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Data Center Resource Management

4 Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits



https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

cru @ .‘ ® O
o

Services

4 Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits



https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

cru @ “ ® O
o

Services

| ) 00
Machines E 0 Q 88 oo ED o

00

4 Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits



https://www.reit.com/what-reit/reit-sectors/data-center-reits

Data Center Resource Management

cru @ .‘ ® O
o

< - :
| L) 00
Machines E 0 Q an " E 00

00

Services

4 Photo from: https://www.reit.com/what-reit/reit-sectors/data-center-reits



https://www.reit.com/what-reit/reit-sectors/data-center-reits

q ccueo @ @

Services coe
Memory

¥ e, N, “‘ o ; N

M 0 Qoo
Machines ¢ 00

I
& P
)




y,, = 1 if machine m is used S

X, , = lif service § runs on m Services

M o 1o
Machines O n)




y,, = 1 if machine m is used S
X, , = lif service § runs on m Services

x € {0,1}"M y e {0,111

e ™ Y-~
P - | vedis A
LSRN - — 5
PR N
23 N,

M o 100
Machines O 00




y,, = 1 if machine m is used S
X, , = lif service § runs on m Services

x € {0,1}>M y e {0,1}¥

* N = P -
CENES d e R o
SRR 7 SN

A '

minimize 2 Ym Machines E ¢ E o0

m=1




y,, = 1 if machine m is used S
X, , = lif service § runs on m Services

x € {0,1}>M y e {0,1}¥

> ¢ - R .
. ’ '

minimize 2 Ym Machines E ¢ E o0

m=1

Constraints:




y,, = 1 if machine m is used S
X, , = lif service § runs on m Services

x € {0,1}"M y e {0,111

M

M
minimize ) y, _
2 Machines

m=1

Constraints:

Each service on one machine only



y,, = 1 if machine m is used S
X, , = lif service § runs on m Services

x € {0,1}"M y e {0,111

M

M
minimize 2 Vo

— Machines
Constraints:
Each service on one machine only
M
Z Xg =1 Vs
m=1

Ym 2 X m Vs, m

Machine is “ON” if a Job is assignhed to it



y,, = L if machine m is used S

x, . = lif service § runs on m Services

x € {0,1}"M y e {0,111

M
m|n|mlzemZ=:1ym MaChlnes E ¢¢ 000 ﬁﬁ
Constraints:

R e ————— e ——————— —— R e ——— e ———— E—

Each service on one machine only lMgmjg_nj ;B;g/'tyl
M S
Z X, =1 Vs 2 mem(s) - x; , < cap-mem(m) Vm
m=1 s=1

VY 2 Xgpy VS, M

Machine is “ON” if a Job is assignhed to it



y,, = 1l if machine m is used S CPU @ ‘ ‘
x, . = lif service § runs on m Services

x € {0,1}"M y e {0,111

M
m|n|mlzemZ=:1ym MaChlnes E ¢¢ 000 ﬁﬁ
Constraints:

e e ————— e ——————— —— R e ——— e ———— E—

Each service on one machine only lMJeﬁmjg;; ;B;g/'tyl
M
szm =1 Vs Z mem(s) - x; , < cap-mem(m) Vm
m=1
VY 2 Xgpy VS, M Z cpu(s) - x,,, < cap-cpu(m) Vm

Machine is “ON” if a Job is assignhed to it Processor capacity



Safety-Critical Machine Learning




Safety-Critical Machine Learning

STOP

YIELD




Safety-Critical Machine Learning

STOP

cor [
B

YIELD

YIELD




Safety-CriticaI Machine Learning




Safety-CriticaI Machine Learning

Model ReLU with Binary
varlables + Llnear Inequalltles w




Safety-Critical Machine Learning

STOP

cor [
B

YIELD

YIELD




Safety -Critical MachlneLearnlng

Verification Prolo\em

prove Ax’ close to x W
such that fx'; STOP) < f(x YIELD) )







Auction Design Data Center Management i Political Districting Kidney Exchange

; ‘
i n‘l ! =
ed | d 55
-
Potoakex Mich . . it .
et & = . > .

Tolede €

\ ] )
i [ — . . : ~ . ‘
Py - HMCI0 ] >

AR 4
ol ] '

‘ A
5 - P %
N ' ¥h 5k
T rem e o A= INDIANA

b o gt o L o

('_- > ‘




Auction Design Data Center Management A Political Districting Kidney Exchange

" .
R ’,_4 . = —
THE Kl HAIN i WY |
How a sir :"[' organd< onation :’6‘:71":;_"'13:1 ;‘::' ves ang
created the longest-running transplant chain
Potoakes Mich . 4 . ™ i aA
Fiosd Enmae Phase—ie Phenie Tolode C
\ ’
3

-

‘Ridesharing



Auction Design Data Center Management Polltlcal Dlstrlctlng Kidney Exchange

THE KIDNEYCHAIN €8

How a single organ donation changed 20 lives and
creats \g!’ ve longest-running transplant chain

