
Formal Methods and AI: Yet Another Entanglement

Kuldeep S. Meel

School of Computing, National University of Singapore

@Waterloo ML + Security + Verification Workshop

Aug 2019

Join us in our mission: Positions for post-docs, long-term research
assistants, and PhD students. Visit meelgroup.github.io for details.

1 / 49

The Formal Methods and AI Through Decades

• Turing 1950: ... one might have a complete system of logical
inference ”built in.”

• Newel, Shaw, and Simon 1955: Logic Theorist’

• McCarthy, 1958: Programming with Common Sense

• Hayes-Roth, Waterman, and Lenat, 1982: Building Expert Systems

• Hinton, 2019: The final nail in the coffin of Symbolic AI....

• Ephesians 5:14 Arise, you sleeper! Rise up from your coffin

2 / 49

The Formal Methods and AI Through Decades

• Turing 1950: ... one might have a complete system of logical
inference ”built in.”

• Newel, Shaw, and Simon 1955: Logic Theorist’

• McCarthy, 1958: Programming with Common Sense

• Hayes-Roth, Waterman, and Lenat, 1982: Building Expert Systems

• Hinton, 2019: The final nail in the coffin of Symbolic AI....

• Ephesians 5:14 Arise, you sleeper! Rise up from your coffin

2 / 49

The Formal Methods and AI Through Decades

• Turing 1950: ... one might have a complete system of logical
inference ”built in.”

• Newel, Shaw, and Simon 1955: Logic Theorist’

• McCarthy, 1958: Programming with Common Sense

• Hayes-Roth, Waterman, and Lenat, 1982: Building Expert Systems

• Hinton, 2019: The final nail in the coffin of Symbolic AI....

• Ephesians 5:14 Arise, you sleeper! Rise up from your coffin

2 / 49

The Formal Methods and AI Through Decades

• Turing 1950: ... one might have a complete system of logical
inference ”built in.”

• Newel, Shaw, and Simon 1955: Logic Theorist’

• McCarthy, 1958: Programming with Common Sense

• Hayes-Roth, Waterman, and Lenat, 1982: Building Expert Systems

• Hinton, 2019: The final nail in the coffin of Symbolic AI....

• Ephesians 5:14 Arise, you sleeper! Rise up from your coffin

2 / 49

The Views from the Real World

• Core public agencies, such as those responsible for criminal justice,
healthcare, welfare, and education (e.g., “high stakes” domains)
should no longer use “black box” AI and algorithmic systems (AI
Now Institute, 2018)

• How Do You Govern Machines That Can Learn? (New York
Times, 2019)

• Machine learning leads mathematicians to unsolvable problem
(Nature, 2019)

3 / 49

Formal Methods and AI

• Part I Formal Methods for AI

– Designing Interpretable Rules (Joint work with Bishwamittra Ghosh
and Dmitri Malioutov; CP-18, AIES-19)

• Part II Functional Verification of Probabilistic Systems

– Quantitative Verification of Neural Networks (Joint work with
Teodora Baluta, Shiqi Shen, Shweta Shine, and Prateek Saxena;
CCS-19)

– Quantitative Verification for Explanations (Joint work with Nina
Narodytska, Aditya Shrotri, Alexey Ignatiev, and Joao Marques
Silva; SAT-19)

– Distribution Testing (Joint work with Sourav Chakraborty;
AAAI-19)

• Part III AI for Formal Methods

– Data-Driven Design of SAT Solvers (Joint work with Mate Soos and
Raghav Kulkarni; SAT-19)

4 / 49

Formal Methods and AI

• Part I Formal Methods for AI

– Designing Interpretable Rules (Joint work with Bishwamittra Ghosh
and Dmitri Malioutov; CP-18, AIES-19)

• Part II Functional Verification of Probabilistic Systems

– Quantitative Verification of Neural Networks (Joint work with
Teodora Baluta, Shiqi Shen, Shweta Shine, and Prateek Saxena;
CCS-19)

– Quantitative Verification for Explanations (Joint work with Nina
Narodytska, Aditya Shrotri, Alexey Ignatiev, and Joao Marques
Silva; SAT-19)

– Distribution Testing (Joint work with Sourav Chakraborty;
AAAI-19)

• Part III AI for Formal Methods

– Data-Driven Design of SAT Solvers (Joint work with Mate Soos and
Raghav Kulkarni; SAT-19)

4 / 49

Formal Methods and AI

• Part I Formal Methods for AI

– Designing Interpretable Rules (Joint work with Bishwamittra Ghosh
and Dmitri Malioutov; CP-18, AIES-19)

• Part II Functional Verification of Probabilistic Systems

– Quantitative Verification of Neural Networks (Joint work with
Teodora Baluta, Shiqi Shen, Shweta Shine, and Prateek Saxena;
CCS-19)

– Quantitative Verification for Explanations (Joint work with Nina
Narodytska, Aditya Shrotri, Alexey Ignatiev, and Joao Marques
Silva; SAT-19)

– Distribution Testing (Joint work with Sourav Chakraborty;
AAAI-19)

• Part III AI for Formal Methods

– Data-Driven Design of SAT Solvers (Joint work with Mate Soos and
Raghav Kulkarni; SAT-19)

4 / 49

The Need for Interpretable Models

• Core public agencies, such as those responsible for criminal justice,
healthcare, welfare, and education (e.g., “high stakes” domains)
should no longer use “black box” AI and algorithmic systems (AI
Now Institute, 2018)

• Medical and education domains see usage of techniques such as
classification rules, decision rules, and decision lists.

• Long history of interpretable classification models from data such
as decision trees, decision lists, checklists etc with tools such as
C4.5, CN2, RIPPER, SLIPPER

• Computational Intractability led prior work, mostly rooted in late
1980s and 1990s, to focus on greedy approaches

5 / 49

The Need for Interpretable Models

• Core public agencies, such as those responsible for criminal justice,
healthcare, welfare, and education (e.g., “high stakes” domains)
should no longer use “black box” AI and algorithmic systems (AI
Now Institute, 2018)

• Medical and education domains see usage of techniques such as
classification rules, decision rules, and decision lists.

• Long history of interpretable classification models from data such
as decision trees, decision lists, checklists etc with tools such as
C4.5, CN2, RIPPER, SLIPPER

• Computational Intractability led prior work, mostly rooted in late
1980s and 1990s, to focus on greedy approaches

5 / 49

The Need for Interpretable Models

• Core public agencies, such as those responsible for criminal justice,
healthcare, welfare, and education (e.g., “high stakes” domains)
should no longer use “black box” AI and algorithmic systems (AI
Now Institute, 2018)

• Medical and education domains see usage of techniques such as
classification rules, decision rules, and decision lists.

• Long history of interpretable classification models from data such
as decision trees, decision lists, checklists etc with tools such as
C4.5, CN2, RIPPER, SLIPPER

• Computational Intractability led prior work, mostly rooted in late
1980s and 1990s, to focus on greedy approaches

5 / 49

Our Approach

Objective Learn rules that are accurate and interpretable.

