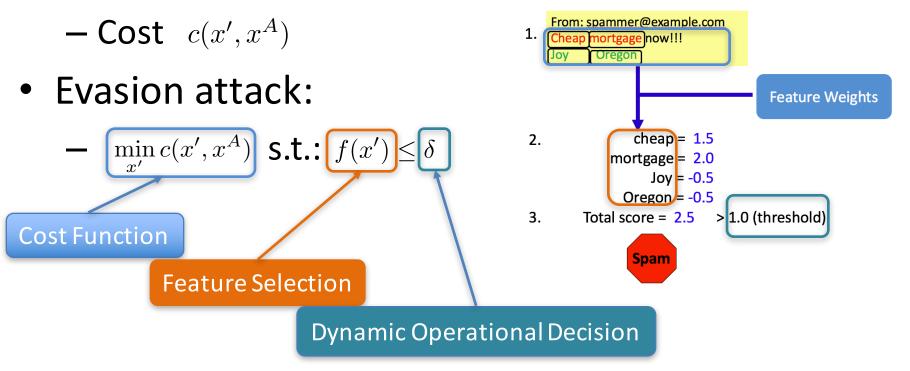


Idea: model the adversary's behavior

- Adversary cannot find additional manipulations
- Adversary incur too high manipulation cost

Modeling Evasion Attacks

• Adversary modifies x^A into instance x'

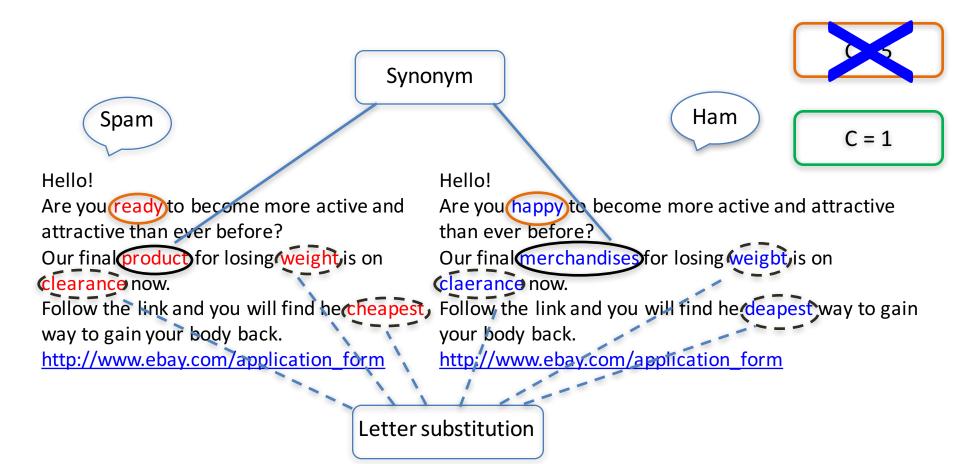


Better Cost Functions→Better Performance

- Model the adversary's cost function
 - Traditional: Distance based cost function

$$c(x', x^A) = \sum_i a_i |x'_i - x^A_i|$$

Distance Based Cost Function Underestimates Adversary



A Better Cost Function

- Model the adversarial cost function
 - Traditional: Distance based cost function

$$c(x', x^A) = \sum_i a_i |x'_i - x^A_i|$$

Equivalence based cost function

$$c(x', x^A) = \sum_{i} \min_{j \in F_i \mid x_j^A \oplus x_j' = 1} a_i |x_j' - x_i^A|$$

Feature Class

Semantic Based Distances

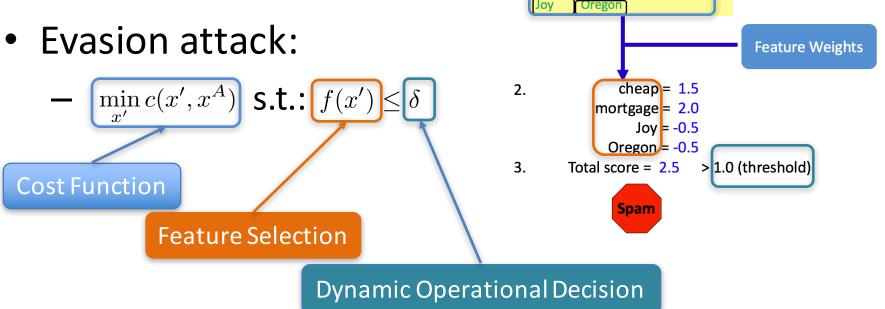
• Colorization and texture for images

GT Merganser Golfcart Umbrella Sandbar

Modeling Evasion Attacks

• Adversary modifies x^A into instance x'

