Waterloo ML + Security + Verification Workshop

Machine Learning for
Integer Programming

Elias B. Khalil e¢khalil.com

Assistant Professor of
Nnaustrial =ngineerng

2D,
' :\.
£
0 A

~0stdoc

POLYTECHNIQUE

! P N
MONTREAL SZ}’; - N UNIVERSITY OF
) —

7 TORONTO
starting July 2020

b Py
3,
3 Eg'\
l:f';- ! .-'\:::
iy

UNIVERSITE NS Y

g SR
D'INGENIERIE SPEIRG S .

http://www.ekhalil.com

In Memoriam: Shabbir Ahmed

 Anderson-Interface Chair and professor in Georgia
Tech’s H. Milton Stewart School of Industrial and
Systems Engineering (ISyE)

e Giant of Stochastic Optimization and Integer
Optimization

Learning to Run Heuristics in Tree Search

Elias B. Khalil!, Bistra Dilkina*!, George L. Nemhauser?, Shabbir Ahmed?, Yufen Shao’

Learning to Solve Large-Scale Security-Constrained Unit

Commitment Problems

Alinson S. Xavier!, Feng Qiu!, and Shabbir Ahmed?

learn to design

learn to design

Can “learn” to
2

learn to design

Can “learn” to
2

learn to design

Can “learn” to
2

Data Center Resource Management

4 Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

cru @ .‘ ® O
o

Services

4 Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

cru @ “ ® O
o

Services

|) 00
Machines E 0 Q 88 oo ED o

00

4 Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

cru @ .‘ ® O
o

< - :
| L) 00
Machines E 0 Q an " E 00

00

Services

4 Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

https://www.reit.com/what-reit/reit-sectors/data-center-reits

q ccueo @ @

Services coe
Memory

¥ e, N, “‘ o ; N

M 0 Qoo
Machines ¢ 00

I
& P
)

y,, = 1 if machine m is used S

X, , = lif service § runs on m Services

M o 1o
Machines O n)

y,, = 1 if machine m is used S
X, , = lif service § runs on m Services

x € {0,1}"M y e {0,111

e ™ Y-~
P - | vedis A
LSRN - — 5
PR N
23 N,

M o 100
Machines O 00

y,, = 1 if machine m is used S
X, , = lif service § runs on m Services

x € {0,1}>M y e {0,1}¥

* N = P -
CENES d e R o
SRR 7 SN

A '

minimize 2 Ym Machines E ¢ E o0

m=1

y,, = 1 if machine m is used S
X, , = lif service § runs on m Services

x € {0,1}>M y e {0,1}¥

> ¢ - R .
. ’ '

minimize 2 Ym Machines E ¢ E o0

m=1

Constraints:

y,, = 1 if machine m is used S
X, , = lif service § runs on m Services

x € {0,1}"M y e {0,111

M

M
minimize) y, _
2 Machines

m=1

Constraints:

Each service on one machine only

y,, = 1 if machine m is used S
X, , = lif service § runs on m Services

x € {0,1}"M y e {0,111

M

M
minimize 2 Vo

— Machines
Constraints:
Each service on one machine only
M
Z Xg =1 Vs
m=1

Ym 2 X m Vs, m

Machine is “ON” if a Job is assignhed to it

y,, = L if machine m is used S

x, . = lif service § runs on m Services

x € {0,1}"M y e {0,111

M
m|n|mlzemZ=:1ym MaChlnes E ¢¢ 000 ﬁﬁ
Constraints:

R e ————— e ——————— —— R e ——— e ———— E—

Each service on one machine only lMgmjg_nj ;B;g/'tyl
M S
Z X, =1 Vs 2 mem(s) - x; , < cap-mem(m) Vm
m=1 s=1

VY 2 Xgpy VS, M

Machine is “ON” if a Job is assignhed to it

y,, = 1l if machine m is used S CPU @ ‘ ‘
x, . = lif service § runs on m Services

x € {0,1}"M y e {0,111

M
m|n|mlzemZ=:1ym MaChlnes E ¢¢ 000 ﬁﬁ
Constraints:

e e ————— e ——————— —— R e ——— e ———— E—

Each service on one machine only lMJeﬁmjg;; ;B;g/'tyl
M
szm =1 Vs Z mem(s) - x; , < cap-mem(m) Vm
m=1
VY 2 Xgpy VS, M Z cpu(s) - x,,, < cap-cpu(m) Vm

Machine is “ON” if a Job is assignhed to it Processor capacity

Safety-Critical Machine Learning

Safety-Critical Machine Learning

STOP

YIELD

Safety-Critical Machine Learning

STOP

cor [
B

YIELD

YIELD

Safety-CriticaI Machine Learning

Safety-CriticaI Machine Learning

Model ReLU with Binary
varlables + Llnear Inequalltles w

Safety-Critical Machine Learning

STOP

cor [
B

YIELD

YIELD

Safety -Critical MachlneLearnlng

Verification Prolo\em

prove Ax’ close to x W
such that fx'; STOP) < f(x YIELD))

Auction Design Data Center Management i Political Districting Kidney Exchange

; ‘
i n‘l ! =
ed | d 55
-
Potoakex Mich . . it .
et & = . > .

Tolede €

\])
i [— . . : ~ . ‘
Py - HMCI0] >

AR 4
ol] '

‘ A
5 - P %
N ' ¥h 5k
T rem e o A= INDIANA

b o gt o L o

('_- > ‘

Auction Design Data Center Management A Political Districting Kidney Exchange

" .
R ’,_4 . = —
THE Kl HAIN i WY |
How a sir :"[' organd< onation :’6‘:71":;_"'13:1 ;‘::' ves ang
created the longest-running transplant chain
Potoakes Mich . 4 . ™ i aA
Fiosd Enmae Phase—ie Phenie Tolode C
\ ’
3

-

‘Ridesharing

Auction Design Data Center Management Polltlcal Dlstrlctlng Kidney Exchange

THE KIDNEYCHAIN €8

How a single organ donation changed 20 lives and
creats \g!’ ve longest-running transplant chain