Approach • The problem of rule learning is inherently an
optimization problem

• Can we take advantage of SAT revolution, in
particular progress on MaxSAT solvers?

6 / 49

Our Approach

Objective Learn rules that are accurate and interpretable.

Approach • The problem of rule learning is inherently an
optimization problem

• Can we take advantage of SAT revolution, in
particular progress on MaxSAT solvers?

6 / 49

Our Approach

Objective Learn rules that are accurate and interpretable.

Approach • The problem of rule learning is inherently an
optimization problem

• Can we take advantage of SAT revolution, in
particular progress on MaxSAT solvers?

6 / 49

Binary Classification

• Features: x = {x1, x2, · · · xm}
• Input: Set of training samples{Xi , yi}

– each vector Xi ∈ X contains valuation of the features for sample i ,
– yi ∈ {0, 1} is the binary label for sample i

• Output: Classifier R, i.e. y = R(x)

• Our focus: classifiers that can be represented as CNF Formulas
R := C1 ∧ C2 ∧ · · · ∧ Ck .

• Size of classifiers: |R| = Σi |Ci |

7 / 49

Constraint Learning vs Machine Learning

Input Set of training samples{Xi , yi}
Output Classifier R

• Constraint Learning/Programming by Examples:

min
R
|R| such that R(Xi) = yi , ∀i

• Machine Learning:

min
R
|R|+ λ|ER| such that R(Xi) = yi , ∀i /∈ ER

8 / 49

Constraint Learning vs Machine Learning

Input Set of training samples{Xi , yi}
Output Classifier R

• Constraint Learning/Programming by Examples:

min
R
|R| such that R(Xi) = yi , ∀i

• Machine Learning:

min
R
|R|+ λ|ER| such that R(Xi) = yi , ∀i /∈ ER

8 / 49

MLIC

Step 1 Discretization of Features

Step 2 Transformation to MaxSAT Query

Step 3 Invoke a MaxSAT Solver and extract R from MaxSAT
solution

9 / 49

Encoding to MaxSAT

Input Features: x = {x1, x2, · · · xm} ; Training Data: {Xi , yi} over m
featues

Output R of k clauses

Key Ideas

• k ×m binary coefficients, denoted by {b11, b21, · · · bm1 · · · bmk },
such that Ri = (b1i x

1 ∨ b2i x
2 . . . ∨ bmi x

m)

• For every sample i , we have noise variable ηi to encode sample i
should be considered as noise or not.

10 / 49

Encoding to MaxSAT

Key Ideas

• k ×m binary coefficients, denoted by {b11, b21, · · · bm1 · · · bmk },
such that Ri = (b1i x

1 ∨ b2i x
2 . . . ∨ bmi x

m)

• R(x 7→ Xi) =
∧k

l=1 Rl(x 7→ Xi): Output of substituting valuation
of feature vectors of ith sample

• For every sample i , we have noise variable ηi to encode whether
sample i should be considered as noise or not.

• Di := (¬ηi → (yi ↔ R(x 7→ Xi)));W (Di) = >
If ηi is False, yi is equivalent to prediction of the Rule

• V j
i := (¬bji); W

(
V j
i

)
= 1

We want as few bji to be true as possible

• Ni := (¬ηi); W (Ni) = λ
We want as few ηi to be true as possible

11 / 49

Encoding to MaxSAT

Key Ideas

• k ×m binary coefficients, denoted by {b11, b21, · · · bm1 · · · bmk },
such that Ri = (b1i x

1 ∨ b2i x
2 . . . ∨ bmi x

m)

• R(x 7→ Xi) =
∧k

l=1 Rl(x 7→ Xi): Output of substituting valuation
of feature vectors of ith sample

• For every sample i , we have noise variable ηi to encode whether
sample i should be considered as noise or not.

• Di := (¬ηi → (yi ↔ R(x 7→ Xi)));W (Di) = >
If ηi is False, yi is equivalent to prediction of the Rule

• V j
i := (¬bji); W

(
V j
i

)
= 1

We want as few bji to be true as possible

• Ni := (¬ηi); W (Ni) = λ
We want as few ηi to be true as possible

11 / 49

Encoding to MaxSAT

Key Ideas

• k ×m binary coefficients, denoted by {b11, b21, · · · bm1 · · · bmk },
such that Ri = (b1i x

1 ∨ b2i x
2 . . . ∨ bmi x

m)

• R(x 7→ Xi) =
∧k

l=1 Rl(x 7→ Xi): Output of substituting valuation
of feature vectors of ith sample

• For every sample i , we have noise variable ηi to encode whether
sample i should be considered as noise or not.

• Di := (¬ηi → (yi ↔ R(x 7→ Xi)));W (Di) = >
If ηi is False, yi is equivalent to prediction of the Rule

• V j
i := (¬bji); W

(
V j
i

)
= 1

We want as few bji to be true as possible

• Ni := (¬ηi); W (Ni) = λ
We want as few ηi to be true as possible

11 / 49

Encoding to MaxSAT

Key Ideas

• k ×m binary coefficients, denoted by {b11, b21, · · · bm1 · · · bmk },
such that Ri = (b1i x

1 ∨ b2i x
2 . . . ∨ bmi x

m)

• R(x 7→ Xi) =
∧k

l=1 Rl(x 7→ Xi): Output of substituting valuation
of feature vectors of ith sample

• For every sample i , we have noise variable ηi to encode whether
sample i should be considered as noise or not.

• Di := (¬ηi → (yi ↔ R(x 7→ Xi)));W (Di) = >
If ηi is False, yi is equivalent to prediction of the Rule

• V j
i := (¬bji); W

(
V j
i

)
= 1

We want as few bji to be true as possible

• Ni := (¬ηi); W (Ni) = λ
We want as few ηi to be true as possible

11 / 49

Encoding to MaxSAT

1 R =
∧k

l=1 Rl(x 7→ Xi): Output of substituting valuation of feature
vectors of ith sample

2 Di := (¬ηi → (yi ↔ R(x 7→ Xi)));W (Di) = >
3 V j

i := (¬bji); W
(
V j
i

)
= 1

We want as few bji to be true as possible

4 Ni := (¬ηi); W (Ni) = λ
We want as few ηi to be true as possible

Construction

Let Qk =
∧

i Di ∧
∧

i Ni ∧
∧

i ,j V
j
i

σ∗ = MaxSAT(Qk ,W), then x j ∈ Ri iff σ∗(bji) = 1.

Remember, Ri = (b1i x
1 ∨ b2i x

2 . . . ∨ bmi x
m)

12 / 49

Provable Guarantees

Theorem (Provable trade off of accuracy vs interpretability of rules)

Let R1 ← MLIC (X, y, k , λ1) and R2 ← MLIC (X, y, k, λ2), if λ2 > λ1
then |R1| ≤ |R2| and |ER1 | ≥ |ER2 |.

