Machine Learning for SAT Solvers

Vijay Ganesh
University of Waterloo, Canada

Monday Aug 26, 2019
Waterloo ML + Verification + Security Workshop, Canada
THE BOOLEAN SATISFIABILITY PROBLEM

• A literal p is a Boolean variable x or its negation $\neg x$. A clause C is a disjunction of literals. E.g., $(x_2 \lor \neg x_{41} \lor x_{15})$. A k-CNF formula is a conjunction of m clauses over n variables, with k literals per clause. An assignment is a mapping from variables to True/False. A unit clause C has exactly one unbound literal, under a partial assignment.

• Boolean SATisfiability problem: given Boolean formulas in k-CNF, decide whether they are satisfiable. The challenge is coming up with an efficient procedure.

• A SAT Solver is a computer program that solves the SAT problem.

• The challenge for SAT solver developer is:
 • Develop a solver that works efficiently for a very large class of practical applications. Solvers must produce solutions for satisfiable instances, and proofs for unsatisfiable ones. Solvers must be extensible. Perhaps, the most important problem is to understand and explain why solvers work well even though the problem is NP-complete.
• Part I
 • Context and motivation for the Boolean SAT problem

• Part II
 • DPLL and CDCL SAT solvers

• Part III
 • Key research questions and insights

• Part IV
 • Heuristics are optimization engines, and machine learning (ML) for SAT. MapleSAT series of SAT solvers [LG+15, LG+16, LG+17, LG+18]

• Part V
 • Conclusions and takeaways

• Part VI
 • Logic-guided ML
PART I

CONTEXT AND MOTIVATION

WHY SHOULD YOU CARE ABOUT SAT SOLVERS?
SOFTWARE ENGINEERING AND SAT/SMT SOLVERS
AN INDISPENSABLE TACTIC FOR ANY STRATEGY
SOFTWARE ENGINEERING USING SOLVERS
ENGINEERING, USABILITY, NOVELTY

Program Reasoning Tool

Program Specification

SAT/SMT Solver

Logic Formulas

SAT/UNSAT

Program is correct?
or Generate Counterexamples (test cases)
Solver-based programming languages
Compiler optimizations using solvers
Solver-based debuggers
Solver-based type systems
Solver-based concurrency bugfinding
Solver-based synthesis
Concolic Testing
Program Analysis
Equivalence Checking
Auto Configuration
Bounded MC
Program Analysis
AI

SAT/SMT SOLVER RESEARCH STORY
A 1000X+ IMPROVEMENT

1,000,000 Constraints
100,000 Constraints
10,000 Constraints
1,000 Constraints
IMPORTANT CONTRIBUTIONS
AN INDISPENSABLE TACTIC FOR ANY STRATEGY
PART II

DPLL AND CDCL SOLVER ALGORITHMS
DPLL SAT SOLVER ARCHITECTURE (1958)
THE BASIC BACKTRACKING SAT SOLVER

DPLL(Θ_{cnf}, assign) {

Propagate unit clauses;

if "conflict": return FALSE;

if "complete assign": return TRUE;

"pick decision variable x";

return DPLL(Θ_{cnf}| x=0, assign[x=0]) \lor
DPLL(Θ_{cnf}| x=1, assign[x=1]);

}
MODERN CDCL SAT SOLVER ARCHITECTURE
OVERVIEW

Input SAT Instance

Propagate() (BCP)

Conflict?

All Vars Assigned?

Conflict Analysis()

Return SAT

Branch()

Top-level Conflict?

Return UNSAT

Backjump()

Learnt clause (x)

Learnt clause (neg(z) OR y)

F

T

x

y
PART III

RESEARCH QUESTIONS

WHY ARE SAT SOLVERS EFFICIENT AT ALL?
RESEARCH QUESTIONS AND RESULTS
WHY ARE SAT SOLVERS EFFICIENT AT ALL?

- CDCL SAT solvers are polynomially-equivalent to merge resolution
- Proof complexity of SMT solvers [RKG18]

Proof complexity

Parameterized complexity

Understanding the efficacy of solvers (practical proof systems)

Machine learning based solver design

- Introduced the merge parameter as a basis for upper bound analysis [ZG+18]
- Merge as a feature for machine learning based clause deletion
- Introduced the idea of ‘solver as a collection of machine learning based optimization engines’ [LG+16, LG+17, LG+18]
- Successfully used it to develop new ML-based branching and restart policies in MapleSAT
THE CONTEXT

PARAMETERIZED PROOF-COMPLEXITY FOR FORMAL METHODS

General resolution The rule is form of modus ponens. Proof is a directed acyclic graph (DAG).

\[
\frac{(x_1 \lor \cdots \lor x_n) \ (\neg x_n \lor y_1 \cdots \lor y_m)}{(x_1 \lor \cdots \lor x_{n-1} \lor y_1 \cdots \lor y_m)}
\]

