Reinforcement Learning
An Introduction and
Robustness Issues

Waterloo ML + Security + Verification
Workshop, August 26, 2019
Pascal Poupart, CIFAR Al Chair

\M ‘
| Hl“ WATERLOO. "i 7 VECTOR
| VATERLOOA E N |NSTITUTE

AAAAAAAAAA

RBC Institute for Research

Borealis Al Principal Researcher

* Research institute funded by RBC

* 5 research centers:

— Montreal, Toronto, Waterloo, | “”““

Edmonton and Vancouver
BOREALIS Al

RBC Institute for Research

» 80 researchers:
— Integrated (applied & fundamental) research model

ML, RL, NLP, computer vision, private Al, fintech
2

ML Professor at U of Waterloo

Deep Learning
— Automated structure learning, sum-product networks

Reinforcement learning

— Constrained RL, motion-oriented RL, Bayesian RL,
sport analytics

NLP

— Conversational agents, machine translation, fake
news detection

Theory

— Satisfiability, local optima in mixture models,
consistency in ML

Outline

* Reinforcement Learning
— Introduction
— REINFORCE algorithm
— Application: Game of Go

* Robustness
— Safe reinforcement learning
— Imprecise model/simulator
— Adversarial attacks

Machine Learning

* Supervised Learning
— Teacher tells learner what to remember

* Reinforcement Learning
— Environment provides hints to learner

* Unsupervised Learning
— Learner discovers on its own

What is RL

* Reinforcement learning: learn to select actions
that maximize a numerical reward signal

— Learner is not told what actions to take, but must
discover them by trying them out and seeing what the
reward is

* Animal training
— Reinforcements: food (positive), pain (negative)
— Let’s do the same with computers

RL Applications

Game playing (backgammon, go, video games)
Operations research (pricing, vehicle routing)
Finance (automated trading)

Robotics (control, path planning)
Conversational agents (dialog management)

Recommender systems (ad placement, product
recommendation)

Verification (satisfiability)
Optimization (neural architecture search)

Reinforcement Learning Problem

Agent

Sty %eward yction

Environment

Goal: Learn to choose actions that maximize rewards

RL Framework

 Definition
— States: s € S

— Actions: a € A
— Rewards: r € R

} unknown model
— Discountfactor: 0 <y <1

« discounted: y < 1 undiscounted: y = 1
— Horizon (i.e., # of time steps): h
* Finite horizon: h € N infinite horizon: h = oo

» Goal: find optimal policy ©* such that
m* = argmaxy Y=oV Ex[ri]

RL Applications

Game playing (backgammon, go, video games)
Operations research (pricing, vehicle routing)
Finance (automated trading)

Robotics (control, path planning)
Conversational agents (dialog management)

Recommender systems (ad placement, product
recommendation)

Verification (satisfiability)
Optimization (neural architecture search)

10

Example: Inverted Pendulum

e State:
x(t),x'(t),0(t),6'(t)
 Action: Force F

 Reward: 1 for any step
where pole balanced

Problem: Find ©: S —» A that
maximizes rewards

11

Important Components in RL

RL agents may or may not include the following
components:

* Model: Pr(s’|s,a),Pr(r|s,a)

— Environment dynamics and rewards
* Policy: (s)

— Agent action choices

* Value function: V (s)
— Expected total rewards of the agent policy

12

Categorizing RL Agents

@Iue based

* Value function

Policy based
* Policy

~

(i

odel based
 Transition and
reward model

Model free

_

~

13

Policy Optimization

» Value-based techniques:
— Find best possible V(sy) = X, vt E[1¢|se, a;]
— Then extract policy
— Example: Q-learning

* Policy search techniques:
— Search for that maximizes V (s)
— Example: policy gradient

14

Supervised Learning

Consider a stochastic policy Pr(a|s)
w

parametrized by weights w.
Data: state-action pairs {(s1,a7), (sy,a5), ... }

Maximize log likelihood of the data

w' = argmax,, z log Pr(ai|s;)
w
t
Gradient update
Wiy < W + a , log Pr(ag|s;)
w

15

Reinforcement Learning

Consider a stochastic policy Pr(a|s)
w

parametrized by weights w.