13 / 49

Accuracy and training time of different classifiers

Dataset Size Features RF SVC RIPPER MLIC

PIMA 768 134
76.62 75.32 75.32 73.38

(1.99) (0.37) (2.58) (0.74)

Tom’s HW 28179 844
97.11 96.83 96.75 96.86

(27.11) (354.15) (37.81) (23.67)

Adult 32561 262
84.31 84.39 83.72 80.84

(36.64) (918.26) (37.66) (25.07)

Credit-default 30000 334
80.87 80.69 80.72 79.41

(37.72) (847.93) (20.37) (32.58)

Twitter 49999 1050
95.16

Timeout
95.56 94.69

(67.83) (98.21) (59.67)

Table: For every cell in the last seven columns the top value represents the
test accuracy (%) on unseen data and the bottom value surrounded by
parenthesis represents the average training time (seconds).

14 / 49

Size of interpretable rules of different classifiers

Dataset RIPPER MLIC

WDBC 7.6 2
Adult 107.55 28
PIMA 8.25 4
Tom’s HW 30.33 4
Twitter 21.6 6
Credit 14.25 3

Table: Size of the rule of interpretable classifiers.

Rule for WDBC Dataset:
Tumor is diagnosed as malignant if
standard area of tumor > 38.43 OR
largest perimeter of tumor > 115.9 OR
largest number of concave points of tumor > 0.1508

15 / 49

Key Takaways

• A MaxSAT-based framework, MLIC, that provably trades off
accuracy vs interpretability of rules

• The prototype implementation is capable of finding optimal (or
high quality near-optimal) classification rules from large data sets
with very small rules.

Code: https://github.com/meelgroup/mlic

pip install rulelearning

16 / 49

https://github.com/meelgroup/mlic

Verification of AI

17 / 49

Imprecise Systems and The Classical Approach

• Given a model M

– M: A neural network to label images

• Specification ϕ

– ϕ: Label stop sign as STOP

• Check whether there exists an execution of M that violates ϕ

– Given a neural network, find if there exists a minor change to a
image of stop sign such that M incorrectly classifies?

• Yes but so what?

18 / 49

Imprecise Systems and The Classical Approach

• Given a model M

– M: A neural network to label images

• Specification ϕ

– ϕ: Label stop sign as STOP

• Check whether there exists an execution of M that violates ϕ

– Given a neural network, find if there exists a minor change to a
image of stop sign such that M incorrectly classifies?

• Yes but so what?

18 / 49

Imprecise Systems and The Classical Approach

• Given a model M

– M: A neural network to label images

• Specification ϕ

– ϕ: Label stop sign as STOP

• Check whether there exists an execution of M that violates ϕ

– Given a neural network, find if there exists a minor change to a
image of stop sign such that M incorrectly classifies?

• Yes but so what?

18 / 49

From Qualification to Quantification

• The classical verification concerned with finding whether there
exists one execution

• The Approach:

– Represent M and ϕ as logical formulas and use constraint solver
(SAT solvers)

– Given a formula, a SAT solver checks if there exists a solution
– F = (x1 ∨ x2), the SAT solver will return YES

• We now care whether there exist too many?

– Given a formula, we need to count (possibly subject to distributions)

• Challenges: Scalability, encodings, algorithms, quality of
approximations

• Underlying Core Problem: Distribution Testing
Counting can be viewed as computing area/expectation.

19 / 49

From Qualification to Quantification

• The classical verification concerned with finding whether there
exists one execution

• The Approach:

– Represent M and ϕ as logical formulas and use constraint solver
(SAT solvers)

– Given a formula, a SAT solver checks if there exists a solution
– F = (x1 ∨ x2), the SAT solver will return YES

• We now care whether there exist too many?

– Given a formula, we need to count (possibly subject to distributions)

• Challenges: Scalability, encodings, algorithms, quality of
approximations

• Underlying Core Problem: Distribution Testing
Counting can be viewed as computing area/expectation.

19 / 49

From Qualification to Quantification

• The classical verification concerned with finding whether there
exists one execution

• The Approach:

– Represent M and ϕ as logical formulas and use constraint solver
(SAT solvers)

– Given a formula, a SAT solver checks if there exists a solution
– F = (x1 ∨ x2), the SAT solver will return YES

• We now care whether there exist too many?

– Given a formula, we need to count (possibly subject to distributions)

• Challenges: Scalability, encodings, algorithms, quality of
approximations

• Underlying Core Problem: Distribution Testing
Counting can be viewed as computing area/expectation.

19 / 49

Distribution Testing: Samplers

• Samplers form the core of the state of the art probabilistic
reasoning techniques. They generate distributions

• Usual technique for designing samplers is based on the Markov
Chain Monte Carlo (MCMC) methods.

• Since mixing times/runtime of the underlying Markov Chains are
often exponential, several heuristics have been proposed for years.

• Often statistical tests are employed to argue for quality of the
output distributions.

– Chi square test, KL divergence, Ginni coefficient, ...

• But such statistical tests are often performed on a very small
number of samples for which no theoretical guarantees exist.

20 / 49

Distribution Testing: Samplers

• Samplers form the core of the state of the art probabilistic
reasoning techniques. They generate distributions

• Usual technique for designing samplers is based on the Markov
Chain Monte Carlo (MCMC) methods.

• Since mixing times/runtime of the underlying Markov Chains are
often exponential, several heuristics have been proposed for years.

• Often statistical tests are employed to argue for quality of the
output distributions.

– Chi square test, KL divergence, Ginni coefficient, ...

• But such statistical tests are often performed on a very small
number of samples for which no theoretical guarantees exist.

20 / 49

Distribution Testing: Samplers

• Samplers form the core of the state of the art probabilistic
reasoning techniques. They generate distributions

• Usual technique for designing samplers is based on the Markov
Chain Monte Carlo (MCMC) methods.

• Since mixing times/runtime of the underlying Markov Chains are
often exponential, several heuristics have been proposed for years.

• Often statistical tests are employed to argue for quality of the
output distributions.

– Chi square test, KL divergence, Ginni coefficient, ...

• But such statistical tests are often performed on a very small
number of samples for which no theoretical guarantees exist.

20 / 49

Distribution Testing: Samplers

• Samplers form the core of the state of the art probabilistic
reasoning techniques. They generate distributions

• Usual technique for designing samplers is based on the Markov
Chain Monte Carlo (MCMC) methods.

• Since mixing times/runtime of the underlying Markov Chains are
often exponential, several heuristics have been proposed for years.

• Often statistical tests are employed to argue for quality of the
output distributions.

– Chi square test, KL divergence, Ginni coefficient, ...

• But such statistical tests are often performed on a very small
number of samples for which no theoretical guarantees exist.