3 ’
[}
el b wmte omomnu mowoom ot

UIEET
Bl s e

W W g

S —

MMNC

Cancer Therapeutlcs

A|rI|ne Schedullng

2
\, T
T

p ——. - | A e &
'“—l. - — sz v

L e RS

‘._ :]L

-,

g1

. ' ,
21 At el '/‘ , '
— S ey | 38 o
y - .
- e ‘._‘.h__ !
_ oy :
- -

Auction Design Data Center Management ~Political Districting Kidney Exchange

INDIANA

b B . C I >4 - o e e
=2 > L . e’ - . O AT o o~ = Lo el - . O [y 202 > QP B a2 s P - .. . Sy 252 4 =N P o . . . °_ 52 e O P o . . . -, - - LT = - . - - . = e . . .
N YW A AL OR - e P AN, - V. IO 1. R TIROY VR RO W - Y O RV VX D B gor oo oo o0 e e o ok R R R e O 0 A T s B go e o L te CEe T im0 R S - oo el o S b R T R S X S B oo e e Tt e T a e T P K A 207 Vo2 2 =20

> 50% of INFORMS Edelman Award
winners use Discrete Optimization
— Billions () In savmgs/proflt

George Nemhauser Plenary at EURO INFORI\/IS 2013

¥ .

ons

Data Center Resource Management

Data Center Resource Management

Data Center Resource - ement

Data Center Resource - ement

Data Center Resource - ement

Tackling NP-Hard Problems

Paradigm Design Rationale

Tackling NP-Hard Problems

Paradigm Design Rationale

Tight formulations
Powertul Branch-and-Bound solvers

Exhaustive Search

Tackling NP-Hard Problems

Tight formulations

Exhaustive Search Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Tackling NP-Hard Problems

Tight formulations

Exhaustive Search Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Intuition exploiting problem structure

Heuristics Empirical trial-and-error

Tackling NP-Hard Problems

Tight formulations

Exhaustive Search Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Intuition exploiting problem structure
Empirical trial-and-error

4 PM 5 PM
CPU‘QL‘—'.“ CPU.‘ “"

? ?

O - 00 O 00
O oo - Hoo 'm 00 -

Heuristics

00
00
00

Tackling NP-Hard Problems

Tight formulations

Exhaustive Search Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees
-y Intuition exploiting problem structure
Heuristics Emp_iﬂ_ca\ trial-and-err_c_)r_
T | .r - ; @ 0@ c 00 cru @ Q5 PM ® - O
How do you tailor the 2 i
- algorithm to YOUR - | i
instances”? o Hss -

Tackling NP-Hard Problems

Customization via...

Tight formulations

Exhaustive Search Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees
-y Intuition exploiting problem structure
Heuristics Emp_iﬂ_ca\ trial-and-err_c_)r_
T | .r - ; @ 0@ c 00 cru @ Q5 PM ® - O
How do you tailor the 2 i
- algorithm to YOUR - | i
instances”? o Hss -

Tackling NP-Hard Problems

Customization via...

Problem-Specific Bounding

Exhaustive Search functions or search rules

Approximation Algorithms Good worst-case guarantees
-y Intuition exploiting problem structure
Heuristics Emp_iﬂ_ca\ trial-and-err_c_)r_
j | .r - ; cru @) Ol%:M N N cPu @ Q5 PM ® - O
How do you tailor the 2 i
- algorithm to YOUR - | R
instances”? o Hss -

Tackling NP-Hard Problems

Customization via...

Exhaustive Search

Problem-Specific Bounding
functions or search rules

Approximation Algorithms

Make explicit assumptions on input
distribution and redesign algo.

Heuristics

How do you tailor th
- algorithm to YOUR -
instances?

l

ﬂ

Intuition exploiting problem structure

Empirical trial-and-error

4 PM 5 PM
CPU‘ .L.—_' o @ ‘ cru @ ‘ @ @
? ?

e .
00

00
00
00

00 O 00
O

oo

~IRaRL] &
EE e -.~. =
,l‘- = - ' PM
.
LL R

?

00
O Hee - Heo

Tackling NP-Hard Problems

Customization via...

Problem-Specific Bounding

Exhaustive Search functions or search rules

Make explicit assumptions on input

Approxmatlon A‘gOrltth distribution and redesign algo.

Analyze algorithm behavior on your

Heuristics inputs; look for patterns to exploit

—— * ‘.@o“ "SP“.,.I.”.
How do you tailor the : ’

\ =% = W= =TT O Qoo 00

‘ - 0 @0 Hee

PM

e o @ o
t,

instances”? o B - &

Tackling NP-Hard Problems

Customization via...

e —— - S e ——

ANSWER:

Problem-Specific Bounding
functions or search rules

Make explicit assumptions on input
Manual intellectual/ distribution and redesign algo.

experimental ffort required Analyze algorithm behavior on your
- T UBRR - inputs; look for patterns to exploit

; * @) .B:_:—M °c0@® cru @ Qm PP
How do you tailor the e il
~ algorithm to YOUR-T™ "~ A~

?

instances”? o B - &

O p p ortun |ty Adversarial ML

Automatically tailor algorlthms
to a family of iInstances

Data Center Resource Management Forest Harvesting

o
. maximize Y rx;— CiVij o9 °
@) e @ o0 0@ e (S S S
subjecttox+x y]<1 . ¢ X e N/ 7
o
x € {0,1}", y € {0,1}" N ! v </ *
Quebec 1
® " . e
@
: T X \ e ® R NS
'''' o * . o
L] °® » o o’ . ®
o . .
uuuuu .. L N
¢ ﬁ ﬁﬁ Ontario 1 Ontario 2 Saskatchewan
E ¢ o0 00 e Revenue varies over time

— Different instances, same problem

g s

10

Data-Driven Algorithm Design

automatically discovers
novel secarcn strategies

Learned HeuristiC | . al He 5
/
—

Minimum
Vertex Cover
FINnd smallest
vertex subset

such that each
edge Is covered

Data-Driven Algorithm Design

automatically discovers
novel secarcn strategies

Learned HeuristiC | . al He 5
/
—

Minimum
Vertex Cover
FINnd smallest
vertex subset

such that each
edge Is covered

Data-Driven Algorithm Design

NeurlPS-19, hopetully?

ML Paradigm General Integer
Programming Heuristic

Self-Supervised Learning N iy . SV

R . %
NeurlPS-17 x - : LOSS(.)
. .- mu.,d(x,)/‘@*f’n .
Greedy Heuristic o A

Reinforcement Learning M a\’—

AsAl-16 Exact Solving 1ycAl-17

Heuristic Selection

Supervised Learning 1N - xz’p S == ()
Xn Q Q Feasible solution?

