Logic-based verification and explanation of NNs

Nina Narodytska,
VMware research

How to train your verifiable Binarized NNs?

Nina Narodytska,
VMware research
joint work with Hongce Zhang (summer @ VMware), Aarti Gupta

Outline

- Introduction
- Logic-based analysis of NNs
- Scalability of verification techniques
- Analysis of bottlenecks
- Experimental evaluation
- Conclusions

Introduction

ML models

Verification of NNs

Verification of NNs

Neural Network

$$
y=N N(x)
$$

Verification of NNs

Verification of Binarized NNs

Why are BNNs important?

Why BNNs?

Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or- 1
M Courbariaux, I Hubara, D Soudry, R El-Yaniv... - arXiv preprint arXiv ..., 2016 - arxiv.org We introduce a method to train Binarized Neural Networks (BNNs)-neural networks with binary weights and activations at run-time. At training-time the binary weights and activations are used for computing the parameters gradients. During the forward pass, BNNs drastically ...) 20 Cited by 925 Related articles All 9 versions 00

Binarized neural networks

I Hubara, M Courbariaux, D Soudry... - Advances in neural ..., 2016 - papers.nips.cc We introduce a method to train Binarized Neural Networks (BNNs)-neural networks with binary weights and activations at run-time. At train-time the binary weights and activations are used for computing the parameter gradients. During the forward pass, BNNs drastically is 20 Cited by 470 Related articles All 5 versions 00

Xnor-net: Imagenet classification using binary convolutional neural networks M Rastegari, V Ordonez, J Redmon... - European Conference on ..., 2016 - Springer

Because, at inference we only perform forward propagation with the binarized weights ... Similar to binarization in the forward pass, we can binarize $\backslash\left(\mathrm{g}^{\wedge}\{\mathrm{in}\} \backslash\right)$ in the backward pass ... Our binarization technique is general, we can use any CNN architecture ..
it 20 Cited by 1373 Related articles All 8 versions

Compactness

- Only 1 bit per weight, $\{-1,1\}$
- Can be deployed on embedded devices

Inference efficiency

- fast binary matrix multiplication (7X speed up on GPU)
- "Accelerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC" IEEE’2016

Structure of BNNs

Binarized Neural Networks

Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio

Binarized Neural Networks

Binarized Neural Networks

Binarized Neural Networks

BNNs and Logic reasoning

BNNs and Logic

$\xrightarrow{x} \mathrm{BNN} \xrightarrow{y}$

BNNs and Logic

$$
\mathbb{1}
$$

$$
S A T(y=B N N(x))
$$

BNNs and Logic

$$
\operatorname{SAT}(y=B N N(x))
$$

BNNs and Logic

$$
S A T(y=B N N(x))
$$

BNNs and Logic

$$
\begin{aligned}
\operatorname{BinBNN}(x, y) & := \\
\operatorname{SAT}(y & =\operatorname{BNN}(x))
\end{aligned}
$$

Logic-based analysis of BNNs

Verification

Explainability

Learning

Logic-based analysis of BNNs

- Properties verification using SAT solvers
- Quantitative reasoning using approximate methods
- Knowledge compilation, e.g. BDD, SDD
- Learning a network using optimization techniques

Verification

Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby Walsh.
Verifying properties of binarized deep neural networks AAAI'18
Elias B. Khalil, Amrita Gupta, Bistra Dilkina:
Combinatorial Attacks on Binarized Neural Networks ICLR'19

Verification

$$
\operatorname{pre}(x) \wedge y=B N N(x) \Rightarrow \operatorname{post}(y)
$$

Verification

$$
\operatorname{pre}(x) \wedge \operatorname{Bin} B N N(x, y) \Rightarrow \operatorname{post}(y)
$$

Verification

$$
\left(x_{1}=0\right) \wedge \operatorname{Bin} B N N(x, y) \Rightarrow\left(y_{1}=0\right)
$$

Verification

$$
\left(x_{1}=0\right) \wedge \operatorname{Bin} B N N(x, y) \wedge\left(y_{1} \neq 0\right)
$$

