
Machine Learning for
Integer Programming

Elias B. Khalil

starting July 2020

Postdoc Assistant Professor of
Industrial Engineering

 ekhalil.com

Waterloo ML + Security + Verification Workshop

http://www.ekhalil.com

In Memoriam: Shabbir Ahmed
• Anderson-Interface Chair and professor in Georgia

Tech’s H. Milton Stewart School of Industrial and
Systems Engineering (ISyE)

• Giant of Stochastic Optimization and Integer
Optimization

!2

Humans learn to design algorithms.

Humans learn to design algorithms.

Can algorithms “learn” to
design algorithms?

Humans learn to design algorithms.

Can algorithms “learn” to
design algorithms?

Machine Learning

Humans learn to design algorithms.

Can algorithms “learn” to
design algorithms?

Machine Learning

Discrete Optimization

Data Center Resource Management

!4 Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

!4

Services
Memory

CPU

…

Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

!4

Services
Memory

CPU

…

Machines …

Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

!4

Services
Memory

CPU

…

Machines …
?

Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits

https://www.reit.com/what-reit/reit-sectors/data-center-reits

!5

Services
Memory

CPU

…

Machines …
?

S

M

!5

Services
Memory

CPU

…

Machines …
?

S

M

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

!5

x ∈ {0,1}S×M, y ∈ {0,1}M

Services
Memory

CPU

…

Machines …
?

S

M

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

!5

minimize
M

∑
m=1

ym

x ∈ {0,1}S×M, y ∈ {0,1}M

Services
Memory

CPU

…

Machines …
?

S

M

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

!5

minimize
M

∑
m=1

ym

x ∈ {0,1}S×M, y ∈ {0,1}M

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

!5

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

Each service on one machine only

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

!5

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

ym ≥ xs,m ∀s, m

Each service on one machine only

Machine is “ON” if a job is assigned to it

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

!5

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

S

∑
s=1

mem(s) ⋅ xs,m ≤ cap-mem(m) ∀m

ym ≥ xs,m ∀s, m

Each service on one machine only

Machine is “ON” if a job is assigned to it

Memory capacity

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

!5

minimize
M

∑
m=1

ym

M

∑
m=1

xs,m = 1 ∀s

x ∈ {0,1}S×M, y ∈ {0,1}M

S

∑
s=1

mem(s) ⋅ xs,m ≤ cap-mem(m) ∀m

S

∑
s=1

cpu(s) ⋅ xs,m ≤ cap-cpu(m) ∀mym ≥ xs,m ∀s, m

Each service on one machine only

Machine is “ON” if a job is assigned to it

Memory capacity

Processor capacity

Services
Memory

CPU

…

Machines …
?

S

M

Constraints:

ym = 1 if machine is usedm
xs,m = 1 if service runs ons m

Safety-Critical Machine Learning

!6

Safety-Critical Machine Learning

!6

STOP

YIELD

Safety-Critical Machine Learning

!6

STOP

YIELD

STOP

YIELD

Safety-Critical Machine Learning

!6

STOP

YIELD

STOP

YIELD

Goal: Guarantee that trained model
has desirable behavior

Safety-Critical Machine Learning

!6

STOP

YIELD

STOP

YIELD

Goal: Guarantee that trained model
has desirable behavior

Model ReLU with Binary
variables + Linear Inequalities

Safety-Critical Machine Learning

!6

STOP

YIELD

STOP

YIELD

Safety-Critical Machine Learning

!6

STOP

YIELD

STOP

YIELD

prove ∄x′� close to x
such that f(x′�; STOP) < f(x′�; YIELD)

Verification Problem

x
f(x; ⋅) x′� f(x′�; ⋅)

Kidney ExchangeAuction Design Data Center Management Political Districting

Energy Systems

Kidney Exchange

Ridesharing Cancer Therapeutics

Auction Design Data Center Management Political Districting

Scientific Discovery

Energy Systems

Kidney Exchange

Airline Scheduling Conservation Planning Disaster Response

Ridesharing

College Admissions

Cancer Therapeutics

Auction Design Data Center Management Political Districting

Scientific Discovery

Energy Systems

Kidney Exchange

Airline Scheduling Conservation Planning Disaster Response

Ridesharing

College Admissions

Cancer Therapeutics

Auction Design Data Center Management Political Districting

Scientific Discovery> 50% of INFORMS Edelman Award
winners use Discrete Optimization

 → Billions ($) in savings/profit

George Nemhauser, Plenary at EURO INFORMS, 2013

Data Center Resource Management

!8

Data Center Resource Management

!8

Memory

CPU
…

?
…

4 PM

Data Center Resource Management

!8

Memory

CPU
…

?
…

Memory

CPU
…

…
?

