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mem(s) ⋅ xs,m ≤ cap-mem(m) ∀m

S

∑
s=1
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ym = 1 if machine      is usedm
xs,m = 1 if service    runs ons m
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STOP

YIELD

prove ∄x′� close to x
such that f(x′�;  STOP) < f(x′�;  YIELD)

Verification Problem

x
f(x; ⋅ ) x′� f(x′�; ⋅ )
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Energy Systems

Kidney Exchange

Airline Scheduling Conservation Planning Disaster Response

Ridesharing

College Admissions

Cancer Therapeutics

Auction Design Data Center Management Political Districting

Scientific Discovery> 50% of INFORMS Edelman Award 
winners use Discrete Optimization 

 → Billions ($) in savings/profit

George Nemhauser, Plenary at EURO INFORMS, 2013
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Tackling NP-Hard Problems
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Paradigm Design Rationale
Exhaustive Search Tight formulations 

Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Heuristics Intuition exploiting problem structure 
Empirical trial-and-error

How do you tailor the 
algorithm to YOUR 

instances?

Problem-Specific Bounding 
functions or search rules 

Make explicit assumptions on input 
distribution and redesign algo.

Analyze algorithm behavior on your 
inputs; look for patterns to exploit 

Customization via…

ANSWER: 

Manual intellectual/

experimental effort required
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Automatically tailor algorithms 
to a family of instances

Memory

CPU
…

?
…

Data Center Resource Management Forest Harvesting

STOP

YIELD
Adversarial ML



Data-Driven Algorithm Design

!11

automatically discovers 
novel search strategies

Learned Heuristic Classical Heuristic

Find smallest 
vertex subset 
such that each 

edge is covered 

Minimum  
Vertex Cover  



Data-Driven Algorithm Design

!11

automatically discovers 
novel search strategies

Learned Heuristic Classical Heuristic

Find smallest 
vertex subset 
such that each 

edge is covered 

Minimum  
Vertex Cover  



Data-Driven Algorithm Design

!12

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

Branching
!"
!#
…
!$
? !!

Heuristic A
Heuristic B
Heuristic C

Feasible solution?

argmax

Greedy Heuristic

General Integer  
Programming Heuristic

Branching Heuristic Selection
Exact Solving

NeurIPS-17

AAAI-16 IJCAI-17

NeurIPS-19, hopefully?
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!" Heuristic A
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OPT
Search tree nodes

Gap

Primal bound: value 
of best solution so far

Dual bound: min. value of 
LP relaxation at frontier Value of LP 

relaxation at 
root node

Objective value

1- Better primal bound —> More nodes pruned 
                               —> Gap closed faster!

2- Better feasible solutions  
—> More effective decision-making
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Greedy Heuristic

General Integer  
Programming Heuristic

Branching Heuristic Selection
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NeurIPS-17

AAAI-16 IJCAI-17

NeurIPS-19, hopefully?
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The Heuristic Selection Problem
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diving 1
…

feaspump

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1
Found Incumbent!

FAILED

MIP solvers implement many primal heuristics: 54 in SCIP (2019)Learning to Run Heuristics  
[Khalil, Dilkina, Nemhauser, Ahmed, Shao, 2017] 

Given: dataset of  
(node features, 0/1 success flag) 

Learn: a classifier of heuristic success



Primal Integral 
A Good Performance Criterion
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Learning to Run Heuristics
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Data Collection

Machine 
Learning

New Instance

Decision-Making 
Algorithm3. Use 

oracle 
predictions

4. Decision: Run / Don’t run

Oracle:
Success 

Prediction

P(N): Probability of 
finding incumbent 

at node N

RWS: if P(N) > 0.5, run heuristic

Logistic Regression 
w. 49 features

Run-When-Successful
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Feature Engineering
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Data Collection

Machine 
Learning

New Instance

Decision-Making 
Algorithm3. Use 

oracle 
predictions

4. Decision: Run / Don’t run

Oracle:
Success 

Prediction

Binary Label 
found incumbent (1), o.w. (0)
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Forest Harvesting
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Goal: Harvest subset of parcels 
to maximize revenue; pay cost 
for harvesting adjacent parcels

maximize∑
i∈V

rixi − ∑
(i,j)∈E

cijyij

subject to xi + xj − yij ≤ 1

x ∈ {0,1}n, y ∈ {0,1}m G(V, E)

i
j
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maximize∑
i∈V

rixi − ∑
(i,j)∈E

cijyij

subject to xi + xj − yij ≤ 1

x ∈ {0,1}n, y ∈ {0,1}m

Generalized Independent Set

60%    
reduction
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Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