Verification

$$
\left(x_{1}=0\right) \wedge \operatorname{Bin} B N N(x, y) \wedge\left(y_{1} \neq 0\right)
$$

SAT

Explainability

Explainability

The Challenge of Crafting Intelligible Intelligence

By Daniel S. Weld, Gagan Bansal
Communications of the ACM, June 2019, Vol. 62 No. 6, Pages 70-79
10.1145/3282486

Comments (1)

Artificial Intelligence (ai) systems have reached or exceeded human performance for many circumscribed tasks. As a result, they are increasingly deployed in mission-critical roles, such as credit scoring, predicting if a bail candidate will commit another crime, selecting the news we read on social networks, and selfdriving cars. Unlike other mission-critical software, extraordinarily complex AI systems are difficult to test: AI decisions are context specific and often based on thousands or millions of factors. Typically, AI behaviors are generated by searching vast action spaces or learned by the opaque optimization of mammoth neural networks operating over prodigious amounts of training data. Almost by definition, no clear-cut method can accomplish these AI tasks.

European Union regulations on algorithmic decision-making and a "right to explanation"

Bryce Goodman, ${ }^{1 *}$ Seth Flaxman, ${ }^{2}$

Explainable Artificial Intelligence (XAI)

Program Update November 2017

Explainability

We summarize the potential impact that the European Union's new General Data Protection Regulation will have on the routine use of machine-learning algorithms. Slated to take effect as law across the European Union in 2018, it will place restrictions on automated individual decision making (that is, algorithms that make decisions based on user-level predictors) that "significantly affect" users. When put into practice, the law may also effectively create a right to explanation, whereby a user can ask for an explanation of an algorithmic decision that significantly affects them. We argue that while this law may pose large challenges for industry, it highlights opportunities for computer scientists to take the lead in designing algorithms and evaluation frameworks that avoid discrimination and enable explanation.

Explainability

Explainability

An explanation is a subset of input features so that changes to the rest of inputs do not affect the.

Explainability

$$
I=\left(x_{1}=0, x_{2}=0\right), y=0
$$

Explainability

$$
\begin{gathered}
I=\left(x_{1}=0, x_{2}=0\right), y=0 \\
I^{\prime} \models(y=N N(x)) \rightarrow(y=0), I^{\prime} \subset I
\end{gathered}
$$

Explainability

$$
\begin{gathered}
I=\left(x_{1}=0, x_{2}=0\right), y=0 \\
I^{\prime} \models \operatorname{Bin} B N N(x, y) \rightarrow(y=0), I^{\prime} \subset I
\end{gathered}
$$

Quantitative reasoning

Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, João Marques-Silva:
Assessing Heuristic Machine Learning Explanations with Model Counting SAT'19.

Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S. Meel, Prateek Saxena

Quantitative reasoning

$$
\left(x_{1}=0\right) \wedge \operatorname{Bin} B N N(x, y) \wedge\left(y_{1} \neq 0\right)
$$

Quantitative reasoning

$$
\left(x_{1}=0\right) \wedge \operatorname{BinBN} N(x, y) \wedge\left(y_{1} \neq 0\right)
$$

Model counting solver

Knowledge compilation

Verifying Binarized Neural Networks by Local Automaton Learning
Andy Shih and Adnan Darwiche and Arthur Choi

Knowledge compilation

$\operatorname{BinBNN}(x, y)$

Knowledge compilation

\(\operatorname{Bin} B N N(x, y) \square \begin{aligned} \& CNf2BDD
\& compiler\end{aligned}\)

Verifying Binarized Neural Networks by Local Automaton Learning
Andy Shih and Adnan Darwiche and Arthur Choi

Knowledge compilation

Verifying Binarized Neural Networks by Local Automaton Learning
Andy Shih and Adnan Darwiche and Arthur Choi

Logic-based analysis of BNNs

Verification

Explainability

Learning

Work with small networks

Work with small networks

- Properties verification using SAT solvers
- < 200K (robustness with a very small epsilon)
- Quantitative reasoning using approximate methods
- < 51K
- Knowledge compilation, e.g. BDD, SDD
- < 10K

How can we improve scalability?

