Machine Learning for Integer Programming

Elias B. Khalil

Waterloo ML + Security + Verification Workshop

ekhalil.com

Assistant Professor of Industrial Engineering

In Memoriam: Shabbir Ahmed

- Anderson-Interface Chair and professor in Georgia Tech's H. Milton Stewart School of Industrial and Systems Engineering (ISyE)
- Giant of Stochastic Optimization and Integer Optimization

Learning to Run Heuristics in Tree Search

Elias B. Khalil¹, Bistra Dilkina^{*1}, George L. Nemhauser², Shabbir Ahmed², Yufen Shao³

Learning to Solve Large-Scale Security-Constrained Unit **Commitment Problems**

Álinson S. Xavier¹, Feng Qiu¹, and Shabbir Ahmed²

Can algorithms "learn" to design algorithms?

Machine Learning Can algorithms "learn" to design a gorithms?

Machine Learning Can algorithms "learn" to design a gorithms?

Discrete Optimization

Data Center Resource Management

Services

Memory

CPU

4 Photo from: <u>https://www.reit.com/what-reit/reit-sectors/data-center-reits</u>

Services

Memory

CPU

Machines

4 Photo from: <u>https://www.reit.com/what-reit/reit-sectors/data-center-reits</u>

Services

Memory

CPU

Machines

4 Photo from: <u>https://www.reit.com/what-reit/reit-sectors/data-center-reits</u>

S Services

M Machines

 $y_m = 1$ if machine *m* is used $x_{s,m} = 1$ if service s runs on m **Services**

M**Machines**

S

 $x \in \{0,1\}^{S \times M}, y \in \{0,1\}^M$

M Machines

Goal: Guarantee that trained model has desirable behavior

Goal: Guarantee that trained model has desirable behavior

Verification Problem **prove** $\nexists x'$ **close to** xsuch that f(x'; STOP) < f(x'; YIELD)

Political Districting

13

icago

INDIANA

Kidney Exchange

Energy Systems

Data Center Management

Political Districting

Kidney Exchange

Ridesharing

Energy Systems

Airline Scheduling

Data Center Management

Scientific Discovery

Conservation Planning

Political Districting

Kidney Exchange

Ridesharing

Disaster Response

College Admissions

Data Center Management

> 50% of INFORMS Edelman Award winners use Discrete Optimization → Billions (\$) in savings/profit

Political Districting

Kidney Exchange

George Nemhauser, Plenary at EURO INFORMS, 2013 ons

Data Center Resource Management

L HAILIN

Paradigm

Design Rationale

Paradigm

Exhaustive Search

Design Rationale

Tight formulations Powerful Branch-and-Bound solvers

Paradigm

Exhaustive Search

Approximation Algorithms Good worst-case guarantees

Design Rationale

Tight formulations Powerful Branch-and-Bound solvers

Paradigm

Exhaustive Search

Approximation Algorithms **Good worst-case** guarantees

Heuristics

Design Rationale

Tight formulations Powerful Branch-and-Bound solvers

Paradigm

Exhaustive Search

Approximation Algorithms Good worst-case guarantees

Heuristics

Design Rationale

Tight formulations Powerful **Branch-and-Bound** solvers

Paradigm

Exhaustive Search

Approximation Algorithms

Heuristics

How do you tailor the algorithm to YOUR * instances?

Design Rationale

Tight formulations Powerful Branch-and-Bound solvers

Good worst-case guarantees

Paradigm

Exhaustive Search

Approximation Algorithms

Heuristics

How do you tailor the algorithm to YOUR * instances?

Customization via...