3 ’
[}
el b wmte omomnu mowoom ot

UIEET
Bl s e

W W g

S —

MMNC

Cancer Therapeutlcs

A|rI|ne Schedullng

2
\, T
T

p ——. - | A e &
'“—l. - — sz v

L e RS

‘.\_ : ]L

-,

g1

. ' ,
21 At el '/‘ , '
— S ey | 38 o
y - .
- e ‘._‘.h__ !
_ oy :
- -




Auction Design Data Center Management ~Political Districting Kidney Exchange

-----

INDIANA

b B . C I >4 - o e e
=2 > L . e’ - . O AT o o~ = Lo el - . O [y 202 > QP B a2 s P - .. . Sy 252 4 =N P o . . . °_ 52 e O P o . . . -, - - LT = - . - - . = e . . .
N YW A AL OR - e P AN, - V. IO 1. R TIROY VR RO W - Y O RV VX D B gor oo oo o0 e e o ok R R R e O 0 A T s B go e o L te CEe T im0 R S - oo el o S b R T R S X S B oo e e Tt e T a e T P K A 207 Vo2 2 =20

> 50% of INFORMS Edelman Award
winners use Discrete Optimization
— Billions () In savmgs/proflt

George Nemhauser Plenary at EURO INFORI\/IS 2013

¥ .

ons




Data Center Resource Management



Data Center Resource Management




Data Center Resource - ement




Data Center Resource - ement




Data Center Resource - ement




Tackling NP-Hard Problems

Paradigm Design Rationale



Tackling NP-Hard Problems

Paradigm Design Rationale

Tight formulations
Powertul Branch-and-Bound solvers

Exhaustive Search




Tackling NP-Hard Problems

Tight formulations

Exhaustive Search Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees




Tackling NP-Hard Problems

Tight formulations

Exhaustive Search Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Intuition exploiting problem structure

Heuristics Empirical trial-and-error



Tackling NP-Hard Problems

Tight formulations

Exhaustive Search Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees

Intuition exploiting problem structure
Empirical trial-and-error

4 PM 5 PM
CPU‘QL‘—'.“ CPU.‘ “"

? ?

O - 00 O 00
O oo - Hoo 'm 00 -

Heuristics

00
00
00




Tackling NP-Hard Problems

Tight formulations

Exhaustive Search Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees
-y Intuition exploiting problem structure
Heuristics Emp_iﬂ_ca\ trial-and-err_c_)r_
T | .r - ; @ 0@ c 00 cru @ Q5 PM ® - O
How do you tailor the 2 i
- algorithm to YOUR - | i
instances”? o Hss -




Tackling NP-Hard Problems

Customization via...

Tight formulations

Exhaustive Search Powerful Branch-and-Bound solvers

Approximation Algorithms Good worst-case guarantees
-y Intuition exploiting problem structure
Heuristics Emp_iﬂ_ca\ trial-and-err_c_)r_
T | .r - ; @ 0@ c 00 cru @ Q5 PM ® - O
How do you tailor the 2 i
- algorithm to YOUR - | i
instances”? o Hss -




Tackling NP-Hard Problems

Customization via...

Problem-Specific Bounding

Exhaustive Search functions or search rules

Approximation Algorithms Good worst-case guarantees
-y Intuition exploiting problem structure
Heuristics Emp_iﬂ_ca\ trial-and-err_c_)r_
j | .r - ; cru @) Ol%:M N N cPu @ Q5 PM ® - O
How do you tailor the 2 i
- algorithm to YOUR - | R
instances”? o Hss -




Tackling NP-Hard Problems

Customization via...

Exhaustive Search

Problem-Specific Bounding
functions or search rules

Approximation Algorithms

Make explicit assumptions on input
distribution and redesign algo.
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O p p ortun |ty Adversarial ML

Automatically tailor algorlthms
to a family of iInstances

Data Center Resource Management Forest Harvesting

o
. maximize Y rx;— CiVij o9 °
@) e @ o0 0@ e (S S S
subjecttox+x y]<1 . ¢ X e N/ 7
o
x € {0,1}", y € {0,1}" N ! v </ *
Quebec 1
® " . e
@
: T X \ e ® R NS
'''' o * . o
L] °® » o o’ . ®
o . .
uuuuu .. L N
¢ ﬁ ﬁﬁ Ontario 1 Ontario 2 Saskatchewan
E ¢ o0 00 e Revenue varies over time

— Different instances, same problem

g s

10



Data-Driven Algorithm Design

automatically discovers
novel secarcn strategies

Learned HeuristiC | . al He 5
/
—

Minimum
Vertex Cover
FINnd smallest
vertex subset

such that each
edge Is covered




Data-Driven Algorithm Design

automatically discovers
novel secarcn strategies

Learned HeuristiC | . al He 5
/
—

Minimum
Vertex Cover
FINnd smallest
vertex subset

such that each
edge Is covered




Data-Driven Algorithm Design

NeurlPS-19, hopetully?