20 / 49

Distribution Testing: Samplers

• Samplers form the core of the state of the art probabilistic
reasoning techniques. They generate distributions

• Usual technique for designing samplers is based on the Markov
Chain Monte Carlo (MCMC) methods.

• Since mixing times/runtime of the underlying Markov Chains are
often exponential, several heuristics have been proposed for years.

• Often statistical tests are employed to argue for quality of the
output distributions.

– Chi square test, KL divergence, Ginni coefficient, ...

• But such statistical tests are often performed on a very small
number of samples for which no theoretical guarantees exist.

20 / 49

Uniform Sampler for Discrete Sets

Definition

A Uniform-Sampler, A, is a randomized algorithm that outputs a
random element of the set S , such that, for any y ∈ S

Pr[y is output] =
1

|S |
,

• Uniform sampling has wide range of applications in automated bug
discovery, pattern mining, and so on.

• Formal Methods/Software Engineer: Randomized Testing

– Implicit representation of a set S : Set of all solutions of ϕ.
– Given a CNF formula ϕ, output a random solution of ϕ.

• Several samplers available off the shelf: tradeoff between
guarantees and runtime; (“random.randint(1,100)”)

21 / 49

Uniform Sampler for Discrete Sets

Definition

A Uniform-Sampler, A, is a randomized algorithm that outputs a
random element of the set S , such that, for any y ∈ S

Pr[y is output] =
1

|S |
,

• Uniform sampling has wide range of applications in automated bug
discovery, pattern mining, and so on.

• Formal Methods/Software Engineer: Randomized Testing

– Implicit representation of a set S : Set of all solutions of ϕ.
– Given a CNF formula ϕ, output a random solution of ϕ.

• Several samplers available off the shelf: tradeoff between
guarantees and runtime; (“random.randint(1,100)”)

21 / 49

Uniform Sampler for Discrete Sets

Definition

A Uniform-Sampler, A, is a randomized algorithm that outputs a
random element of the set S , such that, for any y ∈ S

Pr[y is output] =
1

|S |
,

• Uniform sampling has wide range of applications in automated bug
discovery, pattern mining, and so on.

• Formal Methods/Software Engineer: Randomized Testing

– Implicit representation of a set S : Set of all solutions of ϕ.
– Given a CNF formula ϕ, output a random solution of ϕ.

• Several samplers available off the shelf: tradeoff between
guarantees and runtime; (“random.randint(1,100)”)

21 / 49

What does Complexity Theory Tell Us

• “far” means total variation distance or the `1 distance.

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro

b
ab

ili
ty

Figure: U : Reference Uniform Sampler

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro

b
ab

ili
ty

Figure: A: 1/2-far from uniform
Sampler

• If <
√
S/100 samples are drawn then with high probability you see

only distinct samples from either distribution.

Theorem (Batu-Fortnow-Rubinfeld-Smith-White (JACM 2013))

Testing whether a distribution is ε-close to uniform has query
complexity Θ(

√
|S |/ε2). [Paninski (Trans. Inf. Theory 2008)]

• If the output of a sampler is represented by 3 doubles, then
S > 2100

22 / 49

What does Complexity Theory Tell Us

• “far” means total variation distance or the `1 distance.

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro

b
ab

ili
ty

Figure: U : Reference Uniform Sampler

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro

b
ab

ili
ty

Figure: A: 1/2-far from uniform
Sampler

• If <
√
S/100 samples are drawn then with high probability you see

only distinct samples from either distribution.

Theorem (Batu-Fortnow-Rubinfeld-Smith-White (JACM 2013))

Testing whether a distribution is ε-close to uniform has query
complexity Θ(

√
|S |/ε2). [Paninski (Trans. Inf. Theory 2008)]

• If the output of a sampler is represented by 3 doubles, then
S > 2100

22 / 49

Beyond Black Box Testing

Definition (Conditional Sampling)

Given a distribution A on S one can

• Specify a set T ⊆ S ,

• Draw samples according to the distribution A|T , that is,
A under the condition that the samples belong to T .

Conditional sampling is at least as powerful as drawing normal samples.
But how more powerful is it?

23 / 49

Beyond Black Box Testing

Definition (Conditional Sampling)

Given a distribution A on S one can

• Specify a set T ⊆ S ,

• Draw samples according to the distribution A|T , that is,
A under the condition that the samples belong to T .

Conditional sampling is at least as powerful as drawing normal samples.
But how more powerful is it?

23 / 49

Testing Uniformity Using Conditional Sampling

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro

b
ab

ili
ty

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro

b
ab

ili
ty

An algorithm for testing uniformity using conditional sampling:

1 Draw two elements x and y uniformly at random from the domain.
Let T = {x , y}.

2 In the case of the “far” distribution, with probability 1/2, one of
the two elements will have probability 0, and the other probability
non-zero.

3 Note
√
|T | =

√
2 is a constant.

4 Now a constant number of conditional samples drawn from A|T is
enough to identify that it is not uniform.

24 / 49

Testing Uniformity Using Conditional Sampling

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro

b
ab

ili
ty

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro

b
ab

ili
ty

An algorithm for testing uniformity using conditional sampling:

1 Draw two elements x and y uniformly at random from the domain.
Let T = {x , y}.

2 In the case of the “far” distribution, with probability 1/2, one of
the two elements will have probability 0, and the other probability
non-zero.

3 Note
√
|T | =

√
2 is a constant.

4 Now a constant number of conditional samples drawn from A|T is
enough to identify that it is not uniform.

24 / 49

What about other distributions?

P
ro

b
ab

ili
ty

P
ro

b
ab

ili
ty

Previous algorithm fails in this case:

1 Draw two elements σ1 and σ2 uniformly at random from the
domain. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with probability almost 1,
both the two elements will have probability same, namely ε.

3 Probability that we will be able to distinguish the far distribution
from the uniform distribution is very low.

25 / 49

What about other distributions?

P
ro

b
ab

ili
ty

P
ro

b
ab

ili
ty

Previous algorithm fails in this case:

1 Draw two elements σ1 and σ2 uniformly at random from the
domain. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with probability almost 1,
both the two elements will have probability same, namely ε.

3 Probability that we will be able to distinguish the far distribution
from the uniform distribution is very low.

25 / 49

Testing Uniformity Using Conditional Sampling
P

ro
b

ab
ili

ty

P
ro

b
ab

ili
ty

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro

b
ab

ili
ty

1 Draw σ1 uniformly at random from the domain and draw σ2
according to the distribution A. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with constant probability, σ1
will have “low” probability and σ2 will have “high” probibility.

3 We will be able to distinguish the far distribution from the uniform
distribution using constant number of conditional samples from
A|T .

4 The constant depend on the farness parameter.

26 / 49

Testing Uniformity Using Conditional Sampling
P

ro
b

ab
ili

ty

P
ro

b
ab

ili
ty

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro

b
ab

ili
ty

1 Draw σ1 uniformly at random from the domain and draw σ2
according to the distribution A. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with constant probability, σ1
will have “low” probability and σ2 will have “high” probibility.