– Modification cost $c(x', x^A)$

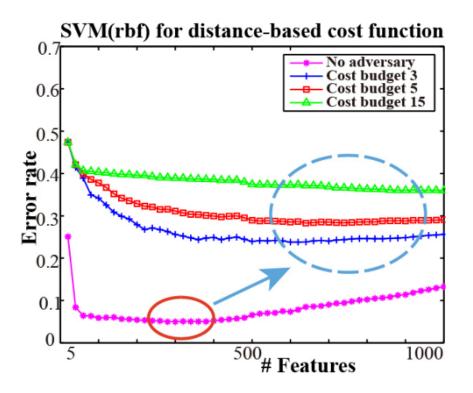


From: spammer@example.com

mortgagenow!!!

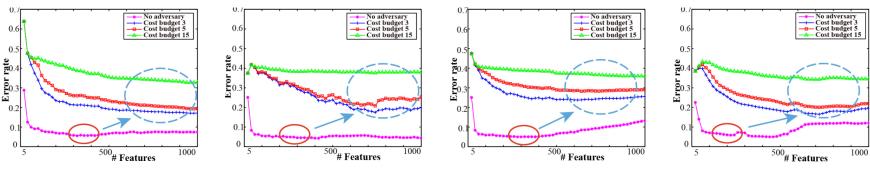
1. Cheap

Dangers of Dimension Reduction



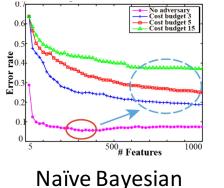
No Adversary: Dimension Reduction = Good With Adversary: Dimension Reduction = Vulnerable

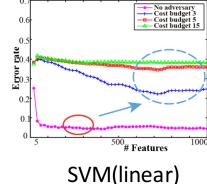
Vulnerability Across Learning Algorithms

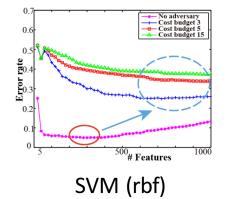


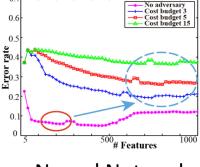
Distance Based Cost Function

Equivalence Based Cost Function









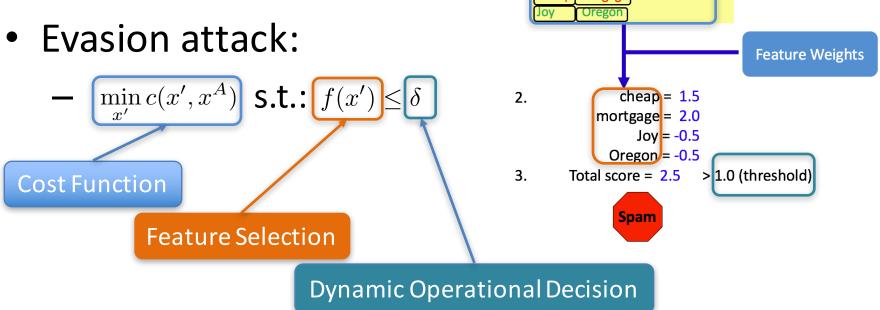
0.

Neural Networks

Modeling Evasion Attacks

• Adversary modifies x^A into instance x'

- Modification cost $c(x', x^A)$



From: spammer@example.com

gage now!!!

1.

Scaling Optimization

- Adversary has a preferred malicious instance x^A
 Modifying x^A into instance x' incurs a cost c(x', x^A)
- Evasion attack:
 - $\min_{x'} c(x', x^A)$ s.t.: $c(x', x^A) \le B$, $f(x') \le \delta$
 - Use q(x') = Q(x', f(x'))
 - Scale up: $q(x') = \sum_{j} \alpha_{j} \phi_{j}(x')$

Boolean Basis Functions

Adversary's Best Response is Hard!

