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Machine learning is not magic: (adversarial) real-world
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Machine learning is not magic: (adversarial) real-world
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The ML paradigm in adversarial settings
Data privacy attacks
Model parameters
Data poisoning -
Training data
. , Predictions
Healthy
Model theft
A
Test data
Adversarial examples Inference

Adapted from a slide by lan Goodfellow
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Is ML security any different from real-werld computer security”?

“Practical security balances the cost of
protection and the risk of loss, which is
the cost of recovering from a loss times
its probability” (Butler Lampson, 2004)

...I'M
SENTENCING
YOU TO FIVE YEARS

FOR TRYING TO
DO IT WITH STOLEN
CREDIT CARDS

Is the ML paradigm fundamentally
different in a way that

-
* CARTOGONSTOCK
.com

Search ID: miyn2813

enables systematic approaches to
security and privacy?

[\



Revisiting Saltzer and
Schroeder’s principles
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Saltzer and Schroeder’s principles
Economy of mechanism. Least privilege.
Keep the design of security mechanisms simple. Every user operates with least privileges necessary.
Fail-safe defaults. Least common mechanism.
Base access decisions on permission rather than Minimize mechanisms depended on by all users.
exclusion.

Psychological acceptability.
Complete mediation. Human interface designed for ease of use.
Every access to an object is checked for authority.

Work factor.

Open design. Balance cost of circumventing the mechanism with
The design of security mechanisms should not be known attacker resources.
secret.

Compromise recording.
Separation of privilege. Mechanisms that reliably record compromises can be
A protection mechanism that requires two keys to used in place of mechanisms that prevent loss.

unlock is more robust and flexible.
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Fail-safe defaults

Example 1: do not output low-confidence predictions at test time

Example 2: mitigate data poisoning resulting in a distribution drift

Attacker: submits poisoned points to gradually change a model’s decision boundary
Defender: compares accuracy on holdout validation set before applying gradients

performance
comparable No -

on holdout g
data? Q
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Open design

Example 1: black-box attacks are not particularly more difficult than white-box attacks

Black-box
model

Insider leaks Reverse Model Transferability
model engineering extraction

ACM:2650798 (Srndic and Laskov); arXiv:1602.02697 (Papernot et al.)
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Example 2: gradient masking can be circumvented by a black-box attack

C

Adversarial example

Direction of S Direction of the adversarially

another model’s trained model's gradient
gradient

arXiv:1602.02697 (Papernot et al.); arXiv:1705.07204 (Tramer et al.); arXiv:1802.00420 (Athalye et al.)
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Separation of privilege

Privacy can be obtained in the data pipeline through federated learning or by
having different parties encode, shuffle and analyze data in ESA.

\(
N (/
WAV

Encode Shuffle Analyze

arXiv:1710.00901 (Bittau et al.); arXiv:1602.05629 (McMahan et al.)



Psychological Acceptabillity
and Privacy in Machine
Learning
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What is a private algorithm?

Designing algorithms with privacy guarantees is difficult.

First question: how should we define privacy? Gold standard is now

- Answer 1

' v" Randomized Answer 2
- v Algorithm

v Answer n

- Answer 1

v Randomized Answer 2
§~ Algorithm

Answer n

Pr[M(d) € S] < e*Pr[M(d") € S]
|IACR:3650 (Dwork et al.)



A Metaphor
For Private
Learning

Slides adapted from Ulfar Erlingsson

SmIEEEIREE ¢
cEmIBE RIS
L) .

IR RAREEI N
it mEEEmIRE N .«

UNIVERSITY OF

% TORONTO

7 VECTOR
INSTITUTE



&
¥, UNIVERSITY OF 7 VECTOR
© TORONTO INSTITUTE

An Individual’s Training Data

Slides adapted from Ulfar Erlingsson
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An Individual’s Training Data
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Big Picture
Remains!
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How to train a model with SGD?

Initialize parameters ©

For t = 1..T do
Sample batch B of tralining examples
Compute average loss L on batch B

Compute average gradient of loss L wrt parameters ©

Update parameters 6 by a multiple of gradilient average




How to train a model with differentially private SGD?

Initialize parameters ©

For ¢t = 1..T7 do
Sample batch B of training examples
Compute per-example loss L on batch B
Compute per-example gradients of loss L wrt parameters 6
Ensure L2 norm of gradients < C by clipping
Add Gaussian noise to average gradients (as a function of C)

Update parameters 6 by a multiple of noisy gradient average

Deep Learning with Differential Privacy (CCS, 2016)
Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, Zhang
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Differentially Private Stochastic Gradient Descent
optimizer = tf.train.GradientDescentOptimizer ( O Pl roquests tssues Macketplace  Explore £ 4@
learning rate=FLAGS.learning rate) tansorfiow | prvacy Oummr- 2 Huw 3% | Yrer @
l Library for training machine learning models with privacy for training data Ean
optimizer = VectorizedDPSGD ( —— e [ wemew [ | AN
12 norm clip=FLAGS.12 norm clip, B e e e
noise multiplier=FLAGS.noise multiplier, e research

learning rate=FLAGS.learning rate)



PATE: Private Aggregation of Teacher Ensembles

Sensitive
Data

Partition 1

Partition 2

\ 4

Teacher 1

Partition 3

\ 4

Teacher 2

Partition n
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Teacher 3
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PATE: Private Aggregation of Teacher Ensembles

1..8 | _a.