3 We will be able to distinguish the far distribution from the uniform
distribution using constant number of conditional samples from
A|T .

4 The constant depend on the farness parameter.

26 / 49

Barbarik

Input: A sampler under test A, a reference uniform sampler U , a
tolerance parameter ε > 0, an intolerance parmaeter η > ε, a guarantee
parameter δ
Output: ACCEPT or REJECT with the following guarantees:

• if the generator A is an ε-additive almost-uniform generator then
Barbarik ACCEPTS with probability at least (1− δ).

• if A is η-far from a uniform generator and If non-adversarial
sampler assumption holds then Barbarik REJECTS with probability
at least 1− δ.

27 / 49

Sample complexity

Theorem

Given ε, η and δ, Barbarik need at most K = Õ(1
(η−ε)4) samples for

any input formula ϕ, where the tilde hides a poly logarithmic factor of
1/δ and 1/(η − ε).

• ε = 0.6, η = 0.9, δ = 0.1

• Maximum number of required samples K = 1.72×106

• Independent of the number of variables

• To Accept, we need K samples but rejection can be achieved with
lesser number of samples.

28 / 49

Experimental Setup

• Three state of the art (almost-)uniform samplers

– UniGen2: Theoretical Guarantees of almost-uniformity
– SearchTreeSampler: Very weak guarantees
– QuickSampler: No Guarantees

• Recent study that proposed Quicksampler perform unsound
statistical tests and claimed that all the three samplers are
indistinguishable

Code: https://github.com/meelgroup/barbarik

29 / 49

https://github.com/meelgroup/barbarik

Results-I

Instances Size UniGen2 SearchTreeSampler
Output #Samples Output #Samples

71 1.14× 259 A 1729750 R 250
blasted case49 1.00× 261 A 1729750 R 250
blasted case50 1.00× 262 A 1729750 R 250

scenarios aig insertion1 1.06× 265 A 1729750 R 250
scenarios aig insertion2 1.06× 265 A 1729750 R 250

36 1.00× 272 A 1729750 R 250
30 1.73× 272 A 1729750 R 250
110 1.09× 276 A 1729750 R 250

scenarios tree insert insert 1.32× 276 A 1729750 R 250
107 1.52× 276 A 1729750 R 250

blasted case211 1.00× 280 A 1729750 R 250
blasted case210 1.00× 280 A 1729750 R 250
blasted case212 1.00× 288 A 1729750 R 250
blasted case209 1.00× 288 A 1729750 R 250

54 1.15× 290 A 1729750 R 250

30 / 49

Results-II

Instances Size UniGen2 QuickSampler
Output #Samples Output #Samples

71 1.14× 259 A 1729750 R 250
blasted case49 1.00× 261 A 1729750 R 250
blasted case50 1.00× 262 A 1729750 R 250

scenarios aig insertion1 1.06× 265 A 1729750 R 250
scenarios aig insertion2 1.06× 265 A 1729750 R 250

36 1.00× 272 A 1729750 R 250
30 1.73× 272 A 1729750 R 250
110 1.09× 276 A 1729750 R 250

scenarios tree insert insert 1.32× 276 A 1729750 R 250
107 1.52× 276 A 1729750 R 250

blasted case211 1.00× 280 A 1729750 R 250
blasted case210 1.00× 280 A 1729750 R 250
blasted case212 1.00× 288 A 1729750 R 250
blasted case209 1.00× 288 A 1729750 R 250

54 1.15× 290 A 1729750 R 250

31 / 49

Key Takeaways

• We need new methodological approaches to verification of AI
systems

• Sampling is a crucial component of the state of the art
probabilistic reasoning systems

• Barbarik: Promise of strong theoretical guarantees with scalability
to large instances

• Extend beyond uniform discrete distributions

32 / 49

Key Takeaways

• We need new methodological approaches to verification of AI
systems

• Sampling is a crucial component of the state of the art
probabilistic reasoning systems

• Barbarik: Promise of strong theoretical guarantees with scalability
to large instances

• Extend beyond uniform discrete distributions

32 / 49

AI for Formal Methods

33 / 49

The Price of Success

• SAT is still NP-complete yet solvers tend to solve problems
involving millions of variables

• The solvers of today are very complex and we understand very
little on how to further improve the SAT solvers

• 50,000 hours of CPU time plus tens of human hours tuning
parameters in CryptoMiniSAT for 2018 competition (won third
place in SAT 2018 competition)

34 / 49

The Price of Success

• SAT is still NP-complete yet solvers tend to solve problems
involving millions of variables

• The solvers of today are very complex and we understand very
little on how to further improve the SAT solvers

• 50,000 hours of CPU time plus tens of human hours tuning
parameters in CryptoMiniSAT for 2018 competition (won third
place in SAT 2018 competition)

34 / 49

Data-Driven Design of SAT solver

• SAT solvers as composition of prediction engines (Liang et al)
– Branching
– Clause learning
– Memory management
– Restarts

• Prior Work
– Machine learning to optimize behavior of prediction engines
– Focused on using runtime or proxy for runtime

• CrystalBall

Whether it is possible to develop a framework to
provide white-box access to execution of SAT solver, which can
aid the developer to understand and synthesize algorithmic
heuristics for modern SAT solvers?

• What CrystalBall is not about?
– Replacing experts

• We envision a expert in loop framework

• As a first step, we have focused on memory management: learnt
clause deletion. All models are wrong. Some are useful.

35 / 49

Data-Driven Design of SAT solver

• SAT solvers as composition of prediction engines (Liang et al)
– Branching
– Clause learning
– Memory management
– Restarts

• Prior Work
– Machine learning to optimize behavior of prediction engines
– Focused on using runtime or proxy for runtime

• CrystalBall

Whether it is possible to develop a framework to
provide white-box access to execution of SAT solver, which can
aid the developer to understand and synthesize algorithmic
heuristics for modern SAT solvers?

• What CrystalBall is not about?
– Replacing experts

• We envision a expert in loop framework

• As a first step, we have focused on memory management: learnt
clause deletion. All models are wrong. Some are useful.

35 / 49

Data-Driven Design of SAT solver

• SAT solvers as composition of prediction engines (Liang et al)
– Branching
– Clause learning
– Memory management
– Restarts

• Prior Work
– Machine learning to optimize behavior of prediction engines
– Focused on using runtime or proxy for runtime

• CrystalBall

Whether it is possible to develop a framework to
provide white-box access to execution of SAT solver, which can
aid the developer to understand and synthesize algorithmic
heuristics for modern SAT solvers?

• What CrystalBall is not about?
– Replacing experts

• We envision a expert in loop framework

• As a first step, we have focused on memory management: learnt
clause deletion. All models are wrong. Some are useful.