Graph Optimization Integer Programming

Problem Type

12

Branch & Bound for Integer Optimization
“s| P-based mincTxst Ax < b.xe (0.1} -and & Doig, 1960

X

Repeat:
Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

13

Branch & Bound for Integer Optimization
“s| P-based mincTxst Ax < b.xe (0.1} -and & Doig, 1960

X

Repeat:

1 Select Node

Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

13

Branch & Bound for Integer Optimization
"o | P-based mincTx st Ax < b.x e Land & Doig, 1960

Repeat: (0,117

Solve LP Relaxation
Select Node — |_ower Bound on OPT

9 Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

13

Branch & Bound for Integer Optimization
"o | P-based mincTx st Ax < b.x e Land & Doig, 1960

Repeat: (0,117

Solve LP Relaxation
Select Node — Ly Bound on OPT

Solve LP Relaxation
worse than best solution?

3

Add Cuts
Run Heuristics
Branch

13

Branch & Bound for Integer Optimization
“s| P-based mincTxst Ax < b.xe (0.1} -and & Doig, 1960

X

Repeat:

Add Cuts:
Select Node Tightening Constraints

Solve LP Relaxation

4 Add Cuts
Run Heuristics
Branch

13

Branch & Bound for Integer Optimization
“s| P-based mincTxst Ax < b.xe (0.1} -and & Doig, 1960

X

Repeat:

Heuristic A
SeleCt NOde Heur!stic B
Heuristic C \

Solve LP Relaxation

Feasible solution?

Update Best Solution
Add Cuts

5 Run Heuristics
Branch

13

Branch & Bound for Integer Optimization
“s| P-based mincTxst Ax < b.xe (0.1} -and & Doig, 1960

X

Repeat:

Select Node X17?
?
Solve LP Relaxation *x =190, \ X2
»
l, A | Xp?
Add Cuts \ /’ \

Run Heuristics
O Branch

13

Branch & Bound for Integer Optimization
“s| P-based mincTxst Ax < b.xe (0.1} -and & Doig, 1960

X

Repeat:
Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
O Branch

13

Branch & Bound for Integer Optimization
“s| P-based mincTxst Ax < b.xe (0.1} -and & Doig, 1960

X

Repeat:
1 Select Node

Solve LP Relaxation *2=09 x, =1

Add Cuts
Run Heuristics
Branch

13

Branch & Bound for Integer Optimization
“s| P-based mincTxst Ax < b.xe (0.1} -and & Doig, 1960

X

Repeat:
Select Node
Solve LP Relaxation

x, =0 x, =1

O &

X4=1

Add Cuts
Run Heuristics

X4=O

Branch ‘ ‘

13

minc’x s.t. Ax < b, x € {0,1}"

X

14

minc’x s.t. Ax < b, x € {0,1}"

A

Objective value

OPT >

Search tree nodes

14

minc’x s.t. Ax < b, x € {0,1}"

Objective value | § :
i Primal bound: value

| of best solution so far

OPT

Search tree nodes

14

minc’x s.t. Ax < b, x € {0,1}"

Objective value | § :
i Primal bound: value

| of best solution so far

v »]
%
TRAEENAD: Terern . SN A = il < A SRV g
IS Er OO R AR oFe G 2 v e o N V3 TR WY N TR WO S I B K e £ D
Q..
S
B
&
Ky 8
v) Mt s
e = < 2
] et PPN .
. S - cag I)
il -
P — P
. g e
Sy’
-
S . a el
—~ e
- sl :
/%
-
=4 \
-

Search tree nodes

* Dual bound: min. value of
| LP relaxation at frontier

14

minc’x s.t. Ax < b, x € {0,1}"

Objective value | :
i Primal bound: value

| of best solution so far

vV 8|

&

[- S Sl J ; g - NG gl i s < i —

o S Eag-moa O S cabs Ao o oo o N 3 TG By N ORI OR -~ o V3 Wy N TR
Q..
e
\
b
P 3 .
7) Mt s
n e » i
. W7~ - .. ieE
\ T a - cag I i
g B AR Y- -~
a5 ap
. g pone
- -
-
g 2T -
-~ _ e
- sl °
/.2,
-
- \
-

Search tree nodes

_»~ Dual bound: min. value of
| LP relaxation at frontier

14

minc’x s.t. Ax < b, x € {0,1}"

X
Objective value :
{ Primal bound: value
i of best solution so far
OPT

Search tree nodes

_»~ Dual bound: min. value of
| LP relaxation at frontier

14

minc’x s.t. Ax < b, x € {0,1}"

Objective value | :
i Primal bound: value

| of best solution so far

OPT

Search tree nodes

* Dual bound: min. value of

Value ot LP LP relaxation at frontier
relaxation at - ===
root node

14

Heuristics matter!

3.
g
d

Objective value | § _ .
i Primal bound: value

| of best solution so far

OPT
Search tree nodes
./~ Dual bound: min. value of
valueof LP |/ LP relaxation at frontier
relaxation at - - -
root node

15

Heuristics matter!

1- Better primal bound —> More nodes pruned

Objective value

OPT

Value of LP
relaxation at
root node

0. Y
g
ul

;., —> Gap closed faster!
i Primal bound: value
i of best solution so far

Search tree nodes

/" Dual bound: min. value of
| P relaxation at frontier

15

Heuristics matter!

Objective value

OPT

Value of LP
relaxation at
root node

3.
g
ol

{ Primal bound: value
i of best solution so far

2- Better feasible solutions
—> More effective decision-making

Search tree nodes

" Dual bound: min. value of
| P relaxation at frontier

15

ML Paradigm

Self-Supervised Learning 1IN

Reinforcement Learning 1N

Supervised Learning 1R

NeurlPS-17
Greedy Heurlstlc

l
%gmax

Graph Optimization

Data-Driven Algorithm Design

NeurlPS-19, hopetully?

