
Correctness Verification of
Neural Networks

Yichen Yang & Martin Rinard
MIT Computer Science and Artificial Intelligence Laboratory

 1

Use of neural networks

 x: input f: neural network y: output

 2

x f y

Sensing Controller

Others…

Source: 1. https://news.cornell.edu/stories/2019/04/new-way-see-objects-accelerates-future-self-driving-cars
2. https://www.semanticscholar.org/paper/A-Neural-Network-Controller-for-Trajectory-Control-Jiang-Ishida/9fb758b226b9bb654023d343ea1575e339a3034d/figure/0

https://news.cornell.edu/stories/2019/04/new-way-see-objects-accelerates-future-self-driving-cars

Use of neural networks

 x: input f: neural network y: output

 3

x f y

Sensing Controller

Others…

Source: 1. https://news.cornell.edu/stories/2019/04/new-way-see-objects-accelerates-future-self-driving-cars
2. https://www.semanticscholar.org/paper/A-Neural-Network-Controller-for-Trajectory-Control-Jiang-Ishida/9fb758b226b9bb654023d343ea1575e339a3034d/figure/0

https://news.cornell.edu/stories/2019/04/new-way-see-objects-accelerates-future-self-driving-cars

Verification and Robustness

• Given
• Verify that output does not change in the neighborhood around

each input
• Robustness against -norm bounded perturbation:

• Only verify neighborhood around each labeled point.
• Only verify the output is stable, not necessarily correct
• So robust verification is not correctness verification 4

xi
ϵ

{(x1, y1), (x2, y2), . . . , (xn, yn)}

lp
| |x − xi | |p ≤ ϵ ⟹ f(x) = f(xi)

We need a specification
• What should a specification provide?
• Precondition: identifies feasible inputs for which network

should be expected to give correct answer

• Postcondition: correct output for each feasible input

 5Source: 1. https://www.newscientist.com/article/mg23230970-200-playing-can-teach-autonomous-cars-how-to-drive/
2. https://www.flickr.com/photos/nbscloset/3313647292
3. https://www.gamasutra.com/view/news/320213/How_classic_games_make_smart_use_of_random_number_generation.php

How About Specification for Sensing
Applications?
• Not feasible in general with only the setup - consider a

vision task
• Need to logically identify all feasible input images
• Need to logically specify correct output for each feasible input

image
• People don’t know how to do this  

(which is one reason we use neural networks for such tasks)
• So we need to bring something more!

 6

x f y

Key Insight
• Introducing state space and observation process
• Example: a road, a camera taking pictures of the road, estimate position

of camera given image

 7

- Camera offset: …
- Camera facing angle: …
- road width: …
- …

Camera Imaging Process

InputsLatent state of the world xObservation Process g

Source: 1. https://openai.com/content/images/2017/05/stacking_demo.gif

• Sensing task is typically to recover some attribute of the world, which is encoded in s.
Denote this attribute as , ground truth function (typically trivial to compute)λ(s)

Now we can give specification

• State space : the space of all states of the world that the
network is expected to work in.
• Precondition: feasible input space
• Postcondition: the correct output is given by

 8

x f ys g

𝒮

𝒳̃ = {x |∃s ∈ 𝒮, x ∈ g(s)}
λ(s)

Correctness Verification

• Correctness:
• For regression problems, neural networks won’t give exactly

correct predictions
• (Approximate) correctness:

• Can be other distance metric depending on how you want to
measure error

 9

x f ys g

∀s ∈ 𝒮, ∀x ∈ g(s), f(x) = λ(s)

∀s ∈ 𝒮, ∀x ∈ g(s), | f(x) − λ(s) | ≤ ϵ

Correctness Verification

• Problem formulation (regression): given a trained network f, a
specification by , g, , find a bound on the maximum error
the network can make with respect to the specification