- Computing adversary's best response
 - Theorem 1. Evasion is NP-complete

$$\sum_{j} \alpha_{j} \phi_{j}(x') \leq \lambda$$

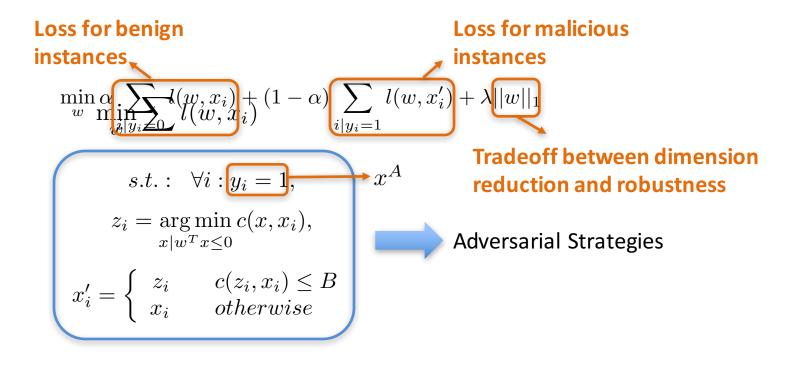
s.t.: $\|x - x'\| \leq k$

• Approximation algorithm

The number of inputs in basis is bounded by c. ApproxEvasion computes a solution x' which achieves $\Delta \ge \frac{\Delta}{1+\epsilon}$ in $poly(n, \frac{1}{\epsilon}, 2^c)$

- Branch and bound
- Greedy Heuristic
- Approximation

Defending Evasions via Stackelberg Game



Mixed Integer Linear Programming (MILP)

$$\begin{split} \min_{\substack{\omega \ z, r}} \alpha \sum_{i \mid y_i = 0} D_i + (1 - \alpha) \sum_{i \mid y_i = 1} S_i + \lambda \sum_j K_j \\ s.t. : \quad \forall i, j : z_i(a), r(a) \in \{0, 1\} \\ \sum_a z_i(a) = 1 \\ e_i &= \sum_a m_i(a)(L_{ai}T_a + (1 - L_{ai})x_i) \\ \forall a, i, j : -Mz_i(a) \leq m_{ij}(a) \leq Mz_i(a) \\ \omega_j - M(1 - z_i(a)) \leq m_{ij}(a) \leq \omega_j + M(1 - z_i(a)) \\ \sum_j \omega_j T_{aj} \leq 2 \sum_j T_{aj} y_{aj} \\ \forall a, j : -Mr_a \leq y_{aj} \leq Mr_a \\ \omega_j - M(1 - r_a) \leq y_{aj} \leq \omega_j + M(1 - r_a) \\ D_i &= \max(0, 1 - \omega^T x_i) \\ S_i &= \max(0, 1 + e_i) \\ K_j &= \max(\omega_j, -\omega_j) \end{split}$$

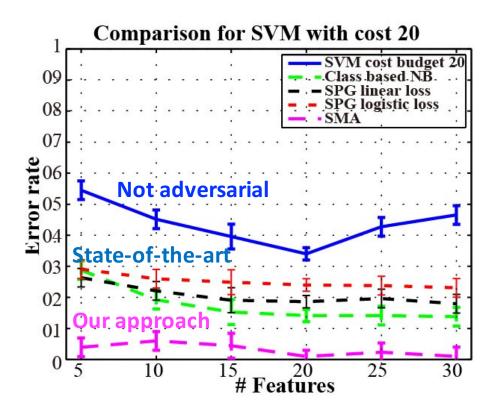
Two reasons for intractability:

- The large number of adversarial objective instances x^A
- Intractable amount of constraints for each attack action x^\prime

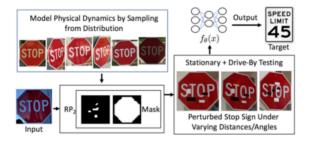
Solutions:

- Clustering attacks: cluster malicious feature vectors in training data
- Constraint generation: iteratively add "best response" attacks into MILP

Our Solution (SMA) Outperforms

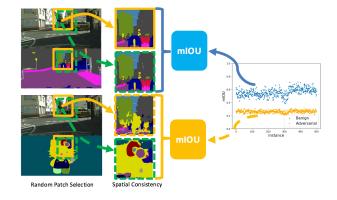


The Stackelberg multi-adversary model (SMA) significantly outperforms in adversarial environments with a range of selected dimensions



Real world attacks against **different sensors**

Potential **defenses** against adversarial behaviors via game theory



Potential **defenses** against adversarial behaviors based on learning properties