…

4 PM 5 PM

Data Center Resource Management

!8

Memory

CPU
…

?
…

Memory

CPU
…

…
?

…

Memory

CPU
…

?
…

4 PM 5 PM

6 PM

Data Center Resource Management

!8

Memory

CPU
…

?
…

Memory

CPU
…

…
?

…

Memory

CPU
…

?
…

…

4 PM 5 PM

6 PM

Tackling NP-Hard Problems

!9

Paradigm Design Rationale

Tackling NP-Hard Problems

!9

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Tackling NP-Hard Problems

!9

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Tackling NP-Hard Problems

!9

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

Tackling NP-Hard Problems

!9

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

Tackling NP-Hard Problems

!9

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

How do you tailor the
algorithm to YOUR

instances?

Tackling NP-Hard Problems

!9

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

How do you tailor the
algorithm to YOUR

instances?

Customization via…

Tackling NP-Hard Problems

!9

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

How do you tailor the
algorithm to YOUR

instances?

Problem-Specific Bounding
functions or search rules

Customization via…

Tackling NP-Hard Problems

!9

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

How do you tailor the
algorithm to YOUR

instances?

Problem-Specific Bounding
functions or search rules

Make explicit assumptions on input
distribution and redesign algo.

Customization via…

Tackling NP-Hard Problems

!9

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

How do you tailor the
algorithm to YOUR

instances?

Problem-Specific Bounding
functions or search rules

Make explicit assumptions on input
distribution and redesign algo.

Analyze algorithm behavior on your
inputs; look for patterns to exploit

Customization via…

Tackling NP-Hard Problems

!9

Paradigm Design Rationale
Exhaustive Search Tight formulations

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure
Empirical trial-and-error

How do you tailor the
algorithm to YOUR

instances?

Problem-Specific Bounding
functions or search rules

Make explicit assumptions on input
distribution and redesign algo.

Analyze algorithm behavior on your
inputs; look for patterns to exploit

Customization via…

ANSWER:

Manual intellectual/

experimental effort required

Opportunity

!10

Automatically tailor algorithms
to a family of instances

Memory

CPU
…

?
…

Data Center Resource Management Forest Harvesting

STOP

YIELD
Adversarial ML

Data-Driven Algorithm Design

!11

automatically discovers
novel search strategies

Learned Heuristic Classical Heuristic

Find smallest
vertex subset
such that each

edge is covered

Minimum
Vertex Cover

Data-Driven Algorithm Design

!11

automatically discovers
novel search strategies

Learned Heuristic Classical Heuristic

Find smallest
vertex subset
such that each

edge is covered

Minimum
Vertex Cover

Data-Driven Algorithm Design

!12

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

Branching
!"
!#
…
!$
? !!

Heuristic A
Heuristic B
Heuristic C

Feasible solution?

argmax

Greedy Heuristic

General Integer
Programming Heuristic

Branching Heuristic Selection
Exact Solving

NeurIPS-17

AAAI-16 IJCAI-17

NeurIPS-19, hopefully?

Branch & Bound for Integer Optimization

!13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:

Prune?

1
2
3
4
5
6

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

!13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!"
Repeat:

Prune?

1
2
3
4
5
6

1

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

!13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!" Solve LP Relaxation
→ Lower Bound on OPT

Repeat:

Prune?

1
2
3
4
5
6

2

[0,1]n
LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

!13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!" Solve LP Relaxation
→ Lower Bound on OPT

Repeat:

Prune?

1
2
3
4
5
6

3

[0,1]n

worse than best solution?
Prune!