ML Paradigm General Integer
Programming Heuristic

Self-Supervised Learning N iy . SV

R . %
NeurlPS-17 x - : LOSS(.)
. .- mu.,d(x,)/‘@*f’n .
Greedy Heuristic o A

Reinforcement Learning M a\’—

AsAl-16 Exact Solving 1ycAl-17

Heuristic Selection

Supervised Learning 1N - xz’p S == ()
Xn Q Q Feasible solution?

Graph Optimization Integer Programming

Problem Type
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Repeat: (0,117

Solve LP Relaxation
Select Node — Ly Bound on OPT
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Heuristics matter!
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Heuristics matter!

1- Better primal bound —> More nodes pruned

Objective value

OPT

Value of LP
relaxation at
root node
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Heuristics matter!

Objective value

OPT

Value of LP
relaxation at
root node
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{ Primal bound: value
i of best solution so far

2- Better feasible solutions
—> More effective decision-making
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| P relaxation at frontier

15



ML Paradigm
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MIP solvers implement many primal heuristics: 54 in SCIP (2019)
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The Heuristic Selection Problem

MIP solvers implement many primal heuristics: 54 in SCIP (2019)

# frequency for calling primal heuristic <nlpdiving>
# [type: int, advanced: FALSE, range: [-1,65534], dei
heuristics/nlpdiving/freq = 10

# frequency for calling primal heuristic <feaspump>
# [type: int, advanced: FALSE, range: [-1,65534], de
heuristics/feaspump/freq = 20

JFound Incumbent! diving 1

X

FAILED feaspump
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The Heuristic Selection Problem

P (2019)

Learning to Run Heuristics
[Khalil, Dilkina, Nemhauser, Ahmed, Shao, 2017]

Given: dataset of (
(node features, 0/1 success flag) 4

Learn: a classifier of heuristic success

FAILED feaspump
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Primal Integral
A Good Performance Criterion

No incumbent at first x;, =0

\ Solving this node LP...
1 <)

1

X2:O X2

x, =0 x, =1

D .. gives 15 x4 = 0 x4= O
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iy | | O @

0.6 Running H at this node...
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Learning to Run Heuristics

Logistic Regression P(N): Probability of
Data Collection w. 49 features finding incumbent
p N p N at node N
Machine Oracle:
) Success
Learning

- Prediction y
N /
6%% @%

Decision-Making 4. Decision: Run / Don’t run
3 Use Algorithm
oracle - “ Run-When-Successful
predictions

RWS: if P(N) > 0.5, run heuristic
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Feature Engineering

» Global Features (4):
» optimality gap, root LP value / global lower (upper) bound

» Depth Features (2):
» node depth / max. depth in tree (max. possible depth)
» Node LP Features (8):

» sum of variables’ LP sol. fractionalities / #fractional variables
» num. of fractional variables / #integer variables
» num. variables roundable up (down) / #integer variables
» Scoring Features for Fractional Variables (35):
» number of up (down) locks

» normalized objective coefficient
» pseudocost score

Five statistics (mean, min., max., median, standard deviation)
for each metric over fractional variables in LP solution.

20



Binary Label

Feature Eng found incumbent (1), o.w. (0)

» Global Features (4):
» optimality gap, root LP value / global lower (upper) bound

» Depth Features (2):
» node depth / max. depth in tree (max. possible depth)
» Node LP Features (8):

» sum of variables’ LP sol. fractionalities / #fractional variables
» num. of fractional variables / #integer variables
» num. variables roundable up (down) / #integer variables
» Scoring Features for Fractional Variables (35):
» number of up (down) locks

» normalized objective coefficient
» pseudocost score

Five statistics (mean, min., max., median, standard deviation)
for each metric over fractional variables in LP solution.
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Forest Harvesting
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BOREAL - FOREST AND BARREN (] Whte spruce, black spruce, tamarack
BoReAL - FOREST AND GRASS [l Tremtiing aspen witow
suparAne [l Engelmann spruce, alpine fir, ladgepole pine
montane [ Douglas-tir, lodgepale pne, pondercsa pne, trembing aspen
COAST - Yestem red cedar, westem hemicck, Srka spruce, Douglas-tir
cocumaian [ estem red cedar, westem hemicek, Douglas-tie
pecowous Il eeech mapie, biock wainut, hickary, ask
GREAT LAKES - ST.LAWRENCE - fled pne, eastern whita pine, easiem hamiock, yellow tirch, maple, oak
ACADLAN - Aed sprece, taksam fr, maple, yellow Birch
GRASSLANDS D Trembling aspen, wilow, bur cak
Tunoea [

e e

21
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cocumaian I viestem red cedar, westem hemicck, Douglas-ti
DECIDVOUS - Beech mapie, black wainut, hickary, axk
GREAT LAKES - ST. LAWRENCE - fled pne, eastern white pine, easiem hemiock, yollow tirch, maple, oak
acaoian I Red sgrece, saksam fr, maple, yellow Birch
GRASSLANDS D Trembling aspen, wilow, bur cak
Tunoea [