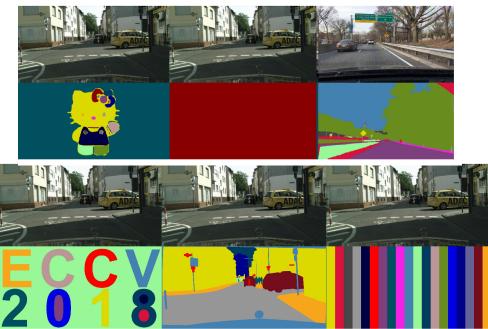
Beyond the Min-max Game

- Will it help if we have more knowledge about our learning tasks?
 - Properties of learning tasks or data
 - General understanding about ML models

Characterize Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation

- Attacks against semantic segmentation
 - State-of-the-art attacks against segmentation: Houdini [NIPS2017], DAG [ICCV 2017]
 - We design diverse adversarial targets: hello kitty, pure color, a real scene, ECCV, color shift, strips of even color of classes
 - Cityscapes and BDD datasets

Benign



Adversarial Examples

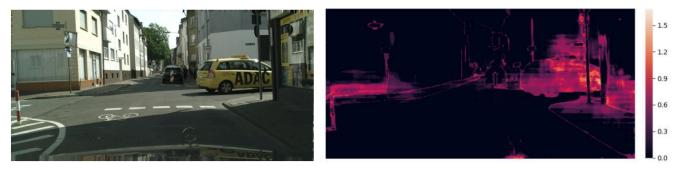
Spatial Context Information

- Spatial consistency is a distinct property of image segmentation
- Perturbation at one pixel will potentially affect the prediction of surrounding pixels
 For each pixel m, we select

$$\mathcal{H}(m) = -\sum_{j} \mathcal{V}_m[j] \log \mathcal{V}_m[j]$$

(d) DAG | Pure

For each pixel m, we select its neighbor pixels and calculate the entropy of their predictions for m

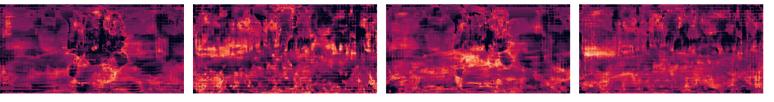


(a) Benign example

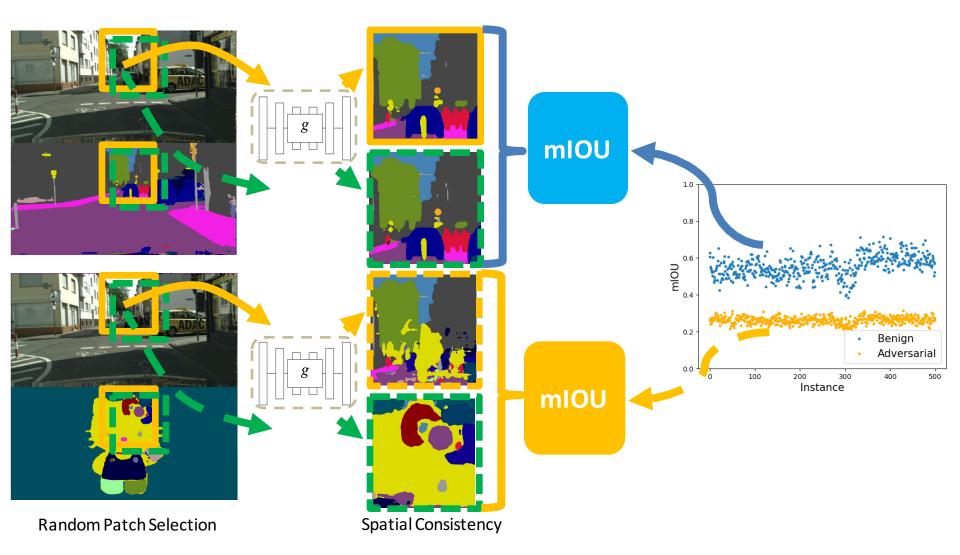
(c) DAG | Kitty

(b) Heatmap of benign image

(e) Houdini | Kitty (f) Houdini | Pure



61



Pipeline of spatial consistency based detection for adversarial examples on semantic segmentation

Detecting adversarial instances based on spatial consistency information

- Both the spatial consistency based detection and the scaling based baseline achieve promising detection rate on different attacks
- The scaling based baseline fails to detect strong adaptive attacks while the spatial based method can

			Doto	ction	Dotocti	on Adap
Method	Model	mIOU	DAG	Houdini Pure Kitty	DAG	Houdini
$\begin{array}{c c} Scale & 0.5 \\ Scale & 3.0 \\ (std) & 5.0 \end{array} ($	DRN 16.4M)		$100\% \ 100\%$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100% <mark>0%</mark>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
- I ~ I	DRN 16.4M)	66.7	$\begin{array}{c} 100\% \\ 100\% \\ 100\% \\ 100\% \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 100\% \\ 100\% \\ 100\% \\ 100\% \end{array}$	100% 100%

Takeaways

Spatial consistency information can be potentially applied to help distinguish benign and adversarial instances against segmentation models.