!"
!#
…
!$
?

argmax

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection
Exact Solving

Takeaways 
‣ First ML framework for heuristic selection in B&B 
‣ Dynamic, node-dependent decision-making 
‣ Forest Harvesting: 60% reduction in Primal Integral 
‣ Even on the heterogeneous MIPLIB2010 Benchmark:  
                                    6% reduction in Primal Integral 

!!
Heuristic A
Heuristic B
Heuristic C

Feasible solution?
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Minimum Vertex Cover  
Find smallest vertex subset such that each edge is covered

2-Approximation: 
Greedily add vertices of edge 
with max degree sum
Learning Greedy Graph Heuristics  
[Dai*, Khalil*, Zhang, Dilkina, Song, 2017] 

Given: graph problem, family of 
graphs 

Learn: a scoring function to 
guide a greedy algorithm



Learning Greedy Heuristics
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Learning Greedy Algorithms

Given a graph optimization problem P and a distribu-
tion D over problem instances, can we learn better greedy
heuristics that generalize to unseen instances from D?

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem

Domain Social network snapshots Spin glass models Package delivery

Greedy operation Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

Elias B. Khalil Towards Tighter Integration of ML and DO March 12, 2018 33 / 53

Given: graph problem, family of graphs 
Learn: a scoring function to guide a greedy algorithm



Reinforcement Learning

!26

Repeat until all edges are covered: 
1. Compute node scores  
2. Select best node w.r.t. score 
3. Add best node to partial sol.

Partial Solution 

Scoring function         Q-function≡
Select best node         Greedy Policy≡

Partial solution           State≡
Greedy Algorithm Reinforcement Learning
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Learning Node Features
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= Q(St, v; Θ)
v

St = { }

Scoring Function: Need to represent node with a feature vector first
Problem: Not clear what good node features are!
Solution: Parametrize a Graph Neural Network with parameters Θ

Run RL algorithm (e.g. Q-Learning) 
Use gradient of solution cost to update Θ



Learning Greedy in Practice
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VERTEX COVER MAX-CUT

TSP

Approximation  
Ratio
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Exact Solving
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Heuristic B
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Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

!"
!#
…
!$
?

argmax

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection
Exact Solving

Takeaways 
‣ Reinforcement Learning tailors greedy search to your 

instances 
‣ Learn features jointly with greedy policy 
‣ Human priors encoded via (greedy) meta-algorithm 
‣ Interesting, novel strategies emerge 

!!
Heuristic A
Heuristic B
Heuristic C

Feasible solution?



min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Data Center  
Resource ManagementPower Systems Airline Scheduling

General Heuristic

Feasible Solution

… …



General IP Heuristics

!31



General IP Heuristics

!31

Strengths



General IP Heuristics

!31

Strengths
• Applicable to many problems

• Usable inside Branch-and-Bound



Feasible 
Region of 

LP 
Relaxation

Round to 
nearest integer

(0, 0) (1, 0)

(1, 1)
(0, 1)

Feasibility Pump
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0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible 
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

Figure in part from Berthold (2014)
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General IP Heuristics
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Strengths
• Applicable to many problems

• Usable inside Branch-and-Bound
Weaknesses
• May not work well for your problem

• Cannot exploit distribution of instances

………
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………
I : set of training IP instances

Find ⇥⇤ = argmax
1

|I|
X

I2I
A(I;⇥)

⇥ 2 Rp

A : a parametric algorithm; outputs
1 if feasible solution is found

0 otherwise

(

⇥ 2 Rp
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Find ⇥⇤ = argmax
1

|I|
X

I2I
A(I;⇥)

⇥ 2 Rp

What type of algorithm is      ? A

A

1

2



What is the role of the ML model, 
parameterized by      , in     ?     ⇥

Towards Learning General Heuristics
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Find ⇥⇤ = argmax
1

|I|
X

I2I
A(I;⇥)

⇥ 2 Rp

What type of algorithm is      ? A

A
How can we train the algorithm? 

1

2

3
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What type of algorithm is     ? A1

Learning Greedy Algorithms

Given a graph optimization problem P and a distribu-
tion D over problem instances, can we learn better greedy
heuristics that generalize to unseen instances from D?

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem

Domain Social network snapshots Spin glass models Package delivery

Greedy operation Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

Elias B. Khalil Towards Tighter Integration of ML and DO March 12, 2018 33 / 53

Given: graph problem, family of graphs 
Learn: a scoring function to guide a greedy algorithm

[Dai & Khalil, et al. (2017)]
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What type of algorithm is     ? A1

Task A B C
Requirement

D

Stuck!!