Tight formulations Powerful Branch-and-Bound solvers

Good worst-case guarantees

Paradigm

Exhaustive Search

Approximation Algorithms

Heuristics

I Problems							
	Customization via						
	Pr	oblem functior	- Spec ns or s	ific Bo earch	undin rules	g	
Good worst-case guarantees							
Intuition exploiting problem structure Empirical trial-and-error							
h R							

Paradigm

Exhaustive Search

Approximation Algorithms

Heuristics

Problems								
	Customization via							
		P	robler functio	n-Spe ons or	cific sear	Bou ch ru	ndin ules	g
S	\mathbb{N}	1ak di	e explic stributi	cit ass on anc	umpt rede	tions esigi	s on i n alg	nput 0.
Intuition exploiting problem structure Empirical trial-and-error								
h R	e							
					88			

Paradigm

Exhaustive Search

Approximation Algorithms

Heuristics

Problems							
	Customization via						
	Problem-Specific Bounding functions or search rules						
S	Make explicit assumptions on input distribution and redesign algo.						
	Analyze algorithm behavior on your inputs; look for patterns to exploit						
h R							

Paradigm

ANSWER: Manual intellectual/ experimental effort require

Problems							
	Custon	nizatio	n via	-			
	Problem-	Specific S or sear	Bounding ch rules				
	Make explicit assumptions on input distribution and redesign algo.						
ed	d Analyze algorithm behavior on your inputs: look for patterns to exploit						
he	CPU • • • • • • • • • • • • • • • • • • •		CPU • • • • • • • • • • • • • • • • • • •				
2							
		Memory ? Image: Construction of the second se	. 800				

Opportunity to a family of instances

Data Center Resource Management

Forest Harvesting

Data-Driven Algorithm Design automatically discovers novel search strategies

Minimum **Vertex Cover**

Find **smallest** vertex subset such that each edge is covered

Data-Driven Algorithm Design automatically discovers novel search strategies

Minimum **Vertex Cover**

Find **smallest** vertex subset such that each edge is covered

ML Paradigm Self-Supervised Learning NeurIPS-17 **Greedy Heuristic Reinforcement** Learning Supervised Learning

Branch & Bound for Integer Optimization • LP-based $\min c^T x$ s.t. $Ax \le b, x \in \{0,1\}^n$ Land & Doig, 1960 ${\mathcal X}$

Repeat: **Select Node 2** Solve LP Relaxation **3** Prune? **4** Add Cuts **5** Run Heuristics Branch

Branch & Bound for Integer Optimization • LP-based $\min c^T x$ s.t. $Ax \le b, x \in \{0,1\}^n$ Land & Doig, 1960 ${\mathcal X}$

Repeat: **Select Node Solve LP Relaxation 3** Prune? **4** Add Cuts **5** Run Heuristics Branch

Branch & Bound for Integer Optimization Land & Doig, 1960 ► LP-based $\min c^T x$ s.t. $Ax \le b, x \in \{0,1\}^n$ \boldsymbol{X} $[0,1]^n$ Repeat: → Lower Bound on OPT **Select Node**

2 Solve LP Relaxation **3** Prune? **4** Add Cuts **Run Heuristics Branch**

Branch & Bound for Integer Optimization Land & Doig, 1960 -LP-based $\min c^T x$ s.t. $Ax \le b, x \in \{0,1\}^n$ $\boldsymbol{\chi}$ $[0,1]^n$ Repeat: → Lower Bound on OPT **Select Node Solve LP Relaxation** worse than best solution? **3 Prune? Prune!**

4 Add Cuts **Run Heuristics Branch**

Branch & Bound for Integer Optimization • LP-based $\min c^T x$ s.t. $Ax \le b, x \in \{0,1\}^n$ Land & Doig, 1960 ${\mathcal X}$

Repeat: **Select Node Solve LP Relaxation 3** Prune? **4** Add Cuts **Run Heuristics** Branch

Add Cuts: Tightening Constraints

Branch & Bound for Integer Optimization Land & Doig, 1960 • $\Box P$ -based $\min c^T x$ s.t. $Ax \le b, x \in \{0,1\}^n$ $\boldsymbol{\chi}$

