
Reinforcement Learning
An Introduction and
Robustness Issues

Waterloo ML + Security + Verification
Workshop, August 26, 2019

Pascal Poupart, CIFAR AI Chair

2

Borealis AI Principal Researcher

• Research institute funded by RBC

• 5 research centers:
– Montreal, Toronto, Waterloo,

Edmonton and Vancouver

• 80 researchers:
– Integrated (applied & fundamental) research model

• ML, RL, NLP, computer vision, private AI, fintech

3

ML Professor at U of Waterloo
• Deep Learning

– Automated structure learning, sum-product networks
• Reinforcement learning

– Constrained RL, motion-oriented RL, Bayesian RL,
sport analytics

• NLP
– Conversational agents, machine translation, fake

news detection
• Theory

– Satisfiability, local optima in mixture models,
consistency in ML

4

Outline
• Reinforcement Learning

– Introduction
– REINFORCE algorithm
– Application: Game of Go

• Robustness
– Safe reinforcement learning
– Imprecise model/simulator
– Adversarial attacks

5

Machine Learning

• Supervised Learning
– Teacher tells learner what to remember

• Reinforcement Learning
– Environment provides hints to learner

• Unsupervised Learning
– Learner discovers on its own

6

What is RL
• Reinforcement learning: learn to select actions

that maximize a numerical reward signal
– Learner is not told what actions to take, but must

discover them by trying them out and seeing what the
reward is

• Animal training
– Reinforcements: food (positive), pain (negative)
– Let’s do the same with computers

7

RL Applications
• Game playing (backgammon, go, video games)
• Operations research (pricing, vehicle routing)
• Finance (automated trading)
• Robotics (control, path planning)
• Conversational agents (dialog management)
• Recommender systems (ad placement, product

recommendation)
• Verification (satisfiability)
• Optimization (neural architecture search)

8

Reinforcement Learning Problem

Agent

Environment

State
Reward Action

Goal: Learn to choose actions that maximize rewards

9

RL Framework
• Definition

– States: ! ∈ #
– Actions: $ ∈ %
– Rewards: & ∈ ℝ
– Transition model: Pr(!+|!+-., $+-.)
– Reward model: Pr(&+|!+, $+)
– Discount factor: 0 ≤ 3 ≤ 1

• discounted: 3 < 1 undiscounted: 3 = 1
– Horizon (i.e., # of time steps): ℎ

• Finite horizon: ℎ ∈ ℕ infinite horizon: ℎ = ∞

• Goal: find optimal policy :∗ such that
:∗ = $&<=$>? ∑+ABC 3+D?[&+]

unknown model

10

RL Applications
• Game playing (backgammon, go, video games)
• Operations research (pricing, vehicle routing)
• Finance (automated trading)
• Robotics (control, path planning)
• Conversational agents (dialog management)
• Recommender systems (ad placement, product

recommendation)
• Verification (satisfiability)
• Optimization (neural architecture search)

11

Example: Inverted Pendulum

• State:
! " , !$ " , % " , %′(")

• Action: Force)
• Reward: 1 for any step

where pole balanced

Problem: Find *: , → . that
maximizes rewards

12

Important Components in RL
RL agents may or may not include the following
components:

• Model: Pr #$ #, & , Pr((|#, &)
– Environment dynamics and rewards

• Policy: +(#)
– Agent action choices

• Value function: ,(#)
– Expected total rewards of the agent policy

13

Categorizing RL Agents

Value based
• No policy (implicit)
• Value function
Policy based
• Policy
• No value function
Actor critic
• Policy
• Value function

Model based
• Transition and

reward model
Model free
• No transition and no

reward model
(implicit)

14

Policy Optimization
• Value-based techniques:

– Find best possible ! "# = ∑& '& ()[+&|"&, .&]
– Then extract policy 0
– Example: Q-learning

• Policy search techniques:
– Search for 0 that maximizes !(")
– Example: policy gradient

15

Supervised Learning
• Consider a stochastic policy Pr# (%|')

parametrized by weights).
• Data: state-action pairs { '+, %+∗ , '., %.∗ , … }

• Maximize log likelihood of the data

)∗ = %234%5#6
7
log Pr# (%7

∗|'7)

• Gradient update
)7;+ ←)7 + > ?# log Pr# (%7

∗|'7)

16

Reinforcement Learning
• Consider a stochastic policy Pr

#
(%|')

parametrized by weights).
• Data: state-action-reward triples
{ '+, %+, -+ , '., %., -. , … }

• Maximize discounted sum of rewards
)∗ = %-34%5# ∑7 87 9#[-7|'7, %7]

• Gradient update
)7<+ ←)7 + ? 87@7 A# log Pr#

(%7|'7)

where @7 = ∑EFG
H 8E-E<7

17

Gradient Policy Theorem
• Gradient Policy Theorem

!"# $% ='
(
)# $ '

*
! Pr# - $.# $, -

)#($): stationary state distribution when executing policy
parametrized by 2

.# $, - : discounted sum of rewards when starting in $,
executing - and following the policy parametrized by 2
thereafter.