L —— R — e
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Forest Harvesting
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Forest Harvesting

o
Goal: Harvest subset of parcels

to maximize revenue; pay cost

for harvesting adjacent parcels
M
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Forest Harvesting

o
Goal: Harvest subset of parcels

to maximize revenue; pay cost
for harvesting adjacent parcels

maX|m|zeZ rX; — Z CiiYi

eV (i€l
subject to x; + x, — y; < 1

x € {0,1}", y e {0,1}"
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Heuristic Selection in Practice

North Carolina's Forests -

Generalized Independent Set  maximize Y’ .x; -

eV (i,)) eE

“ijij

150
1Miles

NC Forest Groups
Hardwoods

I EivashiCottonwood Group
I vavesecchich Group
[ oakiumicypress Group
[ catrickory Group

|
—
S u e c O .: ( ’ _l_ x . .o <
I o:ine Group Notes: - _
1. The data used to create this map are a subset of the National Forest Type Dataset, L
Sultwouds produced by the USDA Forest Service Forest Information and Analysis (FIA) Program and , , ,
A. ‘ s

Loblolly/Shortieaf Pine Group | Remote Sensing Applications Center (RSAC). { .
- 2. This map shows Forest Groups, which are created by combining similar Forest Types. ii FOREST
LongleafiSlash Pine Group | 3, Data used to create this map were accquired between 1978 and 2004. N e SERVICE I _ - - ———— _ - -
P —— 4. Each pixel has a resolution of approximately 250 meters. NCDENR N C | — — - = _ _
P 5. For more information, see: Ruefenacht, M.V, et al. 2008. Conterminous U.S. and Alaska Forest -~
Non-Forest Type Mapping Using Forest Inventory and Analysis Data, Photogrammetric Engineering and Remote G = B
Sensing 74(11):1379-1388.; or i fs.fed. t_type/ April 2009

0.364

0.3

N
Ol

0%

reduction
0.2

over Time

0.1

Time (minutes)

Avg. Solution Quality

Time to Best Solution Primal Integral
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ML Paradigm

Self-Supervised Learning 1IN

Reinforcement Learning 1N

Exact Solving

Heuristic Selection
A

Supervised Learning 1R

Graph Optimization Integer Programming

Problem Type

23




LELGEVVENE

» First ML framework for heuristic selection in B&B
» Dynamic, node-dependent decision-making
Self- ’ » Forest Harvesting: 60% reduction in Primal Integral
| » Even on the heterogeneous MIPLIB2010 Benchmark:
« 6% reduction in Primal Integral

—e——— — e ——

- — - —

Reinforcement Learning K

Exact Solvmg
Heuristic Selection

Supervised Learning W

Graph Optimization Integer Programming

Problem Type

23




Greedy Graph Optimization

Minimum Vertex Cover
Find smallest vertex subset such that each edge Is covered

2-Approximation:
Greedily add vertices of edge
with max degree sum

24



Greedy Graph Optimization

Minimum Vertex Cover
Find smallest vertex subset such that each edge Is covered

Learning Greedy Graph Heuristics
[Dai*, Khalil*, Zhang, Dilkina, Song, 2017]

Given: graph problem, family of

graphs
Learn: a scoring function to
guide a greedy algorithm

24



Learning Greedy Heuristics

Given: graph problem, family of graphs

Learn: a scoring function to guide a greedy algorithm

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem
Domain Social network snapshots  Spin glass models Package delivery
Greedy operation | Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

N A S —
\./.25%5 o o
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Reinforcement Learning

Greedy Algorithm Reinforcement Learning

State
Q-function

Partial solution
Scoring function

Select best node Greedy Policy

Repeat until all edges are covered:
1. Compute node scores

2. Select best node w.r.t. score
3. Add best node to partial sol.

20



Learning Node Features

Scoring Function: Need to represent node with a feature vector first




Learning Node Features

Scoring Function: Need to represent node with a feature vector first

Problem: Not clear what good node features are!
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Learning Node Features

Scoring Function: Need to represent node with a feature vector first
Problem: Not clear what good node features are!

Solution: Parametrize a Graph Neural Network with parameters ()
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Learning Node Features

Scoring Function: Need to represent node with a feature vector first
Problem: Not clear what good node features are!

Solution: Parametrize a Graph Neural Network with parameters ()

Run RL algorithm (e.g. Q-Learning)
Use gradient of solution cost to update ()

27



earning Gree

1.6/ S2V-DQN

PN-AC v
MVCApprox
MVCApprox-Greed

[}
Ul

=
IN

Approximation ratio to optimal
= =
N w

=
=

1.0

15-20 40-50 50-100 100-200

Number of nodes in train/test graphs

EX COVER

Approximation ratio to optimal

400-500

= = = = =
N w ~ Ul o

[E]
=

=
o

v In Practice

S2V-DQN
PN-AC
SDP
MaxcutApprox

15-20 40-50

v

MAX-CUT

50-100

100-200

Number of nodes in train/test graphs

S2V-DQN
2-opt

PN-AC
Cheapest
Christofides
Closest
Nearest
MST

1.4;

Approximation
Ratio

1.2;