 Find bound on

 10

x f ys g

𝒮 λ

max
s∈𝒮,x∈g(s)

| f(x) − λ(s) |

Example
• Setup: a camera takes picture of a road
• Camera can vary its horizontal offset and

viewing angle.
• A neural network takes the picture as

input, predict the camera position

 11

(δ, θ)

x f ys
g

(δ, θ)
Camera Imaging Process Neural Network

(δ*, θ*)

Example
• The neural network is designed to work for

• So state space
• Feasible input space
• Problem of correctness verification:

 Find bound on
over all images that can be taken within

 12

δ ∈ [−40,40], θ ∈ [−60∘,60∘]

50

𝒮 = {sδ,θ |δ ∈ [−40,40], θ ∈ [−60∘,60∘]}

𝒳̃ = {x |∃s ∈ 𝒮, x ∈ g(s)}

max(|δ − δ* |), max(|θ − θ* |)

δ ∈ [−40,40], θ ∈ [−60∘,60∘]

How to solve?
• State space can in general be continuous and contains

infinite number of states (as is in the example)
• Cannot enumerate each state
• Idea: finitize the space into tiles and compute error bound for

each tile

 13

𝒮

Tiler

Tiler
• Step 1: Divide the state space into local regions such

that

 14

𝒮 {𝒮i}
∪i 𝒮i = 𝒮

𝒮i

δ

𝒮i𝒮 θ

Tiler
• Step 2: For each , compute the ground truth bound ,

such that

 15

𝒮i [li, ui]
∀s ∈ 𝒮i, li ≤ λ(s) ≤ ui

𝒮i

δ

𝒮i𝒮 θ

δi
1 δi

2

θi
1

θi
2 Ground truth bound for :

For prediction:
For prediction:

𝒮i
δ [δi

1, δi
2]

θ [θi
1, θi

2]

Tiler
• Each is mapped to a tile in input space by g:
• Step 3: Using and g, compute a bounding box for each input tile

such that

 16

𝒮i

δ

𝒮i𝒮 θ

𝒳i = {x |x ∈ g(s), s ∈ 𝒮i}𝒮i
𝒮i ℬi

𝒳i ⊆ ℬi

𝒳i

𝒳i

Input space 𝒳

g

ℬi

For each pixel, compute
the range of values it can
take when s varies in .

This gives a -norm ball
in the input space that
encapsulate

𝒮i

l∞ ℬi

𝒳i

Tiler
• Step 4: Given network and bounding boxes , use a compatible

technique to solve for the network output ranges ,
satisfying:

 17

f {ℬi}
{[l′�i, u′�i]}

∀x ∈ ℬi, l′�i ≤ f(x) ≤ u′�i

𝒮i

δ

𝒮i𝒮 θ
𝒳i

Input space 𝒳

g

ℬi

Standard techniques to solve
network output range given
input constraints:
- MILP
- Convex relaxation
- Duality
- Abstract interpretation

Network output range

MILP
Solver

[δi
min, δi

max], [θi
min, θi

max]

Tiler
• Step 5: For each tile, use the ground truth bound and network

output bound to compute the error bound:
• This gives the upper bound on prediction error for all

 18

𝒮i

δ

𝒮i𝒮 θ
𝒳i

Input space 𝒳

g

ℬi
Network output range

MILP
Solver

[δi
min, δi

max], [θi
min, θi

max]

Ground truth bound
[δi

1, δi
2], [θi

1, θi
2]

Error Bound
ei

δ, ei
θ

(li, ui)
(l′�i, u′�i) ei = max(u′�i − li, ui − l′�i)

s ∈ 𝒮i

Tiler

 19

Case Study
• Position measurement from road scene

• Neural network: 2 conv layers with 16 and 32 filters
respectively + a fully connected layer with 100 units.
Output layer is a linear layer with 2 output nodes. ReLU
activation.

• Trained to work for

• Apply Tiler:
• Divide the state space into grid with cell size 0.1 (for

both and)
• For solving network output range (Step 4), we use

MILP method by Tjeng et.al. 2017.