Translation: BNN to SAT

Translation: BNN to SAT

Translation: BNN to SAT

$$
t_{i}=\operatorname{sign}\left(\alpha \frac{\left(a_{i, 1} x_{1}+\ldots+a_{i, n} x_{n}+b\right)-m}{\sigma}-\gamma\right)
$$

Translation: BNN to SAT

$$
t_{i}=\operatorname{sign}\left(\alpha \frac{\left(a_{i, 1} x_{1}+\ldots+a_{i, n} x_{n}+b\right)-m}{\sigma}-\gamma\right)
$$

Translation: BNN to SAT

$$
\left(\alpha \frac{\left(a_{i, 1} x_{1}+\ldots+a_{i, n} x_{n}+b\right)-m}{\sigma}-\gamma \geq 0\right) \Leftrightarrow t_{i}=1
$$

Translation: BNN to SAT

$$
\left(\alpha \frac{\left(a_{i, 1} x_{1}+\ldots+a_{i, n} x_{n}+b\right)-m}{\sigma}-\gamma \geq 0\right) \Leftrightarrow t_{i}=1
$$

Translation: BNN to SAT

$$
\begin{aligned}
& \left(\alpha \frac{\left(a_{i, 1} x_{1}+\ldots+a_{i, n} x_{n}+b\right)-m}{\sigma}-\gamma \geq 0\right) \Leftrightarrow t_{i}=1 \\
& \left(l_{1}+\ldots+l_{n} \geq\left\lceil\frac{\sigma(-\gamma)}{\alpha}+m-b+c\right\rceil\right) \Leftrightarrow t_{i}=1
\end{aligned}
$$

$$
\text { assuming } \alpha>0
$$

where

$$
\begin{aligned}
& a_{i, j}=1 \Rightarrow l_{j}=x_{j}, \\
& a_{i, j}=-1 \Rightarrow l_{j}=\bar{x}_{j}
\end{aligned}
$$

Translation: BNN to SAT

$$
\begin{aligned}
& \left(\alpha \frac{\left(a_{i, 1} x_{1}+\ldots+a_{i, n} x_{n}+b\right)-m}{\sigma}-\gamma \geq 0\right) \Leftrightarrow t_{i}=1 \\
& \left(l_{1}+\ldots+l_{n} \geq\left\lceil\frac{\sigma(-\gamma)}{\alpha}+m-b+c\right\rceil\right) \Leftrightarrow t_{i}=1
\end{aligned}
$$

$$
\text { assuming } \alpha>0
$$

where

$$
\begin{aligned}
& a_{i, j}=1 \Rightarrow l_{j}=x_{j}, \\
& a_{i, j}=-1 \Rightarrow l_{j}=\bar{x}_{j}
\end{aligned}
$$

Translation: BNN to SAT

$$
\begin{gathered}
\left(\alpha \frac{\left(a_{i, 1} x_{1}+\ldots+a_{i, n} x_{n}+b\right)-m}{\sigma}-\gamma \geq 0\right) \Leftrightarrow t_{i}=1 \\
\left(l_{1}+\ldots+l_{n} \geq k\right) \Leftrightarrow t_{i}=1
\end{gathered}
$$

$$
\begin{aligned}
& a_{i, j}=1 \Rightarrow l_{j}=x_{j}, \\
& a_{i, j}=-1 \Rightarrow l_{j}=\bar{x}_{j}
\end{aligned}
$$

Translation: BNN to SAT

Translation: BNN to SAT

Why are BinBNNs hard to solve?