35 / 49

Data-Driven Design of SAT solver

• SAT solvers as composition of prediction engines (Liang et al)
– Branching
– Clause learning
– Memory management
– Restarts

• Prior Work
– Machine learning to optimize behavior of prediction engines
– Focused on using runtime or proxy for runtime

• CrystalBall Whether it is possible to develop a framework to
provide white-box access to execution of SAT solver, which can
aid the developer to understand and synthesize algorithmic
heuristics for modern SAT solvers?

• What CrystalBall is not about?
– Replacing experts

• We envision a expert in loop framework

• As a first step, we have focused on memory management: learnt
clause deletion. All models are wrong. Some are useful.

35 / 49

Data-Driven Design of SAT solver

• SAT solvers as composition of prediction engines (Liang et al)
– Branching
– Clause learning
– Memory management
– Restarts

• Prior Work
– Machine learning to optimize behavior of prediction engines
– Focused on using runtime or proxy for runtime

• CrystalBall Whether it is possible to develop a framework to
provide white-box access to execution of SAT solver, which can
aid the developer to understand and synthesize algorithmic
heuristics for modern SAT solvers?

• What CrystalBall is not about?
– Replacing experts

• We envision a expert in loop framework

• As a first step, we have focused on memory management: learnt
clause deletion. All models are wrong. Some are useful.

35 / 49

Data-Driven Design of SAT solver

• SAT solvers as composition of prediction engines (Liang et al)
– Branching
– Clause learning
– Memory management
– Restarts

• Prior Work
– Machine learning to optimize behavior of prediction engines
– Focused on using runtime or proxy for runtime

• CrystalBall Whether it is possible to develop a framework to
provide white-box access to execution of SAT solver, which can
aid the developer to understand and synthesize algorithmic
heuristics for modern SAT solvers?

• What CrystalBall is not about?
– Replacing experts

• We envision a expert in loop framework

• As a first step, we have focused on memory management: learnt
clause deletion. All models are wrong. Some are useful.

35 / 49

Data-Driven Design of SAT solver

• SAT solvers as composition of prediction engines (Liang et al)
– Branching
– Clause learning
– Memory management
– Restarts

• Prior Work
– Machine learning to optimize behavior of prediction engines
– Focused on using runtime or proxy for runtime

• CrystalBall Whether it is possible to develop a framework to
provide white-box access to execution of SAT solver, which can
aid the developer to understand and synthesize algorithmic
heuristics for modern SAT solvers?

• What CrystalBall is not about?
– Replacing experts

• We envision a expert in loop framework

• As a first step, we have focused on memory management: learnt
clause deletion. All models are wrong. Some are useful.

35 / 49

The curse of learnt clauses

• Learnt clauses are very useful

• But they consume memory and can slowdown other components of
SAT solving

• Not practical to keep all the learnt clauses

• Delete larger clauses [E.g. MSS96a,MSS99]

• Delete less used clauses [E.g. GN02,ES03]

• Delete clauses based on Literal block distance [AS09]

36 / 49

Architecture

• For inference, we want to do supervised learning

• For every clause, we need values of different features and a label

• The inference engine should learn the model to predict the label

Components of CrystalBall

1 Feature Engineering

2 Labeling

3 Data collection

4 Inference Engine

37 / 49

Architecture

• For inference, we want to do supervised learning

• For every clause, we need values of different features and a label

• The inference engine should learn the model to predict the label

Components of CrystalBall

1 Feature Engineering

2 Labeling

3 Data collection

4 Inference Engine

37 / 49

Architecture

• For inference, we want to do supervised learning

• For every clause, we need values of different features and a label

• The inference engine should learn the model to predict the label

Components of CrystalBall

1 Feature Engineering

2 Labeling

3 Data collection

4 Inference Engine

37 / 49

Architecture

• For inference, we want to do supervised learning

• For every clause, we need values of different features and a label

• The inference engine should learn the model to predict the label

Components of CrystalBall

1 Feature Engineering

2 Labeling

3 Data collection

4 Inference Engine

37 / 49

Architecture

• For inference, we want to do supervised learning

• For every clause, we need values of different features and a label

• The inference engine should learn the model to predict the label

Components of CrystalBall

1 Feature Engineering

2 Labeling

3 Data collection

4 Inference Engine

37 / 49

Part 1: Feature Engineering

• Global features: property of the CNF formula at the time of genesis

• Contextual features: computed at the time of generation of the
clause and relate to the generated clause, e.g. LBD score

• Restart features: correspond to statistics (average and variance)
on the size and LBD of clauses, branch depth, trail depth during
the current and previous restart.

• Performance features: performance parameters of the learnt clause
such as the number of times the solver played part of a 1stUIP
conflict clause generation

Total # of features: 212

38 / 49

Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas
– SAT solver can be viewed as trying to find the proof of

unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory
Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• Useful A clause is useful in future at t if expiry(C) > t.

• Can we predict every 10K conflicts for a clause C if C will be
useful in future?

39 / 49

Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas
– SAT solver can be viewed as trying to find the proof of

unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory
Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• Useful A clause is useful in future at t if expiry(C) > t.

• Can we predict every 10K conflicts for a clause C if C will be
useful in future?

39 / 49

Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas
– SAT solver can be viewed as trying to find the proof of

unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory
Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• Useful A clause is useful in future at t if expiry(C) > t.

• Can we predict every 10K conflicts for a clause C if C will be
useful in future?

39 / 49

Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas
– SAT solver can be viewed as trying to find the proof of

unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory

Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• Useful A clause is useful in future at t if expiry(C) > t.

• Can we predict every 10K conflicts for a clause C if C will be
useful in future?

39 / 49

Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas
– SAT solver can be viewed as trying to find the proof of

unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory
Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• Useful A clause is useful in future at t if expiry(C) > t.

• Can we predict every 10K conflicts for a clause C if C will be
useful in future?

39 / 49

Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas
– SAT solver can be viewed as trying to find the proof of

unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory
Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• Useful A clause is useful in future at t if expiry(C) > t.

• Can we predict every 10K conflicts for a clause C if C will be
useful in future?

39 / 49

Part2: Labeling
Useful Clauses

• We focus on UNSAT formulas
– SAT solver can be viewed as trying to find the proof of

unsatisfiability. When the formula is satisfiable, it discovers
satisfiable assignments.

• A clause is useful if it is involved in the final UNSAT proof.

• For some cases, more than > 50% clauses are useful

• But we can only keep less than 5% of clauses in memory
Need to consider temporal aspect of usefulness

• We associate a counter with execution of SAT solver: incremented
with every conflict

• expiry (C): The value of counter when C was last used in the
UNSAT proof

• Useful A clause is useful in future at t if expiry(C) > t.

• Can we predict every 10K conflicts for a clause C if C will be
useful in future?

39 / 49

Part 3: Data Collection

• Just record the trace of the solver?

• Works well for toy benchmarks.