Approximation ratio to optimal

1.0-

15-20

40-50
Number of nodes in train/test graphs

50-100

100-200

TSP

200-300

200-300




ML Paradigm

Self-Supervised Learning 1IN

Greedy Heuristic

Reinforcement Learning 1N g\,— . T@I
,, ¥

Supervised Learning 1R

Graph Optimization Integer Programming

Problem Type
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LELGEVVENE
i Reinforcement Learning tailors greedy search to your
- Instances
SRS ) [ earn features jointly with greedy policy

’ » Human priors encoded via (greedy) meta-algorithm

1 » Interesting, novel strategies emerge

Reint
- -
Y S
L=l argmax
M ' X1 Heur!sticé
Supervised Learning 1l P Q /:zg:;:g;gc> &
o Q Q Feasible solution?
Graph Optimization Integer Programming

Problem Type
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e Y

(L]

1

Data Center
Resource Management

X

e S— S—— e _ _

General Heuristic

-_ Y e W Y e

Feasible Solution



General IP Heuristics

Data Center
Resource Management

minc’x s.t. Ax < b,x € {0,1}"

-

Power Systems Airline Scheduling

General Heuristic

|
Feasible Solution
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Data Center

Power Systems Airline Scheduling

General IP Heuristics
Strengths \ i:/

minc’x s.t. Ax < b,x € {0,1}"

General Heuristic

|
Feasible Solution
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Data Center

General IP Heuristics
Strengths \Reso:rce I\:’I/anagj,em/

* Applicable to many problems mincx S-t-Ax!Sb’xe (0.1)"
 Usable inside Branch-and-Bound v

General Heuristic

Power Systems Airline Scheduling

!
Feasible Solution

31



0 Start with LP-feasible (fractional) solution Feas|b|||ty Pump

1 Round to nearest integer, return it LP-feasible
2 Project integer point to nearest LP-feasible point

3 Go back to step 1

Roundto \
nearest integer

CTCE

S|

32 Figure in part from Berthold (2014) Q



General IP Heuristics

Data Center
Resource Management

Applicable to many problems min x st Ax < bxe (0.1
e Usable inside Branch-and-Bound l

Power Systems Airline Scheduling

General Heuristic

)

Feasible Solution
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General IP Heuristics

Data Center
Resource Management

Applicable to many problems min ¢ st Ax<bre (01)
e Usable inside Branch-and-Bound l
General Heuristic
Weaknesses l

Power Systems Airline Scheduling

Feasible Solution
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General IP Heuristics

Data Center

Power Systems Airline Scheduling

Resource Management

minc’x s.t. Ax < b,x € {0,1}"

X

\!/

General Heuristic
Weaknesses |
* May not work well for your problem Feasible Solution
* Cannot exploit distribution of instances
cpu.oHiPMoQ. cPu @ QsPMo c @ cru @ .@ﬂ'ooc
5o Hev - B8 5o B8 - Hee 5O H8s - 538
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Problem Statement

4 PM
cpu. .L‘— o @ .

?
O
ED Eooo

£

00
00

5PM

cpu..' @

?

H B
59 g3 -

00 H B B
EOO
00

6 PM
®

I
?
70 Egg

34

00 H EHBE
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Problem Statement

m n
maximize E E DiiTij
xZr

‘ 1 i1
4 PM 5PM 6 PM o

cpu. o N N | v @O ® - 0 ccu@ o ® o0 @ o _ .
SlleeCt to Zwijmz-j < Ciy 1 = 1, e ooy TN,
? ? ? =

O o oo " ®® HO Qoo 0 EER - Hoo oo WHEE = ,
= 0 Eoo Eoo 0 Heo - Egg 50 H88 - Eoo inj =1,7=1,...,n,
1=1

ﬂ?ijE{O,l}, t = Lol f = Licuny it
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Problem Statement

m n
maximize E E DiiTij
xZr

- i=1 j=1
5 PM 6 PM

cpu. .L‘— o @ . cru @ .L‘ @ o @ cru @ L—.__ o @ o _ .
SUb]CCt to Zwijmz-j < Ciy 1 = | IO m,
? ? ? =

O H HBE 0 00 H H BN H EHBE m .
e H& - B88 5o B8S - Beo 00 Hss - 88 S ey =1, i=1,...,n,
=1

mijE{O,l},i:1 ..... 10, T = L cuus n.

I : set of training IP instances
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Problem Statement

m n
maximize E E DiiTij
ZT
i=1 j=1

4 PM .L5 PM 6 PM
CPU O ‘ ' 0 ‘ cru @ ' | @ o . CPU ‘ o ® o . - n
® ® subject to Zwijxij Sl 2= Livens m,
? ? ? =1
O EEN 0 00 A NN E NN m
ED Eooo Egg E O Heo - Egg 50 Egg Egg Z:UijZI, j=1,..., n,
=1

ﬂiijE{O,l},i:1 ..... 1,7 = Licusy i

I : set of training IP instances

1 If feasible solution is found

A . a parametric algorithm; outputs
@ O otherwise
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Problem Statement .

maxim ZZ})
. .L'_'V' . epm s
‘ @ o v @ ® o -
‘ co0® subject to Zwijxijgc- = 1., m
? ? ? =1
H B B O 00 | H B B m
e H& - B88 5o B8S - Beo " BO Hss - B8 S ey=1j=1....n

I : set of training IP instances

A . a parametric algorithm; outputs

O

1 If feasible solution is found
O otherwise
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Towards Learning General Heuristics

ZAI@

I€I




Towards Learning General Heuristics

ZAI@

I€I

What type of algorithm is A 7
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Towards Learning General Heuristics

ZAI@

I€I

What type of algorithm is A 7

What is the role of the ML model,
parameterized by (=), in A ?
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Towards Learning General Heuristics

Find ©" = arg max Z A(l; ©)

I€I

What type of algorithm is A 7

What is the role of the ML model,
parameterized by (=), in A ?