18

Derivation
!"# $ = ! ∑' Pr

#
* $ +# $, * ∀$ ∈ /

= ∑' ! Pr
#
* $ +# $, * + Pr

#
* $!+# $, *

= ∑' ! Pr
#
* $ +# $, * + Pr

#
* $! ∑12,3 Pr $

4, 5 $, * 5 + 6"# $4

= ∑' ! Pr
#
* $ +# $, * + Pr

#
* $ ∑12 6 Pr $

4 $, * !V8(s
4)

= ∑'[! Pr#
* $ +# $, * + Pr

#
* $ ∑12 6 Pr $

4 $, *

∑'2[! Pr#
*4 $4 +# $4, *4 + Pr *4 $4 ∑122 6 Pr $

44 $4, *4 !V8(s
44)]

= ∑>∈? ∑@AB
C 6DPr($ → F, G, H)∑' ! Pr

#
* F +#(F, *)

!"# $B = ∑>∈? ∑@AB
C 6DPr($B → F, G, H)∑' ! Pr#

* $ +#($, *)

= ∑1 I#($) ∑' ! Pr
#
* $ +#($, *)

Probability of reaching F from $ at time step G

19

REINFORCE: Monte Carlo
Policy Gradient

• "#$ = ∑' ($) ∑* +$), - " Pr
$
-)

= 0$ 12 ∑* +$ 32, - " Pr
$
- 32

= 0$ 12 ∑* Pr$ - 32 +$ 32, -
4 567 - 32
567 (*|:;)

= 0$ 12+$ 32, =2
4 567 =2 32
567 (>;|:;)

= 0$ 12?2
4 567 =2 32
567 (>;|:;)

= 0$ 12?2" log Pr$ =2 32

• Stochastic gradient
"#$ = 12?2" log Pr$ -2)2

20

Application: Game of Go

• (simplified) rules:
– Two players

(black and white)
– Players alternate to place

a stone of their color on
a vacant intersection.

– Connected stones without
any liberty (i.e., no adjacent
vacant intersection) are
captured and removed from the board

– Winner: player that controls the largest number of
intersections at the end of the game

21

Computer Go

• Oct 2015:

Monte Carlo Tree SearchDeep RL

22

Winning Strategy
Four steps:

1. Supervised Learning of Policy Networks
2. Reinforcement Learning of Policy Networks
3. Reinforcement Learning of Value Networks
4. Searching with Policy and Value Networks

23

Policy Network

• Train policy network to imitate Go experts based
on a database of 30 million board configurations
from the KGS Go Server.

• Policy network: Pr($|&)
– Input: state &

(board configuration)
– Output: distribution

over actions $
(intersection on which
the next stone will be placed)

Pr($|&)

24

Supervised Learning
of the Policy Network

• Let ! be the weights of the policy network

• Training:
– Data: suppose " is optimal in #
– Objective: maximize log Pr! (a|s)

– Gradient: ./ = 1 234 56! " #
1!

– Weight update: ! ← !+9.!

25

Reinforcement Learning
of the Policy Network

• How can we update a policy network based on
reinforcements instead of the optimal action?

• Let !" = ∑% &% '"(% be the discounted sum of
rewards in a trajectory that starts in) at time * by
executing +.

• Gradient: ,- = . /01 23- +)
.- &"!"

– Intuition rescale supervised learning gradient by !
• Weight update: - ← -+6,-

26

Reinforcement Learning
of the Policy Network

• In computer Go, program repeatedly plays
games against its former self.

• For each game !" = $ 1 &'(
−1 *+,-

• For each (,", 0") of turn 2 of the game, assume
3 = 1 then compute

– Gradient: 45 = 6 789 :;5 0" ,"
65 !"

– Weight update: 5 ← 5 + >45

27

Value Network

• Predict !(#′) (i.e., who will
win game) in each state #&
with a value network
– Input: state #

(board configuration)
– Output: expected discounted

sum of rewards !(#&)

!(#&)

28

Reinforcement Learning
of Value Networks

• Let ! be the weights of the value network

• Training:

– Data: (#, %) where % = (1 *+,
−1 ./#0

– Objective: minimize 12 3! # − % 2

– Gradient: 4! = 56! 7
5! (3! # − %)

– Weight update: ! ← !− 94!

29

Searching with
Policy and Value Networks

• AlphaGo combines policy
and value networks into
a Monte Carlo Tree
Search algorithm

• Idea: construct
a search tree
– Node: !
– Edge: "

30

Competition

31

Challenges in RL
• Data efficiency

– Most RL successes: simulated environments

• Robustness
– How to bridge the “reality gap”

Atari MuJoCo VizDoom Computer Go

Peng et al. 2018

32

Robustness
• Safe reinforcement learning

– Safety constraints

• Imprecise model/simulator
– Domain adaptation

• Adversarial attacks
– (Adversarial) partial observability

33

Safe RL
Important literature on
• Risk-Sensitive RL: change objective

(Artzner et al., 1999; Borkar 2001; Mihatsch et al., 2002; Delage et
al., 2010; Tamar et al., 2012; Chow et al., 2014; Tamar et al., 2015)

max$ % ∑' (')' where g is a risk measure

• Constrained RL: add constraints
(Geibel 2006; Achiam et al. 2017; Bathia et al. 2018, Lee et al. 2018)

max$ ∑' ('*[)'|-', /(-')] -. 4. ∑' ('*[5'|-', /(-')] ≤ 7

• Many solutions that ensure asymptotic safety
• Open problem: how to ensure safety before convergence

34

Imprecise Model/Simulator
Domain adaptation
• Randomized training (Peng et al., 2018)

max$ %& ∑()(%[+(|-(, / -(, 0]
where 0 denotes a model

• Adversarial training (Pinto et al., 2017; Tessler et al., 2019)

234$ min7 ∑()(% +(-, / - , 8 -
where 8 denotes adversary’s policy

• Many solutions that improve robustness
• Open problem: performance guarantees

35

Conclusion

• REINFORCE algorithm
• Robustness:

– safe RL, imprecise model/simulator, adversarial attacks

• Open Problems:
– Safe exploration before convergence
– Performance guarantees in domain adaptation