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

!13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!" Add Cuts:
Tightening Constraints

Repeat:

Prune?

1
2
3
4
5
6

4

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

!13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!" Heuristic A
Heuristic B
Heuristic C

Feasible solution?

Repeat:

Prune?

1
2
3
4
5
6
5

LP-based

Update Best Solution

Land & Doig, 1960

Branch & Bound for Integer Optimization

!13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:
!" #$?

#&?
…
#'?

#(= 0 #(= 1
Prune?

1
2
3
4
5
66

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

!13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:
!"

#$

!% !$

#$ = 0 #$ = 1

Prune?

1
2
3
4
5
66

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

!13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:

!" !#

$# = 0 $# = 1

Prune?

1
2
3
4
5
6

1

LP-based Land & Doig, 1960

Branch & Bound for Integer Optimization

!13

Select Node
Solve LP Relaxation

Add Cuts
Run Heuristics
Branch

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Repeat:

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1Prune?

1
2
3
4
5
6

LP-based Land & Doig, 1960

!14

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

!14

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Objective value

!14

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Primal bound: value
of best solution so far

Objective value

!14

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier

Objective value

!14

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

2.2 1.0

7.3

Objective value

!14

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Gap

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

2.2 1.0

7.3

Objective value

!14

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Gap

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier Value of LP

relaxation at
root node

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

2.2 1.0

7.3

Objective value

Heuristics matter!

!15

OPT
Search tree nodes

Gap

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier Value of LP

relaxation at
root node

Objective value

Heuristics matter!

!15

OPT
Search tree nodes

Gap

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier Value of LP

relaxation at
root node

Objective value

1- Better primal bound —> More nodes pruned
 —> Gap closed faster!

Heuristics matter!

!15

OPT
Search tree nodes

Gap

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier Value of LP

relaxation at
root node

Objective value

1- Better primal bound —> More nodes pruned
 —> Gap closed faster!

2- Better feasible solutions
—> More effective decision-making

Data-Driven Algorithm Design

!16

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

!"
!#
…
!$
? !!

Heuristic A
Heuristic B
Heuristic C

Feasible solution?

argmax

Greedy Heuristic

General Integer
Programming Heuristic

Branching Heuristic Selection
Exact Solving

NeurIPS-17

AAAI-16 IJCAI-17

NeurIPS-19, hopefully?

The Heuristic Selection Problem

!17

diving 1
…

feaspump

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1
Found Incumbent!

FAILED

MIP solvers implement many primal heuristics: 54 in SCIP (2019)

The Heuristic Selection Problem

!17

diving 1
…

feaspump

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1
Found Incumbent!

FAILED

MIP solvers implement many primal heuristics: 54 in SCIP (2019)

The Heuristic Selection Problem

!17

diving 1
…

feaspump

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1
Found Incumbent!

FAILED

MIP solvers implement many primal heuristics: 54 in SCIP (2019)

The Heuristic Selection Problem

!17

diving 1
…

feaspump

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1
Found Incumbent!

FAILED

MIP solvers implement many primal heuristics: 54 in SCIP (2019)Learning to Run Heuristics
[Khalil, Dilkina, Nemhauser, Ahmed, Shao, 2017]

Given: dataset of
(node features, 0/1 success flag)

Learn: a classifier of heuristic success

Primal Integral
A Good Performance Criterion

!18

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Solving this node LP…
Pr

im
al

 G
ap

 𝑝
(𝑡
)

Time

No incumbent at first

… gives 1st

incumbent

Running H at this node…

… gives 2nd

incumbent
OPT found

Primal
Integral
𝑷(𝒕𝒎𝒂𝒙)

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

Learning to Run Heuristics

!19

Data Collection

Machine
Learning

New Instance

Decision-Making
Algorithm3. Use

oracle
predictions

4. Decision: Run / Don’t run

Oracle:
Success

Prediction

P(N): Probability of
finding incumbent

at node N

RWS: if P(N) > 0.5, run heuristic

Logistic Regression
w. 49 features

Run-When-Successful

Feature Engineering

!20

Data Collection

Machine
Learning

New Instance

Decision-Making
Algorithm3. Use

oracle
predictions

4. Decision: Run / Don’t run

Oracle:
Success

Prediction

Feature Engineering

!20

Data Collection

Machine
Learning

New Instance

Decision-Making
Algorithm3. Use

oracle
predictions

4. Decision: Run / Don’t run

Oracle:
Success

Prediction

Binary Label
found incumbent (1), o.w. (0)

