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Physics:
➢ Phase Diagrams
➢ Standard Model

Machine Learning
➢ Applying Neural Networks to Discover Phase Transitions 
➢ Interpretation of Neural Networks
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Theoretical Physics Goal:

Determine macroscopic phase diagrams from a microscopic 
description 

➢ Determine the existence of phases 
➢ Pin down the phase transition
➢ Find the dominant characteristics of phases

                                                                   

                                                          

Motivation



  

➢ Experimentally verified paricle content + hypothetical graviton 

                                                          

Standard Model of Particle Physics + Gravity
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Standard Model of Particle Physics + Gravity

Freezes out to masses
of other particles



  

➢ Experimentally verified paricle content + hypothetical graviton 

                                                          

Standard Model of Particle Physics + Gravity

Many heavy particles
Can only be produced 
at high energies



  

➢ Experimentally verified paricle content + hypothetical graviton 

                                                          

Standard Model of Particle Physics + Gravity

Radioactive Decay



  

➢ Experimentally verified paricle content + hypothetical graviton 

                                                          

Standard Model of Particle Physics + Gravity

Glues together particles 
in the atomic core



  

➢ Experimentally verified paricle content + hypothetical graviton 

                                                          

Standard Model of Particle Physics + Gravity



  

➢ We can only see part of the Standard Model, without

➢ Heavy particles
➢ Frozen Particles
➢ Short Ranged Force Particles

➢ Visible Matter consists of up- / down- quarks and electrons

                                                          

Standard Model of Particle Physics + Gravity



  

➢ Ultimate Goal of the Talk: NN reveals nature of confinement PT

                                                          

Standard Model of Particle Physics + Gravity

?



  

For simplicity: start with magnets

                                                                   

                                                          

Invitation: Phase transitions 
from microscopic physics

Magnet

Microscopic description

Phase Diagram



  

Hamiltonian
➢

Order Parameter Monte-Carlo-Simulation

   Phase Diagram
                                                                   

                                                          

Invitation: Phase transitions 
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Hamiltonian
➢

Neural Network ??? Monte-Carlo-Simulation

   Phase Diagram
                                                                   

                                                          

Invitation: Phase transitions 
from microscopic physics

( Ising Model )

ComputerComputer



  

➢ Data: Monte Carlo samples

➢ Training at well known points 
in phase diagram

➢ Labels: Phase

Supervised Learning
2d Ising Model

➢ Testing in interval containing 
phase transition

➢ Estimate within 1% of exact 
value

Carrasquila, Melko, Nature 2017



  

➢ Starting in 2016: Rush to calculate physical phase diagrams 
using Neural Networks 

                                                                   

                                                          

Machine Learning Phases of Matter



  

 

Machine Learning of Phase Diagrams Overview

Feed Forward 
Neural 
Network

Most powerful Conv Layer
Spatial 
Structure 

Least 
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Interpretability Not suitable for 
large datasets
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Dynamical 
Systems
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Interpretability Most easy to 
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New physics requires 
Powerful ML



  

If the neural network bases its 
decision on one single 
quantity/obervable   :

➢ The larger the observable, the 
higher the classification 
probability.

➢ If two inputs have the same 
value of the observable, they 
have the same classification 
probability.

Notion of Interpretability

The Neural network can be 
mapped via a bijective 
function to the observable



  

➢ Useful in the context of physics?

➢ In Physics often only very few quantities           are 
characteristic features of phase transitions. 
(Renormalization Group: relevant parameters)

➢ Physical Quantities are uniquely formulated by well defined 
formulas (in contrast to cars, faces ...)

➢ Physical quantities are often highly symmetric: Rotation 
symmetry, translation symmetry

Notion of Interpretability



  

Interpretation Net:

➢ Interpretation Net interpolates between a general NN and a 
minimal optimal NN which has the same performance 

➢ Interpretation by reducing the NN capacity in an ordered 
manner until one observes a performance drop

➢ Inspired by extensive physical quantities (averaging layer 
probes for translational invariance of the quantity              )

Interpretation of Neural Network

Wetzel, Scherzer, PRB 2017



  

Starting Neural Network:

➢ Conv Net with full 
receptive field 

➢ Training until converged
➢ Remember Loss value as 

measure of performance

Interpretation of Neural Network
2d Ising Model



  