 20

50

δ ∈ [−40,40], θ ∈ [−60∘,60∘]

δ θ

Error Bound
• Global error bounds:
• For , 12.66 (15.8% of the measurement range)
• For , (5.94% of the measurement range)

• We have verified that the network will not make errors greater than
these values for all input images that it is expected to work on!

 21

δ
θ 7.13∘

Error Bound Landscape
• We can view how the error bounds varies across the state space:

 22

Error Bound Landscape

 23

How tight are the error bounds?
• Maybe Tiler gives large error bounds, but my network is actually good?
• Sample multiple within each cell and generate input images,

then take the maximum over the prediction errors of these points
(empirical estimate)
• This actually gives lower bounds on the max errors for each tile
• Global error bounds:
• For , upper bound (by Tiler) 12.66, lower bound (empirical) 9.12
• For , upper bound (by Tiler) , lower bound (empirical)

 24

(δ, θ) 𝒮i

δ
θ 7.13∘ 4.08∘

Remove
Lower bound

How tight are the error bounds?

Remove
Lower bound

Can we get even tighter error bounds?
• Contributing factors to the gap:
• Extra space
• Interval arithmetic when computing error bounds

• Both will be reduced with finer tile size

 26

ℬi∖𝒳i
ei = max(u′�i − li, ui − l′�i)

Detecting illegal inputs
• To make the system complete, need a way to detect whether a new

input is within the feasible input space or not.

 27

New input x* Is it legal?

Feasible
input
space

Yes
Verified correctness,
with error at most eglobal

No
Flag: cannot guarantee
reliability!

Detecting illegal inputs
• Save the bounding boxes computed in Tiler
• Check if the new input is contained in any

• If not, flag as illegal
• If yes, then is either

• in the feasible input space, or
• close to points in the feasible input space (in terms of the size of the

bounding box).
• If size of is small, it is reasonable to assume the ground truth for is

close to the ground truth for the feasible inputs in (common
assumption behind robustness).
• Since the network output bound computed in Tiler is for , it applies to

. . So we know the prediction on is reliable.
 28

{ℬi}
x* ℬi

x*

ℬi

x*ℬi

x* x*
ℬi

Detecting illegal input in case study
• Test this detector in case study, on 3 kinds of input:
• 1000 legal inputs — generated from and . 100% flagged as

legal
• 1000 perturbed inputs — apply per-pixel uniformly distributed

random perturbation with scale 0.1. 100% flagged illegal
• 1000 inputs from a new scene — change to a scene that the

network is not designed to work for (increase road width from 50
to 60). 100% flagged illegal

 29

𝒮 g

Speeding up — prediction guided search
• Previously, search over all to check containment of
• Can speed up by guiding the search with network prediction
• Prediction: , then only need to search over ’s corresponding

to tiles ’s that overlap with and
• If is legal, then the ground truth must be within those ranges, so

this guided search will find the that contains
• If is illegal (not in any), then this guided search won’t find a

containing , will flag illegal
• Naive search: 1.138s/input; guided search: 0.069s/input. 16x speed up

 30

{ℬi} x*

(δ*, θ*)
[δ* − eδ, δ* + eδ] [θ* − eθ, θ* + eθ]

ℬi
𝒮i

x*
ℬi x*

ℬix* ℬi
x*

Summary
• Use state space and observation process to provide specification
• Specifies all feasible inputs for which the network is

expected to work on
• Specifies correct output for each input

• By finitizing state and input spaces into tiles, we can do
correctness verification, verifying the max error the network
can make for all feasible inputs
• This framework also enables detecting whether an input is

legal or not

 31

Reference
Evaluating Robustness of Neural Networks with Mixed Integer
Programming, Vincent Tjeng, Kai Xiao, Russ Tedrake, ICLR 2019

 32

https://arxiv.org/search/cs?searchtype=author&query=Tjeng%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Xiao%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Tedrake%2C+R

Camera Imaging Process

 33

Road plane

z_c

Image plane

Focal point

f Camera

