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Verification of NNs
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Verification of Binarized NNs

Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1
Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio

Binarized NN
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Why are BNNs important?
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Why BNNs?
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Compactness 

• Only 1 bit per weight, {-1,1}
• Can be deployed on embedded devices  
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Inference efficiency

• fast binary matrix multiplication
(7X speed up on GPU)

• “Accelerating Binarized Neural Networks: 
Comparison of FPGA, CPU, GPU, and ASIC”
IEEE’2016
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Structure of BNNs
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Binarized Neural Networks

Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1
Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, Yoshua Bengio
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Binarized Neural Networks



20

Binarized Neural Networks
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Binarized Neural Networks
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BNNs and Logic reasoning
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BNNs and Logic

BNN
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BNNs and Logic
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BNNs and Logic
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Logic-based analysis of BNNs

Verification
Explainability

Learning
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Logic-based analysis of BNNs

◦Properties verification using SAT solvers

◦Quantitative reasoning using approximate methods

◦Knowledge compilation, e.g. BDD, SDD 

◦Learning a network using optimization techniques  
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Verification

Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby Walsh.
Verifying properties of binarized deep neural networks AAAI’18
Elias B. Khalil, Amrita Gupta, Bistra Dilkina:
Combinatorial Attacks on Binarized Neural Networks ICLR’19
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Verification
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Verification
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Verification



35

Verification

SAT 
solver 
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Explainability



37

Explainability
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Explainability

We summarize the potential impact that the European Union's new General Data Protection Regulation will 
have on the routine use of machine-learning algorithms. Slated to take effect as law across the European 
Union in 2018, it will place restrictions on automated individual decision making (that is, algorithms that 
make decisions based on user-level predictors) that "significantly affect" users. When put into practice, the 
law may also effectively create a right to explanation, whereby a user can ask for an explanation of an 
algorithmic decision that significantly affects them. We argue that while this law may pose large challenges 
for industry, it highlights opportunities for computer scientists to take the lead in designing algorithms and 
evaluation frameworks that avoid discrimination and enable explanation. 
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Explainability



40

Explainability

An explanation is a subset of input features so that
changes to the rest of inputs do not affect the.

Alexey Ignatiev, Nina Narodytska, João Marques-Silva: AAAI’19:  Abduction-Based Explanations for Machine Learning Models
Andy Shih and Arthur Choi and Adnan Darwiche : IJCAI’18: A Symbolic Approach to Explaining Bayesian Network Classifiers
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Explainability
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Explainability
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Explainability
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Quantitative reasoning

Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, João Marques-Silva:
Assessing Heuristic Machine Learning Explanations with Model Counting SAT’19. 

Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S. Meel, Prateek Saxena
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Quantitative reasoning
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Quantitative reasoning

Model counting solver 
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Knowledge compilation

Verifying Binarized Neural Networks by Local Automaton Learning 
Andy Shih and Adnan Darwiche and Arthur Choi



48

Knowledge compilation

Verifying Binarized Neural Networks by Local Automaton Learning 
Andy Shih and Adnan Darwiche and Arthur Choi
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Knowledge compilation

Verifying Binarized Neural Networks by Local Automaton Learning 
Andy Shih and Adnan Darwiche and Arthur Choi

CNf2BDD 
compiler
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Knowledge compilation

Verifying Binarized Neural Networks by Local Automaton Learning 
Andy Shih and Adnan Darwiche and Arthur Choi

CNf2BDD 
compiler
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Logic-based analysis of BNNs

Verification
Explainability

Learning
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Work with small networks 
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Work with small networks 

◦Properties verification using SAT solvers
◦ < 200K (robustness with a very small epsilon)

◦Quantitative reasoning using approximate methods
◦ < 51K 

◦Knowledge compilation, e.g. BDD, SDD 
◦ < 10K
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How can we improve scalability?
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Translation: BNN to SAT
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Translation: BNN to SAT
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Translation: BNN to SAT
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Translation: BNN to SAT

..
.
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Translation: BNN to SAT

..
.

..
.

..
.

BinBNN
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Why are BinBNNs hard to solve?
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Birds view: a large formula
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Birds view: a large formula

+ a structure aware solver 
..
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Birds view: a large formula

+ a structure aware solver 
..

.
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Macroview: a large formula for a block
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Macroview: a large block
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Macroview: a large block

+ a nice shape of a matrix
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Macroview: a large block

+ a nice shape of a matrix
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Microview: a large constraint
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Microview: a large constraint

Number of variables

Reification means no propagation!
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Microview: a large constraint

Number of variables

Reification means no propagation!