Reinitialize the neural network 
with reduced receptive field 
sizes

➢ Train again until converged 
and compare the loss to the 
previous network

➢ Observe drop in 
performance from 1x2 to 
1x1 and from 1x1 to 
baseline

➢ Dominant contributions must 
contain functions of spins 
and neighboring spins 

Interpretation of Neural Network
2d Ising Model



  

1st Network: 1x1 receptive field

➢ Express the full neural network in 1x1 form

➢ Taylor expansion eliminates all higher order terms

➢ Regression on a single variable yields explicit form

➢ Where            have been absorbed into weights and bias   

        

Interpretation of Neural Network
2d Ising Model
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Interpretation of Neural Network
2d Ising Model

Magnetization



  

2nd Network: 1x2 receptive field

➢ Express the full neural network in 1x2 form

➢ Taylor expansion contains only one addition to 1x1 case

➢ Regression yields explicit form

        

Interpretation of Neural Network
2d Ising Model



  

2nd Network: 1x2 receptive field

➢ Express the full neural network in 1x2 form

➢ Taylor expansion contains only one addition to 1x1 case

➢ Regression yields explicit form

➢ Only half the energy since we dont sum over all neighbors

        

Interpretation of Neural Network
2d Ising Model

Energy / 2



  

Decision functions

➢                                :         Magnetization

➢                                    :     Expected Energy per site

Deduction easily confirmed:

➢ Perfect correlation

Note: 

1x2 Network also has                                                               
the Magnetization minimum                                                  
which is easier to find!

Interpretation of Neural Network
2d Ising Model

Kim, Kim, Phys Rev E 2018

Kashiwa, Kikuchi,
Tomiya, arxiv 2019 



  

Space time lattice

Quarks on heavy static lattice 
sites. 

Back to Gluons SU(2) Lattice Gauge Theory

Gluons on the connections 
between lattice sites are 
described by Matrices



  

➢ Each Matrix is parametrized by 
4 real numbers. 

We performed a MC simulation 
on a lattice of size 8x8x8x2 as 
input for the Neural Network

SU(2) Lattice Gauge Theory

➢ Toy model for confinement of 
particles in atomic cores. 

➢ Polyakov Loop is Order 
Parameter for in the limit of 
infinitely heavy quarks.

➢ Perfect Testing Ground: 
Polyakov Loop Order 
Parameter is non-linear and 
non-local.

Describes smallest loop on the lattice

Each Matrix connects two lattice sites



  

Training at phase indications 
from unsupervised learning 
(wait for next slide)

Unsupervised Learning (PCA)
SU(2) Lattice Gauge Theory

➢ Latent parameter does not 
correspond to order parameter

➢ PCA + Reconstruction loss can 
be used to infer different 
phases



  

Training at phase indications 
from unsupervised learning

Testing in interval containing 
phase transition

Supervised Learning
SU(2) Lattice Gauge Theory

➢ Find phase transition close to 
lattice calculation

➢ Prediction is inaccurate: 
Monte Caro Simulations not 
thermalized



  

General decision function:

2x1x1x1 Decision function:

Regression yields 561 terms:

➢ Neural Network uses Polyakov Loop to distinguish 
between phases.

Interpretation of Neural Network
SU(2) Gauge Theory (2x8x8x8 Lattice)



  

Deduction confirmed by perfect                                       
correlation between NN                                                             
output and Polyakov                                                                 
Loop order parameter 

➢ Polyakov Loop

Interpretation of Neural Network
SU(2) Gauge Theory (2x8x8x8 Lattice)



  

Deduction confirmed by perfect                                       
correlation between NN                                                             
output and Polyakov                                                                 
Loop order parameter 

➢ Polyakov Loop

Interpretation of Neural Network
SU(2) Gauge Theory (2x8x8x8 Lattice)

Note: We have constructed 
the PL without prior knowledge!



  

Neural Networks are capable of producing phase diagrams for 
many physical systems.

➢ NNs are no longer a black box algorithm in the context of 
order parameter based phase transitions.

➢ Neural Networks learn the same physical quantities that we 
humans use (Landau/Ehrenfest)

➢ In the spirit of the conference: robust features
➢ In some cases we can determine the nature of phases by 

constructively interpreting what neural networks learn.

Conclusion
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