General Integer

Programming Heuristic

Exact Solving ycal-17

Heuristic Selection

@
D) e,
[N} . /// \\\
HONO

Integer Programming

Problem Type

16

The Heuristic Selection Problem

MIP solvers implement many primal heuristics: 54 in SCIP (2019)

JFound Incumbent! diving 1 E 4

x FAILED feaspump

17

The Heuristic Selection Problem

MIP solvers implement many primal heuristics: 54 in SCIP (2019)

frequency for calling primal heuristic <nlpdiving>
[type: int, advanced: FALSE, range: [-1,65534], dei
heuristics/nlpdiving/freq = 10

JFound Incumbent! diving 1

X

FAILED feaspump

17

The Heuristic Selection Problem

MIP solvers implement many primal heuristics: 54 in SCIP (2019)

frequency for calling primal heuristic <nlpdiving>
[type: int, advanced: FALSE, range: [-1,65534], dei
heuristics/nlpdiving/freq = 10

frequency for calling primal heuristic <feaspump>
[type: int, advanced: FALSE, range: [-1,65534], de
heuristics/feaspump/freq = 20

JFound Incumbent! diving 1

X

FAILED feaspump

17

The Heuristic Selection Problem

P (2019)

Learning to Run Heuristics
[Khalil, Dilkina, Nemhauser, Ahmed, Shao, 2017]

Given: dataset of (
(node features, 0/1 success flag) 4

Learn: a classifier of heuristic success

FAILED feaspump

17

Primal Integral
A Good Performance Criterion

No incumbent at first x;, =0

\ Solving this node LP...
1 <)

1

X2:O X2

x, =0 x, =1

D .. gives 15 x4 = 0 x4= O
E 0.8 incumbent

iy | | O @

0.6 Running H at this node...

qe S

9 0.4 .. gives 2nd

(O incumbent

g 0.2 OPT found
- /

an

0
0 2 4 6 8 10

Learning to Run Heuristics

Logistic Regression P(N): Probability of
Data Collection w. 49 features finding incumbent
p N p N at node N
Machine Oracle:
) Success
Learning

- Prediction y
N /
6%% @%

Decision-Making 4. Decision: Run / Don’t run
3 Use Algorithm
oracle - “ Run-When-Successful
predictions

RWS: if P(N) > 0.5, run heuristic

19

Feature Engineering

» Global Features (4):
» optimality gap, root LP value / global lower (upper) bound

» Depth Features (2):
» node depth / max. depth in tree (max. possible depth)
» Node LP Features (8):

» sum of variables’ LP sol. fractionalities / #fractional variables
» num. of fractional variables / #integer variables
» num. variables roundable up (down) / #integer variables
» Scoring Features for Fractional Variables (35):
» number of up (down) locks

» normalized objective coefficient
» pseudocost score

Five statistics (mean, min., max., median, standard deviation)
for each metric over fractional variables in LP solution.

20

Binary Label

Feature Eng found incumbent (1), o.w. (0)

» Global Features (4):
» optimality gap, root LP value / global lower (upper) bound

» Depth Features (2):
» node depth / max. depth in tree (max. possible depth)
» Node LP Features (8):

» sum of variables’ LP sol. fractionalities / #fractional variables
» num. of fractional variables / #integer variables
» num. variables roundable up (down) / #integer variables
» Scoring Features for Fractional Variables (35):
» number of up (down) locks

» normalized objective coefficient
» pseudocost score

Five statistics (mean, min., max., median, standard deviation)
for each metric over fractional variables in LP solution.

20

Forest Harvesting

Natural Ressurcer R
“I Concada Can
Coaraadizn Forest Sopiia
Service G far

. d .|'- 3
' NOWFOUNDLAND
* ALBERTA mly S N | B " LABRADOR

SASKATCHEWAN
MANITOBA

PRINCE
EDWARD
QUEBEC ; [SLAND

ONTARIO U NP ‘ L O
i © __QRUNSWICK ~ SCOTIA

FOREST REGIONS PRINCIPAL TREE SPECIES S _
BOREAL - PREDOMINANTLY FOREST - White spruce, black spruce, baksam fr, jack pine, white birch, trembiing aspen
BOREAL - FOREST AND BARREN (] Whte spruce, black spruce, tamarack
BoReAL - FOREST AND GRASS [l Tremtiing aspen witow
suparAne [l Engelmann spruce, alpine fir, ladgepole pine
montane [Douglas-tir, lodgepale pne, pondercsa pne, trembing aspen
COAST - Yestem red cedar, westem hemicck, Srka spruce, Douglas-tir
cocumaian [estem red cedar, westem hemicek, Douglas-tie
pecowous Il eeech mapie, biock wainut, hickary, ask
GREAT LAKES - ST.LAWRENCE - fled pne, eastern whita pine, easiem hamiock, yellow tirch, maple, oak
ACADLAN - Aed sprece, taksam fr, maple, yellow Birch
GRASSLANDS D Trembling aspen, wilow, bur cak
Tunoea [

e e

21

Forest Harvesting

Natural Ressurcer Rew 3
“l Coneada Cansdl

Camaadizn Forest Sopiin
Servier €

* ALBERTA

SASKATCHEWAN

FOREST REGIONS PRINCIPAL TREE SPECIES —=
BOREAL - PREDOMINANTLY FOREST - Whte spruce, black spruce, balsam £, jack pine, white birch, trembiing aspen
BOREAL - FOREST AND BARREN [Whte spuce, black spruce, tamarack
BOREAL - FOREST AND GRASS - Tremitling aspen, wiliow
supatANE I Engelmann spruce, alpine fir, odgepole pine
MONTANE - Douglas-tir, lodgepale pne, pondercsa pne, trembing aspen
coasT I Westem red cedar, westem hemicck, Sika spruce, Deuglas-tir
cocumaian I viestem red cedar, westem hemicck, Douglas-ti
DECIDVOUS - Beech mapie, black wainut, hickary, axk
GREAT LAKES - ST. LAWRENCE - fled pne, eastern white pine, easiem hemiock, yollow tirch, maple, oak
acaoian I Red sgrece, saksam fr, maple, yellow Birch
GRASSLANDS D Trembling aspen, wilow, bur cak
Tunoea [

L —— R — e

21

Forest Harvesting

Natural Ressurcer Rew 3
“l Coneada Cansdl

Camaadizn Forest Sopiin
Servier €

* ALBERTA

SASKATCHEWAN

FOREST REGIONS PRINCIPAL TREE SPECIES —=
BOREAL - PREDOMINANTLY FOREST - Whte spruce, black spruce, balsam £, jack pine, white birch, trembiing aspen
BOREAL - FOREST AND BARREN [Whte spuce, black spruce, tamarack
BOREAL - FOREST AND GRASS - Tremitling aspen, wiliow
supatANE I Engelmann spruce, alpine fir, odgepole pine
MONTANE - Douglas-tir, lodgepale pne, pondercsa pne, trembing aspen
coasT I Westem red cedar, westem hemicck, Sika spruce, Deuglas-tir
cocumaian I viestem red cedar, westem hemicck, Douglas-ti
DECIDVOUS - Beech mapie, black wainut, hickary, axk
GREAT LAKES - ST. LAWRENCE - fled pne, eastern white pine, easiem hemiock, yollow tirch, maple, oak
acaoian I Red sgrece, saksam fr, maple, yellow Birch
GRASSLANDS D Trembling aspen, wilow, bur cak
Tunoea [