Forest Harvesting

!21

Forest Harvesting

!21

Forest Harvesting

!21

G(V, E)

Forest Harvesting

!21

G(V, E)

Forest Harvesting

!21

Goal: Harvest subset of parcels
to maximize revenue; pay cost
for harvesting adjacent parcels

G(V, E)

Forest Harvesting

!21

Goal: Harvest subset of parcels
to maximize revenue; pay cost
for harvesting adjacent parcels

maximize∑
i∈V

rixi − ∑
(i,j)∈E

cijyij

subject to xi + xj − yij ≤ 1

x ∈ {0,1}n, y ∈ {0,1}m G(V, E)

i
j

Heuristic Selection in Practice

!22

Ti
m

e
(m

in
ut

es
)

0

25

50

75

100

Time to Best Solution

36

93

Default SCIP Learned

Av
g.

 S
ol

ut
io

n
Q

ua
lit

y
ov

er
 T

im
e

0

0.1

0.2

0.3

0.4

Primal Integral

0.144

0.364

maximize∑
i∈V

rixi − ∑
(i,j)∈E

cijyij

subject to xi + xj − yij ≤ 1

x ∈ {0,1}n, y ∈ {0,1}m

Generalized Independent Set

60%
reduction

!23

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

!"
!#
…
!$
?

argmax

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection
Exact Solving

!!
Heuristic A
Heuristic B
Heuristic C

Feasible solution?

!23

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

!"
!#
…
!$
?

argmax

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection
Exact Solving

Takeaways
‣ First ML framework for heuristic selection in B&B
‣ Dynamic, node-dependent decision-making
‣ Forest Harvesting: 60% reduction in Primal Integral
‣ Even on the heterogeneous MIPLIB2010 Benchmark:
 6% reduction in Primal Integral

!!
Heuristic A
Heuristic B
Heuristic C

Feasible solution?

Greedy Graph Optimization

!24

Minimum Vertex Cover
Find smallest vertex subset such that each edge is covered

2-Approximation:
Greedily add vertices of edge
with max degree sum

Greedy Graph Optimization

!24

Minimum Vertex Cover
Find smallest vertex subset such that each edge is covered

2-Approximation:
Greedily add vertices of edge
with max degree sum
Learning Greedy Graph Heuristics
[Dai*, Khalil*, Zhang, Dilkina, Song, 2017]

Given: graph problem, family of
graphs

Learn: a scoring function to
guide a greedy algorithm

Learning Greedy Heuristics

!25

Learning Greedy Algorithms

Given a graph optimization problem P and a distribu-
tion D over problem instances, can we learn better greedy
heuristics that generalize to unseen instances from D?

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem

Domain Social network snapshots Spin glass models Package delivery

Greedy operation Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

Elias B. Khalil Towards Tighter Integration of ML and DO March 12, 2018 33 / 53

Given: graph problem, family of graphs
Learn: a scoring function to guide a greedy algorithm

Reinforcement Learning

!26

Repeat until all edges are covered:
1. Compute node scores
2. Select best node w.r.t. score
3. Add best node to partial sol.

Partial Solution

Scoring function Q-function≡
Select best node Greedy Policy≡

Partial solution State≡
Greedy Algorithm Reinforcement Learning

Learning Node Features

!27

= Q(St, v; Θ)
v

St = { }

Scoring Function: Need to represent node with a feature vector first

Learning Node Features

!27

= Q(St, v; Θ)
v

St = { }

Scoring Function: Need to represent node with a feature vector first
Problem: Not clear what good node features are!