Birds view: a large formula

$$
\left(\begin{array}{c}
\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1 \\
\vdots \\
\left(l_{m, 1}+\ldots+l_{m, n} \geq k_{m}\right) \Leftrightarrow t_{m}=1
\end{array}\right) \wedge\left(\begin{array}{c}
\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1 \\
\vdots \\
\left(l_{m, 1}+\ldots+l_{m, n} \geq k_{m}\right) \Leftrightarrow t_{m}=1
\end{array}\right) \wedge\left(\begin{array}{c}
\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1 \\
\vdots \\
\left(l_{m, 1}+\ldots+l_{m, n} \geq k_{m}\right) \Leftrightarrow t_{m}=1
\end{array}\right.
$$

Birds view: a large formula

$$
\left(\begin{array}{c}
\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1 \\
\vdots \\
\left(l_{m, 1}+\ldots+l_{m, n} \geq k_{m}\right) \Leftrightarrow t_{m}=1
\end{array}\right) \wedge\left(\begin{array}{c}
\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1 \\
\vdots \\
\left(l_{m, 1}+\ldots+l_{m, n} \geq k_{m}\right) \Leftrightarrow t_{m}=1
\end{array}\right) \wedge\left(\begin{array}{c}
\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1 \\
\vdots \\
\left(l_{m, 1}+\ldots+l_{m, n} \geq k_{m}\right) \Leftrightarrow t_{m}=1
\end{array}\right.
$$

+ a structure aware solver

Birds view: a large formula

$$
\left(\begin{array}{c}
\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1 \\
\vdots \\
\left(l_{m, 1}+\ldots+l_{m, n} \geq k_{m}\right) \Leftrightarrow t_{m}=1
\end{array}\right) \wedge \begin{gathered}
\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1 \\
\vdots \\
\left(l_{m, 1}+\ldots+l_{m, n} \geq k_{m}\right) \Leftrightarrow t_{m}=1
\end{gathered} \wedge \quad \begin{gathered}
\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1 \\
\vdots \\
\left(l_{m, 1}+\ldots+l_{m, n} \geq k_{m}\right) \Leftrightarrow t_{m}=1
\end{gathered}
$$

+ a structure aware solver

Macroview: a large formula for a block

Macroview: a large block

$$
\begin{aligned}
& \left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1 \\
& \left(l_{2,1}+\ldots+l_{2, n} \geq k_{2}\right) \Leftrightarrow t_{2}=1 \\
& \left(l_{3,1}+\ldots+l_{3, n} \geq k_{3}\right) \Leftrightarrow t_{3}=1
\end{aligned}
$$

Macroview: a large block

$$
\begin{aligned}
& \left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1 \\
& \left(l_{2,1}+\ldots+l_{2, n} \geq k_{2}\right) \Leftrightarrow t_{2}=1 \\
& \left(l_{3,1}+\ldots+l_{3, n} \geq k_{3}\right) \Leftrightarrow t_{3}=1
\end{aligned}
$$

+ a nice shape of a matrix

Macroview: a large block

$$
\begin{aligned}
& \left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1 \\
& \left(l_{2,1}+\ldots+l_{2, n} \geq k_{2}\right) \Leftrightarrow t_{2}=1 \\
& \left(l_{3,1}+\ldots+l_{3, n} \geq k_{3}\right) \Leftrightarrow t_{3}=1
\end{aligned}
$$

+ a nice shape of a matrix

Microview: a large constraint

$$
\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1
$$

Microview: a large constraint

$\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1$

 Number of variables

Reification means no propagation!

Microview: a large constraint

$$
\xlongequal[N \text { Numbercofvarabibes }]{\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \leftrightarrow t_{1}=1}
$$

Reification means no propagation!

+ reduce \#vars
+ eliminate reifications

Wish list

+ reduce \#vars

+ eliminate reifications
+ a nice shape of a matrix
+ a structure aware solver

Wish list

+ reduce \#vars

+ eliminate reifications

+ a nice shape of a matrix
+ a structure aware solver

Wish list

+ reduce \#vars

+ eliminate reifications
+ a nice shape of a matrix
+ a structure aware solver

BNN parameters and structure are not fixed*

We can train a BNN so that

+ reduce \#vars

+ eliminate reifications

We can train a BNN so that

+ reduce \#vars

+ eliminate reifications

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry

Binarized Neural Networks

$$
x, a_{i, j} \in\{-1,1\} \quad b, \alpha, m, \sigma, \gamma, W \in \mathbf{R}
$$

