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(Szegedy et al., Biggio et al.)
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Machine learning is not magic: (adversarial) real-world
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The ML paradigm in adversarial settings

Adapted from a slide by Ian Goodfellow
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Is ML security any different from real-world computer security?

“Practical security balances the cost of 

protection and the risk of loss, which is 

the cost of recovering from a loss times 

its probability” (Butler Lampson, 2004)

Is the ML paradigm fundamentally 
different in a way that 

enables systematic approaches to 
security and privacy? 



Revisiting Saltzer and 
Schroeder’s principles



Saltzer and Schroeder’s principles
Economy of mechanism.
Keep the design of security mechanisms simple.

Fail-safe defaults.
Base access decisions on permission rather than  
exclusion.

Complete mediation.
Every access to an object is checked for authority.

Open design.
The design of security mechanisms should not be 
secret.

Separation of privilege.
A protection mechanism that requires two keys to 
unlock is more robust and flexible.

Least privilege.
Every user operates with least privileges necessary.

Least common mechanism.
Minimize mechanisms depended on by all users.

Psychological acceptability.
Human interface designed for ease of use.

Work factor.
Balance cost of circumventing the mechanism with 
known attacker resources.

Compromise recording.
Mechanisms that reliably record compromises can be 
used in place of mechanisms that prevent loss.



Fail-safe defaults
Example 1: do not output low-confidence predictions at test time

Example 2: mitigate data poisoning resulting in a distribution drift

Attacker: submits poisoned points to gradually change a model’s decision boundary
Defender: compares accuracy on holdout validation set before applying gradients
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Open design

Example 1: black-box attacks are not particularly more difficult than white-box attacks

Insider leaks 
model

Reverse 
engineering

Black-box 
model

Model 
extraction

Transferability

ACM:2650798 (Šrndic and Laskov); arXiv:1602.02697 (Papernot et al.)



Open design

Example 2: gradient masking can be circumvented by a black-box attack

arXiv:1602.02697 (Papernot et al.); arXiv:1705.07204 (Tramer et al.); arXiv:1802.00420 (Athalye et al.)



Separation of privilege
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Encode Shuffle Analyze

Privacy can be obtained in the data pipeline through federated learning or by 
having different parties encode, shuffle and analyze data in ESA.

arXiv:1710.00901 (Bittau et al.); arXiv:1602.05629 (McMahan et al.)



Psychological Acceptability 
and Privacy in Machine 
Learning



What is a private algorithm?

}Randomized 
Algorithm

Randomized 
Algorithm

Answer 1
Answer 2

...
Answer n

Answer 1
Answer 2

...
Answer n

??
? ?

Designing algorithms with privacy guarantees understood by humans is difficult.

First question: how should we define privacy? Gold standard is now differential privacy. 

IACR:3650 (Dwork et al.)



A Metaphor
For Private 
Learning

Slides adapted from Ulfar Erlingsson



An Individual’s Training Data

Slides adapted from Ulfar Erlingsson



An Individual’s Training Data

Each bit is flipped with 
probability

25%

Slides adapted from Ulfar Erlingsson



Big Picture 
Remains!

Slides adapted from Ulfar Erlingsson



How to train a model with SGD?

Initialize parameters θ

For t = 1..T do

Sample batch B of training examples

Compute average loss L on batch B

Compute average gradient of loss L wrt parameters θ

Update parameters θ by a multiple of gradient average



How to train a model with differentially private SGD?

Initialize parameters θ

For t = 1..T do

Sample batch B of training examples

Compute per-example loss L on batch B

Compute per-example gradients of loss L wrt parameters θ
Ensure L2 norm of gradients < C by clipping

Add Gaussian noise to average gradients (as a function of C)

Update parameters θ by a multiple of noisy gradient average

Deep Learning with Differential Privacy (CCS, 2016) 
Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, Zhang



Differentially Private Stochastic Gradient Descent

optimizer = tf.train.GradientDescentOptimizer(
learning_rate=FLAGS.learning_rate)

optimizer = VectorizedDPSGD(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,      
learning_rate=FLAGS.learning_rate)



PATE: Private Aggregation of Teacher Ensembles
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PATE: Private Aggregation of Teacher Ensembles

Count votes Take maximum



PATE: Private Aggregation of Teacher Ensembles

If most teachers agree on the label, 
it does not depend on specific partitions, 
so the privacy cost is small.

If two classes have close vote counts, 
the disagreement may reveal private information. 



PATE: Private Aggregation of Teacher Ensembles
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PATE: Private Aggregation of Teacher Ensembles
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PATE: Private Aggregation of Teacher Ensembles (ICLR 2017)
Papernot, Abadi, Erlingsson, Goodfellow, Talwar



Aligning privacy with generalization

Scalable Private Learning with PATE (Papernot*, Song* et al., ICLR 2018)



Model assurance and 
admission control



Model assurance and admission control
Machine learning objective: average-case performance

→ Testing

Security objective: worst-case performance
→ Verification

Model assurance. (training time)
Establish with confidence that system matches security requirements.

Admission control. (test time)
Do we admit an answer for a given input into our pool of answers?
Combine input validation and sandboxing techniques.

Membership inference 
(Shokri et al.), 

Data Provenance 
(Song & Shmatikov)

Differential privacy 
analysis



How to specify policies for ML security & privacy?

Informal security policy: learning system accurately models exactly the end task which 
the system was designed to solve. 

→ Correct implementation (e.g., no numerical instabilities)
→ Solves the end task (e.g., correct predictions on all valid inputs)
→ Only solves the end task (e.g., no backdoor or other poisoned data)

Open problem: how to formalize ML security policy with precise semantics while avoiding 
ambiguity?

Privacy policy: learning behavior does not reflect any private information

Formal requirement specification: differential privacy
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An example toy security policy: the ℓ
p

norm in vision

Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness (Jacobsen et al.)



Admission control at test time
Weak authentication (similar to search engines) calls for admission control:

Do we admit a sandboxed model’s output into our pool of answers?

Example: 
define a well-calibrated 
estimate of uncertainty to 
reject outliers (hard when 
distribution is unknown) 
through conformal prediction

Deep k-Nearest Neighbors (2018)
Papernot and McDaniel

Soft Nearest Neighbor Loss (2019)
Frosst, Papernot and Hinton



Towards auditing ML systems



The case for auditing in ML
Auditing: (1) identify information to collect   

(2) analyze it

When systems have weak authentication 

and authorization, auditing is an important 

component of security. (John et al., 2010)

Auditing design is informed by specification of security policy.

Benefits: reactive and proactive identification of threats
increased work factor and psychological acceptability



Auditing the learning algorithm: an example for privacy
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arXiv:1607.00133 (Abadi et al.); arXiv:1802.08908 (Papernot*, Song* et al.); arXiv (Carlini et al.)



Conclusions



Efforts need to specify ML security and privacy policies.
What is the right abstraction and/or language to formalize security and 
privacy requirements with precise semantics and no ambiguity?

Admission control and auditing may address lack of assurance.
How can sandboxing, input-output validation and compromise recording 
help secure ML systems when data provenance and assurance is hard? 

Security and privacy should strive to align with ML goals.
How do private learning and robust learning relate to generalization? How 
does poisoning relate to learning from noisy data or distribution drifts?
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Towards the Science of Security and Privacy in Machine Learning (Papernot et al.)
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Ressources: 
cleverhans.io
github.com/tensorflow/cleverhans
github.com/tensorflow/privacy

Contact information:
nicolas.papernot@utoronto.ca
@NicolasPapernot