Local algorithms may fail in the 
presence of hard constraints
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Feasible 
Region of 

LP 
Relaxation

Round to 
nearest integer

0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible 
2 Project integer point to nearest LP-feasible point
3 Go back to step 1

What type of algorithm is     ? A1

Repeated Projections 
maintain constraint 

feasibility via LP solving

Figure in part from Berthold (2014)
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What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible 
2 Project integer point to nearest LP-feasible point
3 Go    back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n
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What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible 
2 Project integer point to nearest LP-feasible point
3 Go    back to step 1

Key Step:

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

�(x, [x̄t])

s.t. Ax  b,

x 2 [0, 1]n

x̄1

x̄2 [x̄
1]
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���

=
X

j:[x̄t]=0

xj +
X

j:[x̄t]=1

(1� xj)



!40

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible 
2 Project integer point to nearest LP-feasible point
3 Go   back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

�(x, [x̄t])

s.t. Ax  b,

x 2 [0, 1]n

x̄1

x̄2 [x̄
1]

L1-distance 
X

j:[x̄t]=0

xj +
X

j:[x̄t]=1

(1� xj)



!40

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible 
2 Project integer point to nearest LP-feasible point
3 Go   back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

�(x, [x̄t])

s.t. Ax  b,

x 2 [0, 1]n

x̄1

x̄2 [x̄
1]

L1-distance 
X

j:[x̄t]=0

xj +
X

j:[x̄t]=1

(1� xj)



!40

What is the role of ML in the algorithm?2
0 Start with LP-feasible (fractional) solution
1 Round to nearest integer, return if LP-feasible 
2 Project integer point to nearest LP-feasible point
3 Go   back to step 1

iterate

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

�(x, [x̄t])

s.t. Ax  b,

x 2 [0, 1]n

x̄1

x̄2 [x̄
1]

L1-distance 
X

j:[x̄t]=0

xj +
X

j:[x̄t]=1

(1� xj)

Learn the 
projection 

coefficients!!
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What is the role of ML in the algorithm?2

min
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What is the role of ML in the algorithm?2

min
x

pTx s.t. Ax ≤ b, x ∈ [0,1]n

min
x

`1(x, [x̄
t])

s.t. Ax  b,

x 2 [0, 1]n

min
x

p|x

s.t. Ax  b,

x 2 [0, 1]n
Properties of

pi = model
⇣
x̄i

t, [x̄i
t];⇥

⌘

pi = model
⇣
x̄i

t, [x̄i
t];⇥

⌘

• Parameters shared across variables 
• Recurrent across iterations
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min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

predict 
projection


coefficients 

RNN (1)

RNN (n)

Loss( )
p1

pn

… …

x̄t
1

[x̄t
1]

x̄t
n

[x̄t
n] x̄t

penalize  
fractional 

variables 

…
solve LP 
projection  

input to  
Recurrent


Neural Network 

p

Iterate if          is infeasible     [x̄t]
History vector

x̄t−1

x̄t

How can we train the algorithm?3
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predict 
projection


coefficients 

penalize  
fractional 

variables 

solve LP 
projection  

input to  
Recurrent


Neural Network 

Iterate if          is infeasible     [x̄t]

RNN (1)

RNN (n)

p1

pn
… …

x̄t
1

[x̄t
1]

x̄t
n

[x̄t
n]

…

History vector x̄t

p x̄t−1

Loss( )x̄t

RNN

A neural network with parameters ⇥
Same network used for all fractional variables
History vector is variable-specific 
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predict 
projection


coefficients 

penalize  
fractional 

variables 

solve LP 
projection  

input to  
Recurrent


Neural Network 

Iterate if          is infeasible     [x̄t]

RNN (1)

RNN (n)

p1

pn
… …

x̄t
1

[x̄t
1]

x̄t
n

[x̄t
n]

…

History vector x̄t

p x̄t−1

Loss( )x̄t

To make LP solution differentiable, 
add small constant quadratic term 
See OptNet by Amos & Kolter, 2017  
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predict 
projection


coefficients 

penalize  
fractional 

variables 

solve LP 
projection  

input to  
Recurrent


Neural Network 

Iterate if          is infeasible     [x̄t]

RNN (1)

RNN (n)

p1

pn
… …

x̄t
1

[x̄t
1]

x̄t
n

[x̄t
n]

…

History vector x̄t

p x̄t−1

Loss( )x̄t

BCE(I;⇥) = �
TX

t=1

X

j|x̄t
j /2{0,1}

[x̄t
j ] · log x̄t

j + (1� [x̄t
j ]) · log (1� x̄t

j)—
Binary Cross-Entropy Loss



Experimental Setup
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‣ Generate Training / Validation / 
Testing instances 
‣ No need to solve Training 

instances! 