Binarized Neural Networks

$$
x, a_{i, j} \in\{-1,1\} \quad b, \alpha, m, \sigma, \gamma, W \in \mathbf{R}
$$

Running example

Dataset: MNIST with background
Problem: Untargeted adversarial examples
with ε in $\{1,3,5,10,15,25\}$
Networks: BNNs with five FC layers

- "Small BNN" with 200K params
- "Large BNN" with 620K params

Running example

Train: From a pretrain full precision network Inputs: Normalized
Results: average time to solve per ε out of 100 benchmarks
Solvers: CPLEX, Glucose (PySAT convertor)

Baseline: verification of original BNNs

Ternary quantization

Ternary quantization

BNN+: Improved Binary Network Training
Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, Vahid Partovi Nia

Ternary quantization

Figure 2: Progression of the weights training in BNN (Hubara et al,, 2016) . As training progresses the weights create three modes: at $-1,0$, and at +1 .

BNN+: Improved Binary Network Training

Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, Vahid Partovi Nia

Ternary quantization

$$
\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1
$$

where

$$
\begin{aligned}
& a_{i, j}=1 \Rightarrow l_{j}=x_{j} \\
& a_{i, j}=-1 \Rightarrow l_{j}=\bar{x}_{j}
\end{aligned}
$$

Ternary quantization

$\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1$
where

$$
\begin{aligned}
& a_{i, j}=1 \Rightarrow l_{j}=x_{j} \\
& a_{i, j}=0 \Rightarrow l_{j}=0 \\
& a_{i, j}=-1 \Rightarrow l_{j}=\bar{x}_{j}
\end{aligned}
$$

Ternary quantization

Train ternary NN where weights are -1,0,1

Ternary quantization

1. Train a BNN
2. Build a distribution of absolute values of weights
3. Select a percentile ($40 \%, 60 \%$), $t=0.03$
4. Train a ternary BNN with the two-sided threshold t

$$
a_{i, j}= \begin{cases}0 & \text { if }\left|w_{i, j}\right| \leq t \\ \operatorname{sign}\left(w_{i, j}\right) & \text { otherwise }\end{cases}
$$

Ternary quantization

1. Train a BNN
2. Build a distribution of absolute values of weights
3. Select a percentile ($40 \%, 60 \%$), $t=0.03$
4. Train a ternary BNN with the two-sided threshold t

Ternary quantization

	Small BNN	Large BNN
Original BNN	$200 \mathrm{~K}(73.0 \%)$	$600 \mathrm{~K}(74.0 \%)$
Ternary BNN	$26 \mathrm{~K}(75.2 \%)$	$40 \mathrm{~K}(78.2 \%)$

Ternary quantization

L1+Ternary quantization

L1+Ternary quantization

$\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1$
where

$$
\begin{aligned}
& a_{i, j}=1 \Rightarrow l_{j}=x_{j} \\
& a_{i, j}=0 \Rightarrow l_{j}=0 \\
& a_{i, j}=-1 \Rightarrow l_{j}=\bar{x}_{j}
\end{aligned}
$$

L1+Ternary quantization

$\left(l_{1,1}+\ldots+l_{1, n} \geq k_{1}\right) \Leftrightarrow t_{1}=1$
where

$$
\begin{aligned}
a_{i, j} & =1 \Rightarrow l_{j}=x_{j} \\
a_{i, j} & =0 \Rightarrow l_{j}=0 \\
a_{i, j} & =-1 \Rightarrow l_{j}=\bar{x}_{j}
\end{aligned}
$$

L1+Ternary quantization

	Small BNN	Large BNN
Original BNN	200 K	(73.0%)
Ternary BNN	600K (74.0\%)	
L1 + Ternary BNN	26 K	(75.2%)
	24 K	(75.3\%)

L1 + Ternary BNN

Stabilization of SIGN

Stabilization of SIGN

$$
\left(l_{1,1}+\ldots+l_{1, n}-k_{1} \geq 0\right) \Leftrightarrow t_{1}=1
$$

Stabilization of SIGN

$$
\begin{aligned}
& \left(l_{1,1}+\ldots+l_{1, n}-k_{1} \geq 0\right) \Leftrightarrow t_{1}=1 \\
& L B_{\left(l_{1,1}+\ldots+l_{1, n}-k_{1}\right)} \geq 0
\end{aligned}
$$