Data: state-action-reward triples
{(s1,a4,11),(S2,a9,73), ... }

Maximize discounted sum of rewards

w* = argmax,, Y¢v" Eylre|se a;]
Gradient update

Wiy € We + "@ Vv log Pv)vr(atlst)

where R, = X720V Ti¢

16

Gradient Policy Theorem

* Gradient Policy Theorem

Thy(50) =) ()) 7 Pr(als) Qu (s,)

. J

Uy, (s): stationary state distribution when executing policy
parametrized by w

Q. (s, a): discounted sum of rewards when starting in s,

executing a and following the policy parametrized by w
thereafter.

17

Derivation

vV, (s) =V lza Pv’vr(a s)Q,,(s, a)] Vs €S
=Y :\7 Pv’vr(a s)Q,,(s,a) + Pv’vr(a s)VQ,, (s, a)]
=), I% Pv’vr(a s)Q,(s,a) + Pv’vr(a)V 2, Pr(s’,rls,a) (r + vV, (s’))]
=Yg :\7 Pv’vr(a s)Q,,(s,a) + Pv’vr(a s) 2oy Pr(s’ls,a) V'V, (s")]
= 2a[V Pr(als) Qu(s,a) + Pr(als) sy Pr(s’ls, a)
2alV Pv’vr(a’ Is")Q,,(s",a’) + Pr(a’|s") Xy Pr(s”|s’,a’) VV,, (s")]

= Yixes Dk=0 VL;PI'(S - X, W), 2V P"”r(alx) Qw(x,a)
|
Probability of reaching x from s at time step ¢t

PV (50) = Tres S0V Pr(so = %,6,w) Tq ¥ Pr(als) @y (s, 0)
— Zs Hw (S) Za v P"Mr(als) Qw (S' Cl)

18

REINFORCE: Monte Carlo
Policy Gradient

o UV, =2suw(s)XqQuw(s, a)Vl:‘er(CllS)

= By |v* Za Qu (St @) Pr(als))|
| 7 Pr(alS,)
Pr(alSt)

= By [1* Za Pr(alS,) Qu (S, @)

: , Vlzg‘(At|St)
=Ey, Y Quw (St Ap) Pr(A¢|St)

ViR v Pr(Ae|St)
“ Pr(acsy)

y R,V log Pr(A,|S,)]|
w

=E,

» Stochastic gradient
VV, = ¥R,V log P;Vr(aﬂst)

19

Application: Game of Go

 (simplified) rules: ABCDEFCH KL MNOB aRS T
— Two players E % jié
(black and white) i3]
— Players alternate to place E JE

a stone of their color on
a vacant intersection.

— Connected stones without
any liberty (i.e., no adjacent
vacant intersection) are
captured and removed from the board

— Winner: player that controls the largest number of
intersections at the end of the game

= NWENOON®OO
= NWaEONOON®OO

ABCDEFGHJKLMNOPQRST

20

Professional Amateur

- dan (p) GELNG)
m gooaoQ % T T w T X X X
© DM~ W0Mr= M~ W e M0~
e — ’ (el
7))
) GnuGo
o
Mu Fuego
O m.ua = Pachi
[O)
G = Zon
o)
- = Crazy Stone
n_ﬁl-v Fan Hui
- 2
= AlphaGo
p Q. AlphaGo
m o distributed
[T T T T T | 1
O S 8 8 8 8 8 8 °
m 6 Ww © Ww © »
C () ™ o o — o
Buney o3

* Oct 2015:

21

Winning Strategy

Four steps:

s W b=

Supervised Learning of Policy Networks
Reinforcement Learning of Policy Networks
Reinforcement Learning of Value Networks
Searching with Policy and Value Networks

22

Policy Network

 Train policy network to imitate Go experts based
on a database of 30 million board configurations
from the KGS Go Server. Pr(als)

* Policy network: Pr(als)
— Input: state s
(board configuration)

— Output: distribution
over actions a
(intersection on which
the next stone will be placed)

23

Supervised Learning
of the Policy Network

* Let w be the weights of the policy network

* Training:
— Data: suppose a is optimal in s
— Objective: maximize log Pr(als)
w

_ d log Pr(a|S)
— Gradient: V'w = W

ow

— Weight update: w <« w + aVw

24

Reinforcement Learning
of the Policy Network

 How can we update a policy network based on
reinforcements instead of the optimal action?