Merge resolution Derived clauses have to share literals to apply rule. Proof is a DAG.

\[
\frac{(x_1 \lor \cdots \lor x_n) \ (\neg x_n \lor \cdots \lor x_{n-1})}{(x_1 \lor \cdots \lor x_{n-1})}
\]

Unit resolution One clause must be unit. Proof is a DAG.

\[
\frac{(x_n) \ (\neg x_n \lor y_1 \cdots y_m)}{(y_1 \lor \cdots \lor y_m)}
\]

Tree resolution Same rules as general resolution. Proof is a tree. Not allowed to reuse lemmas unlike DAG proofs.
HEURISTICS AS OPTIMIZATIONS PROCEDURES
MACHINE LEARNING FOR SOLVERS

- SAT solvers as a proof system that attempts to produce proofs for input unsatisfiable formulas in the shortest time possible
- In other words, certain sub-routines of a SAT solver implement proof rules (e.g., BCP implements the unit resolution rule),
- Other sub-routines aim to optimally select, schedule, or initialize proof rule application
- These optimization procedures operate in a data-rich environment, need to be adaptive and online
- Machine learning to the rescue!! Transforming solver design from “an art to a science”
PART IV

MACHINE LEARNING BASED BRANCHING HEURISTICS
Question: What is a variable selection (branching) heuristic?

- A “dynamic” ranking function that ranks variables in a formula in descending order
- Re-ranks the variables at regular intervals throughout the run of a SAT solver
- We were unsatisfied with this understanding of VSIDS branching heuristic

Our experiments and results: [LG+15, LGPC16, LGPC+16, LGPC17, LGPC18]

- We studied 7 of the most well-known branching heuristics in detail
- Viewed branching as prediction engines that attempt to maximize global learning rate
- In turn led us to devise new ML-based branching that for the first time matched VSIDS
MODERN CDCL SAT SOLVER ARCHITECTURE

DECIDE(): VSIDS BRANCHING HEURISTIC

VSIDS (Variable State Independent Decaying Sum) Branching
- Imposes dynamic variable order
- Each variable is assigned a floating-point value called activity
- Measures how “active” variable is in recent conflict clauses

VSIDS pseudo-code
- Initialize activity of all variables (vars) to 0

VSIDS() {
 Upon conflict
 * Bump activity of vars appearing on the conflict side of the implication graph
 * Decay activity of all vars by a constant \(c: 0 < c < 1 \)
 Branch on unassigned var with highest activity
} //End of VSIDS
Decay: Activity $\times 0.95$

Bump: Activity $+1$

1st UIP cut

CDCL FEEDBACK LOOP

Agent

Partial Assignment

Learnt Clause

Environment
VSIDS: WHY BUMP AND DECAY?

for all variables v:
 activity[v] = 0

conflict:
 for all variables v between cut and conflict:
 activity[v] += 1
 for all variables v in learnt clause:
 activity[v] += 1
 for all variables v:
 activity[v] *= 0.95

Bump observation:
~12 times more likely to cause conflicts when branched on

Decay observation:

\[bump_{t-1} \cdot 0.95^1 + bump_{t-2} \cdot 0.95^2 + bump_{t-3} \cdot 0.95^3 + \ldots \]

More weight to recent bumps via exponential moving average
EXPONENTIAL MOVING AVERAGE
Reinforcement Learning

- Agent
- Environment
- Policy
- Action
- Estimated Reward (Q)
- Reward
- Exponential Moving Average

CDCL

- Branching Heuristic + BCP
- Clause learning
- Variable Ranking
- Decision
- Activity
- Bump
- Decay
MULTI-ARMED BANDIT PROBLEM

Sample average = \(\frac{1}{3} \times 4 + \frac{1}{3} \times 3 + \frac{1}{3} \times 1 \)

Exponential moving average = \((1 - \alpha)^2 \times 4 + (1 - \alpha) \times 3 + (1 - \alpha)^0 \times 1 \)

Best slot machine to play (for now)

Less weight

More weight
WHAT IS A GOOD OBJECTIVE FOR BRANCHING?

Global learning rate (GLR) = \frac{\#conflicts}{\#decisions}

of lemmas
of “cases”
PROBLEM STATEMENT: WHAT IS A BRANCHING HEURISTIC?