How can we train the algorithm?

39



What type of algorithm is A ?

|IDai & Khalil, et al. (2017)]

Given: graph problem, family of graphs

Learn: a scoring function to guide a greedy algorithm

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem
Domain Social network snapshots  Spin glass models Package delivery
Greedy operation | Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour
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What type of algorithm is A ?

|IDai & Khalil, et al. (2017)]

Given: graph problem, family of graphs
Learn: a scoring function to guide a greedy a\gorlthm

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem
Domain Social network snapshots  Spin glass models Package delivery
Greedy operation | Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

36



*1 What type of algorithm is A ?
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*1 What type of algorithm is A ?




*1 What type of algorithm is A ?




*1 What type of algorithm is A ?

Local algorithms may fail in the
__presence of hard constraints

|

Requirement
Task A B C D




*1 What type of algorithm is A ?

| Repeate Projections

maintain constraint

feasibility via LP solving |

nearest integer

0 Start with LP-feasible (fractional) solution c'e o

1 Round to nearest integer, return it LP-feasible

2 Project integer point to nearest LP-feasible point

3 Go back to step 1 O ®

Figure in part from Berthold (2014)
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What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution
.-¥ 1 Round to nearest integer, return if LP-feasible
torate 2 Project integer point to nearest LP-feasible point

.83 Go back to step 1

Round to /
nearest integer

c'T - \
39 O ‘




What is the role of ML in the algorithm?
1

0 Start with LP-feasible (fractional) solution
.-¥ 1 Round to nearest integer, return if LP-feasible
torate 2 Project integer point to nearest LP-feasible point

.83 Go back to step 1

Round to /
nearest integer

c'T - \
39 O ‘




What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1 1
.-¥ 1 Round to nearest integer, return if LP-feasible [ ]
torate 2 Project integer point to nearest LP-feasible point

.83 Go back to step 1

Round to /
nearest integer /
c'T « \
39 O ‘




What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.-¥ 1 Round to nearest integer, return if LP-feasible 2 [ ]
torate 2 Project integer point to nearest LP-feasible point

.83 Go back to step 1

Round to /
nearest integer /
c'T « \
39 O ‘




What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.-¥ 1 Round to nearest integer, return if LP-feasible 2 [ ]
terate 2 Project integer point to nearest LP-feasible point

.3 Go \back to step 1

Round to /
nearest integer /
c'T « \
39 O ‘




What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.-¥ 1 Round to nearest integer, return if LP-feasible 2 [ ]
terate 2 Project integer point to nearest LP-feasible point

3 Go ‘baCk to step 1

Key Step:

min A(x

X

7 L

s.t. Ax < b,

€T &

39

0,1

Round to /
nearest integer




What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.- 1 Round to nearest integer, return if LP-feasible 2 [ ]
torate 2 Project integer point to nearest LP-feasible point

~...3 Go/ back to step 1

min A(x, | t)

40



What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.- 1 Round to nearest integer, return if LP-feasible 2 [ ]
torate 2 Project integer point to nearest LP-feasible point

~.3Go back to step 1 o
Y — L1-distance

min A(z, 1))

40



What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.- 1 Round to nearest integer, return if LP-feasible 2 [ ]
torate 2 Project integer point to nearest LP-feasible point

~.3Go back to step 1 o
Y — L1-distance
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What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.- 1 Round to nearest integer, return if LP-feasible 2 [ ]
torate 2 Project integer point to nearest LP-feasible point

~.3Go back to step 1 o
—Li-distance ) z;+ ) (1)

g:l7t]=0 g:lrt]=1

min A(z, 1))
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What is the role of ML in the algorithm?

0 Start with LP-feasible (fractional) solution 1
.- 1 Round to nearest integer, return if LP-feasible 2 [ ]
torate 2 Project integer point to nearest LP-feasible point

min A(z, [*))
L
s.t. Ax < b,

40



What is the role of ML in the algorithm?
—1

0 Start with LP-feasible (fractional) solution U 1
.- 1 Round to nearest integer, return if LP-feasible 9 [Qf ]

terate 2 Project integer point to nearest LP-feasible point )
.3 Go|{ back to step 1

min 1 ¥ Learn the

s.t. Az < b, projection
z € [0,1]" coefficients!!