Repeat: **Select Node Solve LP Relaxation Prune? 4** Add Cuts **5** Run Heuristics **Branch**

Heuristic A Heuristic B Heuristic C

Feasible solution? **Update Best Solution**

Branch & Bound for Integer Optimization Land & Doig, 1960 LP-based $\min c^T x$ **s.t.** $Ax \le b, x \in \{0,1\}^n$ ${\mathcal X}$

Repeat: **Select Node Solve LP Relaxation Prune? Add Cuts Run Heuristics Branch**

Branch & Bound for Integer Optimization Land & Doig, 1960 $- LP-based \quad \min c^T x \text{ s.t. } Ax \le b, x \in \{0,1\}^n$ ${\mathcal X}$

Repeat: **Select Node Solve LP Relaxation 3 Prune?** Add Cuts **Run Heuristics Branch**

Branch & Bound for Integer Optimization Land & Doig, 1960 • LP-based $\min c^T x$ s.t. $Ax \le b, x \in \{0,1\}^n$ ${\mathcal X}$

Repeat: **Select Node Solve LP Relaxation 3 Prune? 4** Add Cuts **Run Heuristics Branch**

Branch & Bound for Integer Optimization Land & Doig, 1960 $- \mathsf{LP}-\mathsf{based} \quad \min c^T x \text{ s.t. } Ax \le b, x \in \{0,1\}^n$ ${\mathcal X}$

Repeat: **Select Node Solve LP Relaxation Prune? Add Cuts Run Heuristics Branch**

$\min_{x} c^{T} x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$

$\min_{x} c^T x \text{ s.t. } Ax \leq b, x \in \{0,1\}^n$

Search tree nodes

$\min c^T x \text{ s.t. } Ax \le b, x \in \{0,1\}^n$

Heuristics matter!

Objective value

Value of LP relaxation at root node

1- Better primal bound —> More nodes pruned -> Gap closed faster!

15

Heuristics matter! 1- Better primal bound —> More nodes pruned -> Gap closed faster!

Objective value

OPT

Gap

Value of LP relaxation at root node

2- Better feasible solutions —> More effective decision-making

Dual bound: min. value of P relaxation at frontier

ML Paradigm Self-Supervised Learning NeurIPS-17 **Greedy Heuristic Reinforcement** Learning Supervised Learning

The Heuristic Selection Problem

MIP solvers implement many primal heuristics: 54 in SCIP (2019)

The Heuristic Selection Problem

MIP solvers implement many primal heuristics: 54 in SCIP (2019)

The Heuristic Selection Problem

MIP solvers implement many primal heuristics: 54 in SCIP (2019)

The Heuristic Selection Problem P (2019) Learning to Run Heuristics [Khalil, Dilkina, Nemhauser, Ahmed, Shao, 2017] $x_2 = 1$ $x_2 = 0$ **Given:** dataset of $x_4 = 0$ = 0(node features, 0/1 success flag) = 1 χ_4 Learn: a classifier of heuristic success feaspum

Learning to Run Heuristics

RWS: if P(N) > 0.5, run heuristic

Feature Engineering

► Global Features (4):

- optimality gap, root LP value / global lower (upper) bound
- **Depth Features** (2):
 - node depth / max. depth in tree (max. possible depth)
- ► Node LP Features (8):
- sum of variables' LP sol. fractionalities / #fractional variables num. of fractional variables / #integer variables num. variables roundable up (down) / #integer variables Scoring Features for Fractional Variables (35): number of up (down) locks
- normalized objective coefficient
 - pseudocost score

Five statistics (mean, min., max., median, standard deviation) for each metric over fractional variables in LP solution.

Binary Label Feature Eng found incumbent (1), o.w. (0)

► Global Features (4):

- optimality gap, root LP value / global lower (upper) bound
- **Depth Features** (2):
 - node depth / max. depth in tree (max. possible depth)
- ► Node LP Features (8):
- sum of variables' LP sol. fractionalities / #fractional variables num. of fractional variables / #integer variables num. variables roundable up (down) / #integer variables Scoring Features for Fractional Variables (35): number of up (down) locks
- normalized objective coefficient
 - pseudocost score

Five statistics (mean, min., max., median, standard deviation) for each metric over fractional variables in LP solution.