OUR FINDINGS

Finding 1: Global Learning Rate Maximization

Branching heuristics are prediction engines which predict variables to branch on that will maximize

Global Learning Rate (GLR) = (# of conflicts)/(# of decisions)

Finding 2: Branch on Conflict Analysis Variables ‘maximizes’ GLR

Successful branching heuristics focus on variables involved in ‘recent’ conflicts to maximize GLR. Reward variables that gave you a conflict

Finding 3: The Searchlight Analogy a la Exploitation vs. Exploration (multiplicative decay)

Focus on recent conflicts, maximize learning, then move on. One can use reinforcement learning for such a heuristic.
LEARNING RATE EXAMPLE

Student

A = false, B = true, C = false,…

Learnt Clause: A or C

Teacher

Sampled learning rate (A) = \(\frac{2}{3}\)

Student

A = false, B = true, D = false,…

Learnt Clause: D or C

Teacher

Sampled learning rate (B) = 0/3
LEARNING-RATE BRANCHING (LRB) EXAMPLE

A is assigned

B or D

A or D

B or C

B or E

A or B

C or D

A or E

C or E

A is unassigned

A is unassigned

sampled_learning_rate(A) = 2/3

exponential moving average = \((1 - \alpha)^1 \times 2/3\) + \((1 - \alpha)^0 \times 1/3\)

sampled_learning_rate(A) = 1/3
VSIDS

The reward is a constant
Every time a variable appears in a conflict analysis, its activity is additively bumped by a constant

Exponential Moving Average (EMA) performed for all variables at the same time
After each conflict, the activities of all variables are decayed

LRB

The reward is not constant
Every time a variable appears in a conflict analysis, the numerator of its learning rate reward is incremented. After each conflict, the denominator of each assigned variable’s learning rate reward is incremented

EMA performed only when variable goes from assigned to unassigned
When a variable is unassigned, the variable receives the learning rate reward, and the estimate Q is updated.

Most importantly, we understand why bumping certain variables and why performing multiplicative decay helps.
APPLE-TO-APPLE RESULTS (MINISAT WITH VSIDS VS. CHB VS. LRB)

The diagram shows a comparison of time (in seconds) versus the number of solved instances for three algorithms: VSIDS, CHB, and LRB. The y-axis represents time ranging from 0 to 5000 seconds, while the x-axis shows the number of solved instances from 0 to 1400. The graph illustrates how each algorithm performs under increasing complexity, with VSIDS generally showing the best performance, followed by CHB and then LRB.
COMPARISON WITH STATE-OF-THE-ART: CRYPTOMINISAT, MAPLECMS, GLUCOSE, AND LINGELING
• Global Learning Rate: \# of conflicts/\# of decisions

• Experimental setup: ran 1200+ application and hand-crafted instances on MapleSAT with VSIDS, CHB, LRB, Berkmin, DLIS, and JW with 5400 sec timeout per instance on StarExec

<table>
<thead>
<tr>
<th>Branching Heuristic</th>
<th>Global Learning Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRB</td>
<td>0.452</td>
</tr>
<tr>
<td>MVSIDS</td>
<td>0.410</td>
</tr>
<tr>
<td>CHB</td>
<td>0.404</td>
</tr>
<tr>
<td>CVSIDS</td>
<td>0.341</td>
</tr>
<tr>
<td>BERKMIN</td>
<td>0.339</td>
</tr>
<tr>
<td>DLIS</td>
<td>0.241</td>
</tr>
<tr>
<td>JW</td>
<td>0.107</td>
</tr>
</tbody>
</table>
PART V

CONCLUSIONS AND TAKEAWAY
CONCLUSIONS AND TAKEAWAY
RESULTS EXPLAINING THE POWER OF SAT SOLVERS

- CDCL SAT solvers are polynomially-equivalent to merge resolution
- Proof complexity of SMT solvers [RKG18]
 - Proof complexity
 - Parameterized complexity
- Introduced the merge parameter as a basis for upper bound analysis [ZG18]
- Merge as a feature for machine learning based clause deletion
- Introduced the idea of ‘solver as a collection of machine learning based optimization engines’ [LG+16, LG+17, LG+18]
- Successfully used this paradigm to develop new ML-based branching, restart, initialization, and splitting policies in MapleSAT

Understanding the efficacy of solvers (practical proof systems)

Proof complexity

Parameterized complexity

Machine learning based solver design
PART VI

One more thing…
Preliminary results: used this idea to learn the Pythagorean theorem and the Sine function from data.
CURRENT RESEARCH PROGRAM

Proof Complexity and Formal Methods

Machine Learning and Deduction

Physics Software verification. SAT+CAS for Math

Formal Security via Attack-resistance

STP
Hampi
Z3 String
MapleSAT
MathCheck
LGML
REFERENCES

[WGS03] Williams, R., Gomes, C.P. and Selman, B. Backdoors to typical case complexity. IJCAI 2003

[B09] Biere, A. Adaptive restart strategies for conflict driven SAT solvers. SAT 2008

[BSG09] Dilkina, B., Gomes, C.P. and Sabharwal, A. Backdoors in the context of learning. SAT 2009

[LGPC16] Liang, J.H., Ganesh, V., Poupart, P., and Czarnecki, K. Learning Rate Based Branching Heuristic for SAT Solvers. SAT 2016