Learning Node Features

!27

= Q(St, v; Θ)
v

St = { }

Scoring Function: Need to represent node with a feature vector first
Problem: Not clear what good node features are!
Solution: Parametrize a Graph Neural Network with parameters Θ

Learning Node Features

!27

= Q(St, v; Θ)
v

St = { }

Scoring Function: Need to represent node with a feature vector first
Problem: Not clear what good node features are!
Solution: Parametrize a Graph Neural Network with parameters Θ

Run RL algorithm (e.g. Q-Learning)
Use gradient of solution cost to update Θ

Learning Greedy in Practice

!28

VERTEX COVER MAX-CUT

TSP

Approximation
Ratio

!29

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

!"
!#
…
!$
?

argmax

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection
Exact Solving

!!
Heuristic A
Heuristic B
Heuristic C

Feasible solution?

!29

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

!"
!#
…
!$
?

argmax

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection
Exact Solving

Takeaways
‣ Reinforcement Learning tailors greedy search to your

instances
‣ Learn features jointly with greedy policy
‣ Human priors encoded via (greedy) meta-algorithm
‣ Interesting, novel strategies emerge

!!
Heuristic A
Heuristic B
Heuristic C

Feasible solution?

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Data Center
Resource ManagementPower Systems Airline Scheduling

General Heuristic

Feasible Solution

… …

General IP Heuristics

!31

General IP Heuristics

!31

Strengths

General IP Heuristics

!31

Strengths
• Applicable to many problems

• Usable inside Branch-and-Bound

Feasible
Region of

LP
Relaxation

Round to
nearest integer

(0, 0) (1, 0)

(1, 1)
(0, 1)

Feasibility Pump

!32

0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

Figure in part from Berthold (2014)

General IP Heuristics

!33

Strengths
• Applicable to many problems

• Usable inside Branch-and-Bound

General IP Heuristics

!33

Strengths
• Applicable to many problems

• Usable inside Branch-and-Bound
Weaknesses

General IP Heuristics

!33

Strengths
• Applicable to many problems

• Usable inside Branch-and-Bound
Weaknesses
• May not work well for your problem

• Cannot exploit distribution of instances

………

Problem Statement

!34

………

Problem Statement

!34

………

Problem Statement

!34

………
I : set of training IP instances

Problem Statement

!34

………
I : set of training IP instances

A : a parametric algorithm; outputs
1 if feasible solution is found

0 otherwise

(

⇥ 2 Rp

Problem Statement

!34

………
I : set of training IP instances

Find ⇥⇤ = argmax
1

|I|
X

I2I
A(I;⇥)

⇥ 2 Rp

A : a parametric algorithm; outputs
1 if feasible solution is found

0 otherwise

(

⇥ 2 Rp

Towards Learning General Heuristics

!35

Find ⇥⇤ = argmax
1

|I|
X

I2I
A(I;⇥)

⇥ 2 Rp

Towards Learning General Heuristics

!35

Find ⇥⇤ = argmax
1

|I|
X

I2I
A(I;⇥)

⇥ 2 Rp

What type of algorithm is ? A1

What is the role of the ML model,
parameterized by , in ? ⇥

Towards Learning General Heuristics

!35

Find ⇥⇤ = argmax
1

|I|
X

I2I
A(I;⇥)

⇥ 2 Rp

What type of algorithm is ? A

A

1

2

What is the role of the ML model,
parameterized by , in ? ⇥

Towards Learning General Heuristics

!35

Find ⇥⇤ = argmax
1

|I|
X

I2I
A(I;⇥)

⇥ 2 Rp

What type of algorithm is ? A

A
How can we train the algorithm?

1

2

3

!36

What type of algorithm is ? A1

Learning Greedy Algorithms

Given a graph optimization problem P and a distribu-
tion D over problem instances, can we learn better greedy
heuristics that generalize to unseen instances from D?

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem

Domain Social network snapshots Spin glass models Package delivery

Greedy operation Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

Elias B. Khalil Towards Tighter Integration of ML and DO March 12, 2018 33 / 53

Given: graph problem, family of graphs
Learn: a scoring function to guide a greedy algorithm

[Dai & Khalil, et al. (2017)]

!36

What type of algorithm is ? A1

Learning Greedy Algorithms

Given a graph optimization problem P and a distribu-
tion D over problem instances, can we learn better greedy
heuristics that generalize to unseen instances from D?