Temporal consistency?

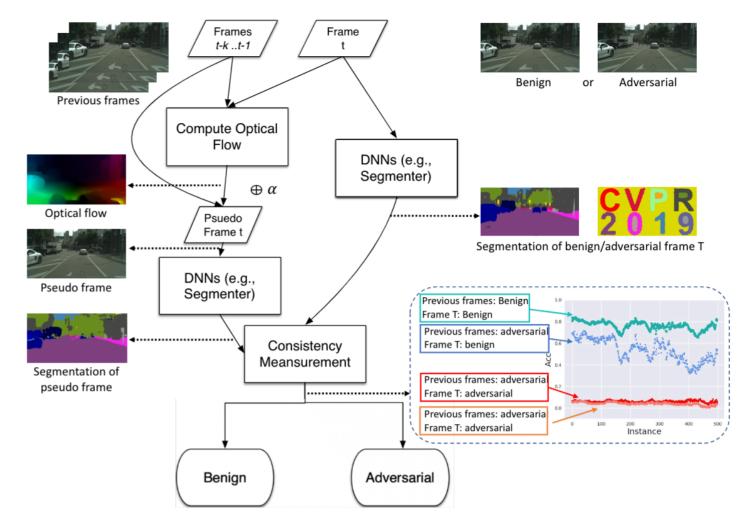
Adversarial Frames In Videos

Attacks on segmentation

Attacks on pose estimation

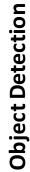
Attacks on object detection

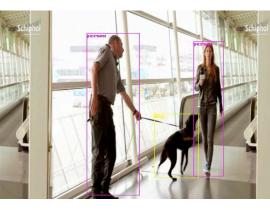
Defensing Adversarial behaviors in Videos – Temporal Dependency



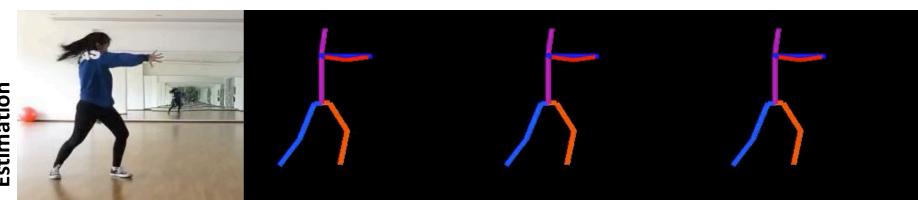
Teels	Attack	Target	Previous		Detection	ı	Detection Adap		
Task	Task Method		Frames	1	3	5	1	3	5
		CVPR	Benign	100%	100%	100%	100%	100%	100%
		CVPK	Adversarial	100%	100%	100%	100%	100%	100%
	Houdini	Domonning	Benign	100%	100%	100%	100%	100%	100%
	Houdini	Remapping	Adversarial	100%	100%	100%	100%	100%	100%
		String	Benign	100%	100%	100%	100%	100%	100%
Semantic		Stripe	Adversarial	100%	100%	100%	99%	100%	100%
Segmentation	DAG	CVPR	Benign	100%	100%	100%	100%	100%	100%
		CVPK	Adversarial	100%	100%	100%	100%	100%	100%
		Remapping	Benign	100%	100%	100%	100%	100%	100%
			Adversarial	100%	100%	100%	100%	100%	100%
		Stripe	Benign	100%	100%	100%	100%	100%	100%
			Adversarial	100%	100%	100%	100%	100%	100%
11	Houdini	shuffle	Benign	100%	100%	100%	100%	100%	100%
Human Pose			Adversarial	100%	100%	100%	99%	100%	100%
Estimation	Houdilli	Transpose	Benign	100%	100%	100%	98%	100%	100%
		Transpose	Adversarial	98%	99%	100%	98 %	99%	100%
		all	Benign	100%	100%	100%	100%	100%	100%
Object	DAG		Adversarial	100%	100%	100%	98%	100%	100%
Detection	DAG	person	Benign	99%	100%	100 %	100%	100%	100%
			Adversarial	97%	98%	100%	96 %	97%	100%