• We are interested in handling competition benchmarks – large
benchmarks

• Need to reconstruct approximate/inexact trace drat-trim.

40 / 49

Part 3: Data Collection

• Just record the trace of the solver?

• Works well for toy benchmarks.

• We are interested in handling competition benchmarks – large
benchmarks

• Need to reconstruct approximate/inexact trace

drat-trim.

40 / 49

Part 3: Data Collection

• Just record the trace of the solver?

• Works well for toy benchmarks.

• We are interested in handling competition benchmarks – large
benchmarks

• Need to reconstruct approximate/inexact trace drat-trim.

40 / 49

Part 3: Data Collection

• Forward pass

– The solver keeps track of features of each clause and dumps all the
learnt clauses after we reach UNSAT.

– genesis(C): The value of counter when C was learnt
– expiry (C): The value of counter when C was last used in the

UNSAT proof

• Backward pass

– DRAT-trim is used to reconstruct the proof while satisfying the
constraint while satisfying the constraint expiry(C) > genesis(C).

– Key modifications

I For every clause we attach a unique ID to every clause as the same
clause can be learned twice, so it is important to track each clause

I We supply genesis of a clause so that a clause is not used in the
proof before its genesis

41 / 49

Part 3: Data Collection

• Forward pass

– The solver keeps track of features of each clause and dumps all the
learnt clauses after we reach UNSAT.

– genesis(C): The value of counter when C was learnt
– expiry (C): The value of counter when C was last used in the

UNSAT proof

• Backward pass

– DRAT-trim is used to reconstruct the proof while satisfying the
constraint while satisfying the constraint expiry(C) > genesis(C).

– Key modifications

I For every clause we attach a unique ID to every clause as the same
clause can be learned twice, so it is important to track each clause

I We supply genesis of a clause so that a clause is not used in the
proof before its genesis

41 / 49

Looking back over the years
10/07/2019 Visualizing SAT solving | Wonderings of a SAT geek

https://www.msoos.org/2012/06/visualizing-sat-solving/ 1/2

Wonderings	of	a	SAT	geek
A	blog	about	SAT	solving	and	cryptography

Visualizing	the	solving	of	mizh-md5-47-3.cnf

Visualizing	SAT	solving
June	16,	2012 Uncategorized SAT,	visualisation

Visualizing	what	happens	during	SAT	solv-
ing	has	been	a	long-term	goal	of	mine,	and
finally,	I	have	managed	to	pull	together
something	that	I	feel	confident	about.	The
system	is	fully	explained	in	the	liked	image
on	the	right,	including	how	to	read	the
graphs	and	why	I	made	them.	Here,	I	would
like	to	talk	about	the	challenges	I	had	to
overcome	to	create	the	system.

Gathering	information

Gathering	information	during	solving	is	challenging	for	two	reasons.	First,	it’s	hard	to	know	what	to
gather.	Second,	gathering	the	information	should	not	a�ect	overall	speed	of	the	solver	(or	only	mini-
mally),	so	the	code	to	gather	the	information	has	to	be	well-written.	To	top	it	all,	if	much	information
is	gathered,	these	have	to	be	structured	in	a	sane	way,	so	it’s	easy	to	access	later.

It	took	me	about	1-1.5	months	to	write	the	code	to	gather	all information	I	wanted.	It	took	a	lot	of	time
to	correctly	structure	and	to	decide	about	how	to	store/summarize	the	information	gathered.	There	is
much	more	gathered	than	shown	on	the	webpage,	but	more	about	that	below.

Selecting	what	to	display,	and	how

This	may	sound	trivial.	Some	would	simply	say:	just	display	all	information!	But	what	we	really	want	is
not	just	plain	information:	what	good	is	it	to	print	100’000	numbers	on	a	screen?	The	data	has	to	be
displayed	in	a	meaningful	and	visually	understandable	way.

Getting	to	the	current	layout	took	a	lot	of	time	and	many-many	discussions	with	all	all	my	friends
and colleagues.	I	am	eternally	grateful	for	their	input	—	it’s	hard	to	know	how	good	a	layout	is	until
someone	sees	it	for	the	first	time,	and	completely	misunderstands	it.	Then	you	know	you	have	to
change	it:	until	then,	it	was	trivial	to	you	what	the	graph	meant,	a�er	all,	you	made	it!

What	to	display	is	a	bit	more	complex.	There	is	a	lot	of	data	gathered,	but	what	is	interesting?	Natural-
ly,	I	couldn’t	display	everything,	so	I	had	to	select.	But	selection	may	become	a	form	of	misrepresenta-
tion:	if	some	important	data	isn’t	displayed,	the	system	is	e�ectively	lying.	So,	I	tried	to	add	as	much
as	possible	that	still	made	sense.	This	lead	to	a	very	large	table	of	graphs,	but	I	think	it’s	still	under-

10/07/2019 Machine Learning and SAT | Wonderings of a SAT geek

https://www.msoos.org/2015/08/machine-learning-and-sat/ 1/2

Wonderings	of	a	SAT	geek
A	blog	about	SAT	solving	and	cryptography

Machine	Learning	and	SAT
August	9,	2015 Development,	Research,	SAT glues,	lingeling,	machine	learning
I	have	lately	been	digging	myself	into	a	deep	hole	with	machine	learning.	While	doing	that	it	occurred
to	me	that	the	SAT	community	has	essentially	been	trying	to	imitate	some	of	ML	in	a	somewhat	poor
way.	Let	me	explain.

CryptoMiniSat	and	clause	cleaning	strategy
selection

When	CryptoMiniSat	won	the	SAT	Race	of	2010,	it	was	in	large	part	because	I	realized	that	glucose	at
the	time	was	essentially	unable	to	solve	cryptographic	problems.	I	devised	a	system	where	I	could	de-
tect	which	problems	were	cryptographic.	It	checked	the	activity	stability	of	variables	and	if	they	were
more	stable	than	a	threshold,	it	was	decided	that	the	problem	was	cryptographic.	Cryptographic
problems	were	then	solved	using	a	geometric	restart	strategy	with	clause	activities	for	learnt	database
cleaning.	Without	this	hack,	it	would	have	been	impossible	to	win	the	competition.

It	is	clear	that	there	could	have	been	a	number	of	ways	to	detect	that	a	problem	is	cryptographic	with-
out	using	such	an	elaborate	scheme.	However,	that	would	have	demanded	a	mixture	of	more	features
to	decide.	The	scheme	only	used	the	average	and	the	standard	deviation.

Lingeling	and	clause	cleaning	strategy	selection

The	decision	made	by	lingeling	about	whether	to	use	glues	or	activities	to	clean	learnt	clauses	is
somewhat	similar	to	my	approach	above.	It	calculates	the	average	and	the	standard	deviation	of	the
learnt	clauses’	glues	and	then	makes	a	decision.	Looking	at	the	code,	the	option
actavgmax/stdmin/stdmax	gives	the	cuto�s	and	the	function	lglneedacts	calculates	the	values	and
decides.	This	has	been	in	lingeling	since	2011	(lingeling-587f).