L —— R — e

21

Forest Harvesting

21

Forest Harvesting

o
Goal: Harvest subset of parcels

to maximize revenue; pay cost

for harvesting adjacent parcels
M

21

Forest Harvesting

o
Goal: Harvest subset of parcels

to maximize revenue; pay cost
for harvesting adjacent parcels

maX|m|zeZ rX; — Z CiiYi

eV (i€l
subject to x; + x, — y; < 1

x € {0,1}", y e {0,1}"

21

Heuristic Selection in Practice

North Carolina's Forests -

Generalized Independent Set maximize Y’ .x; -

eV (i,)) eE

“ijij

150
1Miles

NC Forest Groups
Hardwoods

I EivashiCottonwood Group
I vavesecchich Group
[oakiumicypress Group
[catrickory Group

|
—
S u e c O .: (’ _l_ x . .o <
I o:ine Group Notes: - _
1. The data used to create this map are a subset of the National Forest Type Dataset, L
Sultwouds produced by the USDA Forest Service Forest Information and Analysis (FIA) Program and , , ,
A. ‘ s

Loblolly/Shortieaf Pine Group | Remote Sensing Applications Center (RSAC). { .
- 2. This map shows Forest Groups, which are created by combining similar Forest Types. ii FOREST
LongleafiSlash Pine Group | 3, Data used to create this map were accquired between 1978 and 2004. N e SERVICE I _ - - ———— _ - -
P —— 4. Each pixel has a resolution of approximately 250 meters. NCDENR N C | — — - = _ _
P 5. For more information, see: Ruefenacht, M.V, et al. 2008. Conterminous U.S. and Alaska Forest -~
Non-Forest Type Mapping Using Forest Inventory and Analysis Data, Photogrammetric Engineering and Remote G = B
Sensing 74(11):1379-1388.; or i fs.fed. t_type/ April 2009

0.364

0.3

N
Ol

0%

reduction
0.2

over Time

0.1

Time (minutes)

Avg. Solution Quality

Time to Best Solution Primal Integral

22

ML Paradigm

Self-Supervised Learning 1IN

Reinforcement Learning 1N

Exact Solving

Heuristic Selection
A

Supervised Learning 1R

Graph Optimization Integer Programming

Problem Type

23

LELGEVVENE

» First ML framework for heuristic selection in B&B
» Dynamic, node-dependent decision-making
Self- ’ » Forest Harvesting: 60% reduction in Primal Integral
| » Even on the heterogeneous MIPLIB2010 Benchmark:
« 6% reduction in Primal Integral

—e——— — e ——

- — - —

Reinforcement Learning K

Exact Solvmg
Heuristic Selection

Supervised Learning W

Graph Optimization Integer Programming

Problem Type

23

Greedy Graph Optimization

Minimum Vertex Cover
Find smallest vertex subset such that each edge Is covered

2-Approximation:
Greedily add vertices of edge
with max degree sum

24

Greedy Graph Optimization

Minimum Vertex Cover
Find smallest vertex subset such that each edge Is covered

Learning Greedy Graph Heuristics
[Dai*, Khalil*, Zhang, Dilkina, Song, 2017]

Given: graph problem, family of

graphs
Learn: a scoring function to
guide a greedy algorithm

24

Learning Greedy Heuristics

Given: graph problem, family of graphs

Learn: a scoring function to guide a greedy algorithm

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem
Domain Social network snapshots Spin glass models Package delivery
Greedy operation | Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

N A S —
\./.25%5 o o

25

Reinforcement Learning

Greedy Algorithm Reinforcement Learning

State
Q-function

Partial solution
Scoring function

Select best node Greedy Policy

Repeat until all edges are covered:
1. Compute node scores

2. Select best node w.r.t. score
3. Add best node to partial sol.

20

Learning Node Features

Scoring Function: Need to represent node with a feature vector first

Learning Node Features

Scoring Function: Need to represent node with a feature vector first

Problem: Not clear what good node features are!

27

Learning Node Features

Scoring Function: Need to represent node with a feature vector first
Problem: Not clear what good node features are!

Solution: Parametrize a Graph Neural Network with parameters ()

27

Learning Node Features

Scoring Function: Need to represent node with a feature vector first
Problem: Not clear what good node features are!

Solution: Parametrize a Graph Neural Network with parameters ()

Run RL algorithm (e.g. Q-Learning)
Use gradient of solution cost to update ()

27

earning Gree

1.6/ S2V-DQN

PN-AC v
MVCApprox
MVCApprox-Greed

[}
Ul

=
IN

Approximation ratio to optimal
= =
N w

=
=

1.0

15-20 40-50 50-100 100-200

Number of nodes in train/test graphs

EX COVER

Approximation ratio to optimal

400-500

= = = = =
N w ~ Ul o

[E]
=

=
o

v In Practice

S2V-DQN
PN-AC
SDP
MaxcutApprox

15-20 40-50

v

MAX-CUT

50-100

100-200

Number of nodes in train/test graphs

S2V-DQN
2-opt

PN-AC
Cheapest
Christofides
Closest
Nearest
MST

1.4;

Approximation
Ratio

1.2;

Approximation ratio to optimal

1.0-

15-20

40-50
Number of nodes in train/test graphs

50-100

100-200

TSP

200-300

200-300

ML Paradigm

Self-Supervised Learning 1IN

Greedy Heuristic

Reinforcement Learning 1N g\,— . T@I
,, ¥

Supervised Learning 1R

Graph Optimization Integer Programming

Problem Type

29

LELGEVVENE
i Reinforcement Learning tailors greedy search to your
- Instances
SRS) [earn features jointly with greedy policy

’ » Human priors encoded via (greedy) meta-algorithm

1 » Interesting, novel strategies emerge

Reint
- -
Y S
L=l argmax
M ' X1 Heur!sticé
Supervised Learning 1l P Q /:zg:;:g;gc> &
o Q Q Feasible solution?
Graph Optimization Integer Programming

Problem Type

29

e Y

(L]