 LetR, =Y, y'r4; be the discounted sum of
rewards in a trajectory that starts in s at time t by
executing a.

0 log Py, (A[S) ¢
R
w Y Rt

— Intuition rescale supervised learning gradient by R
 Weight update: w <« w + aVw

 Gradient: Vw =

25

Reinforcement Learning
of the Policy Network

* |In computer Go, program repeatedly plays
games against its former self.

1 win

 For each game R; = {_1 l0se

* For each (s, a;) of turn t of the game, assume
y = 1 then compute

d log Prw(at|St) R
ow L
— Weight update: w « w 4+ al/lw

— Gradient: Vw =

26

Value Network

* Predict V(s') (i.e., who will
win game) in each state s’
with a value network

— Input: state s
(board configuration)

— Output: expected discounted
sum of rewards V (s')

V(s

27

Reinforcement Learning
of Value Networks

* Let v be the weights of the value network

* Training:

1 win

— Data: (s,R) where R = {—1 lose

— Obijective: minimize %(Vv(s) — R)?

— Gradient: Vv = ava"f) (V,(s) = R)

— Weight update: v <« v — al’'v

28

Searching with
Policy and Value Networks

* AlphaGo combines policy
and value networks into
a Monte Carlo Tree |
Search algorithm : 411

* |dea: construct
a search tree
— Node: s
— Edge: a

-
Py

29

Competition

Extended Data Table 1 | Details of match between AlphaGo and Fan Hui

Date Black White Category Result

5/10/15 Fan Hui AlphaGo Formal AlphaGo wins by 2.5 points
S/10/15 Fan Hui AlphaGe Informal Fan Hui wins by resignation
6/10/15 AlphaGo FanHui Formal AlphaGo wins by resignation
6/10/15 AlphaGo Fan Hui Informal AlphaGo wins by resignation
1/10/15 Fan Hui AlphaGo Formal AlphaGo wins by resignation
7/10/15 Fan Hui AlphaGo Informal AlphaGo wins by resignation
8/10/15 AlphaGo Fan Hui Formal AlphaGo wins by resignation
8/10/15 AlphaGo Fan Hui Informal AlphaGo wins by resignation
9/10/15 Fan Hui AlphaGo Formal AlphaGo wins by resignation
9/10/15 AlphaGo Fan Hui Informal Fan Hui wins by resignation

The match consisted of five formal games with longer time controls, and five informal games with shorter time controls.
Time controls and playing conditions were chosen by Fan Hui in advance of the match.

30

Challenges in RL

» Data efficiency
— Most RL successes: simulated environments

Atari MuJoCo ‘Cqm puter Go

* Robustness
— How to bridge the “reality gap”

Peng et al. 2018

31

Robustness

« Safe reinforcement learning
— Safety constraints

* Imprecise model/simulator
— Domain adaptation

* Adversarial attacks
— (Adversarial) partial observability

32

Safe RL

Important literature on

+ Risk-Sensitive RL: change objective
(Artzner et al., 1999; Borkar 2001; Mihatsch et al., 2002; Delage et
al., 2010; Tamar et al., 2012; Chow et al., 2014; Tamar et al., 2015)

max, gO..ytr,) where gis a risk measure

 Constrained RL: add constraints
(Geibel 2006; Achiam et al. 2017; Bathia et al. 2018, Lee et al. 2018)

maxy Y Y E[1¢lse, m(se)] s.t. XV E[celse,m(s)] < C

« Many solutions that ensure asymptotic safety
* Open problem: how to ensure safety before convergence

33

Imprecise Model/Simulator

Domain adaptation

* Randomized training (Peng et al., 2018)

maxy E, [X Y E[rtlse, m(se) ,]
where u denotes a model

* Adversarial training (Pinto et al., 2017; Tessler et al., 2019)

max, ming Xy Elrels, m(s), ¢ (s)]
where ¢ denotes adversary’s policy

* Many solutions that improve robustness
* Open problem: performance guarantees

34

Conclusion

 REINFORCE algorithm

* Robustness:
— safe RL, imprecise model/simulator, adversarial attacks

* Open Problems:
— Safe exploration before convergence
— Performance guarantees in domain adaptation

35