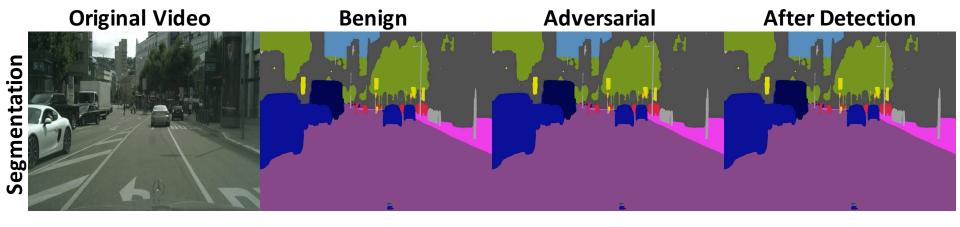
- The results show that choosing more random patches can improve detection rate while k=5 is enough to achieve AUC 100%
- The spatial consistency based detection is robust against strong adaptive attackers due to the randomness in patch selection





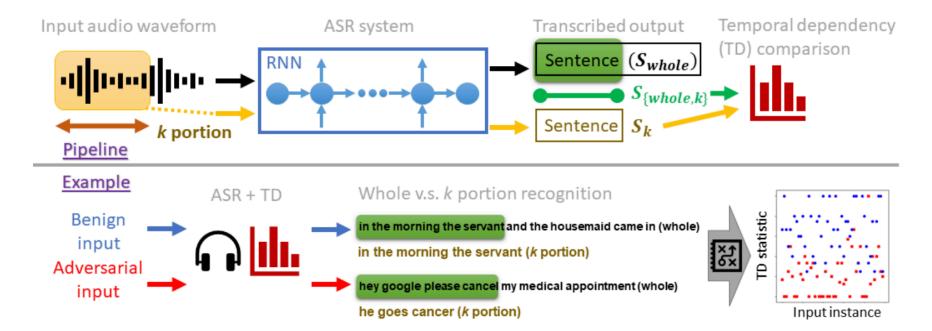
Human pose Estimation





Temporal Consistency Based Analysis

"Yanny" or "Laurel"? – adversarial audio



Temporal Consistency (TD) Based Detection

Туре	Transcribed results
Original	then good by said the rats and they went home
the first half of Original	then good bye said the raps
Adversarial (short)	hey google
First half of Adversarial	he is
Adversarial (medium)	this is an adversarial example
First half of Adversarial	thes on adequate
Adversarial (long)	hey google please cancel my medical appointment
First half of Adversarial	he goes cancer

Dataset	LSTM	TD (WER)	TD (CER)	TD (LCP ratio)
Common Voice	0.712	0.936	0.916	0.859
LIBRIS	0.645	0.930	0.933	0.806

TD achieves high detection rate for adversarial audio

Strong Adaptive Attacks

Segment Attack: Attack only the first k length S_{K}

Туре	Transcribed results
Original	and he leaned against the wa lost in reveriey
the first half of Original	and he leaned against the wa
Adaptive attack target	this is an adversarial example
Adaptive attack result	this is an adversarial losin ver
the first half of Adv.	this is a <mark>agamsa</mark>
Adaptive attack target	okay google please cancel my medical appointment
Adaptive attack result	okay google please cancel my medcalosinver
the first half of Adv.	okay go please

Concatenate Attack: attack different segments individually and concatenate them

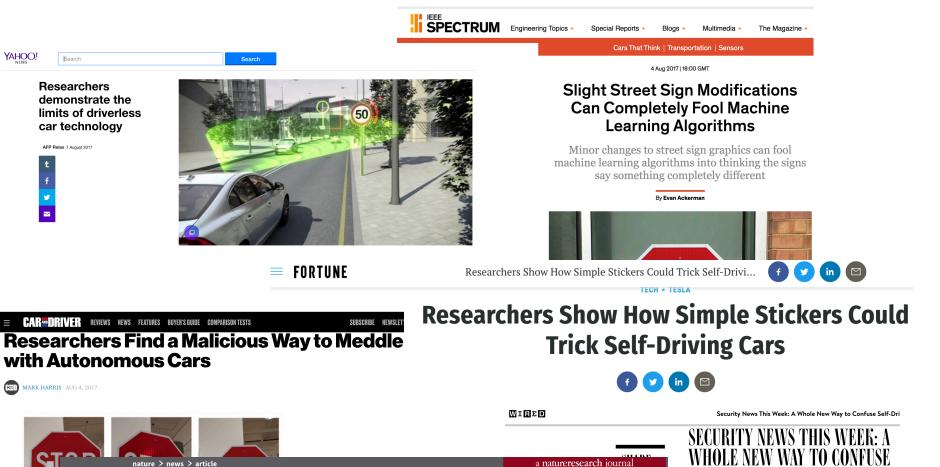
Туре	Transcribed results
Original	why one morning there came a quantity of people and set to work in the loft
Attack target	this is an adversarial example
$\begin{array}{c} S_k \\ S_{k^-} \\ S_k + S_{k^-} \end{array}$	this is an
S_{k-}	adversarial example
$S_k + S_{k-}$	this is a quantity of people and set to work in a lift
S_k	this is an adversarial example
S_{k-}	sil
S_{k}^{-} $S_{k} + S_{k}^{-}$	this is an adernari eanquatete of pepl and sat to work in the loft