1

Data Center
Resource Management

X

e S— S—— e _ _

General Heuristic

-_ Y e W Y e

Feasible Solution

General IP Heuristics

Data Center
Resource Management

minc’x s.t. Ax < b,x € {0,1}"

-

Power Systems Airline Scheduling

General Heuristic

|
Feasible Solution

31

Data Center

Power Systems Airline Scheduling

General IP Heuristics
Strengths \ i:/

minc’x s.t. Ax < b,x € {0,1}"

General Heuristic

|
Feasible Solution

31

Data Center

General IP Heuristics
Strengths \Reso:rce I\:’I/anagj,em/

* Applicable to many problems mincx S-t-Ax!Sb’xe (0.1)"
 Usable inside Branch-and-Bound v

General Heuristic

Power Systems Airline Scheduling

!
Feasible Solution

31

0 Start with LP-feasible (fractional) solution Feas|b|||ty Pump

1 Round to nearest integer, return it LP-feasible
2 Project integer point to nearest LP-feasible point

3 Go back to step 1

Roundto \
nearest integer

CTCE

S|

32 Figure in part from Berthold (2014) Q

General IP Heuristics

Data Center
Resource Management

Applicable to many problems min x st Ax < bxe (0.1
e Usable inside Branch-and-Bound l

Power Systems Airline Scheduling

General Heuristic

)

Feasible Solution

33

General IP Heuristics

Data Center
Resource Management

Applicable to many problems min ¢ st Ax<bre (01)
e Usable inside Branch-and-Bound l
General Heuristic
Weaknesses l

Power Systems Airline Scheduling

Feasible Solution

33

General IP Heuristics

Data Center

Power Systems Airline Scheduling

Resource Management

minc’x s.t. Ax < b,x € {0,1}"

X

\!/

General Heuristic
Weaknesses |
* May not work well for your problem Feasible Solution
* Cannot exploit distribution of instances
cpu.oHiPMoQ. cPu @ QsPMo c @ cru @ .@ﬂ'ooc
5o Hev - B8 5o B8 - Hee 5O H8s - 538

33

Problem Statement

4 PM
cpu. .L‘— o @ .

?
O
ED Eooo

£

00
00

5PM

cpu..' @

?

H B
59 g3 -

00 H B B
EOO
00

6 PM
®

I
?
70 Egg

34

00 H EHBE
00

Problem Statement

m n
maximize E E DiiTij
xZr

‘ 1 i1
4 PM 5PM 6 PM o

cpu. o N N | v @O ® - 0 ccu@ o ® o0 @ o _ .
SlleeCt to Zwijmz-j < Ciy 1 = 1, e ooy TN,
? ? ? =

O o oo " ®® HO Qoo 0 EER - Hoo oo WHEE = ,
= 0 Eoo Eoo 0 Heo - Egg 50 H88 - Eoo inj =1,7=1,...,n,
1=1

ﬂ?ijE{O,l}, t = Lol f = Licuny it

34

Problem Statement

m n
maximize E E DiiTij
xZr

- i=1 j=1
5 PM 6 PM

cpu. .L‘— o @ . cru @ .L‘ @ o @ cru @ L—.__ o @ o _ .
SUb]CCt to Zwijmz-j < Ciy 1 = | IO m,
? ? ? =

O H HBE 0 00 H H BN H EHBE m .
e H& - B88 5o B8S - Beo 00 Hss - 88 S ey =1, i=1,...,n,
=1

mijE{O,l},i:1 10, T = L cuus n.

I : set of training IP instances

34

Problem Statement

m n
maximize E E DiiTij
ZT
i=1 j=1

4 PM .L5 PM 6 PM
CPU O ‘ ' 0 ‘ cru @ ' | @ o . CPU ‘ o ® o . - n
® ® subject to Zwijxij Sl 2= Livens m,
? ? ? =1
O EEN 0 00 A NN E NN m
ED Eooo Egg E O Heo - Egg 50 Egg Egg Z:UijZI, j=1,..., n,
=1

ﬂiijE{O,l},i:1 1,7 = Licusy i

I : set of training IP instances

1 If feasible solution is found

A . a parametric algorithm; outputs
@ O otherwise

34

Problem Statement .

maxim ZZ})
. .L'_'V' . epm s
‘ @ o v @ ® o -
‘ co0® subject to Zwijxijgc- = 1., m
? ? ? =1
H B B O 00 | H B B m
e H& - B88 5o B8S - Beo " BO Hss - B8 S ey=1j=1....n

I : set of training IP instances

A . a parametric algorithm; outputs

O

1 If feasible solution is found
O otherwise

34

Towards Learning General Heuristics

ZAI@

I€I

Towards Learning General Heuristics

ZAI@

I€I

What type of algorithm is A 7

39

Towards Learning General Heuristics

ZAI@

I€I

What type of algorithm is A 7

What is the role of the ML model,
parameterized by (=), in A ?

39

Towards Learning General Heuristics

Find ©" = arg max Z A(l; ©)

I€I

What type of algorithm is A 7

What is the role of the ML model,
parameterized by (=), in A ?

How can we train the algorithm?

39

What type of algorithm is A ?

|IDai & Khalil, et al. (2017)]

Given: graph problem, family of graphs

Learn: a scoring function to guide a greedy algorithm

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem
Domain Social network snapshots Spin glass models Package delivery
Greedy operation | Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

36

What type of algorithm is A ?

|IDai & Khalil, et al. (2017)]

Given: graph problem, family of graphs
Learn: a scoring function to guide a greedy a\gorlthm

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem
Domain Social network snapshots Spin glass models Package delivery
Greedy operation | Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

36

*1 What type of algorithm is A ?

*1 What type of algorithm is A ?

*1 What type of algorithm is A ?

*1 What type of algorithm is A ?

*1 What type of algorithm is A ?

*1 What type of algorithm is A ?