‣ NIO is fully differentiable 
‣ Train with gradient descent



Learning IP Heuristics in Practice
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Generalized Assignment Problem (GAP)  
Train on 500 small instances, Test on 500 larger instances 
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Generalized Assignment Problem (GAP)  
Train on 500 small instances, Test on 500 larger instances 

Learned heuristic 
solves most 

instances in < 10 
iterations
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Two-Stage Stochastic Integer Programs (STOC) 
Train on 500 small instances, Test on 500 larger instances 
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Two-Stage Stochastic Integer Programs (STOC) 
Train on 500 small instances, Test on 500 larger instances 



What about advanced codes? 
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Two-Stage Stochastic Integer Programs (STOC)

FP1 + presolve + propagation 
Solutions Found (%) in 100 iterations

NIO

Solutions Found (%) in 100 iterations




Compared to Pure Neural Net
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‣ SATisfiability problem 
‣ NIO: use model from GAP on SAT 
‣ NeuroSAT*: Deep Learning 

model for SAT solving 
‣ Trained with supervised 

learning 
‣ Millions of training instances

Higher is BetterEasy for 
SAT solvers

* Learning a SAT Solver from Single-Bit Supervision. ICLR 2019
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Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

!"
!#
…
!$
?

argmax

Greedy Heuristic

General IP Heuristic

Branching Heuristic Selection
Exact Solving

!!
Heuristic A
Heuristic B
Heuristic C

Feasible solution?

Takeaways 
‣ Incorporate LP-projections into neural network model 
‣ Can learn heuristics for arbitrary Integer Programs 
‣ No supervised or reinforcement learning required! 
‣ Outperforms the Feasibility Pump on various problems 
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Can algorithms “learn” to
design algorithms?

Machine Learning

Discrete Optimization

Yes!
tailor

ML complements human algorithms
ML fills in algorithm details using data



Impact in ML and OPT
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Branch-and-Bound

Combinatorial problems
Applications

Theory

✦ SAT [Selsam+, 2019]

✦ SMT [Balunovic+, 2018]

✦ k-Coverage [Li+, 2019]

✦ Scheduling [Mao+, 2019]

✦ Assignment [Emami+, 2018]

✦ VRP [Nazari+, 2018]

✦ Multiple-TSP [Kaempfer+, 2018]

✦ Stochastic Opt. [Nair+, 2018]

ML models for DiscOpt
✦ Attention for TSP [Kool+, 2019]

✦ Graph Convolutions [Li+, 2018]

✦ Imitation learning [Song+, 2018]

✦ Learning to Branch [Balcan+, 2018]

✦ Multi-objective IP [Sierra-Altamiranda+, 2019]

✦ Outcome prediction [Fischetti+, 2019] 

✦ Cut selection [Baltean-Lugojan+, 2018]

✦ Formulation selection [Bonami+, 2018]

✦ Solution prediction [Larsen+, 2018]

✦ Decompositions [Kruber+, 2017]

✦ Unit commitment [Xavier+, 2019]

✦ Sensor placement [Shen+, 2019]

✦ Recommender systems [Fu+, 2017]

Data-Driven Algorithm Design
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Machine 
Learning

Discrete 
Optimization

Attack
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Machine 
Learning

Discrete 
Optimization

Attack

ML x OPT 
Exciting synergies 
and challenges in 
both directions



Questions?
www.ekhalil.com 

Combinatorial Attacks on Binarized Neural Networks.

w/ A. Gupta, B. Dilkina. ICLR 2019.

Learning Combinatorial Optimization Algorithms over Graphs. 

w/ H. Dai (co first auth.), Y. Zhang, B. Dilkina, L. Song. NeurIPS 2017.

Neural Integer Optimization: Learning to Satisfy Generic Constraints.

w/ R. Trivedi, B. Dilkina. Submitted to NeurIPS 2019.

Learning To Run Heuristics in Tree Search. 

w/ B. Dilkina, G. Nemhauser, S. Ahmed, Y. Shao. IJCAI 2017.
Learning to Branch in Mixed Integer Programming. 

w/ P. Le Bodic, L. Song, G. Nemhauser, B. Dilkina. AAAI 2016.

Relevant papers

Waterloo ML + Security + Verification Workshop

http://www.ekhalil.com