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem

Domain Social network snapshots Spin glass models Package delivery

Greedy operation Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

Elias B. Khalil Towards Tighter Integration of ML and DO March 12, 2018 33 / 53

Given: graph problem, family of graphs
Learn: a scoring function to guide a greedy algorithm

[Dai & Khalil, et al. (2017)]

!37

What type of algorithm is ? A1

Task A B C
Requirement

D

!37

What type of algorithm is ? A1

Task A B C
Requirement

D

!37

What type of algorithm is ? A1

Task A B C
Requirement

D

!37

What type of algorithm is ? A1

Task A B C
Requirement

D

!37

What type of algorithm is ? A1

Task A B C
Requirement

D

Stuck!!

!37

What type of algorithm is ? A1

Task A B C
Requirement

D

Stuck!!

Local algorithms may fail in the
presence of hard constraints

!38

Feasible
Region of

LP
Relaxation

Round to
nearest integer

0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

What type of algorithm is ? A1

Repeated Projections
maintain constraint

feasibility via LP solving

Figure in part from Berthold (2014)

!39

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

!39

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

x̄1

!39

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

x̄1

[x̄1]

!39

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

x̄1

x̄2 [x̄
1]

!39

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

x̄1

x̄2 [x̄
1]

!39

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

Key Step:

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

�(x, [x̄t])

s.t. Ax  b,

x 2 [0, 1]n

x̄1

x̄2 [x̄
1]

!40

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

�(x, [x̄t])

s.t. Ax  b,

x 2 [0, 1]n

x̄1

x̄2 [x̄
1]

!40

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

�(x, [x̄t])

s.t. Ax  b,

x 2 [0, 1]n

x̄1

x̄2 [x̄
1]

L1-distance

!40

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

�(x, [x̄t])

s.t. Ax  b,

x 2 [0, 1]n

x̄1

x̄2 [x̄
1]

L1-distance
X

j

���xj � [x̄t]j
���

=
X

j:[x̄t]=0

xj +
X

j:[x̄t]=1

(1� xj)

!40

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

�(x, [x̄t])

s.t. Ax  b,

x 2 [0, 1]n

x̄1

x̄2 [x̄
1]

L1-distance
X

j:[x̄t]=0

xj +
X

j:[x̄t]=1

(1� xj)

!40

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

�(x, [x̄t])

s.t. Ax  b,

x 2 [0, 1]n

x̄1

x̄2 [x̄
1]

L1-distance
X

j:[x̄t]=0

xj +
X

j:[x̄t]=1

(1� xj)

!40

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

�(x, [x̄t])

s.t. Ax  b,

x 2 [0, 1]n

x̄1

x̄2 [x̄
1]

L1-distance
X

j:[x̄t]=0

xj +
X

j:[x̄t]=1

(1� xj)

Learn the
projection

coefficients!!

!41

What is the role of ML in the algorithm?2

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

`1(x, [x̄
t])

s.t. Ax  b,

x 2 [0, 1]n

!41

What is the role of ML in the algorithm?2

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

`1(x, [x̄
t])

s.t. Ax  b,

x 2 [0, 1]n

!41

What is the role of ML in the algorithm?2

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

`1(x, [x̄
t])

s.t. Ax  b,

x 2 [0, 1]n

!41

What is the role of ML in the algorithm?2

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

`1(x, [x̄
t])

s.t. Ax  b,

x 2 [0, 1]n

min
x

p|x

s.t. Ax  b,

x 2 [0, 1]n

!41

What is the role of ML in the algorithm?2

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

`1(x, [x̄
t])

s.t. Ax  b,

x 2 [0, 1]n

min
x

p|x

s.t. Ax  b,

x 2 [0, 1]n

pi = model
⇣
x̄i

t, [x̄i
t];⇥

⌘

!41

What is the role of ML in the algorithm?2

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

`1(x, [x̄
t])

s.t. Ax  b,

x 2 [0, 1]n

min
x

p|x

s.t. Ax  b,

x 2 [0, 1]n
Properties of

pi = model
⇣
x̄i

t, [x̄i
t];⇥

⌘

pi = model
⇣
x̄i

t, [x̄i
t];⇥

⌘

!41

What is the role of ML in the algorithm?2

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

`1(x, [x̄
t])

s.t. Ax  b,

x 2 [0, 1]n

min
x

p|x

s.t. Ax  b,

x 2 [0, 1]n
Properties of

pi = model
⇣
x̄i

t, [x̄i
t];⇥

⌘

pi = model
⇣
x̄i

t, [x̄i
t];⇥

⌘

• Parameters shared across variables
• Recurrent across iterations

!42

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

predict
projection

coefficients

RNN (1)