40



What is the role of ML in the algorithm?

mljn O (z, ["])

s.t. Ax < b,
r e |0,1]"



What is the role of ML in the algorithm?

mljn O (z, ["])

s.t. Ax < b,
r e |0,1]"



What is the role of ML in the algorithm?

41



What is the role of ML in the algorithm?
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What is the role of ML in the algorithm?

P = mOdel( e @)




What is the role of ML in the algorithm?

P = mOdel( e @)

Properties of model

41



What is the role of ML in the algorithm?

P = mOdel( e @)

Properties of model

e Parameters shared across variables
e Recurrent across iterations

41



How can we train the algorithm?

minc’x s.t. Ax < b,x € {0,1}"

X
input to predict penalize
Recurrent — projection —» S;I'\éitli-opn — fractional

Neural Network coefficients Pro] variables

Loss(€))

42



Loss(€))

-------------------------------------------------

input to predict solve LP penalize
Recurrent — projection — oiection — fractional
Neural Network coefficients Pro] variables

43



penalize
Recurrent — projection ——» — fractional

input to predict solve LP

projection

Neural Network coefficients variables

43



A neural network with parameters @

m Same network used for all fractional variables
History vector is variable-specific

input to predict solve LP penalize
Recurrent — projection — oiection — fractional
Neural Network coefficients Pro] variables

43



To make LP solution differentiable,
add small constant quadratic term
See OptNet by Amos & Kolter, 2017

> —> ® oo o o
= O
: , Loss(
O
> —> O ® o o o
ol A
\ X
e Rerate if | X is infeasible
input to predict penalize
Recurrent — projection — Sfl.vetl.': — fractional
Neural Network coefficients Projectio variables
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Binary Cross-Entropy Loss
— [7%] log 7% + (1 — [z%]) - log (1 — &)

J

. |,
A
[]
[]
[]
. N
A
A
e Jterate i [0 ) | isinfeasible .
input to predict penalize
Recurrent — projection — S;I.\éitli'ol:; — fractional
Neural Network coefficients Pro] variables
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Experimental Setup

> Generate Training / Validation/ . . f:f: )

Jesting Instances ’ o ra

» No need to solve Training subject to Zal a _—
- ] o % ) ) —
Instances!

Z% =1, 97=1,..., n,
» NIO is fully differentiable i=1 | |
» Train with gradient descent zig €01 i=1...mj=1....n
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Learning IP Heuristics In Practice

Generalized Assignment Problem (GAP)
Train on 500 small instances, Test on 500 larger instances

100 GAP (processors=3, tasks=20)

-—— FP1
— NIO

Solutions Found (%)
5 38 3

N
-

0 10 20 30 40 50
lterations
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Generalized Assignment Problem (GAP)
Train on 500 small instances, Test on 500 larger instances

GAP (processors=3, tasks=20) GAP (processors=95, tasks=100)

100 100
--- FP1 —-- FP1 /_—_—__—i
—— NIO — NIO

o
S 80 80
=
=
3 60 60
m ﬁ
2 40 40
O
D)
e 20 20 j
%,
0 i ekttt bkttt bt b B
0 10 20 30 40 50 0 10 20 30 40 50

lterations lterations
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Learning IP Heuristics In Practice

Generalized Assignment Problem (GAP)
Train on 500 small instances, Test on 500 larger instances

GAP (processors=3, tasks=20) GAP (processors=95, tasks=100)

100 100
--- FP1 —-- FP1 /(_——__—i
—— NIO — NIO

o
DN 80 .
O s
C ) §
ug_ 60 R Il R R
0 4 Learned heuristic
S solves most
2 50 Instances in < 10
@) i !
p, Iterations
L I e e A O P Sy Sutsyusi ANty Smsssees
0 10 20 30 40 50 0 10 20 30 40 50

lterations lterations
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Learning IP Heuristics In Practice

Two-Stage Stochastic Integer Programs (STOC)
Train on 500 small instances, Test on 500 larger instances

— = T k = ’[=]_
00 STOC (k= 10, /= 10) 00 STOC (k=50 0) )
— --- FP1
o o—
S 80 80 NIO
=
g
3 60 60
L
2 40 | 40
O
D)
S 20 | .. 20
) Re e e
0 0
0 10 20 30 40 50 0 10 20 30 40 50

Iterations Iterations
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Learning IP Heuristics In Practice

Two-Stage Stochastic Integer Programs (STOC)
Train on 500 small instances, Test on 500 larger instances

— y I = - ,I=1
00 STOC (k=10,/=10) 00 STOC (k=50 0) )
—~ --— FP1
o ——
9\./ 80 30 NIO
5
=
3 60 60
LL
2 40 40
O
>
S 20 | 20
U) 1/ ——————————————————
0 0 /
0 10 20 30 40 50 0 10 20 30 40 50

Iterations Iterations
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What about advanced codes?