Probably	a	much	better	decision	could	be	made	if	more	data	was	taken	into	account	(e.g.	activities)
but	as	a	human,	it’s	simply	hard	to	make	a	decision	based	on	more	than	2-3	pieces	of	data.

Enter	machine	learning

It	is	clear	that	the	above	schemes	were	basically	trying	to	extract	some	feature	from	the	SAT	solver
and	then	decide	what	features	(glues/activities)	to	use	to	clear	the	learnt	clause	database.	It	is	also
clear	that	both	have	been	extremely	e�ective,	it’s	by	no	luck	that	they	have	been	inside	successful	SAT
solvers.

The	question	is,	can	we	do	better?	I	think	yes.	First	of	all,	we	don’t	need	to	cut	the	problem	into	two
steps.	Instead,	we	can	integrate	the	features	extracted	from	the	solver	(variable	activities,	clause	glue
distribution,	etc)	and	the	features	from	the	clause	(glue,	activities,	etc.)	and	make	a	decision	whether
to	keep	the	clause	or	not.	This	means	we	would	make	keep/throwaway	decisions	on	individual	claus-

42 / 49

Part 4: Inference Engine
What models to use

• Two constraints

– Our 212 features are mixed or heterogeneous.
– No straightforward manner to normalize all of our features.

• The SVM and other linear models require carefully normalized
homogeneous features.

• We chose the random forest as the classifier for our inference
engine

43 / 49

Experimental Setup

• All the UNSAT instances from SAT 2014-17.

• Each instance was ran with timeout of 20,000 seconds and
CrystalBall finished execution for 260 instances

• The number of learnt clauses for different problems varied from
few hundreds to millions

• We sampled 2000 data points from each benchmarks to ensure fair
representation for each benchmark.

• We discarded 50 benchmarks that had less than 2000 data points.

• In total, we had 422K data points.

• Standard split into 70% training and 30% training.

44 / 49

Accuracy

Prediction
Throw Keep

Ground Throw 0.64 0.36
truth Keep 0.11 0.89

Table: Confusion matrix

45 / 49

The power of interpretable classifiers
Feature Ranking

1 rdb0.used for uip creation: Number of times that the conflict took
part in a 1UIP conflict generation since its creation.

2 rdb0.last touched diff: Number of conflicts ago that the clause
was used during a 1UIP conflict clause generation.

3 rdb0.activity rel: Activity of the clause, relative to the activity of
all other learned clauses at the point of time when the decision to
keep or throw away the clause is made.

4 rdb0.sum uip1 used: Number of times that the clause took part in
a 1UIP conflict generation since its creation.

5 rdb1.used for uip creation: Same as rdb0.used for uip creation but
instead of the current round, it is data from the previous round
(i.e. 10k conflicts earlier)

LBD is not a top-5 feature

46 / 49

The power of interpretable classifiers
Feature Ranking

1 rdb0.used for uip creation: Number of times that the conflict took
part in a 1UIP conflict generation since its creation.

2 rdb0.last touched diff: Number of conflicts ago that the clause
was used during a 1UIP conflict clause generation.

3 rdb0.activity rel: Activity of the clause, relative to the activity of
all other learned clauses at the point of time when the decision to
keep or throw away the clause is made.

4 rdb0.sum uip1 used: Number of times that the clause took part in
a 1UIP conflict generation since its creation.

5 rdb1.used for uip creation: Same as rdb0.used for uip creation but
instead of the current round, it is data from the previous round
(i.e. 10k conflicts earlier)

LBD is not a top-5 feature

46 / 49

Comparison with state of the art Solver

• 934 instances from SAT Competitions 2014-17 with a timeout of
5000 seconds.

• Maple LCM Dist : 591 instances (2017 winning solver)

• CryptoMiniSAT plus learned classifier: 612 instances

– Solved SAT: 271
– Solved UNSAT: 341

• The ratio of SAT to UNSAT instances is almost same to
Maple LCM Dist.

• Training was only on UNSAT instances – shows generalizability

47 / 49

Comparison with state of the art Solver

• 934 instances from SAT Competitions 2014-17 with a timeout of
5000 seconds.

• Maple LCM Dist : 591 instances (2017 winning solver)

• CryptoMiniSAT plus learned classifier: 612 instances

– Solved SAT: 271
– Solved UNSAT: 341

• The ratio of SAT to UNSAT instances is almost same to
Maple LCM Dist.

• Training was only on UNSAT instances – shows generalizability

47 / 49

Comparison with state of the art Solver

• 934 instances from SAT Competitions 2014-17 with a timeout of
5000 seconds.

• Maple LCM Dist : 591 instances (2017 winning solver)

• CryptoMiniSAT plus learned classifier: 612 instances

– Solved SAT: 271
– Solved UNSAT: 341

• The ratio of SAT to UNSAT instances is almost same to
Maple LCM Dist.

• Training was only on UNSAT instances – shows generalizability

47 / 49

Comparison with state of the art Solver

• 934 instances from SAT Competitions 2014-17 with a timeout of
5000 seconds.

• Maple LCM Dist : 591 instances (2017 winning solver)

• CryptoMiniSAT plus learned classifier: 612 instances

– Solved SAT: 271
– Solved UNSAT: 341

• The ratio of SAT to UNSAT instances is almost same to
Maple LCM Dist.

• Training was only on UNSAT instances – shows generalizability

47 / 49

More Open Questions than Answers

• Design new features. For derivative features, you do not even need
to rerun the solver

• Learn complex models

• Extend CrystalBall for branching, clause learning, and restarts

• An application area for interpretable machine learning

• Democratize the design of solvers; allows researchers without deep
expertise in software engineering of SAT solvers to test out their
ideas

Code: https://meelgroup.github.io/crystalball/

48 / 49

https://meelgroup.github.io/crystalball/

Conclusion

• Designing Interpretable Rules (Formal Methods for AI)

– Joint work with Bishwamittra Ghosh and Dmitri Malioutov; CP-18,
AIES-19

• Functional Verification of Probabilistic Systems (Beyond
Traditional Verification Methodologies)

– Quantitative Verification of Neural Networks (Joint work with
Teodora Baluta, Shiqi Shen, Shweta Shinde, and Prateek Saxena;
CCS-19)

– Quantitative Verification for Explanations (Joint work with Nina
Narodytska, Aditya Shrotri, Alexey Ignatiev, and Joao Marques
Silva; SAT-19)

– Distribution Testing (Joint work with Sourav Chakraborty;
AAAI-19)

• Data-Driven Design of SAT Solvers (AI for Formal Methods)

– Joint work with Mate Soos and Raghav Kulkarni; SAT-19

Thank You

49 / 49

	Verification of AI
	AI for Formal Methods

