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Use of neural networks 

          x: input          f: neural network            y: output 
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Sensing Controller

Others…

Source: 1. https://news.cornell.edu/stories/2019/04/new-way-see-objects-accelerates-future-self-driving-cars 
2. https://www.semanticscholar.org/paper/A-Neural-Network-Controller-for-Trajectory-Control-Jiang-Ishida/9fb758b226b9bb654023d343ea1575e339a3034d/figure/0 
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Verification and Robustness

• Given  
• Verify that output does not change in the neighborhood around 

each input 
• Robustness against   -norm bounded perturbation:  

• Only verify neighborhood around each labeled point. 
• Only verify the output is stable, not necessarily correct 
• So robust verification is not correctness verification  4

xi
ϵ

{(x1, y1), (x2, y2), . . . , (xn, yn)}

lp
| |x − xi | |p ≤ ϵ ⟹ f(x) = f(xi)



We need a specification
• What should a specification provide?  
• Precondition: identifies feasible inputs for which network 

should be expected to give correct answer 

• Postcondition: correct output for each feasible input

 5Source: 1. https://www.newscientist.com/article/mg23230970-200-playing-can-teach-autonomous-cars-how-to-drive/ 
2. https://www.flickr.com/photos/nbscloset/3313647292 
3. https://www.gamasutra.com/view/news/320213/How_classic_games_make_smart_use_of_random_number_generation.php



How About Specification for Sensing 
Applications?
• Not feasible in general with only the            setup - consider a 

vision task 
• Need to logically identify all feasible input images 
• Need to logically specify correct output for each feasible input 

image 
• People don’t know how to do this  

(which is one reason we use neural networks for such tasks) 
• So we need to bring something more!
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Key Insight
• Introducing state space and observation process 
• Example: a road, a camera taking pictures of the road, estimate position 

of camera given image
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- Camera offset: … 
- Camera facing angle: … 
- road width: … 
- …

Camera Imaging Process

InputsLatent state of the world xObservation Process g

Source: 1. https://openai.com/content/images/2017/05/stacking_demo.gif

• Sensing task is typically to recover some attribute of the world, which is encoded in s. 
Denote this attribute as        , ground truth function (typically trivial to compute)λ(s)



Now we can give specification

• State space    : the space of all states of the world that the 
network is expected to work in. 
• Precondition: feasible input space  
• Postcondition: the correct output is given by 
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𝒮

𝒳̃ = {x |∃s ∈ 𝒮, x ∈ g(s)}
λ(s)



Correctness Verification

• Correctness: 
• For regression problems, neural networks won’t give exactly 

correct predictions  
• (Approximate) correctness:  

• Can be other distance metric depending on how you want to 
measure error 
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∀s ∈ 𝒮, ∀x ∈ g(s), f(x) = λ(s)

∀s ∈ 𝒮, ∀x ∈ g(s), | f(x) − λ(s) | ≤ ϵ



Correctness Verification

• Problem formulation (regression): given a trained network f, a 
specification by    , g,   , find a bound on the maximum error 
the network can make with respect to the specification 

                   Find bound on                           
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𝒮 λ

max
s∈𝒮,x∈g(s)

| f(x) − λ(s) |



Example
• Setup: a camera takes picture of a road 
• Camera can vary its horizontal offset and 

viewing angle.  
• A neural network takes the picture as 

input, predict the camera position
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(δ, θ)

x f ys
g

(δ, θ)
Camera Imaging Process Neural Network
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Example
• The neural network is designed to work for                
                                       
• So state space 
• Feasible input space   
• Problem of correctness verification: 

  Find bound on                                             
over all images that can be taken within 
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δ ∈ [−40,40], θ ∈ [−60∘,60∘]

50

𝒮 = {sδ,θ |δ ∈ [−40,40], θ ∈ [−60∘,60∘]}

𝒳̃ = {x |∃s ∈ 𝒮, x ∈ g(s)}

max( |δ − δ* | ), max( |θ − θ* | )

δ ∈ [−40,40], θ ∈ [−60∘,60∘]



How to solve?
• State space    can in general be continuous and contains 

infinite number of states (as is in the example) 
• Cannot enumerate each state 
• Idea: finitize the space into tiles and compute error bound for 

each tile
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𝒮

Tiler



Tiler
• Step 1: Divide the state space     into local regions       such 

that        
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𝒮 {𝒮i}
∪i 𝒮i = 𝒮

𝒮i

δ

𝒮i𝒮 θ



Tiler
• Step 2: For each    , compute the ground truth bound        , 

such that
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𝒮i [li, ui]
∀s ∈ 𝒮i, li ≤ λ(s) ≤ ui

𝒮i

δ

𝒮i𝒮 θ

δi
1 δi

2

θi
1

θi
2 Ground truth bound for     : 

For    prediction:  
For    prediction:

𝒮i
δ [δi

1, δi
2]

θ [θi
1, θi

2]



Tiler
• Each     is mapped to a tile in input space by g:  
• Step 3: Using     and g, compute a bounding box     for each input tile    

such that
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𝒮i

δ

𝒮i𝒮 θ

𝒳i = {x |x ∈ g(s), s ∈ 𝒮i}𝒮i
𝒮i ℬi

𝒳i ⊆ ℬi

𝒳i

𝒳i

Input space 𝒳

g

ℬi

For each pixel, compute 
the range of values it can 
take when s varies in      . 