Two-Stage Stochastic Integer Programs (STOC)

FP1 + presolve + propagation

|
NIO FP2 FPl

STOC (10,10) 99.2 954 14.6
STOC (20,20) 22.6 0.6 0
STOC (30,20) 7.6 0 0

Solutions Found (%) in 100 iterations

47



Compared to Pure Neural Net

A Easy for
SAT solvers
»  SATIsfiability problem
» NIO: use model from GAP on SAT
» NeuroSAT": Deep Learning
model for SAT solving
» [Jrained with supervised

learning
»  Millions of training instances

* Learning a SAT Solver from Single-Bit Supervision. ICLR 2019

100 -

80 -

AN
o

Solutions Found (%)

20 -

48

Higher is Better

(@)
o
l

NeuroSAT
(after 1000 iters.)

0 50 100 150 200
lterations




ML Paradigm

Self-Supervised Learning 1K

Reinforcement Learning W

Supervised Learning N

General IP Heuristic

X
o) N P

R I Loss(@)
X, . .
s P

Graph Optimization Integer Programming

Problem Type
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ML Paradigm

General IP Heuristic

Self-Supervised Learning N . - S

Reinf

; LELCEWVENE
i » Incorporate LP-projections into neural network model
- » Can learn heuristics for arbitrary Integer Programs

» No supervised or reinforcement learning required!
» Outperforms the Feasibility Pump on various problems

e e e —— . —_— e —  — — — — B o o

— J—

Al CANIT U ULULITTIZAOTU — i

Problem Type
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learn to design

Can “learn” to
2




C_)an ‘learn” to
design "/



‘learn” 1o
?




w Machine Learning

algorithms
algorithms

® Discrete Optimization

Yes!




w Machine Learning

algorithms
algorithms

&8 Discrete Optimization

Yes!

ML complements human algorithms
ML fills in algorithm detalls using data




Data-Driven Algorithm Design

Impact in ML and OPT

Branch-and-Bound

ML models for DiscOpt

+  Multi-objective IP [Sierra-Altamiranda+, 2019]

+  Attention for TSP [Kool+, 2019] +  Outcome prediction [Fischetti+, 2019]

+ Graph Convolutions [Li+, 2018] A: Exact Solving +  Cut selection [Baltean-Lugojan+, 2018]

+ Imitation learning [Song+, 2018] ¢ + Formulation selection [Bonami+, 2018]

s . @ — p + Solution prediction [Larsen+, 2018]
S N 1 (\ /““"'“CE = + Decompositions [Kruber+, 2017]
‘ ; .\_/, b Eemadle sobution!
- - L
Combinatorial problems "« _
SAT [Selsam+, 2019) Applications

SMT [Balunovic+, 2018]
k-Coverage [Li+, 2019]
Scheduling [Mao+, 2019]
Assignment [Emami+, 2018]

+  Unit commitment [Xavier+, 2019]
S = = o 2= =P+ Sensorplacement [Shen+, 2019]

Greedy Heuristic + Recommender systems [Fu+, 2017]

-~ -~

VRP [Nazari+, 2018] R —al
Multiple-TSP [Kaempfer+, 2018] \Q/\I/(I/ TheO
Stochastic Opt. [Nair+, 2018] f argmax ry

+ Learning to Branch [Balcan+, 2018]

+ e
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Greedy Heurlstlc

General Integer
Programming Heuristic

Exact Solving

Heuristic Selection

Heuriste A
MHeuriste & No
I? 2
? / Meuriste C —
O C Feasible sobution! g "

Discrete
Optimization

Machine
Learning




Greedy Heunstuc

Exact Solving
Heuristic Selection \,%
| argmax

General Integer
Programming Heuristic

i @
« O O
, ML x OPT "
Machine Exciting synergies Discrete
Learning R RGEI RS Optimization

both directions




Waterloo ML + Security + Verification Workshop

. . o al General Integer
Exact Solving 'C /\é T/“ Programming Heuristic
Branching [l Heuristic Selection .'\'QX 3 S TS
s | 4Z5g]  wpna P Gk Loss(@)

Q u eSti O n S? n® B

: ML x OR
w Machine Exciting synergies Discrete

Learning e N EIERESIE  Optimization
both directions
Relevant papers
Neural Integer Optimization: Learning to Satisfy Generic Constraints. m 'f'é Sij
w/ R. Trivedi, B. Dilkina. Submitted to NeurlPS 2019. - @
Learning Combinatorial Optimization Algorithms over Graphs. |
w/ H. Dai (co first auth.), Y. Zhang, B. Dilkina, L. Song. NeurlPS 2017 Faradiom
Self-Supervised Learning <>@‘“’ AR 5
Learning To Run Heuristics in Tree Search. R (T o
w/ B. Dilkina, G. Nemhauser, S. Ahmed, Y. Shao. IJCAI 2017.  Rreinforcement Learning 8 ok .~| """""""" e
Learning to Branch in Mixed Integer Programming. Supervised Leamning BB "—Qllém _‘ Heu"t"
w/ P. Le Bodic, L. Song, G. Nemhauser, B. Dilkina. AAAI 2016. "0 O el
_ _
Graph Optimization Integer Programming
Combinatorial Attacks on Binarized Neural Networks. Problem Type

w/ A. Gupta, B. Dilkina. ICLR 2019.


http://www.ekhalil.com