Forest Harvesting

Forest Harvesting

Forest Harvesting Goal: Harvest subset of parcels to maximize revenue; pay cost for harvesting adjacent parcels

Forest Harvesting Goal: Harvest subset of parcels to maximize revenue; pay cost for harvesting adjacent parcels maximize $\sum r_i x_i - \sum c_{ij} y_{ij}$ $i \in V$ $(i,j) \in E$ subject to $x_i + x_j - y_{ij} \leq 1$

Time to Best Solution

Primal Integral

ML Paradigm

Self-Supervised Learning

Reinforcement Learning

Supervised Learning

Problem Type

Takeaways First ML framework for heuristic selection in B&B Forest Harvesting: 60% reduction in Primal Integral Even on the heterogeneous MIPLIB2010 Benchmark: 6% reduction in Primal Integral

Dynamic, node-dependent decision-making

Reinforcement Learning

Self-S

Supervised Learning

Problem Type

Greedy Graph Optimization

Minimum Vertex Cover Find smallest vertex subset such that each edge is covered

2-Approximation: Greedily add vertices of edge with max degree sum

Greedy Graph Optimization

Minimum Vertex Cover Find smallest vertex subset such that each edge is covered

Learning Greedy Graph Heuristics [Dai*, Khalil*, Zhang, Dilkina, Song, 2017]

Given: graph problem, family of graphs
Learn: a scoring function to guide a greedy algorithm

Learning Greedy Heuristics

Given: graph problem, family of graphs **Learn:** a **scoring function** to **guide** a **greedy** algorithm

Problem	Minimum Vertex Cover
Domain	Social network snapshots
Greedy operation	Insert nodes into cover

Maximum Cut

Traveling Salesman Problem

Spin glass models

Package delivery

Insert nodes into subset Insert nodes into sub-tour

Reinforcement Learning

Greedy Algorithm

- **Partial solution** \equiv State
- **Scoring function** \equiv **Q**-function
- Select best node \equiv Greedy Policy

Repeat until all edges are covered:

- 1. Compute node scores
- 2. Select best node w.r.t. score
- 3. Add best node to partial sol.

Reinforcement Learning

Learning Node Features Scoring Function: Need to represent node with a feature vector first

Learning Node Features

- **Problem:** Not clear what good node features are!

Scoring Function: Need to represent node with a feature vector first

Learning Node Features **Problem:** Not clear what good node features are!

- **Scoring Function:** Need to represent node with a **feature vector** first
- Solution: Parametrize a Graph Neural Network with parameters Θ

$\square = Q(S_t, v; \Theta)$ $S_{t} = \{ f \in \mathcal{N} \}$

Learning Node Features

- Scoring Function: Need to represent node with a feature vector first
- **Problem:** Not clear what good node features are!
- Solution: Parametrize a Graph Neural Network with parameters Θ

Run RL algorithm (e.g. Q-Learning) Use gradient of solution cost to update (-)

ML Paradigm

Self-Supervised Learning

Reinforcement Learning

Supervised Learning

Problem Type

Supervised Learning

Takeaways Reinforcement Learning tailors greedy search to your

Integer Programming **Problem Type**

Power Systems

. . .