This gives a     -norm ball 
in the input space that 
encapsulate  

𝒮i

l∞ ℬi

𝒳i



Tiler
• Step 4: Given network    and bounding boxes       , use a compatible 

technique to solve for the network output ranges            , 
satisfying:                                       
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f {ℬi}
{[l′�i, u′�i]}

∀x ∈ ℬi, l′�i ≤ f(x) ≤ u′�i

𝒮i

δ

𝒮i𝒮 θ
𝒳i

Input space 𝒳

g

ℬi

Standard techniques to solve 
network output range given 
input constraints: 
- MILP 
- Convex relaxation 
- Duality 
- Abstract interpretation 

Network output range 

MILP  
Solver

[δi
min, δi

max], [θi
min, θi

max]



Tiler
• Step 5: For each tile, use the ground truth bound         and network 

output bound         to compute the error bound: 
• This gives the upper bound on prediction error for all                         
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𝒮i

δ

𝒮i𝒮 θ
𝒳i

Input space 𝒳

g

ℬi
Network output range 

MILP  
Solver

[δi
min, δi

max], [θi
min, θi

max]

Ground truth bound 
[δi

1, δi
2], [θi

1, θi
2]

Error Bound 
ei

δ, ei
θ

(li, ui)
(l′�i, u′�i) ei = max(u′�i − li, ui − l′�i)

s ∈ 𝒮i



Tiler
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Case Study
• Position measurement from road scene 

• Neural network: 2 conv layers with 16 and 32 filters 
respectively + a fully connected layer with 100 units. 
Output layer is a linear layer with 2 output nodes. ReLU 
activation. 

• Trained to work for  

• Apply Tiler: 
• Divide the state space into grid with cell size 0.1 (for 

both    and    ) 
• For solving network output range (Step 4), we use 

MILP method by Tjeng et.al. 2017.

 20

50
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Error Bound
• Global error bounds: 
• For   , 12.66 (15.8% of the measurement range) 
• For   ,          (5.94% of the measurement range) 

• We have verified that the network will not make errors greater than 
these values for all input images that it is expected to work on!
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δ
θ 7.13∘



Error Bound Landscape
• We can view how the error bounds varies across the state space:
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Error Bound Landscape
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How tight are the error bounds?
• Maybe Tiler gives large error bounds, but my network is actually good? 
• Sample multiple         within each cell      and generate input images, 

then take the maximum over the prediction errors of these points 
(empirical estimate) 
• This actually gives lower bounds on the max errors for each tile 
• Global error bounds: 
• For   , upper bound (by Tiler) 12.66, lower bound (empirical) 9.12 
• For   , upper bound (by Tiler)        , lower bound (empirical) 
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(δ, θ) 𝒮i

δ
θ 7.13∘ 4.08∘



Remove 
Lower bound

How tight are the error bounds?

Remove 
Lower bound



Can we get even tighter error bounds?
• Contributing factors to the gap: 
• Extra space 
• Interval arithmetic when computing error bounds 

• Both will be reduced with finer tile size
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ℬi∖𝒳i
ei = max(u′�i − li, ui − l′�i)



Detecting illegal inputs
• To make the system complete, need a way to detect whether a new 

input is within the feasible input space or not.
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New input x* Is it legal?

Feasible 
input 
space

Yes
Verified correctness, 
with error at most  eglobal

No
Flag: cannot guarantee 
reliability! 



Detecting illegal inputs
• Save the bounding boxes         computed in Tiler 
• Check if the new input     is contained in any  

• If not, flag as illegal  
• If yes, then      is either  

• in the feasible input space, or  
• close to points in the feasible input space (in terms of the size of the 

bounding box).  
• If size of      is small, it is reasonable to assume the ground truth for     is 

close to the ground truth for the feasible inputs in      (common 
assumption behind robustness).  
• Since the network output bound computed in Tiler is for      , it applies to                          

.   . So we know the prediction on      is reliable.
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Detecting illegal input in case study
• Test this detector in case study, on 3 kinds of input: 
• 1000 legal inputs — generated from    and   . 100% flagged as 

legal 
• 1000 perturbed inputs — apply per-pixel uniformly distributed 

random perturbation with scale 0.1. 100% flagged illegal 
• 1000 inputs from a new scene — change to a scene that the 

network is not designed to work for (increase road width from 50 
to 60). 100% flagged illegal
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𝒮 g



Speeding up — prediction guided search
• Previously, search over all        to check containment of     
• Can speed up by guiding the search with network prediction 
• Prediction:           , then only need to search over     ’s corresponding 

to tiles    ’s that overlap with                        and  
• If     is legal, then the ground truth must be within those ranges, so 

this guided search will find the      that contains 
• If     is illegal (not in any     ), then this guided search won’t find a   

containing    , will flag illegal 
• Naive search: 1.138s/input; guided search: 0.069s/input. 16x speed up
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{ℬi} x*

(δ*, θ*)
[δ* − eδ, δ* + eδ] [θ* − eθ, θ* + eθ]

ℬi
𝒮i

x*
ℬi x*

ℬix* ℬi
x*



Summary
• Use state space and observation process to provide specification 
• Specifies all feasible inputs for which the network is 

expected to work on 
• Specifies correct output for each input 

• By finitizing state and input spaces into tiles, we can do 
correctness verification, verifying the max error the network 
can make for all feasible inputs 
• This framework also enables detecting whether an input is 

legal or not
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Camera Imaging Process
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