Strong Adaptive Attacks

Combination Attack: attack both individual sections and whole sentence

Combination	Detection	Т	TD metrics			
Attack	Parameter k_D	WER	CER	LCP		
	1/2	0.607	0.518	0.643		
$h_{1} = \{1\}$	2/3	0.957	0.965	0.881		
$k_A = \left\{\frac{1}{2}\right\}$	3/4	0.943	0.951	0.875		
	Rand(0.2, 0.8)	0.889	0.882	0.776		
	1/2	0.932	0.912	0.860		
$h_{1} = \{2\}$	2/3	0.611	0.543	0.604		
$k_A = \left\{\frac{2}{3}\right\}$	3/4	0.956	0.944	0.872		
	Rand(0.2, 0.8)	0.879	0.890	0.762		
	1/2	0.633	0.690	0.552		
$h_{1} = (1 \ 2)$	2/3	0.536	0.615	0.524		
$k_A = \{\frac{1}{2}, \frac{2}{3}\}$	3/4	0.942	0.974	0.934		
	Rand(0.2, 0.8)	0.801	0.880	0.664		
	1/2	0.665	0.682	0.604		
$k = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$	2/3	0.653	0.664	0.564		
$k_A = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}\}$	3/4	0.633	0.653	0.601		
	Rand(0.2, 0.8)	0.785	0.832	0.642		
	1/2	0.701	0.712	0.615		
$k_A = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}\}$	2/3	0.684	0.701	0.583		
$\kappa_A = \{\overline{2}, \overline{3}, \overline{4}, \overline{5}\}$	3/4	0.681	0.693	0.613		
	Rand(0.2, 0.8)	0.742	0.811	0.623		

Conclusion: Strong adaptive attack seldom succeeds



NEWS · 10 MAY 2019

MENU 🗸

nature

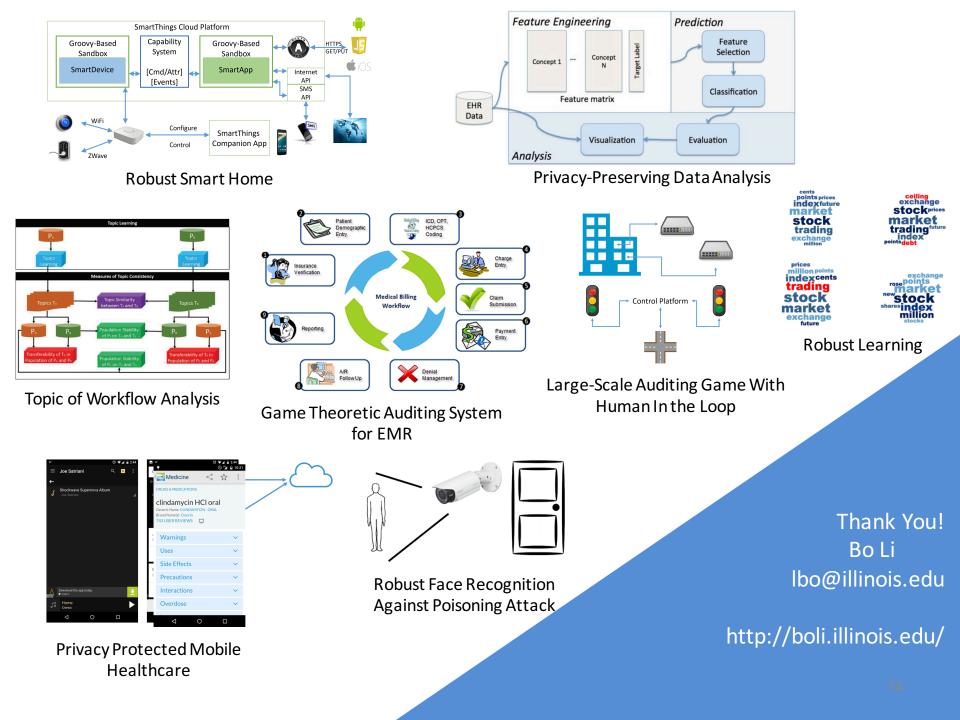
AI can now defend itself against malicious messages hidden in speech Stickers on stre

Computer scientists have thwarted programs that can tri malicious audio as safe.