Data Center Resource Management

Airline Scheduling

General Heuristic

General IP Heuristics

General IP Heuristics Strengths

General IP Heuristics

Strengths

- Applicable to many problems
- Usable inside Branch-and-Bound

 Start with LP-feasible (fractional) solution Round to nearest integer, return if LP-feasible **Project** integer point to **nearest** LP-feasible point Go back to step 1

Round to nearest integer

(0, 0)

³² Figure in part from Berthold (2014)

General IP Heuristics

Strengths

- Applicable to many problems
- Usable inside Branch-and-Bound

General IP Heuristics

Strengths

- Applicable to many problems
- Usable inside Branch-and-Bound

Weaknesses

General IP Heuristics

Strengths

- Applicable to many problems
- Usable inside Branch-and-Bound

Weaknesses

- May not work well for your problem
- Cannot exploit distribution of instances

Problem Statement

\max_{x}	$\sum_{i=1}^{m} \sum_{j=1}^{n} p_{ij} x_{ij}$
subject to	$\sum_{j=1}^{n} w_{ij} x_{ij} \le c_i, \ i = 1, \dots, m,$
	$\sum_{i=1}^{m} x_{ij} = 1, \ j = 1, \dots, n,$
	$x_{ij} \in \{0,1\}, \ i = 1, \dots, m, j = 1, \dots$

: set of training IP instances

x_x^{x}	$\sum_{i=1}^{m} \sum_{j=1}^{n} p_{ij} x_{ij}$
oject to	$\sum_{j=1}^n w_{ij} x_{ij} \le c_i, \ i = 1, \dots, m,$
	$\sum_{i=1}^m x_{ij} = 1, \ j = 1, \dots, n,$
	$x_{ij} \in \{0,1\}, \ i = 1, \dots, m, j = 1, \dots$

T : set of training IP instances

A : a parametric algorithm; outputs

T : set of training IP instances

A : a parametric algorithm; outputs

1 if feasible solution is found 0 otherwise

Find $\Theta^* = \underset{\Theta \in \mathbb{R}^p}{\operatorname{arg\,max}} \frac{1}{|\mathcal{I}|} \sum_{I \in \mathcal{I}} \mathcal{A}(I; \Theta)$

What type of algorithm is A?

Find $\Theta^* = \underset{\Theta \in \mathbb{R}^p}{\operatorname{arg\,max}} \frac{1}{|\mathcal{I}|} \sum_{I \in \mathcal{I}} \mathcal{A}(I; \Theta)$

What **type of algorithm** is A?

Find $\Theta^* = \underset{\Theta \in \mathbb{R}^p}{\operatorname{arg\,max}} \frac{1}{|\mathcal{I}|} \sum_{I \in \mathcal{I}} \mathcal{A}(I; \Theta)$

What is the role of the ML model, parameterized by (-), in \mathcal{A} ?

What **type of algorithm** is A?

What is the role of the ML model, parameterized by (-), in \mathcal{A} ?

Find $\Theta^* = \underset{\Theta \in \mathbb{R}^p}{\operatorname{arg\,max}} \frac{1}{|\mathcal{I}|} \sum_{I \in \mathcal{I}} \mathcal{A}(I; \Theta)$

How can we train the algorithm?

1 What type of algorithm is A? [Dai & Khalil, et al. (2017)]

Given: graph problem, family of graphs **Learn:** a **scoring function** to **guide** a **greedy** algorithm

Problem	Minimum Vertex Cover
Domain	Social network snapshots
Greedy operation	Insert nodes into cover

Maximum Cut

Traveling Salesman Problem

- Spin glass models
- Package delivery
- Insert nodes into subset Inser
- Insert nodes into sub-tour

Problem	Minimum Vertex Cover
Domain	Social network snapshots
Greedy operation	Insert nodes into cover

Maximum Cut

Traveling Salesman Problem

- Spin glass models
- Package delivery
- Insert nodes into subset
- Insert nodes into sub-tour

Requirement

37

Requirement

Local algorithms may fail in the presence of hard constraints

Repeated Projections maintain constraint feasibility via LP solving

 Start with LP-feasible (fractional) solution Round to nearest integer, return if LP-feasible **Project** integer point to **nearest** LP-feasible point Go back to step 1

Figure in part from Berthold (2014)