Local algorithms may fail in the
__presence of hard constraints

|

Requirement
Task A B C D

*1 What type of algorithm is A ?

| Repeate Projections

maintain constraint

feasibility via LP solving |

nearest integer

0 Start with LP-feasible (fractional) solution c'e o

1 Round to nearest integer, return it LP-feasible

2 Project integer point to nearest LP-feasible point

3 Go back to step 1 O ®

Figure in part from Berthold (2014)

38

What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution
.-¥ 1 Round to nearest integer, return if LP-feasible
torate 2 Project integer point to nearest LP-feasible point

.83 Go back to step 1

Round to /
nearest integer

c'T - \
39 O ‘

What is the role of ML in the algorithm?
1

0 Start with LP-feasible (fractional) solution
.-¥ 1 Round to nearest integer, return if LP-feasible
torate 2 Project integer point to nearest LP-feasible point

.83 Go back to step 1

Round to /
nearest integer

c'T - \
39 O ‘

What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1 1
.-¥ 1 Round to nearest integer, return if LP-feasible []
torate 2 Project integer point to nearest LP-feasible point

.83 Go back to step 1

Round to /
nearest integer /
c'T « \
39 O ‘

What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.-¥ 1 Round to nearest integer, return if LP-feasible 2 []
torate 2 Project integer point to nearest LP-feasible point

.83 Go back to step 1

Round to /
nearest integer /
c'T « \
39 O ‘

What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.-¥ 1 Round to nearest integer, return if LP-feasible 2 []
terate 2 Project integer point to nearest LP-feasible point

.3 Go \back to step 1

Round to /
nearest integer /
c'T « \
39 O ‘

What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.-¥ 1 Round to nearest integer, return if LP-feasible 2 []
terate 2 Project integer point to nearest LP-feasible point

3 Go ‘baCk to step 1

Key Step:

min A(x

X

7 L

s.t. Ax < b,

€T &

39

0,1

Round to /
nearest integer

What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.- 1 Round to nearest integer, return if LP-feasible 2 []
torate 2 Project integer point to nearest LP-feasible point

~...3 Go/ back to step 1

min A(x, | t)

40

What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.- 1 Round to nearest integer, return if LP-feasible 2 []
torate 2 Project integer point to nearest LP-feasible point

~.3Go back to step 1 o
Y — L1-distance

min A(z, 1))

40

What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.- 1 Round to nearest integer, return if LP-feasible 2 []
torate 2 Project integer point to nearest LP-feasible point

~.3Go back to step 1 o
Y — L1-distance

40

What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.- 1 Round to nearest integer, return if LP-feasible 2 []
torate 2 Project integer point to nearest LP-feasible point

~.3Go back to step 1 o
—Li-distance) z;+) (1)

g:l7t]=0 g:lrt]=1

min A(z, 1))

40

What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.- 1 Round to nearest integer, return if LP-feasible 2 []
torate 2 Project integer point to nearest LP-feasible point

min A(z, [*))
L
s.t. Ax < b,

40

What is the role of ML in the algorithm?
—1

0 Start with LP-feasible (fractional) solution U 1
.- 1 Round to nearest integer, return if LP-feasible 9 [Qf]

terate 2 Project integer point to nearest LP-feasible point)
.3 Go|{ back to step 1

min 1 ¥ Learn the

s.t. Az < b, projection
z € [0,1]" coefficients!!

40

What is the role of ML in the algorithm?

mljn O (z, ["])

s.t. Ax < b,
r e |0,1]"

What is the role of ML in the algorithm?

mljn O (z, ["])

s.t. Ax < b,
r e |0,1]"

What is the role of ML in the algorithm?

41

What is the role of ML in the algorithm?

41

What is the role of ML in the algorithm?

P = mOdel(e @)

What is the role of ML in the algorithm?

P = mOdel(e @)

Properties of model

41

What is the role of ML in the algorithm?

P = mOdel(e @)

Properties of model

e Parameters shared across variables
e Recurrent across iterations

41

How can we train the algorithm?

minc’x s.t. Ax < b,x € {0,1}"

X
input to predict penalize
Recurrent — projection —» S;I'\éitli-opn — fractional

Neural Network coefficients Pro] variables

Loss(€))

42

Loss(€))

input to predict solve LP penalize
Recurrent — projection — oiection — fractional
Neural Network coefficients Pro] variables

43

penalize
Recurrent — projection ——» — fractional

input to predict solve LP

projection

Neural Network coefficients variables

43

A neural network with parameters @

m Same network used for all fractional variables
History vector is variable-specific

input to predict solve LP penalize
Recurrent — projection — oiection — fractional
Neural Network coefficients Pro] variables

43

To make LP solution differentiable,
add small constant quadratic term
See OptNet by Amos & Kolter, 2017

> —> ® oo o o
= O
: , Loss(
O
> —> O ® o o o
ol A
\ X
e Rerate if | X is infeasible
input to predict penalize
Recurrent — projection — Sfl.vetl.': — fractional
Neural Network coefficients Projectio variables

43

Binary Cross-Entropy Loss
— [7%] log 7% + (1 — [z%]) - log (1 — &)

J

. |,
A
[]
[]
[]
. N
A
A
e Jterate i [0) | isinfeasible .
input to predict penalize
Recurrent — projection — S;I.\éitli'ol:; — fractional
Neural Network coefficients Pro] variables

43

Experimental Setup

> Generate Training / Validation/ . . f:f:)

Jesting Instances ’ o ra

» No need to solve Training subject to Zal a _—
-] o %)) —
Instances!

Z% =1, 97=1,..., n,
» NIO is fully differentiable i=1 | |
» Train with gradient descent zig €01 i=1...mj=1....n

44

Learning IP Heuristics In Practice

Generalized Assignment Problem (GAP)
Train on 500 small instances, Test on 500 larger instances

100 GAP (processors=3, tasks=20)

-—— FP1
— NIO

Solutions Found (%)
5 38 3

N
-

0 10 20 30 40 50
lterations

45

Learning IP Heuristics In Practice

Generalized Assignment Problem (GAP)
Train on 500 small instances, Test on 500 larger instances

GAP (processors=3, tasks=20) GAP (processors=95, tasks=100)

100 100
--- FP1 —-- FP1 /_—_—__—i
—— NIO — NIO

o
S 80 80
=
=
3 60 60
m ﬁ
2 40 40
O
D)
e 20 20 j
%,
0 i ekttt bkttt bt b B
0 10 20 30 40 50 0 10 20 30 40 50

lterations lterations

45

Learning IP Heuristics In Practice

Generalized Assignment Problem (GAP)
Train on 500 small instances, Test on 500 larger instances

GAP (processors=3, tasks=20) GAP (processors=95, tasks=100)

100 100
--- FP1 —-- FP1 /(_——__—i
—— NIO — NIO

o
DN 80 .
O s
C) §
ug_ 60 R Il R R
0 4 Learned heuristic
S solves most
2 50 Instances in < 10
@) i !
p, Iterations
L I e e A O P Sy Sutsyusi ANty Smsssees
0 10 20 30 40 50 0 10 20 30 40 50

lterations lterations

45

Learning IP Heuristics In Practice

Two-Stage Stochastic Integer Programs (STOC)
Train on 500 small instances, Test on 500 larger instances