RNN (n)

Loss()
p1

pn

… …

x̄t
1

[x̄t
1]

x̄t
n

[x̄t
n] x̄t

penalize
fractional

variables

…
solve LP
projection

input to
Recurrent

Neural Network

p

Iterate if is infeasible [x̄t]
History vector

x̄t−1

x̄t

How can we train the algorithm?3

!43

predict
projection

coefficients

penalize
fractional

variables

solve LP
projection

input to
Recurrent

Neural Network

Iterate if is infeasible [x̄t]

RNN (1)

RNN (n)

p1

pn
… …

x̄t
1

[x̄t
1]

x̄t
n

[x̄t
n]

…

History vector x̄t

p x̄t−1

Loss()x̄t

!43

predict
projection

coefficients

penalize
fractional

variables

solve LP
projection

input to
Recurrent

Neural Network

Iterate if is infeasible [x̄t]

RNN (1)

RNN (n)

p1

pn
… …

x̄t
1

[x̄t
1]

x̄t
n

[x̄t
n]

…

History vector x̄t

p x̄t−1

Loss()x̄t

!43

predict
projection

coefficients

penalize
fractional

variables

solve LP
projection

input to
Recurrent

Neural Network

Iterate if is infeasible [x̄t]

RNN (1)

RNN (n)

p1

pn
… …

x̄t
1

[x̄t
1]

x̄t
n

[x̄t
n]

…

History vector x̄t

p x̄t−1

Loss()x̄t

RNN

A neural network with parameters ⇥
Same network used for all fractional variables
History vector is variable-specific

!43

predict
projection

coefficients

penalize
fractional

variables

solve LP
projection

input to
Recurrent

Neural Network

Iterate if is infeasible [x̄t]

RNN (1)

RNN (n)

p1

pn
… …

x̄t
1

[x̄t
1]

x̄t
n

[x̄t
n]

…

History vector x̄t

p x̄t−1

Loss()x̄t

To make LP solution differentiable,
add small constant quadratic term
See OptNet by Amos & Kolter, 2017

!43

predict
projection

coefficients

penalize
fractional

variables

solve LP
projection

input to
Recurrent

Neural Network

Iterate if is infeasible [x̄t]

RNN (1)

RNN (n)

p1

pn
… …

x̄t
1

[x̄t
1]

x̄t
n

[x̄t
n]

…

History vector x̄t

p x̄t−1

Loss()x̄t

BCE(I;⇥) = �
TX

t=1

X

j|x̄t
j /2{0,1}

[x̄t
j] · log x̄t

j + (1� [x̄t
j]) · log (1� x̄t

j)—
Binary Cross-Entropy Loss

Experimental Setup

!44

‣ Generate Training / Validation /
Testing instances
‣ No need to solve Training

instances!

‣ NIO is fully differentiable
‣ Train with gradient descent

Learning IP Heuristics in Practice

!45

Generalized Assignment Problem (GAP)
Train on 500 small instances, Test on 500 larger instances

Learning IP Heuristics in Practice

!45

Generalized Assignment Problem (GAP)
Train on 500 small instances, Test on 500 larger instances

Learning IP Heuristics in Practice

!45

Generalized Assignment Problem (GAP)
Train on 500 small instances, Test on 500 larger instances

Learned heuristic
solves most

instances in < 10
iterations

Learning IP Heuristics in Practice

!46

Two-Stage Stochastic Integer Programs (STOC)
Train on 500 small instances, Test on 500 larger instances

Learning IP Heuristics in Practice

!46

Two-Stage Stochastic Integer Programs (STOC)
Train on 500 small instances, Test on 500 larger instances

What about advanced codes?