Count votes Take maximum

J}l fz) = argmaX{nj(f)}

J

nj(f) = ‘{Z 11 € 1n,f7,(:f:')
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PATE: Private Aggregation of Teacher Ensembles

If most teachers agree on the label, |
it does not depend on specific partitions,

so the privacy cost is small. DED_ma,
If two classes have close vote counts, @

the disagreement may reveal private information. HHH .




¥ UNIVERSITY OF 7 VECTOR
¥ TORONTO INSTITUTE

PATE: Private Aggregation of Teacher Ensembles

Baall . B i

Count votes Add Laplacian Take maximum
ni(#) = |{i -1 € L, £i(F) = J}] Lap (1) fa) = argmax {ny () + Lap (£ )}

3 J
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PATE: Private Aggregation of Teacher Ensembles

Data

Data 1
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Inaccessible by adversary I Accessible by adversary

Data 2

\ 4

Teacher 1

Data 3

A 4

Teacher 2

PATE: Private Aggregation of Teacher Ensembles (ICLR 2017)

Data n

\ 4

Teacher 3

Noisy
aggregation

Student

“— Query

A 4

Teacher n

Papernot, Abadi, Erlingsson, Goodfellow, Talwar
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Aligning privacy with generalization
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Scalable Private Learning with PATE (Papernot*, Song* et al., ICLR 2018)



Model assurance and
admission control
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Model assurance and admission control

Membership inference
(Shokri et al.),

Machine learning objective: average-case performance Data Provenance
N Testing (Song & Shmatikov)
Security objective: worst-case performance l
— Verification Differential privacy
analysis

.
.

Model assurance. (training time)
Establish with confidence that system matches security requirements.

Admission control. (test time)

Do we admit an answer for a given input into our pool of answers?
Combine input validation and sandboxing techniques.
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How to specify policies for ML security & privacy?

Security

Privacy

Informal security policy: learning system accurately models exactly the end task which
the system was designed to solve.

— Correct implementation (e.g., no numerical instabilities)
— Solves the end task (e.g., correct predictions on all valid inputs)
— Only solves the end task (e.g., no backdoor or other poisoned data)

Open problem: how to formalize ML security policy with precise semantics while avoiding
ambiguity”?

Privacy policy: learning behavior does not reflect any private information

Formal requirement specification: differential privacy
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An example toy security policy: the £, norm in vision

Perturbation-Unrobust Model Perturbation-Robust Model

¢ Classified as: 5
6 Classified as: 3 ' 5
LT . ‘..:"\:‘- . T . " ~‘“-_;<_-'\ - ..?.
. - F . ._':-‘___ ’ /“ : " . / —-“\.‘_‘- ' ,/".' ‘
N - ‘ \\ ; ~ o — ." -__‘-- .
\ N : i

-

««+ Perturbation-unrobust decision boundary —— Oracle Decision-boundary --- Perturbation-robust decision boundary

Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness (Jacobsen et al.)



Admission control at test time

(similar to search engines) calls for
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Do we admit a sandboxed model’s output into our pool of answers?

Example:

define a well-calibrated
estimate of uncertainty to
reject outliers (hard when
distribution is unknown)
through conformal prediction

Deep k-Nearest Neighbors (2018)
Papernot and McDaniel

Soft Nearest Neighbor Loss (2019)
Frosst, Papernot and Hinton

Layer name

Softmax

3rd hidden

2nd hidden

1st hidden

Inputs

Neural architecture

O C
O O O O
-/ o

- —

O O O O

O U U U

Representation spaces

Panda

School Bus




Towards auditing ML systems
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The case for auditing in ML

Auditing: (1) identify information to collect
(2) analyze it

When systems have weak authentication
and authorization, auditing is an important
component of security. (John et al., 2010)

Auditing design is informed by specification of security policy.

Benefits: reactive and proactive identification of threats
increased work factor and psychological acceptability
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Auditing the learning algorithm: an example for privacy

Not available to the adversary

Sensitive
Data

Partition 1 > Teacher1
/
Partition 2 > Teache/
/
Partition 3 > Teachger 3
Partition n > Teachdrn

Aggregated
Teacher

Available to the adversary

Student

Moments
accountant

A

I
I
L
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Public
Data

1078

/

Privacy cost € at &

arXiv:1607.00133 (Abadi et al.); arXiv:1802.08908 (Papernot*, Song* et al.); arXiv (Carlini et al.)
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Conclusions
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Efforts need to specify ML security and privacy policies.

What is the right abstraction and/or language to formalize security and
privacy requirements with precise semantics and no ambiguity?

TensorFlow

Python

oS

CPU | | GPU/TPU

Towards the Science of Security and Privacy in Machine Learning (Papernot et al.)
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Efforts need to specify ML security and privacy policies.

What is the right abstraction and/or language to formalize security and
privacy requirements with precise semantics and no ambiguity?

Admission control and auditing may address lack of assurance.

How can sandboxing, input-output validation and compromise recording
help secure ML systems when data provenance and assurance is hard?
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Efforts need to specify ML security and privacy policies.

What is the right abstraction and/or language to formalize security and
privacy requirements with precise semantics and no ambiguity?

Admission control and auditing may address lack of assurance.

How can sandboxing, input-output validation and compromise recording
help secure ML systems when data provenance and assurance is hard?

Security and privacy should strive to align with ML goals.

How do private learning and robust learning relate to generalization”? How
does poisoning relate to learning from noisy data or distribution drifts?



Ressources:

cleverhans.io
github.com/tensorflow/cleverhans
github.com/tensorflow/privacy

Contact information:
nicolas.papernot@utoronto.ca
@NicolasPapernot