— = T k = ’[=]_
00 STOC (k= 10, /= 10) 00 STOC (k=50 0))
— --- FP1
o o—
S 80 80 NIO
=
g
3 60 60
L
2 40 | 40
O
D)
S 20 | .. 20
) Re e e
0 0
0 10 20 30 40 50 0 10 20 30 40 50

Iterations Iterations

40

Learning IP Heuristics In Practice

Two-Stage Stochastic Integer Programs (STOC)
Train on 500 small instances, Test on 500 larger instances

— y I = - ,I=1
00 STOC (k=10,/=10) 00 STOC (k=50 0))
—~ --— FP1
o ——
9\./ 80 30 NIO
5
=
3 60 60
LL
2 40 40
O
>
S 20 | 20
U) 1/ ——————————————————
0 0 /
0 10 20 30 40 50 0 10 20 30 40 50

Iterations Iterations

40

What about advanced codes?

Two-Stage Stochastic Integer Programs (STOC)

FP1 + presolve + propagation

|
NIO FP2 FPl

STOC (10,10) 99.2 954 14.6
STOC (20,20) 22.6 0.6 0
STOC (30,20) 7.6 0 0

Solutions Found (%) in 100 iterations

47

Compared to Pure Neural Net

A Easy for
SAT solvers
» SATIsfiability problem
» NIO: use model from GAP on SAT
» NeuroSAT": Deep Learning
model for SAT solving
» [Jrained with supervised

learning
» Millions of training instances

* Learning a SAT Solver from Single-Bit Supervision. ICLR 2019

100 -

80 -

AN
o

Solutions Found (%)

20 -

48

Higher is Better

(@)
o
l

NeuroSAT
(after 1000 iters.)

0 50 100 150 200
lterations

ML Paradigm

Self-Supervised Learning 1K

Reinforcement Learning W

Supervised Learning N

General IP Heuristic

X
o) N P

R I Loss(@)
X, . .
s P

Graph Optimization Integer Programming

Problem Type

49

ML Paradigm

General IP Heuristic

Self-Supervised Learning N . - S

Reinf

; LELCEWVENE
i » Incorporate LP-projections into neural network model
- » Can learn heuristics for arbitrary Integer Programs

» No supervised or reinforcement learning required!
» Outperforms the Feasibility Pump on various problems

e e e —— . —_— e — — — — — B o o

— J—

Al CANIT U ULULITTIZAOTU — i

Problem Type

49

learn to design

Can “learn” to
2

C_)an ‘learn” to
design "/

‘learn” 1o
?

w Machine Learning

algorithms
algorithms

® Discrete Optimization

Yes!

w Machine Learning

algorithms
algorithms

&8 Discrete Optimization

Yes!

ML complements human algorithms
ML fills in algorithm detalls using data

Data-Driven Algorithm Design

Impact in ML and OPT

Branch-and-Bound

ML models for DiscOpt

+ Multi-objective IP [Sierra-Altamiranda+, 2019]

+ Attention for TSP [Kool+, 2019] + Outcome prediction [Fischetti+, 2019]

+ Graph Convolutions [Li+, 2018] A: Exact Solving + Cut selection [Baltean-Lugojan+, 2018]

+ Imitation learning [Song+, 2018] ¢ + Formulation selection [Bonami+, 2018]

s . @ — p + Solution prediction [Larsen+, 2018]
S N 1 (\ /““"'“CE = + Decompositions [Kruber+, 2017]
‘ ; ._/, b Eemadle sobution!
- - L
Combinatorial problems "« _
SAT [Selsam+, 2019) Applications

SMT [Balunovic+, 2018]
k-Coverage [Li+, 2019]
Scheduling [Mao+, 2019]
Assignment [Emami+, 2018]

+ Unit commitment [Xavier+, 2019]
S = = o 2= =P+ Sensorplacement [Shen+, 2019]

Greedy Heuristic + Recommender systems [Fu+, 2017]

-~ -~

VRP [Nazari+, 2018] R —al
Multiple-TSP [Kaempfer+, 2018] \Q/\I/(I/ TheO
Stochastic Opt. [Nair+, 2018] f argmax ry

+ Learning to Branch [Balcan+, 2018]

+ e

51

Greedy Heurlstlc

General Integer
Programming Heuristic

Exact Solving

Heuristic Selection

Heuriste A
MHeuriste & No
I? 2
? / Meuriste C —
O C Feasible sobution! g "

Discrete
Optimization

Machine
Learning

Greedy Heunstuc

Exact Solving
Heuristic Selection \,%
| argmax

General Integer
Programming Heuristic

i @
« O O
, ML x OPT "
Machine Exciting synergies Discrete
Learning R RGEI RS Optimization

both directions

Waterloo ML + Security + Verification Workshop

. . o al General Integer
Exact Solving 'C /\é T/“ Programming Heuristic
Branching [l Heuristic Selection .'\'QX 3 S TS
s | 4Z5g] wpna P Gk Loss(@)

Q u eSti O n S? n® B

: ML x OR
w Machine Exciting synergies Discrete

Learning e N EIERESIE Optimization
both directions
Relevant papers
Neural Integer Optimization: Learning to Satisfy Generic Constraints. m 'f'é Sij
w/ R. Trivedi, B. Dilkina. Submitted to NeurlPS 2019. - @
Learning Combinatorial Optimization Algorithms over Graphs. |
w/ H. Dai (co first auth.), Y. Zhang, B. Dilkina, L. Song. NeurlPS 2017 Faradiom
Self-Supervised Learning <>@‘“’ AR 5
Learning To Run Heuristics in Tree Search. R (T o
w/ B. Dilkina, G. Nemhauser, S. Ahmed, Y. Shao. IJCAI 2017. Rreinforcement Learning 8 ok .~| """""""" e
Learning to Branch in Mixed Integer Programming. Supervised Leamning BB "—Qllém _‘ Heu"t"
w/ P. Le Bodic, L. Song, G. Nemhauser, B. Dilkina. AAAI 2016. "0 O el
_ _
Graph Optimization Integer Programming
Combinatorial Attacks on Binarized Neural Networks. Problem Type

w/ A. Gupta, B. Dilkina. ICLR 2019.

http://www.ekhalil.com