!47

Two-Stage Stochastic Integer Programs (STOC)

FP1 + presolve + propagation
Solutions Found (%) in 100 iterations

NIO

Solutions Found (%) in 100 iterations

Compared to Pure Neural Net

!48

‣ SATisfiability problem
‣ NIO: use model from GAP on SAT
‣ NeuroSAT*: Deep Learning

model for SAT solving
‣ Trained with supervised

learning
‣ Millions of training instances

Higher is BetterEasy for
SAT solvers

* Learning a SAT Solver from Single-Bit Supervision. ICLR 2019

!49

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

!"
!#
…
!$
?

argmax

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection
Exact Solving

!!
Heuristic A
Heuristic B
Heuristic C

Feasible solution?

!49

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

!"
!#
…
!$
?

argmax

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection
Exact Solving

!!
Heuristic A
Heuristic B
Heuristic C

Feasible solution?

Takeaways
‣ Incorporate LP-projections into neural network model
‣ Can learn heuristics for arbitrary Integer Programs
‣ No supervised or reinforcement learning required!
‣ Outperforms the Feasibility Pump on various problems

Humans learn to design algorithms.

Can algorithms “learn” to
design algorithms?

Machine Learning

Discrete Optimization

Can algorithms “learn” to
design algorithms?

Machine Learning

Discrete Optimization

Can algorithms “learn” to
design algorithms?

Machine Learning

Discrete Optimization
tailor

Can algorithms “learn” to
design algorithms?

Machine Learning

Discrete Optimization

Yes!
tailor

Can algorithms “learn” to
design algorithms?

Machine Learning

Discrete Optimization

Yes!
tailor

ML complements human algorithms
ML fills in algorithm details using data

Impact in ML and OPT

!51

Branch-and-Bound

Combinatorial problems
Applications

Theory

✦ SAT [Selsam+, 2019]

✦ SMT [Balunovic+, 2018]

✦ k-Coverage [Li+, 2019]

✦ Scheduling [Mao+, 2019]

✦ Assignment [Emami+, 2018]

✦ VRP [Nazari+, 2018]

✦ Multiple-TSP [Kaempfer+, 2018]

✦ Stochastic Opt. [Nair+, 2018]

ML models for DiscOpt
✦ Attention for TSP [Kool+, 2019]

✦ Graph Convolutions [Li+, 2018]

✦ Imitation learning [Song+, 2018]

✦ Learning to Branch [Balcan+, 2018]

✦ Multi-objective IP [Sierra-Altamiranda+, 2019]

✦ Outcome prediction [Fischetti+, 2019]

✦ Cut selection [Baltean-Lugojan+, 2018]

✦ Formulation selection [Bonami+, 2018]

✦ Solution prediction [Larsen+, 2018]

✦ Decompositions [Kruber+, 2017]

✦ Unit commitment [Xavier+, 2019]

✦ Sensor placement [Shen+, 2019]

✦ Recommender systems [Fu+, 2017]

Data-Driven Algorithm Design

!52

Machine
Learning

Discrete
Optimization

Attack

!52

Machine
Learning

Discrete
Optimization

Attack

ML x OPT
Exciting synergies
and challenges in
both directions

Questions?
www.ekhalil.com

Combinatorial Attacks on Binarized Neural Networks.

w/ A. Gupta, B. Dilkina. ICLR 2019.

Learning Combinatorial Optimization Algorithms over Graphs.

w/ H. Dai (co first auth.), Y. Zhang, B. Dilkina, L. Song. NeurIPS 2017.

Neural Integer Optimization: Learning to Satisfy Generic Constraints.

w/ R. Trivedi, B. Dilkina. Submitted to NeurIPS 2019.

Learning To Run Heuristics in Tree Search.

w/ B. Dilkina, G. Nemhauser, S. Ahmed, Y. Shao. IJCAI 2017.
Learning to Branch in Mixed Integer Programming.

w/ P. Le Bodic, L. Song, G. Nemhauser, B. Dilkina. AAAI 2016.

Relevant papers

Waterloo ML + Security + Verification Workshop

http://www.ekhalil.com