Stickers on street signs can confuse self-driving cars, researchers show

Subscribe

SELF-DRIVING CARS

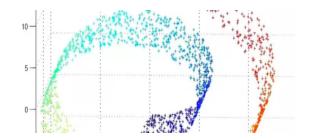


Beyond the Min-max Game

- What if we have more knowledge about our learning tasks?
 - Properties of learning tasks and data
 - General understanding about ML models

Important Concept: data manifold

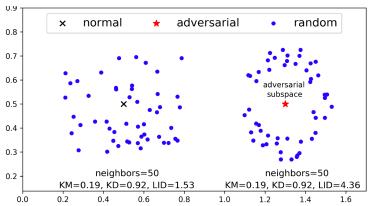
- Data Manifold theory:
 - Manifold: the subspace that has local Euclidean space properties
 - The data we observed were actually mapped from a low-dimensional space
 - We use PCA/autoencoders etc. to "unwrap" the manifold
 - We assume the data points from testset and trainset are all from a same manifold
 - Not the case if we consider adversaries



[ICLR 2018]

Previous Measures

- K-means distance
 - Distance to k nearest neighbors
- Kernel density
 - non-parametric



estimate the pdf (probability density function) of a random variable

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} k\left(\frac{x - x_i}{h}\right)$$

 Can fail to distinguish the sub-manifold that a test case lies in

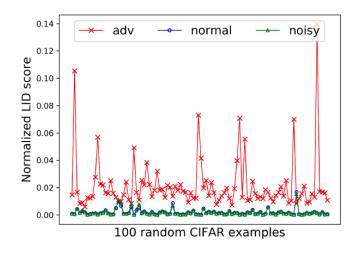
Estimation of Local Intrinsic Dimensionality (LID)

- The sub-manifolds are not parametric
 - given by data points instead
- We use estimation
 - Sample a small set of size larger than k
 - compute their distance to x, take closest k
 - $r_k(x)$ is the maximum of the neighbor distances

$$\widehat{\text{LID}}(x) = -\left(\frac{1}{k}\sum_{i=1}^{k}\log\frac{r_i(x)}{r_k(x)}\right)^{-1}$$

Use LID to characterize the sub-manifold

- LID of benign x
 - The dimension of S (the sub-manifold x lies in)
 - Should be small since S is under some intrinsic constraints
- LID of adversarial x':
 - Full degrees of freedom afforded by the representational dimension of the data domain
 - Attacks generally allow modification of all pixels



Characterizing Adversarial Examples

Dataset	Feature	FGM	BIM-a	BIM-b	JSMA	Opt
	KD	78.12%	99.14%	98.61%	68.77%	95.15%
MNIST	BU	32.37%	91.55%	25.46%	88.74%	71.29%
IVIINIS I	KD+BU	82.43%	99.20%	98.81%	90.12%	95.35%
	LID	96.89%	99.60%	99.83%	92.24%	99.24%
	KD	64.92%	68.38%	98.70%	85.77%	91.35%
CIFAR-10	BU	70.53%	81.60%	97.32%	87.36%	91.39%
CIPAR-10	KD+BU	70.40%	81.33%	98.90%	88.91%	93.77%
	LID	82.38%	82.51%	99.78%	95.87%	98.93%
	KD	70.39%	77.18%	99.57%	86.46%	87.41%
SVHN	BU	86.78%	84.07%	86.93%	91.33%	87.13%
	KD+BU	86.86%	83.63%	99.52%	93.19%	90.66%
	LID	97.61%	87.55%	99.72%	95.07%	97.60%

AUC of different detection methods against various attacks

Attack Failure Rate of Strong Adaptive Attacks Against LID Detector

	MNIST	CIFAR-10	SVHN
Attack Failure Rate (one-layer)	100%	95.7%	97.2%
Attack Failure Rate (all-layer)	100%	100%	100%