- **0** Start with LP-feasible (fractional) solution
- .**7 1 Round** to nearest integer, **return** if LP-feasible
- 2 Project integer point to nearest LP-feasible point iterate
 - ··· **3** Go back to step 1

What is the role of ML in the algorithm? 2 \overline{r}^{\perp}

- **0** Start with LP-feasible (fractional) solution
- .**71 Round** to nearest integer, return if LP-feasible
- 2 Project integer point to nearest LP-feasible point iterate
 - ··· **3** Go back to step 1

- **0** Start with LP-feasible (fractional) solution
- ... **1 Round** to nearest integer, **return** if LP-feasible
- iterate 2 Project integer point to nearest LP-feasible point
 - ···· **3** Go back to step 1

What is the role of ML in the algorithm? **0** Start with LP-feasible (fractional) solution .**71 Round** to nearest integer, **return** if LP-feasible 2 Project integer point to nearest LP-feasible point iterate

- - ··· **3** Go back to step 1

What is the role of ML in the algorithm? $\frac{\bar{x}}{2} \begin{bmatrix} \bar{x}^{1} \end{bmatrix}$ **0** Start with LP-feasible (fractional) solution 1 Round to nearest integer, return if LP-feasible 2 Project integer point to nearest LP-feasible point iterate

- ··· **3** Go back to step 1

What is the role of ML in the algorithm? **0** Start with LP-feasible (fractional) solution .**7 1 Round** to nearest integer, **return** if LP-feasible 2 Project integer point to nearest LP-feasible point iterate

- ··· **3** Go back to step 1
- Key Step:

N

 \mathcal{X}

$$\begin{split} \min_{x} \Delta(x, [\bar{x}^{t}]) \\ \text{s.t.} \ Ax \leq b, \\ x \in [0, 1]^{n} \end{split}$$

What is the role of ML in the algorithm? The second s

- iterate

$$\begin{split} \min_{x} \Delta(x, [\bar{x}^{t}]) \\ \text{s.t.} \ Ax \leq b, \\ x \in [0, 1]^{n} \end{split}$$

- **1 Round** to nearest integer, **return** if LP-feasible **2 Project** integer point to **nearest** LP-feasible point \bar{x}^2 $[\bar{x}^1]$ **3** Go back to step 1 iterate

•••• **3** Go back to step 1

$$\min_{x} \Delta(x, [\bar{x}^t])$$

s.t.
$$Ax \leq b$$
,

 $x \in [0, 1]$

-distance

- **Theorem 1 Round** to nearest integer, **return** if LP-feasible **2 Project** integer point to **nearest** LP-feasible point \overline{x}^2 [\overline{x}^1] **3** Go (back to step 1)
- iterate

···· **3** Go back to step 1

$$\min_{x} \Delta(x, [\bar{x}^t])$$

s.t. $Ax \leq b$, $x \in [0, 1]$ L1-distance

$$\sum_{j} \left| x_j - [\bar{x}^t]_j \right|$$
$$\sum_{j:[\bar{x}^t]=0} x_j + \sum_{j:[\bar{x}^t]=1} (1 - x_j)$$

0 Start with LP-feasible (fractional) solution

- 1 Round to nearest integer, return if LP-feasible
- $\frac{\bar{x}^{L}}{\bar{x}^{2}} \left[\frac{\bar{x}^{1}}{x} \right]$ 2 Project integer point to nearest LP-feasible point iterate

•••• **3** Go back to step 1

$$\min_{x} \Delta(x, [\bar{x}^t])$$

s.t.
$$Ax \leq b$$
,

 $x \in [0, 1]$

-distance

$$\sum_{i:[\bar{x}^t]=0} x_j + \sum_{j:[\bar{x}^t]=1} (1 - x)$$

 C_{i}

0 Start with LP-feasible (fractional) solution

- .7 1 Round to nearest integer, return if LP-feasible
- $\bar{x}^{1} [\bar{x}^{1}]$ Note that \bar{x}^{2} 2 Project integer point to nearest LP-feasible point iterate