+ reduce #vars + eliminate reifications
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Wish list

+ reduce #vars

+ eliminate reifications

+ a structure aware solver 

+ a nice shape of a matrix
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Wish list

+ reduce #vars
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Wish list

+ reduce #vars

+ eliminate reifications

+ a structure aware solver 

+ a nice shape of a matrix
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BNN parameters and structure are not fixed*
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We can train a BNN so that 

+ reduce #vars

+ eliminate reifications

https://openreview.net/pdf?id=BJfIVjAcKm


82

We can train a BNN so that 

+ reduce #vars

+ eliminate reifications

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability

Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry

https://openreview.net/pdf?id=BJfIVjAcKm
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Binarized Neural Networks
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Binarized Neural Networks
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Running example

Dataset: MNIST with background
Problem: Untargeted adversarial examples

with ɛ in {1,3,5,10,15,25}
Networks: BNNs with five FC layers

• “Small BNN” with 200K params
• “Large BNN” with 620K params
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Running example

Train: From a pretrain full precision network
Inputs: Normalized
Results: average time to solve per ɛ

out of 100 benchmarks
Solvers: CPLEX, Glucose (PySAT convertor)
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Baseline: verification of original BNNs
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Ternary quantization
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Ternary quantization

BNN+: Improved Binary Network Training
Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, Vahid Partovi Nia
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Ternary quantization

BNN+: Improved Binary Network Training
Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, Vahid Partovi Nia
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Ternary quantization
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Ternary quantization
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Ternary quantization

Train ternary NN where weights are -1,0,1 

Trained Ternary Quantization, ICLR’16, Zhu at el



94

Ternary quantization

1. Train a BNN
2. Build a distribution of absolute values of weights
3. Select a percentile (40%, 60%), t= 0.03
4. Train a ternary BNN with the two-sided threshold t
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Ternary quantization

1. Train a BNN
2. Build a distribution of absolute values of weights
3. Select a percentile (40%, 60%), t= 0.03
4. Train a ternary BNN with the two-sided threshold t

Note: Transformation from BNN to SAT changes a bit
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Ternary quantization

Small BNN Large BNN

Original BNN 200K  (73.0%) 600K (74.0%)

Ternary BNN 26K  (75.2%) 40K (78.2%)
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Ternary quantization
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L1+Ternary quantization
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L1+Ternary quantization
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L1+Ternary quantization

Add L1 regularization
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L1+Ternary quantization

Small BNN Large BNN

Original BNN 200K  (73.0%) 600K (74.0%)

Ternary BNN 26K    (75.2%) 40K   (78.2%)

L1 + Ternary BNN 24K   (75.3%) 36K   (78.4%)
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L1 + Ternary BNN
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Stabilization of SIGN
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Stabilization of SIGN
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Stabilization of SIGN
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Stabilization of SIGN
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Stabilization of SIGN
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Stabilization of SIGN
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Stabilization of SIGN
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Stabilization of SIGN

Encourage LB and UB of a neurons to take  the same sign:
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Stabilization of SIGN

We add a term to the loss function:
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Stabilization of SIGN

We add a (approximation) term to the loss function:

Training for Faster Adversarial Robustness Verification via Inducing ReLU Stability

Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, Aleksander Madry



Stabilization of SIGN
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StableSign+Ternary quantization

Small BNN Large BNN

Original BNN 200K  (73.0%) 600K (74.0%)

Ternary BNN 26K    (75.2%) 40K   (78.2%)

StableSign + Ternary BNN 25K   (76.7%)
~20% stable

38K   (78.4%)
~40% stable
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StableSign+Ternary quantization
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StableSign+ L1+Ternary quantization

Small BNN Large BNN

Original BNN 200K  (73.0%) 600K (74.0%)

L1 + Ternary BNN 24K   (75.3%) 36K   (78.4%)

StableSign + L1 + Ternary BNN 23K   (76.6%)
~20% stable

34K   (80.4%)
40% stable
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StableSign+ L1+Ternary quantization
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Summary
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Running example

Additional analysis
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Running example: Accuracy 

Small BNN Large BNN

Original BNN 73.0% 74.0%

Ternary BNN 75.2% 78.2%

StableSign+Ternary BNN 76.7% 78.4%

L1+Ternary BNN 75.3% 78.4%

StableSign+L1+Ternary BNN 76.6% 80.0%
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Resistance to attacks 
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Resistance to attacks (median) 
Models Large BNN

eps = 5 eps = 10

Original BNN ? ?

Ternary BNN 1% 1%

StableSign+Ternary BNN 1.2% 1.9%

L1+Ternary BNN 2.7% 1.9%

StableSign+L1+Ternary BNN 7% 1.3%
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Conclusion

Proposed a method to train a (easier) verifiable BNN.
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Conclusion

Proposed a method to train a (easier) verifiable BNN.

• > 10X reduction in the number of coefficients 
• ~3 000 000 -> ~50 000 reduction in the #clauses 
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Thanks!