Stabilization of SIGN

$$
\begin{aligned}
& \left(l_{1,1}+\ldots+l_{1, n}-k_{1} \geq 0\right) \Leftrightarrow t_{1}=1 \\
& L B_{\left(l_{1,1}+\ldots+l_{1, n}-k_{1}\right)} \geq 0 \quad t_{1}=1
\end{aligned}
$$

Stabilization of SIGN

$$
\left(l_{1,1}+\ldots+l_{1, n}-k_{1} \geq 0\right) \Leftrightarrow t_{1}=1
$$

Stabilization of SIGN

$$
\begin{aligned}
& \left(l_{1,1}+\ldots+l_{1, n}-k_{1} \geq 0\right) \Leftrightarrow t_{1}=1 \\
& U B_{\left(l_{1,1}+\ldots+l_{1, n}-k_{1}\right)}<0
\end{aligned}
$$

Stabilization of SIGN

$$
\begin{aligned}
& \left(l_{1,1}+\ldots+l_{1, n}-k_{1} \geq 0\right) \Leftrightarrow t_{1}=1 \\
& U B_{\left(l_{1,1}+\ldots+l_{1, n}-k_{1}\right)}<0
\end{aligned} t_{1}=0
$$

Stabilization of SIGN

Encourage LB and UB of a neurons to take the same sign:

$$
\operatorname{sign}\left(U B_{i, j}\right)=\operatorname{sign}\left(L B_{i, j}\right)
$$

Stabilization of SIGN

We add a term to the loss function:

$$
\operatorname{sign}\left(U B_{i, j}\right) * \operatorname{sign}\left(L B_{i, j}\right)
$$

Stabilization of SIGN

We add a (approximation) term to the loss function:

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry

Stabilization of SIGN

$L B_{x}, U B_{x}$

$$
L B_{y}, U B_{y} \quad L B_{z}, U B_{z} \quad L B_{f}, U B_{f} \quad L B_{t}, U B_{t}
$$

StableSign+Ternary quantization

	Small BNN	Large BNN
Original BNN	200 K (73.0\%)	600K (74.0\%)
Ternary BNN	$26 \mathrm{~K} \quad$ (75.2\%)	$40 \mathrm{~K} \quad$ (78.2\%)
StableSign + Ternary BNN	25K (76.7\%) $\sim 20 \% ~ s t a b l e ~$	38K (78.4\%) $\sim 40 \%$ stable

StableSign+Ternary quantization

StableSign+ L1+Ternary quantization

	Small BNN	Large BNN
Original BNN	200K (73.0\%)	600K (74.0\%)
L1 + Ternary BNN	24K (75.3\%)	36K (78.4\%)
StableSign + L1 + Ternary BNN	23K (76.6\%) ~20\% stable	34K (80.4\%) 40\% stable

StableSign+ L1+Ternary quantization

Summary

Running example

Additional analysis

Running example: Accuracy

	Small BNN	Large BNN
Original BNN	73.0%	74.0%
Ternary BNN	75.2%	78.2%
StableSign+Ternary BNN	76.7%	78.4%
L1+Ternary BNN	75.3%	78.4%
StableSign+L1+Ternary BNN	76.6%	80.0%

Resistance to attacks

Resistance to attacks (median)

Models	Large BNN	
	eps = 5	eps =10
Original BNN	$?$	$?$
Ternary BNN	1%	1%
StableSign+Ternary BNN	1.2%	1.9%
L1+Ternary BNN	2.7%	1.9%
StableSign+L1+Ternary BNN	7%	1.3%

Conclusion

Proposed a method to train a (easier) verifiable BNN.

Conclusion

Proposed a method to train a (easier) verifiable BNN.

- $>10 \mathrm{X}$ reduction in the number of coefficients
- ~3 000000 -> ~50 000 reduction in the \#clauses

Thanks!