•••• **3** Go back to step 1

 $\min \Delta(x, [\bar{x}^t])$ \mathcal{X}

s.t. $Ax \leq b$, $x \in [0, 1]$

0 Start with LP-feasible (fractional) solution

- .**71 Round** to nearest integer, **return** if LP-feasible
- 2 Project integer point to nearest LP-feasible point
- •••• **3** Go back to step 1

iterate

$$\min_{x} \Delta(x, [\bar{x}^t])$$

s.t.
$$Ax \leq b$$
,

$$x \in [0, 1]^n$$

 $\frac{\bar{x}^{I}}{\bar{x}^{2}} \begin{bmatrix} \bar{x}^{1} \end{bmatrix}$

Learn the projection coefficients!!

 $\min \ell_1(x, [\bar{x}^t])$ ${\mathcal X}$ s.t. $Ax \leq b$, $x \in [0, 1]^n$

 $\min \ell_1(x, [\bar{x}^t])$ ${\mathcal X}$ s.t. $Ax \leq b$, $x \in [0, 1]^n$

 $\min\left(\mathbb{R}, [-t]\right)$ ${\mathcal X}$

s.t. $Ax \leq b$, $x \in [0, 1]^n$

 $\mathbf{p}^{\mathsf{T}} \mathcal{X}$ $\min\left(\frac{-t}{\omega}\right)$ ${\mathcal X}$ s.t. $Ax \leq b$, $x \in [0, 1]^n$

s.t. Ax < b, $x \in [0, 1]^n$

$\mathbf{p}^{\mathsf{T}x} \prod_{x \in \mathcal{T}} \mathbf{p}_{i} = \mathsf{model}\left(\bar{x}_{i}^{t}, [\bar{x}_{i}^{t}]; \Theta\right)$

What is the role of ML in the algorithm?

 $\mathbf{p}^{\mathsf{T}} x$ $\min\left(x, [\mathbf{x}]\right)$ s.t. Ax < b, $x \in [0, 1]^n$

$\mathbf{p}_i = \mathrm{model}\left(\bar{x}_i^t, [\bar{x}_i^t]; \Theta\right)$

Properties of model

What is the role of ML in the algorithm?

 $\Pr_{\mathcal{T}}^{\mathsf{T}}$ s.t. Ax < b, $x \in [0, 1]^n$

$\mathbf{p}_i = \mathrm{model}\left(\bar{x}_i^t, [\bar{x}_i^t]; \Theta\right)$

Properties of model

• Parameters shared across variables • **Recurrent** across iterations

3 How can we train the algorithm? $\min c^T x$ **s.t.** $Ax \le b, x \in \{0,1\}^n$ ${\mathcal X}$ predict penalize input to solve LP Recurrent

Neural Network

projection coefficients

input to Recurrent Neural Network

input topredictRecurrent---->projectionNeural Networkcoefficients

solve LP projection **penalize** fractional variables

A neural network with parameters (--) **Same network** used for all fractional variables RNN History vector is variable-specific

predict **input** to projection Recurrent coefficients Neural Network

solve LP projection

penalize fractional variables

To make LP solution differentiable, add small constant quadratic term See OptNet by Amos & Kolter, 2017

input topredictRecurrent→projectionNeural Networkcoefficients

solve LP projection **penalize** fractional variables

input to Recurrent Neural Network coefficients

Experimental Setup

- Generate Training / Validation / Testing instances
 - No need to solve Training instances!
- NIO is fully differentiable Train with gradient descent

Learning IP Heuristics in Practice Generalized Assignment Problem (GAP) Train on 500 small instances, Test on 500 larger instances

Learning IP Heuristics in Practice Generalized Assignment Problem (GAP) Train on 500 small instances, Test on 500 larger instances

Learning IP Heuristics in Practice Generalized Assignment Problem (GAP) Train on 500 small instances, Test on 500 larger instances

Learning IP Heuristics in Practice **Two-Stage Stochastic Integer Programs (STOC)** Train on 500 small instances, Test on 500 larger instances

Learning IP Heuristics in Practice **Two-Stage Stochastic Integer Programs (STOC)** Train on 500 small instances, Test on 500 larger instances

What about advanced codes? **Two-Stage Stochastic Integer Programs (STOC)**

STOC (10,10) STOC (20,20) STOC (30,20)

- FP1 + presolve + propagation

	•	
ΝΟ	FP2	FP1
99.2	95.4	14.6
22.6	0.6	0
7.6	0	0

Solutions Found (%) in 100 iterations

- SATisfiability problem
- NIO: use model from GAP on SAT
- **NeuroSAT*:** Deep Learning model for SAT solving
 - Trained with supervised learning
 - Millions of training instances

* Learning a SAT Solver from Single-Bit Supervision. ICLR 2019

Compared to Pure Neural Net Higher is Better

ML Paradigm

Self-Supervised Learning

Reinforcement Learning

Supervised Learning

Graph Optimization Integer Programming Problem Type

ML Paradigm

Self-Supervised Learning

Rein Takeaways Incorporate LP-projections into neural network model Can learn heuristics for arbitrary Integer Programs No supervised or reinforcement learning required! Outperforms the Feasibility Pump on various problems

ыарп

General IP Heuristic

meyer rogramming

Problem Type

Humans learn to design algorithms.

Can algorithms "learn" to design algorithms?

Machine Learning

Discrete Optimization

Can algorithms "learn" to design algorithms?

Machine Learning

Discrete Optimization

Can algorithms "learn" to closign a gorithms? **Discrete Optimization**

Machine Learning

Can algorithms "learn" to coston a gorthms? **Discrete** Optimization

Machine Learning

Can algorithms "learn" to cosign a gorthms? **Discrete** Optimization

Yes ML complements human algorithms ML fills in algorithm details using data

Machine Learning

Data-Driven Algorithm Design Impact in ML and OPT

Heuristic Selection

Exact Solving

Greedy Heuristic

Branching

ML models for DiscOpt

- Attention for TSP [Kool+, 2019]
- Graph Convolutions [Li+, 2018]
- Imitation learning [Song+, 2018]

Combinatorial problems

- SAT [Selsam+, 2019]
- SMT [Balunovic+, 2018]
- k-Coverage [Li+, 2019]
- Scheduling [Mao+, 2019]
- Assignment [Emami+, 2018]
- VRP [Nazari+, 2018]
- Multiple-TSP [Kaempfer+, 2018]
- Stochastic Opt. [Nair+, 2018]

Branch-and-Bound

Applications

Unit commitment [Xavier+, 2019] Sensor placement [Shen+, 2019] Recommender systems [Fu+, 2017]

Theory

Learning to Branch [Balcan+, 2018]

Machine Learning

Machine Learning

General Integer Programming Heuristic

Discrete Optimization

Loss()

Questions? www.ekhalil.com

Relevant papers

Neural Integer Optimization: Learning to Satisfy Generic Constraints. w/R. Trivedi, B. Dilkina. Submitted to NeurIPS 2019. Learning Combinatorial Optimization Algorithms over Graphs. w/ H. Dai (co first auth.), Y. Zhang, B. Dilkina, L. Song. NeurIPS 2017. ML Paradigm

Learning To Run Heuristics in Tree Search. w/B. Dilkina, G. Nemhauser, S. Ahmed, Y. Shao. **IJCAI 2017**.

Learning to Branch in Mixed Integer Programming. w/ P. Le Bodic, L. Song, G. Nemhauser, B. Dilkina. AAAI 2016.

Combinatorial Attacks on Binarized Neural Networks. w/ A. Gupta, B. Dilkina. ICLR 2019.

Waterloo ML + Security + Verification Workshop

